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Abstract 
An important aspect of protecting software from attack, theft of algorithms, or illegal software use, is 

eliminating the possibility of performing reverse engineering. One common method to deal with these 
issues is code obfuscation. However, in most case it was shown to be ineffective. Code encryption is a 
much more effective means of defying reverse engineering, but it requires managing a secret key 
available to none but the permissible users. The authors propose a new and innovative solution. Critical 
functions in protected software are encrypted using well-known encryption algorithms. Following 
verification by external attestation, a thin hypervisor is used as the basis of an eco-system that manages 
just-in-time decryption, inside the CPU, where decrypted instructions are then executed and finally 
discarded, while keeping the secret key and the decrypted instructions absolutely safe. The paper 
presents and compares two methodologies that perform just-in-time decryption: in-place and buffered 
execution. The former being safer, while the latter boasts better performance. 

 
Keywords: Hypervisor, Trusted computing, Attestation, Cyber-security 

 
1. Introduction 
 

Digital content such as games, videos, and the like may be susceptible to unlicensed usage, which has 
a significant adverse impact on the profitability and commercial viability of such products. Commonly, 
such commercial digital content may be protected by a licensing verification program; these, however, 
may be circumvented by reverse engineering of the software instructions of the computer program which 
leaves them vulnerable to misuse. 

One way of preventing circumvention of the software licensing program, may be using a method of 
obfuscation [1] [2]. The term obfuscation refers to making software instructions difficult for humans, as 
well as reverse-engineering software tools, to understand by deliberately cluttering the code with useless, 
confusing pieces of additional software syntax or instructions. However, even when changing software 
code and making it obfuscated, the content is still readable to the skilled hacker [3] [4]. 

Additionally, publishers may protect their digital content product by encryption, using a unique key 
to convert the software code to an unreadable format, such that only the owner of the unique key may 
decrypt the software code. Such protection may only be effective when the unique key is kept secured 
and unreachable to an adversary. Hardware based methods for keeping the unique key secured are 
possible [5] [6] [7], but may have significant deficiencies, mainly due to an investment required in 
dedicated hardware on the user side, making it costly, and, therefore, impractical. Furthermore, such 
hardware methods have been successfully attacked by hackers [8] [9]. 

Software copy-protection is currently predominantly governed by methodologies based on 
obfuscation, which are volatile to hacking or user malicious activities. There is, therefore, a need for a 
better technique for protecting sensitive software sections, such as licensing code. 

In this paper, we present a system that allows encrypting and executing native programs written for 
the x86 architecture. The system is based on the approach proposed by Averbuch et al. [10], in which an 
attested kernel module is responsible for decryption and execution of encrypted functions. The main 
deficiency of the proposed approach is the inability of the kernel module to protect itself from the 
operating system. As a consequence, a vulnerability in the operating system may compromise the secret 
key. Moreover, the attestation server has to attest not only the kernel module responsible for decryption 
but also the entire operating system. The complications of operating system attestation and a partial 
mitigation are described in [11]. 
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This paper proposes to solve all these complications by utilizing the virtualization extension, which 
is available on modern processors [12] [13], in order to enable the decrypting kernel module to protect 
itself, thus eliminating the need for operating system attestation. Figure 1 depicts the components of the 
proposed system as well as their relationships. The system is deployed on three computers: a 
development machine, on which the program to be encrypted, is compiled and encrypted; the attestation 
server, which stores the decryption key, and delivers it to the target machine; and the target machine, 
which executes the encrypted program. A special driver, which embeds a hypervisor, is installed on the 
target machine prior to execution of an encrypted program. The hypervisor obtains the decryption key, 
which is necessary for program execution, from the attestation server, when an encrypted program is 
loaded to the memory. 

 
1.1 Intel SGX 

 
Intel has announced its new security technology named Software Guard Extensions (SGX) [32], 

which enables developers to create secure containers, called enclaves, inside a process address space. 
The enclave address space is protected from any other software not resident in the enclave, including 
privileged software. This guarantees that malware, at any privilege level, cannot compromise the 
confidentiality or integrity of enclave resident software or data. SGX does not rely on a hypervisor or 
hardware virtualization, instead it encompasses two new instruction-set extensions that allow initializing 
and managing the enclaves. Secure storage is managed in an Enclave-Page-Cache, which is protected by 
hardware from "non-enclave" access. SGX provides the means for implementations to the same end as 
proposed by our methodology, however the SGX processor extensions are available only in the newest 
Intel processors. Therefore, utilizing an SGX based solution requires specific hardware, adds to 
equipment cost and is not supported on legacy systems. 

 

 
Figure 1. Native code protection system. The original program is encrypted before its distribution. The 

encryption key is stored in the attestation server, which delivers it to the hypervisor in the target 
machine upon successful attestation. The hypervisor is initialized by a driver, which also hosts the code 

of the hypervisor. 
 
1.2 Contribution 
 

The methodology proposed in this paper provides for a software-only solution, based on the 
availability of hardware virtualization and secondary-level address translation, incorporated in most Intel 
and AMD CPUs released after 2008. Furthermore, an innovative thin hypervisor is utilized to protect 
cryptographic keys and decrypted code to provide a truly secure just-in-time code decryption mechanism. 
The thin hypervisor is guaranteed to be trusted with the employment of remote attestation. 
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2. Encryption tool 
 

The encryption tool is responsible for encryption of selected functions in a program. The user selects 
the functions to be encrypted by specifying their names in a configuration file. A map file or a debug 
symbols file, which are produced by a compiler, can then be used to translate the names of the functions 
to their locations in the program file. 

On Windows, program files, executables and dynamic libraries, are stored in Portable Executable 
(PE) format [14]. Figure 2 depicts the structure of a PE file. The different headers define the expected 
location of the PE file when loaded to memory, sizes and positions of various data structures inside the 
PE file, the number of sections contained in this PE file, etc. The section table contains a description of 
each of the sections contained in the PE file. Following the section table are the sections themselves. 
Sections vary in their structure and purpose: the .text section contains the code of the program, the .data 
section contains its constants. Other sections may contain information about resources (images and 
sounds) embedded in the PE file or information used during exception delivery. 

 

 
Figure 2. Structure of a Windows PE file. The structure contains a variable number of sections. Two of 

the most common sections are presented. 
 
 

 
Figure 3. The left image represents the structure of an ELF file as it is stored in disk. The right image 

represents the structure of an ELF file as it is loaded to memory. 
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On Linux, program files, executable files and dynamic libraries, are stored in Executable and Linkable 

Format (ELF) format [15]. Figure 3 depicts the structure of an ELF file. An ELF file consists of a header, 
which is followed by data. The data may include: 

• Program header table, describing zero or more segments. Only two segments can be defined as 
loadable: the code segment and the data segment. The code segment is loaded to memory with 
read-write-execute permissions, while the data segment is loaded with read-only permissions. 
Other segments are not loaded to memory. 

• Section header table, describing zero or more sections. A typical ELF file holds a section called 
.text, which contains the code of the program. 

• Data referenced by entries in the program header table or section header table. 
The segments contain information that is necessary for runtime execution of the file, while the 

sections contain data for linking and relocation. Figure 3 depicts the structure of an ELF virtual-image 
at load time. 

The encryption tool modifies the given PE/ELF file by introducing a new section, which stores the 
selected functions in encrypted form. The instructions of the original functions are partially replaced by 
an exception inducing instruction. We propose to use either the halt instruction or the software 
breakpoint instruction. The halt instruction is a privileged instruction, which deactivates the current 
processor when executed in kernel mode, but generates a general protection fault when executed in user 
mode. The software breakpoint instruction generates a breakpoint trap when executed in either kernel or 
user modes. Faults and traps, being types of interrupts, can be intercepted by a hypervisor, which can 
then decrypt and execute the original encrypted function. Another benefit of the halt and the software 
breakpoint instructions is that they can be represented by a single byte (0xF4 for halt and 0xCC for 
software breakpoint), thus allowing them to fully cover any number of bytes. The software breakpoint 
instruction is superior to the halt instruction in that it generates an interrupt not only in user mode but 
also in kernel mode. 

 

 
Figure 4. Example of an encryption process of a single function. The encryption begins by classifying 
instruction is encryptable (normal face) and non-encryptable (bold face), and creating to copies. The 
complementary instructions in each copy are replaced by halts. Finally, one copy is written over the 

original functions, and the other is encrypted and added to the special section. 
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As will be explained in section 5, it is highly important to intercept control transfers that leave the 
encrypted function. The encryption tool disassembles the function to be encrypted and inspects its 
instructions. The instructions then are classified as encryptable and non-encryptable. The encryption tool 
classifies an instruction as non-encryptable if it might transfer control out of the encrypted function. For 
example, the ret and the call instructions are always classified as non-encryptable, but the jmp instruction 
is classified as non-encryptable only if its destination lays outside of the protected function's bounds or 
if the destination cannot be determined statically (if it is stored in a register, for instance). 

The encryption tool produces two copies of the original function, the encryptable copy (EC) and the 
non-encryptable copy (NEC). In the EC all the non-encryptable instructions are replaced by the halt or 
the software breakpoint instructions. Then the encryption tool encrypts the EC and stores it in the new 
section. In the NEC all the encryptable instructions are replaced by the halt or the software breakpoint 
instructions. Then the encryption tool replaces the original function by the NEC. Figure 4 presents an 
example of such a transformation. 

 
3. Hypervisor 

 
A hypervisor, also referred to as a Virtual Machine Monitor (VMM), is software, which may be 

hardware-assisted, to manage multiple virtual machines on a single system [16]. The hypervisor 
virtualizes the hardware environment in a way that allows several virtual machines, running under its 
supervision, to operate in parallel over the same physical hardware platform, without obstructing or 
impeding each other. Each virtual machine has the illusion that it is running unaccompanied on the entire 
hardware platform. The hypervisor is referred to as the host, while the virtual machines are referred to 
as guests.  

A virtual machine control structure (VMCS) is defined for each virtual environment managed by a 
virtual machine monitor (VMM) [12]. This structure defines the values of privileged registers, the 
location of the interrupt descriptors table, and additional values that constitute the internal state of the 
virtual environment. In addition, this structure defines the events that the VMM is configured to intercept, 
and the address of the function that should handle the interception. The act of control transfer from the 
virtual environment to a predefined function is called vm-exit and the act of control transfer from the 
function back to the virtual environment is called vm-entry. Upon vm-exit the function can determine 
the reason of the vm-exit by examining the fields of the VMCS and altering them, thus altering the state 
of the virtual environment as it wishes. Finally, the VMCS can define a mapping between the physical 
memory as it is perceived by the virtual environment and the actual physical memory. As a consequence, 
the VMM can prevent access to some physical pages by the virtual environment. Moreover, the virtual 
environment will be unaware of this situation. 

We propose to use a hypervisor for securing a single guest. Rather than wholly virtualizing the 
hardware platform, a special breed of hypervisor, called a thin hypervisor, is used [17] [18]. A thin 
hypervisor is configured to intercept only a small portion of events. All other events are processed 
without interception, directly, by the OS. A thin hypervisor only intercepts the set of events that allows 
it to protect an internal secret (such as a cryptographic key) and protect itself from subversion. Figure 5 
depicts a thin hypervisor supporting a single guest. Since a thin hypervisor does not control most of the 
OS interaction with the hardware, multiple OS are not supported. On the other hand, system performance 
is kept at an optimum. 
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Figure 5. Thin hypervisor. The hypervisor runs in a higher privilege level than the operating system. 
System calls, traps, exceptions, and other interrupts, transfer control from user mode applications to the 
operating system. The operating system handles these conditions by requesting some service from the 

underlying hardware. A thin hypervisor can intercept some of those requests and handle them 
according to some policy. 

 
A thin hypervisor facilitates a secure environment by: (a) setting aside portions of memory that cannot 

be accessed by the guest, (b) storing the cryptographic key in privileged registers, and (c) intercepting 
privileged instructions that may compromise its protected memory, reveal the cryptographic key, or 
attempt to subvert the hypervisor.  

Once this environment is correctly configured, a thin hypervisor can be utilized to carry out specific 
operations, which may include use of the cryptographic key, in a protected region of memory. As a result 
of the tightly configured intercepts and absolute control of the protected memory regions, this activity 
can be guaranteed to protect both the cryptographic key and the operations results. 
 
4. Remote attestation 
 

The problem of remote software authentication, determining whether a remote computer system is 
running the correct version of a software, is well known [5] [19-25][33]. Equipped with a remote 
authentication method, a service provider can prevent an unauthenticated remote software from obtaining 
some secret information or some privileged service. For example, only authenticated gaming consoles 
can be allowed to connect to the gaming networks [26-28], and only authenticated bank terminals can be 
allowed to fetch records from the bank database [29]. We have also shown that once attestation is 
completed the attested computer can receive encryption keys from the attestation server and protect them 
from malicious software in a modern host [34]. 

The research in this area can be divided into two major branches: hardware assisted authentication [5-
7] and software-only authentication [19-22]. In this paper we concentrate on software-only 
authentication, although the system can be adapted to other authentication methods, as well. The 
authentication entails simultaneously authenticating some software component(s) or memory region, as 
well as verifying that the remote machine is not running in virtual or emulation mode. Software-only 
authentication methods may also involve a challenge code that is sent by the authentication authority, 
and executed on the remote system. The challenge code computes a result that is then transmitted back 
to the authority. The authority deems the entity to be authenticated if the result is correct and was received 
within a predefined time-frame. The underlying assumption, which is shared by all such authentication 
methods, is that only an authentic system can compute the correct result within the predefined time-
frame. The methods differ in the means by which (and if) they satisfy this underlying assumption. 

 

 
Figure 6. The attestation protocol between the authentication authority and the target machine. The 
protocol consists of four messages. The first two messages are sent unencrypted, while the two last 

messages are encrypted. The third message is encrypted by the public key of the authentication 
authority and the fourth message is encrypted by the random value transmitted in the third message. 
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Kennell and Jamieson proposed [19] a method that produces the result by computing a cryptographic 
hash of a specified memory region. Any computation on a complex instruction set architecture (Pentium 
in this case) produces side effects. These side effects are incorporated into the result after each iteration 
of the hashing function. Therefore, an adversary, trying to compute the correct result on a non-authentic 
system, would be forced to build a complete emulator for the instruction set architecture to compute the 
correct side effects of every instruction. Since such an emulator performs tens and hundreds of native 
instructions for every simulated instruction, Kennell and Jamieson conclude that it will not be able to 
compute the correct result within the predefined time-frame. The method of Kennel and Jamieson was 
further adapted, by the authors, to modern processors [30]. The adaptation solves the security issues that 
arise from the availability of virtualization extensions and multiplicity of execution units. 

The authentication protocol is depicted in Figure 6. The initial messages of the protocol carry 
information about the current configuration of the target machine. Following this exchange, the 
authentication authority transmits a message containing the challenge code to be executed on the target 
machine. The target machine executes the challenge, which computes a result that is a cryptographic 
hash of some memory region, possibly with some additional information. The target machine, 
concatenates a randomly generated number to the result, encrypts both values with the public key of the 
authentication authority, and transmits the encrypted message. The authentication authority verifies that 
the result is correct and was received within a predefined time-frame. If both are true the target machine 
is considered authentic. The authentication authority then shares some secret information with the target 
machine. This secret information constitutes a proof of the target's authenticity. The authentication 
authority encrypts the secret information with a random value obtained from message (3) used as the 
encryption key, and transmits the encrypted message to the target machine. 
 
5. Encrypted instructions execution 

 
In order to execute an encrypted program, the user must first install the driver, which encapsulates the 

hypervisor. The driver monitors the PE files (ELF files, in Linux) loaded by the OS, and keeps track of 
PE files that contain the special encrypted functions section. When the first such PE file is loaded, the 
driver initializes the hypervisor. During the initialization, the driver communicates with the 
authentication authority, passes the attestation verification, obtains the cryptographic key, and enters a 
virtualized state. 

The hypervisor is configured to intercept the general protection fault. When a protected program 
transfers control to an encrypted function, the processor attempts to execute the halt instruction, which 
induces a general protection fault, thus transferring control to the hypervisor. General protection faults 
rarely occur during the normal course of program execution, since they usually cause the program to 
terminate abruptly. Nevertheless, the hypervisor uses the data structures prepared by the encryption tool 
to test whether the general protection fault occurred during execution of an encrypted function. 

The hypervisor injects the interrupt back to the guest, if it was not caused by an encrypted function 
execution. Otherwise, the hypervisor decrypts the function and starts its execution. Since during its 
execution, the function is stored in memory in unencrypted form, it is highly important to ensure that no 
other code has access to the decrypted instructions of the function. We note that in modern processors, 
several execution units (logical processors) can execute programs concurrently. Therefore, we must 
ensure that programs executed by all execution units have no access to the unencrypted instructions. 

We present two approaches to sensitive functions execution: in-place execution and buffered 
execution. 

 
5.1 In-place execution 
 

According to this approach the hypervisor can be in one of two states: cold or hot. In the cold state 
the memory does not contain any sensitive information and only the cryptographic key and the 
hypervisor's state must be protected. This is the regular mode of operation described in section 3. The 
hypervisor switches to the hot state when the memory contains sensitive information, which cannot be 
protected by the normal hypervisor memory protection technique (for example, based on EPT), since its 
physical location is not known (or not constant). EPT (Extended Page Table) is a secondary address 
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translation facility used by the hypervisor to translate guest physical addresses to actual physical 
addresses. Switching to hot mode occurs when the hypervisor triggers execution of a decrypted function.  

In the following description, we assume that the encryption tool uses halt as a replacement opcode, 
but the same is true when the software breakpoint opcode is used. 

At initialization the hypervisor's state is set to cold. In this state, in addition to the regular protection 
means described in section 3, the hypervisor intercepts general protection faults. An encrypted function, 
which was overwritten by the NEC consists mainly of halt instructions. Execution of any of these 
instructions induces a general protection fault, which causes a vm-exit and transfers control to the 
hypervisor. The hypervisor inspects the source of the general protection fault, and fetches the EC that 
corresponds to this NEC. Then the hypervisor switches to hot mode and decrypts the EC into its natural 
location, currently occupied by the NEC (the NEC is saved in a different location for future use). 

During the switch to hot mode, the hypervisor freezes all other execution units, and configures itself 
to intercept all interrupts. This behavior guarantees that the function in its decrypted form cannot be read 
by any other, potentially malicious, code, simply because no other code can run in hot mode. We note 
that all the control transfer instructions in the EC are replaced by the halt instruction, which induces a 
vm-exit. 

 

 
Figure 7. Example of encrypted function execution. The figure depicts two execution units, each with 

two alternating states: guest and host. The dashed horizontal lines are synchronization barriers, i.e. 
everything above the line is guaranteed to complete before anything below the line starts. 

 
When a vm-exit occurs in hot mode, the hypervisor first replaces the decrypted function with the 

NEC, and switches to cold mode. Following this, the hypervisor resumes all the execution units, 
configures itself to intercept only general protection faults, and returns control to the guest. Figure 7 
depicts the control flow during encrypted function execution. 

We suggest to freeze other execution units by inducing a vm-exit on each execution unit, and running 
a busy loop until the hypervisor switches back to cold mode. A vm-exit can be induced either implicitly 
with a timer or explicitly by sending an inter-processor interrupt (IPI). The former solution is much easier 
to implement but the later solution is much more efficient. 

The hypervisor intercepts interrupts in hot mode by replacing the original interrupt descriptor table 
(IDT) of the OS with a specially crafted IDT. In this special IDT each handler induces a vm-exit, for 
example, by executing the CPUID instruction. The hypervisor intercepts this instruction, realizes that an 
interrupt at vector N occurred and switches to cold mode. The hypervisor proceeds by installing the 
original IDT and moves the guest's instruction pointer to point to the Nth interrupt handler of the original 
IDT. 

 
5.2 Buffered execution 
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In the following description, we assume that the encryption tool uses halt as a replacement instruction 
for NECs and software breakpoint as a replacement instruction for ECs.  

According to this approach, the hypervisor has only one state, in which it protects itself as described 
in section 3. In addition, the hypervisor configures itself to intercept general protection faults. Execution 
of halt instructions induces a general protection fault, which causes a vm-exit and transfers control to the 
hypervisor. The hypervisor inspects the source of the general protection fault, and fetches the EC that 
corresponds to this NEC.  

When the EC is resolved, the hypervisor decrypts it into a pre-allocated memory buffer, which is 
protected by the hypervisor's second-level translation tables (EPT). The decrypted EC will be executed 
in host mode, thus allowing it to reside in an EPT-protected buffer. Since the decrypted instructions are 
inaccessible by any other execution unit (in guest mode), there is no need to suspend them. Likewise, 
since the encrypted instructions are executed inside the hypervisor, there is no need to modify the IDT 
of the guest. Finally, there is no need to perform the costly transitions to and from the guest after every 
decryption. All these improve the overall performance of the system by a large factor. 

 

 
Figure 8. Memory layout during buffered execution. The functions resided at virtual address f754000, 
which is mapped to the physical address 7862000. The encrypted code is decrypted to virtual address 

ffffffff`0197000 which is mapped to the physical address 2000. The hypervisor changes the mapping of 
the virtual address f754000 to map the physical address 2000. 

 
The x86 instruction set architecture defines many memory access instructions as relative, meaning 

that their arguments should not be interpreted as actual memory locations but rather they should be 
interpreted as offsets from the current value of the instruction pointer. As a consequence, the same 
instruction may have different interpretations when executed at different locations. Therefore we must 
execute the decrypted EC at its natural location. In order to achieve this, the hypervisor modifies the 
virtual page table of the current process by mapping the virtual page containing the NEC to the physical 
address of the pre-allocated buffer containing the decrypted EC. Figure 8 depicts this transformation. 

The control flow during the execution of an encrypted function is illustrated in Figure 9. The process 
begins when an encrypted function is called. The first instruction in the NEC is the halt instruction; its 
execution triggers the general protection exception, which induces a vm-exit. The hypervisor prepares 
the system for buffered execution by performing the following steps: (1) the EC is decrypted into a pre-
allocated buffer; (2) the virtual page table is modified to map the natural location of the function to the 
pre-allocated buffer, as illustrated in Figure 8; (3) the values of the guest registers, which were stored 
during the vm-exit transition, are restored; (4) the decrypted function is called. The decrypted function 
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executes until an interrupt occurs. The interrupt can be triggered by a software breakpoint instruction or 
by some other condition, e.g., a page fault. In both cases the hypervisor suspends the buffered execution 
by performing the following steps: (1) the values of the registers are stored to a memory region from 
which they will be restored during vm-entry; (2) the virtual page table is restored to its original state; (3) 
the decrypted EC is erased. If the interrupt was triggered by a software breakpoint instruction, the 
hypervisor resumes the guest immediately. However, if the interrupt was triggered by some other 
condition, the hypervisor injects the interrupt to the guest, and then resumes it. The interrupt injection 
mechanism allows the hypervisor to delegate the responsibility of interrupt handling to the operating 
system. Figure 9 illustrates the simple case of software breakpoint interrupt. 

 

 
Figure 9. Example of encrypted function execution in buffered execution mode. The figure depicts the 

control flow during the execution of an encrypted function. 
 

 
Figure 10. Execution modes. The left column represents the guest mode, while the right column 

represents the host mode. The lower row represents the kernel mode, while the upper row represents 
the user mode. The host mode can protect itself from the guest mode through the EPT mechanism. The 
kernel mode can protect itself from the user mode through the virtual memory protection mechanism. 

 
This approach is more efficient but potentially less secure than the in-place execution. According to 

this approach, the decrypted functions are executed inside the hypervisor itself. As a consequence these 
functions have the same privileges as the hypervisor. In particular, they can read and write memory, 
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which is otherwise inaccessible to any code external to the hypervisor. One can argue that it is impossible 
for an adversary to replace the EC with random code, without knowing the cryptographic key. However 
unfortunately, it is possible that some memory manipulation can be performed indirectly by modifying 
the data on which the encrypted function works. Nevertheless, although possible, it seems to be 
extremely difficult to manipulate the behavior of unknown code through its data. Possible solutions to 
this problem will be discussed in our future research. 

 
6. Performance 

 
This section presents a performance analysis of the two execution methods that were described in 

section 5.  
We first measured the direct overhead associated with executing an encrypted function. To do that 

we created a function f() of size 128 bytes. The function's first instruction is a return instruction, 
therefore, once activated, the function immediately returns to the caller. In the executable file we encrypt 
f() and measure the number of CPU cycles used in a call to f(). Since f() is encrypted, calling f() 
entails a transfer from "cold" mode to "hot" mode, i.e. VM_EXIT to the hypervisor, decryption of f()'s 
contents execution of f() (in this case basically zero cycles since the first instruction is an immediate 
return) and then restoring to "cold" mode. Measurements of this full-cycle were averaged over 10000 
trials with an average of 7100 cycles when using "buffered" mode and 23,000 cycles when using "in-
place" mode. 

To measure the overhead associated with real-world applications, we decided to use standard 
benchmarks as the model. The measurements were performed by encrypting several of the major 
functions in standard benchmark programs and comparing the performance results of each benchmark 
when executed with and without those functions encrypted. Two performance measurements were 
obtained for benchmarks that were run with an encrypted function: (a) using "In-Place Execution" and 
(b) using "Buffered-Execution". 

System overhead, as a result of running encrypted code over the hypervisor, is attributed to actions 
that need to take place in the hypervisor during a VM_EXIT. This occurs when (a) an encrypted function 
is called; (b) a call is made from within an encrypted function to a non-encrypted function; a return 
occurs from the calls in (a) or (b). In (a) the function needs to be decrypted and the processor is put into 
"hot" mode: when the "In-Place" method is used other processors need to be frozen; when "buffered" 
mode is used the hypervisor needs to remap the execution pages. In (b) and (c) the operation is reversed 
by clearing decrypted-memory and putting the processor back into "cold" mode. Therefore, overhead is 
closely related to the number of transitions into and out of "hot" mode. 

Additional overhead can be observed as a result of activating the hypervisor without regard to 
activities required to support executing encrypted software. This overhead is attributed to the fact that 
the system is running over a hypervisor, which activates secondary level address translation (SLAT) 
that implies overhead as a result of the additional translation required for memory access, as well as 
needing to intercept some mandatory events.   

Performance measurements of encrypted software execution overhead were conducted by running 
well-known benchmarks on a multiprocessor system with and without encrypted functions.  

We chose the "Phoronix Test Suite" [31] as our benchmark suite. A variety of test benchmarks were 
selected to reflect different types of loads, such as: CPU intensive, graphics, disk-access and network 
activities. The tests were performed on a system with the following configuration: 

• Intel Core-i7-3687U@3.3GHz (4 Cores) 
• 8192MB DRAM 
• Intel HD4000 Graphics 
• Intel 82579LM Gigabit Network 
• Linux (Ubuntu 14.04 kernel 3.19.0-25 generic X86 SMP) 
• GCC 4.8.4 

We have performed three tests. In each test, we have selected an application and encrypted 
several central functions. Table 1 summarizes the information about the encrypted function in 
each application. 

The first application, "Parallel BZIP2 Compression", is CPU intensive. It measures the time 
needed to compress a file (a .tar package of the Linux kernel source code) using BZIP2 
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compression. The second application, "Unpacking the Linux Kernel", measures how long it takes 
to extract the .tar.bz2 Linux kernel package. The third application is "X11 – 500px PutImage 
Square". The package "x11perf" is a very basic performance/regression test for X.Org (Window 
System). 

Each of the benchmark tests was executed after a full system reboot (to ensure a "clean" 
system) and measured under the following conditions: (a) non-encrypted executable without a 
hypervisor active; (b) non-encrypted executable with a commercial hypervisor (VMWare) active; 
(c) non-encrypted executable with TrulyProtect thin-hypervisor active; (d) Encrypted executable 
using "In-Place" mode; and (e) Encrypted executable using "Buffered" mode. Each activation of 
a "Phoronix Test Suite" benchmark generates multiple runs of the benchmark to gather significant 
statistics.  

Table 2 presents the results that were measured during benchmark execution in various 
configurations. The two leftmost columns describe the configuration in which the test was 
executed. The third column specifies the parameter that was measured. The three rightmost 
columns contain the values that were measured for each parameter. The table is divided into five 
parts: (a) No hypervisor – where measurements were performed on a non-encrypted executable 
without an active hypervisor; (b) vmWare HV active and KVM HV active – where measurements 
were performed on a non-encrypted executable with a commercial hypervisor (vmWare and 
KVM); (c) TP HV Active – where measurement were performed with TrulyProtect thin-
hypervisor; (d) Overhead Calculation – this part summarizes the first three parts; (e) Net overhead 
calculations – this part presents the overhead of the in-place and the buffer decryption methods 
after subtraction of the overhead associated with TrulyProtect hypervisor. 

 

 
Table 1. Encrypted functions summary. 

 
The third part is further subdivided into three parts: (i) Non protected – where a non-encrypted 

executable was measured; (ii) In-Place – where an encrypted executable was executed using the 
in-place decryption method; (iii) Buffered – where an encrypted executable was executed using 
the buffered decryption method.   

The fourth part compares the execution times of a non-encrypted executable to four other 
modes of execution: (i) a non-encrypted executable while a commercial hypervisor is active; (ii) 
a non-encrypted executable while TrulyProtect thin-hypervisor is active; (iii) an encrypted 
executable which is executed using the in-place decryption method; (iv) an encrypted executable 
which is executed using the buffered decryption method. A graphical representation of this data 
appears in figures 11. Figure 12 presents the overhead of the in-place and the buffer decryption 
methods after subtraction of the overhead associated with TrulyProtect hypervisor. 

   
Overhead was calculated by solving for the degradation in percent relative to the reference 

benchmark result as measured without the hypervisor activated. 
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 Parallel 

BZIP2 
Compression 

Unpacking 
the Linux 
Kernel 

X11 500px 
PutImage 
Square 

No HV Not 
Protected 

Execution 26.58 secs 10.31 secs 2822 ops/sec 

vmWare HV 
Active 

Not 
Protected 

Execution 28.92 secs 14.83 secs 1643 ops/sec 

KVM HV Active Not 
Protected 

Execution 28.39 secs 11.4 secs 905 ops/sec 

TP HV Active Not 
Protected 

Execution 26.92 secs 11.81 secs 2795 ops/sec 

In-Place Execution 31.74 secs 16.6 secs 1997 ops/sec 
VM_EXITs 222 129663 170857 
Decryptions 64 64743 85263 

Buffered Execution 27.07 secs 12.05 secs 2667 ops/sec 
VM_EXITs 174 64743 107316 
Decryptions 64 64743 107316 

Overhead 
Calculations 

vmWare HV  9% 44% 42% 
TP HV  1% 15% 1% 
In-Place  19% 61% 29% 
Buffered  2% 17% 5% 

Net Overhead In-Place  18% 46% 28% 
Buffered  1% 2% 5% 

Table 2. Test results. 
 

 
Figure 11. Overhead calculation relative to no-hypervisor benchmarks. 

 

 
Figure 12. Net encrypted execution overhead. 

 
7. Future work 

 
As was explained above, the buffered execution method is superior to the in-place execution method 

in terms of performance. Unfortunately, the buffered execution method allows an adversary to access 
regions of memory that are normally protected by the hypervisor. Consider the memcpy function, for 
example. Assume that this function is encrypted and is now being executed by the hypervisor in buffered 
execution mode. By specifying the address of the VMCS structure in the source or destination argument, 
an adversary can inspect and modify the control structures of the hypervisor. Moreover, since the 
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hypervisor executes in kernel mode, the protected function can access OS memory region and execute 
privileged instructions. 

Fortunately, the x86 instruction set architecture provides a great variety of memory protection 
mechanisms, which can be utilized by the buffered execution method. One such mechanism is the virtual 
memory protection, which is available in both 32- and 64-bit execution modes. The virtual memory 
protected mechanism allows to specify a separate set of accessibility rights for kernel mode and user 
mode. Similarly, the hypervisor's memory protection (virtualization, to be precise) mechanism, called 
the Extended Page Table (EPT) on Intel processors, allows to specify a separate set of accessibility rights 
for host mode and guest mode. The different modes of execution and the protection mechanisms are 
summarized in Figure 10. 

The in-place execution method utilizes the EPT to protect hypervisor's control structures and other 
sensitive data from an adversary. We propose to use the virtual memory protection mechanism in the 
buffered execution method. In particular, the buffered execution method can execute the decrypted 
function in user mode inside the host mode (the upper right block in Figure 10); this mode is not used by 
the system described in this paper. In this mode we can prevent attempts to execute privileged 
instructions or access the hypervisor's control structures. 

The hypervisor can transit to this mode by executing the iret instruction, which is usually used to 
terminate an interrupt handler. This instruction modifies the execution location and the execution mode 
(from kernel to user). Since the execution takes place in host mode, interrupts cannot be intercepted by 
the hypervisor through configuration of the VMCS. The hypervisor is forced to use the IDT, which 
allows the kernel to specify the interrupt service routines for each of the 256 interrupt vectors. Upon 
interrupt, the interrupt service routine can decide whether to handle the interrupt inside the hypervisor or 
inject it to the guest. 

We believe that the described approach will substantially improve the security of the buffered 
execution method, thus making it absolutely superior to in-place execution. 

 
8. Conclusions 

 
We present research pertaining to the methodologies of executing encrypted native machine-code, 

where decryption and execution are done on the fly and secure with a thin hypervisor. Two alternative 
methods are considered: in-place and buffered – that trade security for performance. The in-pace method 
executes decrypted-code in guest mode, thereby limiting the functionality of the decrypted function to 
whatever a guest may perform. In buffered execution method, the decrypted function executes in host 
mode, potentially incurring the risk of a rogue implementation accessing sensitive memory areas. For 
this reason the in-place method is considered safer. However, in modern multi-processor systems, the in-
place method requires controlling (freezing) other execution units, while a single execution unit executes 
decrypted code. This requires larger overhead when compared to the buffered method and thus has a 
performance toll. Larger overhead is expected to be more significant for larger functions. The reason for 
this is related to the fact that overhead is acquired during transitions between cold to hot and hot to cold 
modes in the in-place method, as compared to transitions between host-execution of decrypted code and 
guest-execution of interrupts. Larger functions acquire more transitions, therefore overhead is more 
prominent in the in-place method. Given these results our conclusions are to use the (safer) in-place 
methodology for short functions (smaller than 1000 bytes). For larger functions (larger than 1000 bytes), 
allow a user-defined switch in the encryption tool to prefer security, in which case in-place shall be used, 
or performance, in which case buffered shall be used. In future work we plan to augment the buffered 
method to overcome its potential security flaws and render it the single and best alternative to use. 
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