

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Author(s):

Title:

Year:

Version:

Please cite the original version:

All material supplied via JYX is protected by copyright and other intellectual property rights, and
duplication or sale of all or part of any of the repository collections is not permitted, except that
material may be duplicated by you for your research use or educational purposes in electronic or
print form. You must obtain permission for any other use. Electronic or print copies may not be
offered, whether for sale or otherwise to anyone who is not an authorised user.

Evaluating a hierarchical approach to landscape level harvest scheduling

Eyvindson, Kyle; Rasinmäki, Jussi; Kangas, Annika

Eyvindson, K., Rasinmäki, J., & Kangas, A. (2018). Evaluating a hierarchical approach
to landscape level harvest scheduling. Canadian Journal of Forest Research, 48(2),
208-215. https://doi.org/10.1139/cjfr-2017-0298

2018

Supplementary material to:

Evaluating a hierarchical approach to landscape level harvest scheduling by Kyle Eyvindson,
Juusi Rasinmäki and Annika Kangas

This supplementary document uses synthetic data to test to computational requirements and
performance of the different hierarchical models. The methods and data used in this analysis are held in
a GitHub repository at https://github.com/eyvindson/hierarchical

The entire process was modelled in Python, using the Pyomo package (Hart et al. 2012) to model the
problem and link the model to a commercial optimization package (CPLEX 12.6 in this case). A set of
1,000 artificial stands were generated to represent potential initial conditions, and these stands were
simulated for 10 years through 6 periods (four one-year periods and two three-year periods). This
dataset can be combined to represent a wide variety of forest sizes.

The Python code is partitioned in to six sections:

1. List of variables used throughout code:

All variables which influence the optimization process and the re-structuring of the data are
included here. A change in these variables will increase/decrease the computational complexity
of the problem, and increase/decrease the amount of time allocated to the different
optimizations.

2. Adding packages

Here all of the importing of python packages is done.

3. Create optimization functions

Each of the optimization functions are created with a separate function. Pyomo is used to
create the models, and each optimization model reflects the models created in the
manuscript.

4. Importing data

The set of 1000 synthetic stands are imported through Pandas. Users need to ensure that the
path and data file name reflects their system.

5. Creating structured data for optimization

Here the synthetic stands are organized into a data frame which reflect the problem
structure. A number of departments are created with a random number of stands (bounded
between a minimum and maximum value). The area of each stand is also a random value,
bounded between a minimum and maximum value.

6. Solving the optimization problems

Each of the models are sent to the optimization software (in this case CPLEX), and given a set
amount of time to process.

To provide context for the target values, the monolithic problem is solve to find the maximum
possible amount of timber produced during the entire period, and is resolved using a
percentage of that maximum as a target for each period. With a synthetic dataset, setting
appropriate targets can be difficult as the specific case changes with the random variables.

Once solved, the objective function is provided, and the time taken to generate the solutions is
also provided.

For this supplementary material three cases with increasing complexity were solved, we provide the
variables used in table S1 and solutions to each of the problems is found in Figure S1.

Table S1. Adjustment of a selection of variables used in the six different tests.

Variables adjusted
Depts min_stands max_stands

Test 1 50 300 500
Test 2 150 300 500
Test 3 300 300 500
Test 4 450 100 200
Test 5 450 200 300
Test 6 450 300 400

The results and performance of the different models are highlighted in Figure S1. The results are similar
to that found in the manuscript, with the large problems (when the departments in the analysis are 300)
showing that the monolithic problem does not come close to the global solution under the time limits
provided. This is seen as the integrated model finds better solutions than what has been produced
through the monolithic model.

Figure S1. The objective function values for the monolithic solution (dashed line) and the iterative
hierarchical solution (solid line) for different iterations. For tests 2, 3, 5 and 6, the monolithic
problem did not find a solution within the range of the hierarchical solutions.

References:

Hart WE, Laird C, Watson J-P, Woodruff DL (2012). Pyomo - Optimization Modeling in Python. Springer

