

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Author(s):

Title:

Year:

Version:

Please cite the original version:

All material supplied via JYX is protected by copyright and other intellectual property rights, and
duplication or sale of all or part of any of the repository collections is not permitted, except that
material may be duplicated by you for your research use or educational purposes in electronic or
print form. You must obtain permission for any other use. Electronic or print copies may not be
offered, whether for sale or otherwise to anyone who is not an authorised user.

System for Executing Encrypted Native Programs

Resh, Amit; Kiperberg, Michael; Leon, Roee; Zaidenberg, Nezer

Resh, A., Kiperberg, M., Leon, R., & Zaidenberg, N. (2017). System for Executing
Encrypted Native Programs. International Journal of Digital Content Technology and
its Applications, 11(3), 56-71. http://www.globalcis.org/jdcta/ppl/JDCTA3803PPL.pdf

2017

System for Executing Encrypted Native Programs

1Amit Resh, 2Michael Kiperberg, 3Roee Leon, 4Nezer J. Zaidenberg
1 Deparment of Mathematical IT, University of Jyväskylä, Finland, amitr44@gmail.com

2 Faculty of Sciences, Holon Institute of Technology, Israel, mkiperberg@gmail.com
3 Deparment of Mathematical IT, University of Jyväskylä, Finland, roee.leonn@gmail.com

4 School of Computer Sciences, College of Management, Israel, nzaidenberg@me.com

Abstract
An important aspect of protecting software from attack, theft of algorithms, or illegal software use, is

eliminating the possibility of performing reverse engineering. One common method to deal with these
issues is code obfuscation. However, in most case it was shown to be ineffective. Code encryption is a
much more effective means of defying reverse engineering, but it requires managing a secret key
available to none but the permissible users. The authors propose a new and innovative solution. Critical
functions in protected software are encrypted using well-known encryption algorithms. Following
verification by external attestation, a thin hypervisor is used as the basis of an eco-system that manages
just-in-time decryption, inside the CPU, where decrypted instructions are then executed and finally
discarded, while keeping the secret key and the decrypted instructions absolutely safe. The paper
presents and compares two methodologies that perform just-in-time decryption: in-place and buffered
execution. The former being safer, while the latter boasts better performance.

Keywords: Hypervisor, Trusted computing, Attestation, Cyber-security

1. Introduction

Digital content such as games, videos, and the like may be susceptible to unlicensed usage, which has
a significant adverse impact on the profitability and commercial viability of such products. Commonly,
such commercial digital content may be protected by a licensing verification program; these, however,
may be circumvented by reverse engineering of the software instructions of the computer program which
leaves them vulnerable to misuse.

One way of preventing circumvention of the software licensing program, may be using a method of
obfuscation [1] [2]. The term obfuscation refers to making software instructions difficult for humans, as
well as reverse-engineering software tools, to understand by deliberately cluttering the code with useless,
confusing pieces of additional software syntax or instructions. However, even when changing software
code and making it obfuscated, the content is still readable to the skilled hacker [3] [4].

Additionally, publishers may protect their digital content product by encryption, using a unique key
to convert the software code to an unreadable format, such that only the owner of the unique key may
decrypt the software code. Such protection may only be effective when the unique key is kept secured
and unreachable to an adversary. Hardware based methods for keeping the unique key secured are
possible [5] [6] [7], but may have significant deficiencies, mainly due to an investment required in
dedicated hardware on the user side, making it costly, and, therefore, impractical. Furthermore, such
hardware methods have been successfully attacked by hackers [8] [9].

Software copy-protection is currently predominantly governed by methodologies based on
obfuscation, which are volatile to hacking or user malicious activities. There is, therefore, a need for a
better technique for protecting sensitive software sections, such as licensing code.

In this paper, we present a system that allows encrypting and executing native programs written for
the x86 architecture. The system is based on the approach proposed by Averbuch et al. [10], in which an
attested kernel module is responsible for decryption and execution of encrypted functions. The main
deficiency of the proposed approach is the inability of the kernel module to protect itself from the
operating system. As a consequence, a vulnerability in the operating system may compromise the secret
key. Moreover, the attestation server has to attest not only the kernel module responsible for decryption
but also the entire operating system. The complications of operating system attestation and a partial
mitigation are described in [11].

System for Executing Encrypted Native Programs
Amit Resh, Michael Kiperberg, Roee Leon, Nezer J. Zaidenberg

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume11, Number3, Sep. 2017

56

This paper proposes to solve all these complications by utilizing the virtualization extension, which
is available on modern processors [12] [13], in order to enable the decrypting kernel module to protect
itself, thus eliminating the need for operating system attestation. Figure 1 depicts the components of the
proposed system as well as their relationships. The system is deployed on three computers: a
development machine, on which the program to be encrypted, is compiled and encrypted; the attestation
server, which stores the decryption key, and delivers it to the target machine; and the target machine,
which executes the encrypted program. A special driver, which embeds a hypervisor, is installed on the
target machine prior to execution of an encrypted program. The hypervisor obtains the decryption key,
which is necessary for program execution, from the attestation server, when an encrypted program is
loaded to the memory.

1.1 Intel SGX

Intel has announced its new security technology named Software Guard Extensions (SGX) [32],

which enables developers to create secure containers, called enclaves, inside a process address space.
The enclave address space is protected from any other software not resident in the enclave, including
privileged software. This guarantees that malware, at any privilege level, cannot compromise the
confidentiality or integrity of enclave resident software or data. SGX does not rely on a hypervisor or
hardware virtualization, instead it encompasses two new instruction-set extensions that allow initializing
and managing the enclaves. Secure storage is managed in an Enclave-Page-Cache, which is protected by
hardware from "non-enclave" access. SGX provides the means for implementations to the same end as
proposed by our methodology, however the SGX processor extensions are available only in the newest
Intel processors. Therefore, utilizing an SGX based solution requires specific hardware, adds to
equipment cost and is not supported on legacy systems.

Figure 1. Native code protection system. The original program is encrypted before its distribution. The

encryption key is stored in the attestation server, which delivers it to the hypervisor in the target
machine upon successful attestation. The hypervisor is initialized by a driver, which also hosts the code

of the hypervisor.

1.2 Contribution

The methodology proposed in this paper provides for a software-only solution, based on the
availability of hardware virtualization and secondary-level address translation, incorporated in most Intel
and AMD CPUs released after 2008. Furthermore, an innovative thin hypervisor is utilized to protect
cryptographic keys and decrypted code to provide a truly secure just-in-time code decryption mechanism.
The thin hypervisor is guaranteed to be trusted with the employment of remote attestation.

System for Executing Encrypted Native Programs
Amit Resh, Michael Kiperberg, Roee Leon, Nezer J. Zaidenberg

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume11, Number3, Sep. 2017

57

2. Encryption tool

The encryption tool is responsible for encryption of selected functions in a program. The user selects
the functions to be encrypted by specifying their names in a configuration file. A map file or a debug
symbols file, which are produced by a compiler, can then be used to translate the names of the functions
to their locations in the program file.

On Windows, program files, executables and dynamic libraries, are stored in Portable Executable
(PE) format [14]. Figure 2 depicts the structure of a PE file. The different headers define the expected
location of the PE file when loaded to memory, sizes and positions of various data structures inside the
PE file, the number of sections contained in this PE file, etc. The section table contains a description of
each of the sections contained in the PE file. Following the section table are the sections themselves.
Sections vary in their structure and purpose: the .text section contains the code of the program, the .data
section contains its constants. Other sections may contain information about resources (images and
sounds) embedded in the PE file or information used during exception delivery.

Figure 2. Structure of a Windows PE file. The structure contains a variable number of sections. Two of

the most common sections are presented.

Figure 3. The left image represents the structure of an ELF file as it is stored in disk. The right image

represents the structure of an ELF file as it is loaded to memory.

System for Executing Encrypted Native Programs
Amit Resh, Michael Kiperberg, Roee Leon, Nezer J. Zaidenberg

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume11, Number3, Sep. 2017

58

On Linux, program files, executable files and dynamic libraries, are stored in Executable and Linkable

Format (ELF) format [15]. Figure 3 depicts the structure of an ELF file. An ELF file consists of a header,
which is followed by data. The data may include:

• Program header table, describing zero or more segments. Only two segments can be defined as
loadable: the code segment and the data segment. The code segment is loaded to memory with
read-write-execute permissions, while the data segment is loaded with read-only permissions.
Other segments are not loaded to memory.

• Section header table, describing zero or more sections. A typical ELF file holds a section called
.text, which contains the code of the program.

• Data referenced by entries in the program header table or section header table.
The segments contain information that is necessary for runtime execution of the file, while the

sections contain data for linking and relocation. Figure 3 depicts the structure of an ELF virtual-image
at load time.

The encryption tool modifies the given PE/ELF file by introducing a new section, which stores the
selected functions in encrypted form. The instructions of the original functions are partially replaced by
an exception inducing instruction. We propose to use either the halt instruction or the software
breakpoint instruction. The halt instruction is a privileged instruction, which deactivates the current
processor when executed in kernel mode, but generates a general protection fault when executed in user
mode. The software breakpoint instruction generates a breakpoint trap when executed in either kernel or
user modes. Faults and traps, being types of interrupts, can be intercepted by a hypervisor, which can
then decrypt and execute the original encrypted function. Another benefit of the halt and the software
breakpoint instructions is that they can be represented by a single byte (0xF4 for halt and 0xCC for
software breakpoint), thus allowing them to fully cover any number of bytes. The software breakpoint
instruction is superior to the halt instruction in that it generates an interrupt not only in user mode but
also in kernel mode.

Figure 4. Example of an encryption process of a single function. The encryption begins by classifying
instruction is encryptable (normal face) and non-encryptable (bold face), and creating to copies. The
complementary instructions in each copy are replaced by halts. Finally, one copy is written over the

original functions, and the other is encrypted and added to the special section.

System for Executing Encrypted Native Programs
Amit Resh, Michael Kiperberg, Roee Leon, Nezer J. Zaidenberg

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume11, Number3, Sep. 2017

59

As will be explained in section 5, it is highly important to intercept control transfers that leave the
encrypted function. The encryption tool disassembles the function to be encrypted and inspects its
instructions. The instructions then are classified as encryptable and non-encryptable. The encryption tool
classifies an instruction as non-encryptable if it might transfer control out of the encrypted function. For
example, the ret and the call instructions are always classified as non-encryptable, but the jmp instruction
is classified as non-encryptable only if its destination lays outside of the protected function's bounds or
if the destination cannot be determined statically (if it is stored in a register, for instance).

The encryption tool produces two copies of the original function, the encryptable copy (EC) and the
non-encryptable copy (NEC). In the EC all the non-encryptable instructions are replaced by the halt or
the software breakpoint instructions. Then the encryption tool encrypts the EC and stores it in the new
section. In the NEC all the encryptable instructions are replaced by the halt or the software breakpoint
instructions. Then the encryption tool replaces the original function by the NEC. Figure 4 presents an
example of such a transformation.

3. Hypervisor

A hypervisor, also referred to as a Virtual Machine Monitor (VMM), is software, which may be

hardware-assisted, to manage multiple virtual machines on a single system [16]. The hypervisor
virtualizes the hardware environment in a way that allows several virtual machines, running under its
supervision, to operate in parallel over the same physical hardware platform, without obstructing or
impeding each other. Each virtual machine has the illusion that it is running unaccompanied on the entire
hardware platform. The hypervisor is referred to as the host, while the virtual machines are referred to
as guests.

A virtual machine control structure (VMCS) is defined for each virtual environment managed by a
virtual machine monitor (VMM) [12]. This structure defines the values of privileged registers, the
location of the interrupt descriptors table, and additional values that constitute the internal state of the
virtual environment. In addition, this structure defines the events that the VMM is configured to intercept,
and the address of the function that should handle the interception. The act of control transfer from the
virtual environment to a predefined function is called vm-exit and the act of control transfer from the
function back to the virtual environment is called vm-entry. Upon vm-exit the function can determine
the reason of the vm-exit by examining the fields of the VMCS and altering them, thus altering the state
of the virtual environment as it wishes. Finally, the VMCS can define a mapping between the physical
memory as it is perceived by the virtual environment and the actual physical memory. As a consequence,
the VMM can prevent access to some physical pages by the virtual environment. Moreover, the virtual
environment will be unaware of this situation.

We propose to use a hypervisor for securing a single guest. Rather than wholly virtualizing the
hardware platform, a special breed of hypervisor, called a thin hypervisor, is used [17] [18]. A thin
hypervisor is configured to intercept only a small portion of events. All other events are processed
without interception, directly, by the OS. A thin hypervisor only intercepts the set of events that allows
it to protect an internal secret (such as a cryptographic key) and protect itself from subversion. Figure 5
depicts a thin hypervisor supporting a single guest. Since a thin hypervisor does not control most of the
OS interaction with the hardware, multiple OS are not supported. On the other hand, system performance
is kept at an optimum.

System for Executing Encrypted Native Programs
Amit Resh, Michael Kiperberg, Roee Leon, Nezer J. Zaidenberg

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume11, Number3, Sep. 2017

60

Figure 5. Thin hypervisor. The hypervisor runs in a higher privilege level than the operating system.
System calls, traps, exceptions, and other interrupts, transfer control from user mode applications to the
operating system. The operating system handles these conditions by requesting some service from the

underlying hardware. A thin hypervisor can intercept some of those requests and handle them
according to some policy.

A thin hypervisor facilitates a secure environment by: (a) setting aside portions of memory that cannot

be accessed by the guest, (b) storing the cryptographic key in privileged registers, and (c) intercepting
privileged instructions that may compromise its protected memory, reveal the cryptographic key, or
attempt to subvert the hypervisor.

Once this environment is correctly configured, a thin hypervisor can be utilized to carry out specific
operations, which may include use of the cryptographic key, in a protected region of memory. As a result
of the tightly configured intercepts and absolute control of the protected memory regions, this activity
can be guaranteed to protect both the cryptographic key and the operations results.

4. Remote attestation

The problem of remote software authentication, determining whether a remote computer system is
running the correct version of a software, is well known [5] [19-25][33]. Equipped with a remote
authentication method, a service provider can prevent an unauthenticated remote software from obtaining
some secret information or some privileged service. For example, only authenticated gaming consoles
can be allowed to connect to the gaming networks [26-28], and only authenticated bank terminals can be
allowed to fetch records from the bank database [29]. We have also shown that once attestation is
completed the attested computer can receive encryption keys from the attestation server and protect them
from malicious software in a modern host [34].

The research in this area can be divided into two major branches: hardware assisted authentication [5-
7] and software-only authentication [19-22]. In this paper we concentrate on software-only
authentication, although the system can be adapted to other authentication methods, as well. The
authentication entails simultaneously authenticating some software component(s) or memory region, as
well as verifying that the remote machine is not running in virtual or emulation mode. Software-only
authentication methods may also involve a challenge code that is sent by the authentication authority,
and executed on the remote system. The challenge code computes a result that is then transmitted back
to the authority. The authority deems the entity to be authenticated if the result is correct and was received
within a predefined time-frame. The underlying assumption, which is shared by all such authentication
methods, is that only an authentic system can compute the correct result within the predefined time-
frame. The methods differ in the means by which (and if) they satisfy this underlying assumption.

Figure 6. The attestation protocol between the authentication authority and the target machine. The
protocol consists of four messages. The first two messages are sent unencrypted, while the two last

messages are encrypted. The third message is encrypted by the public key of the authentication
authority and the fourth message is encrypted by the random value transmitted in the third message.

System for Executing Encrypted Native Programs
Amit Resh, Michael Kiperberg, Roee Leon, Nezer J. Zaidenberg

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume11, Number3, Sep. 2017

61

Kennell and Jamieson proposed [19] a method that produces the result by computing a cryptographic
hash of a specified memory region. Any computation on a complex instruction set architecture (Pentium
in this case) produces side effects. These side effects are incorporated into the result after each iteration
of the hashing function. Therefore, an adversary, trying to compute the correct result on a non-authentic
system, would be forced to build a complete emulator for the instruction set architecture to compute the
correct side effects of every instruction. Since such an emulator performs tens and hundreds of native
instructions for every simulated instruction, Kennell and Jamieson conclude that it will not be able to
compute the correct result within the predefined time-frame. The method of Kennel and Jamieson was
further adapted, by the authors, to modern processors [30]. The adaptation solves the security issues that
arise from the availability of virtualization extensions and multiplicity of execution units.

The authentication protocol is depicted in Figure 6. The initial messages of the protocol carry
information about the current configuration of the target machine. Following this exchange, the
authentication authority transmits a message containing the challenge code to be executed on the target
machine. The target machine executes the challenge, which computes a result that is a cryptographic
hash of some memory region, possibly with some additional information. The target machine,
concatenates a randomly generated number to the result, encrypts both values with the public key of the
authentication authority, and transmits the encrypted message. The authentication authority verifies that
the result is correct and was received within a predefined time-frame. If both are true the target machine
is considered authentic. The authentication authority then shares some secret information with the target
machine. This secret information constitutes a proof of the target's authenticity. The authentication
authority encrypts the secret information with a random value obtained from message (3) used as the
encryption key, and transmits the encrypted message to the target machine.

5. Encrypted instructions execution

In order to execute an encrypted program, the user must first install the driver, which encapsulates the

hypervisor. The driver monitors the PE files (ELF files, in Linux) loaded by the OS, and keeps track of
PE files that contain the special encrypted functions section. When the first such PE file is loaded, the
driver initializes the hypervisor. During the initialization, the driver communicates with the
authentication authority, passes the attestation verification, obtains the cryptographic key, and enters a
virtualized state.

The hypervisor is configured to intercept the general protection fault. When a protected program
transfers control to an encrypted function, the processor attempts to execute the halt instruction, which
induces a general protection fault, thus transferring control to the hypervisor. General protection faults
rarely occur during the normal course of program execution, since they usually cause the program to
terminate abruptly. Nevertheless, the hypervisor uses the data structures prepared by the encryption tool
to test whether the general protection fault occurred during execution of an encrypted function.

The hypervisor injects the interrupt back to the guest, if it was not caused by an encrypted function
execution. Otherwise, the hypervisor decrypts the function and starts its execution. Since during its
execution, the function is stored in memory in unencrypted form, it is highly important to ensure that no
other code has access to the decrypted instructions of the function. We note that in modern processors,
several execution units (logical processors) can execute programs concurrently. Therefore, we must
ensure that programs executed by all execution units have no access to the unencrypted instructions.

We present two approaches to sensitive functions execution: in-place execution and buffered
execution.

5.1 In-place execution

According to this approach the hypervisor can be in one of two states: cold or hot. In the cold state
the memory does not contain any sensitive information and only the cryptographic key and the
hypervisor's state must be protected. This is the regular mode of operation described in section 3. The
hypervisor switches to the hot state when the memory contains sensitive information, which cannot be
protected by the normal hypervisor memory protection technique (for example, based on EPT), since its
physical location is not known (or not constant). EPT (Extended Page Table) is a secondary address

System for Executing Encrypted Native Programs
Amit Resh, Michael Kiperberg, Roee Leon, Nezer J. Zaidenberg

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume11, Number3, Sep. 2017

62

translation facility used by the hypervisor to translate guest physical addresses to actual physical
addresses. Switching to hot mode occurs when the hypervisor triggers execution of a decrypted function.

In the following description, we assume that the encryption tool uses halt as a replacement opcode,
but the same is true when the software breakpoint opcode is used.

At initialization the hypervisor's state is set to cold. In this state, in addition to the regular protection
means described in section 3, the hypervisor intercepts general protection faults. An encrypted function,
which was overwritten by the NEC consists mainly of halt instructions. Execution of any of these
instructions induces a general protection fault, which causes a vm-exit and transfers control to the
hypervisor. The hypervisor inspects the source of the general protection fault, and fetches the EC that
corresponds to this NEC. Then the hypervisor switches to hot mode and decrypts the EC into its natural
location, currently occupied by the NEC (the NEC is saved in a different location for future use).

During the switch to hot mode, the hypervisor freezes all other execution units, and configures itself
to intercept all interrupts. This behavior guarantees that the function in its decrypted form cannot be read
by any other, potentially malicious, code, simply because no other code can run in hot mode. We note
that all the control transfer instructions in the EC are replaced by the halt instruction, which induces a
vm-exit.

Figure 7. Example of encrypted function execution. The figure depicts two execution units, each with

two alternating states: guest and host. The dashed horizontal lines are synchronization barriers, i.e.
everything above the line is guaranteed to complete before anything below the line starts.

When a vm-exit occurs in hot mode, the hypervisor first replaces the decrypted function with the

NEC, and switches to cold mode. Following this, the hypervisor resumes all the execution units,
configures itself to intercept only general protection faults, and returns control to the guest. Figure 7
depicts the control flow during encrypted function execution.

We suggest to freeze other execution units by inducing a vm-exit on each execution unit, and running
a busy loop until the hypervisor switches back to cold mode. A vm-exit can be induced either implicitly
with a timer or explicitly by sending an inter-processor interrupt (IPI). The former solution is much easier
to implement but the later solution is much more efficient.

The hypervisor intercepts interrupts in hot mode by replacing the original interrupt descriptor table
(IDT) of the OS with a specially crafted IDT. In this special IDT each handler induces a vm-exit, for
example, by executing the CPUID instruction. The hypervisor intercepts this instruction, realizes that an
interrupt at vector N occurred and switches to cold mode. The hypervisor proceeds by installing the
original IDT and moves the guest's instruction pointer to point to the Nth interrupt handler of the original
IDT.

5.2 Buffered execution

System for Executing Encrypted Native Programs
Amit Resh, Michael Kiperberg, Roee Leon, Nezer J. Zaidenberg

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume11, Number3, Sep. 2017

63

In the following description, we assume that the encryption tool uses halt as a replacement instruction
for NECs and software breakpoint as a replacement instruction for ECs.

According to this approach, the hypervisor has only one state, in which it protects itself as described
in section 3. In addition, the hypervisor configures itself to intercept general protection faults. Execution
of halt instructions induces a general protection fault, which causes a vm-exit and transfers control to the
hypervisor. The hypervisor inspects the source of the general protection fault, and fetches the EC that
corresponds to this NEC.

When the EC is resolved, the hypervisor decrypts it into a pre-allocated memory buffer, which is
protected by the hypervisor's second-level translation tables (EPT). The decrypted EC will be executed
in host mode, thus allowing it to reside in an EPT-protected buffer. Since the decrypted instructions are
inaccessible by any other execution unit (in guest mode), there is no need to suspend them. Likewise,
since the encrypted instructions are executed inside the hypervisor, there is no need to modify the IDT
of the guest. Finally, there is no need to perform the costly transitions to and from the guest after every
decryption. All these improve the overall performance of the system by a large factor.

Figure 8. Memory layout during buffered execution. The functions resided at virtual address f754000,
which is mapped to the physical address 7862000. The encrypted code is decrypted to virtual address

ffffffff`0197000 which is mapped to the physical address 2000. The hypervisor changes the mapping of
the virtual address f754000 to map the physical address 2000.

The x86 instruction set architecture defines many memory access instructions as relative, meaning

that their arguments should not be interpreted as actual memory locations but rather they should be
interpreted as offsets from the current value of the instruction pointer. As a consequence, the same
instruction may have different interpretations when executed at different locations. Therefore we must
execute the decrypted EC at its natural location. In order to achieve this, the hypervisor modifies the
virtual page table of the current process by mapping the virtual page containing the NEC to the physical
address of the pre-allocated buffer containing the decrypted EC. Figure 8 depicts this transformation.

The control flow during the execution of an encrypted function is illustrated in Figure 9. The process
begins when an encrypted function is called. The first instruction in the NEC is the halt instruction; its
execution triggers the general protection exception, which induces a vm-exit. The hypervisor prepares
the system for buffered execution by performing the following steps: (1) the EC is decrypted into a pre-
allocated buffer; (2) the virtual page table is modified to map the natural location of the function to the
pre-allocated buffer, as illustrated in Figure 8; (3) the values of the guest registers, which were stored
during the vm-exit transition, are restored; (4) the decrypted function is called. The decrypted function

System for Executing Encrypted Native Programs
Amit Resh, Michael Kiperberg, Roee Leon, Nezer J. Zaidenberg

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume11, Number3, Sep. 2017

64

executes until an interrupt occurs. The interrupt can be triggered by a software breakpoint instruction or
by some other condition, e.g., a page fault. In both cases the hypervisor suspends the buffered execution
by performing the following steps: (1) the values of the registers are stored to a memory region from
which they will be restored during vm-entry; (2) the virtual page table is restored to its original state; (3)
the decrypted EC is erased. If the interrupt was triggered by a software breakpoint instruction, the
hypervisor resumes the guest immediately. However, if the interrupt was triggered by some other
condition, the hypervisor injects the interrupt to the guest, and then resumes it. The interrupt injection
mechanism allows the hypervisor to delegate the responsibility of interrupt handling to the operating
system. Figure 9 illustrates the simple case of software breakpoint interrupt.

Figure 9. Example of encrypted function execution in buffered execution mode. The figure depicts the

control flow during the execution of an encrypted function.

Figure 10. Execution modes. The left column represents the guest mode, while the right column

represents the host mode. The lower row represents the kernel mode, while the upper row represents
the user mode. The host mode can protect itself from the guest mode through the EPT mechanism. The
kernel mode can protect itself from the user mode through the virtual memory protection mechanism.

This approach is more efficient but potentially less secure than the in-place execution. According to

this approach, the decrypted functions are executed inside the hypervisor itself. As a consequence these
functions have the same privileges as the hypervisor. In particular, they can read and write memory,

System for Executing Encrypted Native Programs
Amit Resh, Michael Kiperberg, Roee Leon, Nezer J. Zaidenberg

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume11, Number3, Sep. 2017

65

which is otherwise inaccessible to any code external to the hypervisor. One can argue that it is impossible
for an adversary to replace the EC with random code, without knowing the cryptographic key. However
unfortunately, it is possible that some memory manipulation can be performed indirectly by modifying
the data on which the encrypted function works. Nevertheless, although possible, it seems to be
extremely difficult to manipulate the behavior of unknown code through its data. Possible solutions to
this problem will be discussed in our future research.

6. Performance

This section presents a performance analysis of the two execution methods that were described in

section 5.
We first measured the direct overhead associated with executing an encrypted function. To do that

we created a function f() of size 128 bytes. The function's first instruction is a return instruction,
therefore, once activated, the function immediately returns to the caller. In the executable file we encrypt
f() and measure the number of CPU cycles used in a call to f(). Since f() is encrypted, calling f()
entails a transfer from "cold" mode to "hot" mode, i.e. VM_EXIT to the hypervisor, decryption of f()'s
contents execution of f() (in this case basically zero cycles since the first instruction is an immediate
return) and then restoring to "cold" mode. Measurements of this full-cycle were averaged over 10000
trials with an average of 7100 cycles when using "buffered" mode and 23,000 cycles when using "in-
place" mode.

To measure the overhead associated with real-world applications, we decided to use standard
benchmarks as the model. The measurements were performed by encrypting several of the major
functions in standard benchmark programs and comparing the performance results of each benchmark
when executed with and without those functions encrypted. Two performance measurements were
obtained for benchmarks that were run with an encrypted function: (a) using "In-Place Execution" and
(b) using "Buffered-Execution".

System overhead, as a result of running encrypted code over the hypervisor, is attributed to actions
that need to take place in the hypervisor during a VM_EXIT. This occurs when (a) an encrypted function
is called; (b) a call is made from within an encrypted function to a non-encrypted function; a return
occurs from the calls in (a) or (b). In (a) the function needs to be decrypted and the processor is put into
"hot" mode: when the "In-Place" method is used other processors need to be frozen; when "buffered"
mode is used the hypervisor needs to remap the execution pages. In (b) and (c) the operation is reversed
by clearing decrypted-memory and putting the processor back into "cold" mode. Therefore, overhead is
closely related to the number of transitions into and out of "hot" mode.

Additional overhead can be observed as a result of activating the hypervisor without regard to
activities required to support executing encrypted software. This overhead is attributed to the fact that
the system is running over a hypervisor, which activates secondary level address translation (SLAT)
that implies overhead as a result of the additional translation required for memory access, as well as
needing to intercept some mandatory events.

Performance measurements of encrypted software execution overhead were conducted by running
well-known benchmarks on a multiprocessor system with and without encrypted functions.

We chose the "Phoronix Test Suite" [31] as our benchmark suite. A variety of test benchmarks were
selected to reflect different types of loads, such as: CPU intensive, graphics, disk-access and network
activities. The tests were performed on a system with the following configuration:

• Intel Core-i7-3687U@3.3GHz (4 Cores)
• 8192MB DRAM
• Intel HD4000 Graphics
• Intel 82579LM Gigabit Network
• Linux (Ubuntu 14.04 kernel 3.19.0-25 generic X86 SMP)
• GCC 4.8.4

We have performed three tests. In each test, we have selected an application and encrypted
several central functions. Table 1 summarizes the information about the encrypted function in
each application.

The first application, "Parallel BZIP2 Compression", is CPU intensive. It measures the time
needed to compress a file (a .tar package of the Linux kernel source code) using BZIP2

System for Executing Encrypted Native Programs
Amit Resh, Michael Kiperberg, Roee Leon, Nezer J. Zaidenberg

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume11, Number3, Sep. 2017

66

compression. The second application, "Unpacking the Linux Kernel", measures how long it takes
to extract the .tar.bz2 Linux kernel package. The third application is "X11 – 500px PutImage
Square". The package "x11perf" is a very basic performance/regression test for X.Org (Window
System).

Each of the benchmark tests was executed after a full system reboot (to ensure a "clean"
system) and measured under the following conditions: (a) non-encrypted executable without a
hypervisor active; (b) non-encrypted executable with a commercial hypervisor (VMWare) active;
(c) non-encrypted executable with TrulyProtect thin-hypervisor active; (d) Encrypted executable
using "In-Place" mode; and (e) Encrypted executable using "Buffered" mode. Each activation of
a "Phoronix Test Suite" benchmark generates multiple runs of the benchmark to gather significant
statistics.

Table 2 presents the results that were measured during benchmark execution in various
configurations. The two leftmost columns describe the configuration in which the test was
executed. The third column specifies the parameter that was measured. The three rightmost
columns contain the values that were measured for each parameter. The table is divided into five
parts: (a) No hypervisor – where measurements were performed on a non-encrypted executable
without an active hypervisor; (b) vmWare HV active and KVM HV active – where measurements
were performed on a non-encrypted executable with a commercial hypervisor (vmWare and
KVM); (c) TP HV Active – where measurement were performed with TrulyProtect thin-
hypervisor; (d) Overhead Calculation – this part summarizes the first three parts; (e) Net overhead
calculations – this part presents the overhead of the in-place and the buffer decryption methods
after subtraction of the overhead associated with TrulyProtect hypervisor.

Table 1. Encrypted functions summary.

The third part is further subdivided into three parts: (i) Non protected – where a non-encrypted

executable was measured; (ii) In-Place – where an encrypted executable was executed using the
in-place decryption method; (iii) Buffered – where an encrypted executable was executed using
the buffered decryption method.

The fourth part compares the execution times of a non-encrypted executable to four other
modes of execution: (i) a non-encrypted executable while a commercial hypervisor is active; (ii)
a non-encrypted executable while TrulyProtect thin-hypervisor is active; (iii) an encrypted
executable which is executed using the in-place decryption method; (iv) an encrypted executable
which is executed using the buffered decryption method. A graphical representation of this data
appears in figures 11. Figure 12 presents the overhead of the in-place and the buffer decryption
methods after subtraction of the overhead associated with TrulyProtect hypervisor.

Overhead was calculated by solving for the degradation in percent relative to the reference

benchmark result as measured without the hypervisor activated.

System for Executing Encrypted Native Programs
Amit Resh, Michael Kiperberg, Roee Leon, Nezer J. Zaidenberg

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume11, Number3, Sep. 2017

67

 Parallel

BZIP2
Compression

Unpacking
the Linux
Kernel

X11 500px
PutImage
Square

No HV Not
Protected

Execution 26.58 secs 10.31 secs 2822 ops/sec

vmWare HV
Active

Not
Protected

Execution 28.92 secs 14.83 secs 1643 ops/sec

KVM HV Active Not
Protected

Execution 28.39 secs 11.4 secs 905 ops/sec

TP HV Active Not
Protected

Execution 26.92 secs 11.81 secs 2795 ops/sec

In-Place Execution 31.74 secs 16.6 secs 1997 ops/sec
VM_EXITs 222 129663 170857
Decryptions 64 64743 85263

Buffered Execution 27.07 secs 12.05 secs 2667 ops/sec
VM_EXITs 174 64743 107316
Decryptions 64 64743 107316

Overhead
Calculations

vmWare HV 9% 44% 42%
TP HV 1% 15% 1%
In-Place 19% 61% 29%
Buffered 2% 17% 5%

Net Overhead In-Place 18% 46% 28%
Buffered 1% 2% 5%

Table 2. Test results.

Figure 11. Overhead calculation relative to no-hypervisor benchmarks.

Figure 12. Net encrypted execution overhead.

7. Future work

As was explained above, the buffered execution method is superior to the in-place execution method

in terms of performance. Unfortunately, the buffered execution method allows an adversary to access
regions of memory that are normally protected by the hypervisor. Consider the memcpy function, for
example. Assume that this function is encrypted and is now being executed by the hypervisor in buffered
execution mode. By specifying the address of the VMCS structure in the source or destination argument,
an adversary can inspect and modify the control structures of the hypervisor. Moreover, since the

System for Executing Encrypted Native Programs
Amit Resh, Michael Kiperberg, Roee Leon, Nezer J. Zaidenberg

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume11, Number3, Sep. 2017

68

hypervisor executes in kernel mode, the protected function can access OS memory region and execute
privileged instructions.

Fortunately, the x86 instruction set architecture provides a great variety of memory protection
mechanisms, which can be utilized by the buffered execution method. One such mechanism is the virtual
memory protection, which is available in both 32- and 64-bit execution modes. The virtual memory
protected mechanism allows to specify a separate set of accessibility rights for kernel mode and user
mode. Similarly, the hypervisor's memory protection (virtualization, to be precise) mechanism, called
the Extended Page Table (EPT) on Intel processors, allows to specify a separate set of accessibility rights
for host mode and guest mode. The different modes of execution and the protection mechanisms are
summarized in Figure 10.

The in-place execution method utilizes the EPT to protect hypervisor's control structures and other
sensitive data from an adversary. We propose to use the virtual memory protection mechanism in the
buffered execution method. In particular, the buffered execution method can execute the decrypted
function in user mode inside the host mode (the upper right block in Figure 10); this mode is not used by
the system described in this paper. In this mode we can prevent attempts to execute privileged
instructions or access the hypervisor's control structures.

The hypervisor can transit to this mode by executing the iret instruction, which is usually used to
terminate an interrupt handler. This instruction modifies the execution location and the execution mode
(from kernel to user). Since the execution takes place in host mode, interrupts cannot be intercepted by
the hypervisor through configuration of the VMCS. The hypervisor is forced to use the IDT, which
allows the kernel to specify the interrupt service routines for each of the 256 interrupt vectors. Upon
interrupt, the interrupt service routine can decide whether to handle the interrupt inside the hypervisor or
inject it to the guest.

We believe that the described approach will substantially improve the security of the buffered
execution method, thus making it absolutely superior to in-place execution.

8. Conclusions

We present research pertaining to the methodologies of executing encrypted native machine-code,

where decryption and execution are done on the fly and secure with a thin hypervisor. Two alternative
methods are considered: in-place and buffered – that trade security for performance. The in-pace method
executes decrypted-code in guest mode, thereby limiting the functionality of the decrypted function to
whatever a guest may perform. In buffered execution method, the decrypted function executes in host
mode, potentially incurring the risk of a rogue implementation accessing sensitive memory areas. For
this reason the in-place method is considered safer. However, in modern multi-processor systems, the in-
place method requires controlling (freezing) other execution units, while a single execution unit executes
decrypted code. This requires larger overhead when compared to the buffered method and thus has a
performance toll. Larger overhead is expected to be more significant for larger functions. The reason for
this is related to the fact that overhead is acquired during transitions between cold to hot and hot to cold
modes in the in-place method, as compared to transitions between host-execution of decrypted code and
guest-execution of interrupts. Larger functions acquire more transitions, therefore overhead is more
prominent in the in-place method. Given these results our conclusions are to use the (safer) in-place
methodology for short functions (smaller than 1000 bytes). For larger functions (larger than 1000 bytes),
allow a user-defined switch in the encryption tool to prefer security, in which case in-place shall be used,
or performance, in which case buffered shall be used. In future work we plan to augment the buffered
method to overcome its potential security flaws and render it the single and best alternative to use.

9. References

[1] Themida, http://www.oreans.com/, Oreans.
[2] VMProtect, http://vmpsoft.com/, VMProtect Software.
[3] R. Rolles, “Unpacking Virtualization Obfuscators,” in Proceedings of the 3rd USENIX Conference on

Offensive Technologies, ser. WOOT’09. Berkeley, CA, USA: USENIX Association, 2009, pp. 1–1.
[4] L. Bohne, “Pandora’s Bochs: Automated Unpacking of Malware,” 2008.

System for Executing Encrypted Native Programs
Amit Resh, Michael Kiperberg, Roee Leon, Nezer J. Zaidenberg

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume11, Number3, Sep. 2017

69

[5] D. Schellekens, B. Wyseur, and B. Preneel, “Remote Attestation on Legacy Operating Systems with
Trusted Platform Modules,” Sci. Comput. Program., vol. 74, no. 1-2, pp. 13–22, Dec. 2008.

[6] S. Pearson, Trusted Computing Platforms: TCPA Technology in Context. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 2002.

[7] P. England, B. Lampson, J. Manferdelli, M. Peinado, and B. Willman, “A Trusted Open Platform,”
Computer, vol. 36, no. 7, pp. 55–62, Jul. 2003.

[8] C. Tarnovsky, “Semiconductor Security Awareness Today and yesterday,” in Blackhat, 2010.
[Online]. Available: https://www.youtube.com/watch?v=WXX00tRKOlw

[9] C. Tarnovsky, “Attacking TPM part two,” in Defcon, 2012. [Online]. Available:
https://www.youtube.com/watch?v=Ed 9p7E4jIE

[10] A. Averbuch, M. Kiperberg, and N. J. Zaidenberg, “Truly-Protect: An Efficient VM-Based Software
Protection,” Systems Journal, IEEE, vol. 7, no. 3, pp. 455–466, 2013.

[11] M. Kiperberg and N. J. Zaidenberg, “Efficient Remote Authentication,” in The Journal of
Information Warfare, vol. 12, no. 3, 2013.

[12] Intel Corporation, Intel 64 and IA-32 Architectures Software Developer’s Manual, 2007, vol. 3.
[13] “AMD64 Architecture Programmer’s Manual Volume 2: System Programming,” AMD, 2010.
[14] M. Pietrek, “An in-depth look into the Win32 portable executable file format,” in MSDN Mag. 17,

2, 2002, pp. 80–90.
[15] E. Youngdale, “Kernel korner: The elf object file format by dissection,” Linux Journal, vol. 1995,

no. 13es, p. 15, 1995.
[16] G. J. Popek and R. P. Goldberg, “Formal Requirements for Virtualizable Third Generation

Architectures,” Commun. ACM, vol. 17, no. 7, pp. 412–421, Jul. 1974.
[17] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa, T. Horie, M. Hirano, K. Kourai,

Y. Oyama, E. Kawai, K. Kono, S. Chiba, Y. Shinjo, and K. Kato, “Bitvisor: A thin hypervisor for
enforcing i/o device security,” in Proceedings of the 2009 ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, ser. VEE ’09. New York, NY, USA: ACM, 2009,
pp. 121–130.

[18] Y. Chubachi, T. Shinagawa, and K. Kato, “Hypervisor-based Prevention of Persistent Rootkits,” in
Proceedings of the 2010 ACM Symposium on Applied Computing, ser. SAC ’10. New York, NY,
USA: ACM, 2010, pp. 214–220.

[19] R. Kennell and L. H. Jamieson, “Establishing the Genuinity of Remote Computer Systems,” in
Proceedings of the 12th Conference on USENIX Security Symposium - Volume 12, ser. SSYM’03.
Berkeley, CA, USA: USENIX Association, 2003, pp. 21–21.

[20] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla, “Pioneer: Verifying code
integrity and enforcing untampered code execution on legacy systems,” in Proceedings of the
Twentieth ACM Symposium on Operating Systems Principles, ser. SOSP ’05. New York, NY, USA:
ACM, 2005, pp. 1–16.

[21] Q. Yan, J. Han, Y. Li, R. H. Deng, and T. Li, “A software-based root-of-trust primitive on multicore
platforms,” in Proceedings of the 6th ACM Symposium on Information, Computer and
Communications Security, ser. ASIACCS ’11. New York, NY, USA: ACM, 2011, pp. 334–343.

[22] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla, “SWATT: softWare-based attestation for
embedded devices,” in Security and Privacy, 2004. Proceedings. 2004 IEEE Symposium on, May
2004, pp. 272–282.

[23] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente, “On the Difficulty of Software-based
Attestation of Embedded Devices,” in Proceedings of the 16th ACM Conference on Computer and
Communications Security, ser. CCS ’09. New York, NY, USA: ACM, 2009, pp. 400–409.

[24] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla, “Scuba: Secure code update by
attestation in sensor networks,” in Proceedings of the 5th ACM Workshop on Wireless Security, ser.
WiSe ’06. New York, NY, USA: ACM, 2006, pp. 85–94.

[25] Y. Yang, X. Wang, S. Zhu, and G. Cao, “Distributed software-based attestation for node
compromise detection in sensor networks,” in Proceedings of the 26th IEEE International Symposium
on Reliable Distributed Systems, ser. SRDS ’07. Washington, DC, USA: IEEE Computer Society,
2007, pp. 219–230.

[26] D. Ionescu, “Microsoft bans up to one million users from xbox live,” PC World, Tech. Rep., 2009.
[Online]. Available: http://www.pcworld.com/article/182010/xbox users banned.html

System for Executing Encrypted Native Programs
Amit Resh, Michael Kiperberg, Roee Leon, Nezer J. Zaidenberg

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume11, Number3, Sep. 2017

70

[27] Sony, “Information on banned accounts and consoles,” Sony consumer electronics, Tech. Rep.,
accessed on may 2015. [Online]. Available: https://support.us.playstation.com/app/answers/detail/a
id/ 1260/~/information-on-banned-accounts-and-consoles

[28] Brian, “Nintendo starting to ban pirates from online services on 3ds,” Nintendo everything, Tech.
Rep., 2015. [Online]. Available: http://nintendoeverything.com/ nintendo-starting-to-ban-pirates-
from-online-services-on-3ds

[29] Wikipedia, “An analysis of proposed attacks against genuinity tests,” Tech. Rep., accessed on May
2015. [Online]. Available: http://en.wikipedia.org/wiki/Warden (software)

[30] M. Kiperberg, A. Resh, and N. J. Zaidenberg, “Remote Attestation of Software and Execution-
Environment in Modern Machines,” in CSCloud, 2015.

[31] M. Larabel and M. Tippett, “Phoronix test suite,” Phoronix Media, Tech. Rep., accessed on June 2,
2016. [Online]. Available: http://www.phoronix-test-suite.com/

[32] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-Hurd, C. Rozas, "Intel®
Software Guard Extensions (Intel® SGX) Support for Dynamic Memory Management Inside an
Enclave," Proceedings of the Hardware and Architectural Support for Security and Privacy, Seoul,
Republic of Korea: ACM, 2016, pp. 1-9

[33] M Kiperberg, N. J. Zaidenberg “Efficient Remote authentication” Journal of information warfare
October 2013

[34] A. Resh, N. J. Zaidenberg “Can keys be hidden inside the CPU on modern windows host” ECIW
2013 pages 231-235

System for Executing Encrypted Native Programs
Amit Resh, Michael Kiperberg, Roee Leon, Nezer J. Zaidenberg

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume11, Number3, Sep. 2017

71

