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We study theoretically the creation of knot structures in the polar phase of spin-1 Bose-Einstein condensates
using the counterdiabatic protocol in an unusual fashion. We provide an analytic solution to the evolution of
the external magnetic field that is used to imprint the knots. As confirmed by our simulations using the full
three-dimensional spin-1 Gross-Pitaevskii equation, our method allows for the precise control of the Hopf charge
as well as the creation time of the knots. The knots with Hopf charge exceeding unity display multiple nested
Hopf links.

DOI: 10.1103/PhysRevA.96.063609

I. INTRODUCTION

A knot, defined as a closed curve with possible links and
crossings, is an important mathematical concept appearing
in various branches of physics. Knots have been proposed
as an early model for atoms [1], stable configurations
in electromagnetism [2], and stable finite-energy solutions
in three-dimensional classical field theory [3]. They have been
observed in various physical systems: knotted vortex lines in
water [4] and light [5], nematic liquid crystals [6], and DNA
nanostructures [7]. In the context of quantum mechanics, knots
were predicted and recently observed in the nematic vector
field in spin-1 Bose-Einstein condensates (BECs) [8,9].

Topologically stable knots in continuous fields are nontriv-
ial mappings from S3 to S2. They are characterized by the
third homotopy group π3(S2) ∼= Z and present an example of
nonsingular topological defects [10]. The topological invariant
characterizing the knots is the integer-valued Hopf charge Q.
It can also be referred to as the knot linking number, because
the preimages of the points in S2 constitute loops which are
linked together exactly Q times.

In addition to knots, there are numerous topological struc-
tures available in gaseous BECs with spin degree of freedom.
Recent decades have shown predictions and observations of
various types of vortices [11–15], solitons [16–18], monopoles
[19–24], and skyrmions [25–28] in this exquisite system.
Furthermore, the stability and dynamics of the defects are
available for detailed exploration [29–36].

In the context of spin-1 BECs, it was shown that a
so-called counterdiabatic (CD) [37,38] protocol can be used
to accelerate the topological vortex creation and pumping
processes, as well as to reduce the atom losses and unwanted
spin transitions inevitably present in the topological vortex
creation process [39,40]. In contrast, we use the CD protocol
in an unusual way for the creation of a knot structure in the
nematic vector field of the spin-1 BEC in the polar phase. In
our scheme, the CD magnetic field is calculated in such a way
that it induces a π rotation on the nematic vector only along a
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predetermined ring in the condensate. The imperfect rotation
elsewhere is utilized in our scheme for the creation of knots.

We characterize the created knot structures in terms of
the particle density distributions of different spin states, the
associated Hopf charge, and the linked preimage rings. We
investigate the effect of the finite knot creation time on these
quantities as well as on the spin density distributions and
show that the polar phase decays into the ferromagnetic phase
for long knot creation times. Interestingly, we show that the
radius of the ring that characterizes the core of the knot can
be conveniently controlled with the parameters related to the
CD protocol and choosing a short core radius leads to nested
knots with high Hopf charges.

This paper is organized as follows. In Sec. II, we present
the mean-field theory of spin-1 BECs, the topological consid-
erations of the order parameter spaces together with the Hopf
charge, and the utilized knot creation method using the CD
magnetic fields. In Sec. III, we present the numerical results
on the creation of knots and describe the nontrivial topology
related to cases with high Hopf charge Q > 1. Section IV
summarizes the paper.

II. THEORY

A. Mean-field theory

The mean-field order parameter of the spin-1 BEC can
be written as �(r,t) = √

n(r,t)eiφ(r,t)ζ (r,t). Here n is the
particle density, φ is the scalar phase, and ζ = (ζ+1,ζ0,ζ−1)TZ
is the complex-valued three-component spinor with ζ †ζ = 1.
The subscript in the spinor components refers to the
magnetic quantum number of the z-quantized spin states
{|+ 1〉,|0〉,|− 1〉}.

In the simulations, the condensate dynamics is solved
within the mean-field approximation according to the Gross-
Pitaevskii equation

ih̄∂t�(r,t)

=
[

− h̄2

2m
∇2 + V (r) + c0�

†(r,t)�(r,t)

+c2�
†(r,t)F�(r,t) · F + gF μBB(r,t) · F

]
�(r,t), (1)
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where we employ the external optical potential V (r) =
m[ω2

ρ(x2 + y2) + ω2
zz

2]/2 and the external magnetic field
B(r,t). The Cartesian vector F = (Fx,Fy,Fz) is composed of
the standard dimensionless spin-1 matrices. The coupling con-
stants for the density and spin interactions are c0 = 4πh̄2(a0 +
2a2)/3m and c2 = 4πh̄2(a2 − a0)/3m [41,42], respectively,
where the s-wave scattering lengths for 87Rb are given by
a0 = 5.387 nm and a2 = 5.313 nm [43] and the atomic mass
is given by m = 1.443 × 10−25 kg. Furthermore, gF = −1/2
is the Landé g factor for 87Rb, h̄ is the reduced Planck’s
constant, and μB is the Bohr magneton. The number of atoms
is set to N = 2.1 × 105 and the trapping frequencies are set
to ωρ = 2π × 124 Hz and ωz = 2π × 248 Hz throughout the
simulations, corresponding to an oblate condensate.

The knot structures are created in the polar-phase order
parameter of the spin-1 BEC using spatially and temporally
varying external magnetic fields. For 87Rb, the coupling
constant c2 is negative, implying ferromagnetic interactions
in the absence of external magnetic fields. At low magnetic
fields, the polar phase is dynamically unstable and decays
into the ferromagnetic phase. However, the time scale for the
decay due to this instability exceeds the knot creation time in
the presence of the magnetic-field gradient [9,24].

B. Topological considerations

Taking the Euler angles γ , β, and α as successive rotations
about the z, y, and z axes, respectively, the general spinor in
the polar phase becomes [42]

ζP = U(α,β,γ )

⎛
⎝0

1
0

⎞
⎠

Z

= 1√
2

⎛
⎝−e−iα sin β√

2 cos β

eiα sin β

⎞
⎠

Z

= 1√
2

⎛
⎝−dx + idy√

2dz

dx + idy

⎞
⎠

Z

, (2)

where U = e−iαFze−iβFy e−iγ Fz . In the last identity we have
expressed the spinor using the real-valued unit vector d̂ =
(dx,dy,dz)T = (cos α sin β, sin α sin β, cos β)T , referred to as
the nematic vector. It defines the direction of magnetic order
in the condensate. Using this vector, we can express the order
parameter in the Cartesian basis as � = √

neiφ d̂.
The order parameter space for the polar spin-1 BEC

is OP = [U(1) × S2]/Z2 [44], where the U(1) symmetry is
attributed to the scalar phase φ and the S2 symmetry to the
vector d̂. Furthermore, the order parameter is invariant under
the simultaneous transformations d̂ → −d̂ and φ → φ + π ,
giving rise to the division by Z2 in OP.

The nontriviality of the third homotopy group of the polar
order parameter π3(OP) ∼= Z allows the existence of knot
structures in this phase. The related topological invariant, the
Hopf charge Q, is defined as [3,8]

Q = 1

16π2

∫
dr

∑
i,j,k

εijkFij (r)Ak(r), (3)

where Fij = d̂ · (∂i d̂ × ∂j d̂) and Ai is implicitly defined by
Fij = ∂iAj − ∂jAi . We note that Ai can be defined up to a
gauge Ai → Ai + ∂iη, where η is a scalar function. For the

sake of convenient integration in Eq. (3), one may choose such
a gauge that one of the components of A is zero.

C. Creation of knots using counterdiabatic control of the
magnetic field

Previously, knots have been created in an initially nemati-
cally z-polarized BEC by suddenly introducing a quadrupole
magnetic field bq(xx̂ + yŷ − 2zẑ) in the middle of the con-
densate [8,9]. Here bq is the strength of the gradient magnetic
field. In the following discussion, we utilize the scaled coor-
dinate system (x ′,y ′,z′) = (x,y,2z) for convenience. The spin
rotations leading to the knot configuration in Refs. [8,9] are
induced by the linearly increasing Larmor angular frequency
ωL(r ′) = gF μBbqr

′/h̄, where r ′ =
√

x ′2 + y ′2 + z′2. Knots
with Q = 1 are generated by allowing the Larmor precession
to continue for TL = 2πh̄/gF μBbqR

′, where R′ is the effective
extent of the condensate. Thus the nematic vector experiences
a full 2π rotation at radius R′.

Here, in contrast, we show that the knot configuration can
be created using a dynamic magnetic-field control obtained
from the CD scheme [39,40]. In the CD scheme, we first
select the reference adiabatic dynamics of the spin degree of
freedom corresponding to the instantaneous eigenstates of the
Zeeman Hamiltonian HZ = gF μBB(r,t) · F. In general, the
CD magnetic field for a spin-1 system in the presence of a
changing magnetic field B(r,t) can be calculated with [38]

BCD(r,t) = h̄B(r,t) × ∂tB(r,t)
gF μB|B(r,t)|2 . (4)

Our starting point is to design the CD field for the case in
which the bias field is linearly inverted as Bbias(t) = B0(1 −
2t/T )ẑ, where B0 is the initial bias field strength and T is the
inversion time while bq is kept fixed. Hereafter, the time T is
referred to as the knot creation time. Furthermore, we employ
the cylindrical coordinate system (ρ,ϕ,z) below.

Application of the bias field inversion scheme directly into
Eq. (4) leads to a CD field which rotates the nematic vector by
π everywhere. However, the resulting CD field does not satisfy
Gauss’s law for magnetism. This problem is fixed by setting
z = 0 and ρ = ρ0 in the denominator of Eq. (4) [40]. The thus
employed magnetic field coincides with the original CD field
only on the ring with radius ρ0 in the z = 0 plane, along which
the nematic vector undergoes a π rotation during the inversion
of the bias field (see Fig. 1). This ring is referred to as the core
of the knot structure. Indeed, a knot with Q = 1 corresponds
to the parameter choice ρ0 = R/2, where R is the effective
extent of the condensate in the z = 0 plane. Since the Larmor
precession increases linearly as a function of distance from
the origin, the nematic vector experiences a full 2π rotation at
radius 2ρ0 = R so that the order parameter assumes a constant
value at the condensate boundary. Along the z axis the vector
also retains its initial orientation. The nematic vector changes
smoothly between these values. In practice, these rotations are
induced by the brief pulse of the magnetic-field gradient near
t = T/2, as is evident from the analytic form of the employed
CD magnetic field shown below.

We further employ the unitary transformation introduced in
Refs. [39,40] to obtain a CD field which can be experimentally
implemented using a single pair of quadrupole coils. The
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z

y
x

R
z=

R
/
2

FIG. 1. Orientation of the nematic vector (blue arrows) at certain
points along the −y axis just after the quantum knot has been created.
The x component of the vector is zero along this axis. The origin
is located in the middle of the condensate depicted by the shaded
ellipsoid with radii R and Rz = R/2, and ρ0 is the radius of the circle
along which the nematic vector d̂ rotates by π .

transformation is given by U (t) = e−iα(t)Fz , where α(t) =
arctan[|BCD|/bqρ]. As a result, the Zeeman part of the
Hamiltonian for the unitary-transformed order parameter is
rotated by α(t) and an additional time-dependent magnetic
field is introduced along z. The resulting magnetic field giving
rise to the knot structure is [40]

B(r,t) = bCD
q (t)(xx̂ + yŷ − 2zẑ) + BCD

0 (t)ẑ, (5)

where

bCD
q (t) = bq

√√√√1 +
{

2h̄B0

T gF μB
[
b2

qρ
2
0 + (1 − 2t/T )2B2

0

]
}2

(6)

and

BCD
0 (t) = B0(1 − 2t/T )

×

⎧⎪⎨
⎪⎩1 − 8h̄2B2

0

T 2g2
F μ2

B

[
b2

qρ
2
0 + (1 − 2t/T )2B2

0

]2
+ 4B2

0 h̄2

⎫⎪⎬
⎪⎭.

(7)

The control scheme of the magnetic field is presented in
Fig. 2. In contrast to the control protocols used in Refs. [8,9],
the magnetic-field zero point is not required to be centered in
the middle of the condensate during the knot creation process,
which is one of the most challenging experimental tasks
[23]. At the end of our creation protocol, the magnetic-field
zero point is naturally located far away from the condensate,
whereas in Refs. [8,9] an additional control sequence is needed
to achieve this condition. As we show below, by varying the
parameter ρ0 to a smaller value, our method allows for a
convenient creation of knots with higher Hopf charge than
that reported in Refs. [8,9].

III. RESULTS

We study the creation of quantum knots in the spin-1 BEC
by numerically integrating the Gross-Pitaevskii equation (1)

(a)

(b)

1/3 1/2 2/3
0

5
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20

bC
D

q
/b
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t/T

0 0.5 1
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1

B
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D
0

/B
0

t/T
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D

q
/b

q
B

C
D

0
/B

0

t/T

t/T

0.45 0.50 0.55

0 0.5 1

2000

1500

1000

500

0

1

0

−1

FIG. 2. (a) Quadrupole magnetic-field strength bCD
q and (b) bias

magnetic field BCD
0 employed in the knot creation protocol as

functions of time. Here we set T = 0.1 ms, B0 = 50 mG, bq =
4.3 G/cm, and ρ0 = R/2 (solid blue line), R/4 (dashed red line), R/6
(dotted green line), R/8 (dash-dotted black line), and R/10 (dash–
double-dotted magenta line), with R = 8.0 μm. These parameter
values match those used in Sec. III B. In the insets, the parameters
are T = 1 ms, B0 = 0.1 G, and ρ0 = R/2, corresponding to a single
knot. In (b), all the lines practically overlap.

in the presence of the external magnetic field provided by the
CD scheme as described by Eqs. (5)–(7). In the simulations,
we employ a numerical grid of size 2003 with the typical
volume 20 × 20 × 10a3

ρ , accounting for the oblate shape of the
condensate. Here the harmonic-oscillator length is identified
as aρ = √

h̄/ωρm = 1.0 μm. The effective extents of the
ellipsoidal condensate are R = 8.0 μm and Rz = 4.0 μm,
chosen such that |�|2 < 10−5Na−3

ρ ≈ 1012 cm−3 outside the
ellipsoidal region. Throughout, we set bq = 4.3 G/cm and for
the simulations in Sec. III A (Sec. III B) we set B0 = 0.5 G
(50 mG) such that bqR 	 B0 is satisfied. The condensate is
initially in the polar internal state ẑ = (0,1,0)TZ .

A. Creation of single knots

Figure 3 shows the y-integrated particle density distribu-
tions of different spinor components for various knot creation
times. Here we choose ρ0 = R/2 corresponding to a knot
with the Hopf charge Q = 1. For T � 1.0 ms we numerically
confirm the Hopf charge to be unity. The componentwise
densities are also consistent with the knot structure: The ζ0
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|+1 0 1 ζ†Fζ

0.01 ms(a)

0.1 ms(b)

1.0 ms(c)

2.0 ms(d)

x
z

0 np

FIG. 3. Particle densities integrated along y in different spin states and the spin density in a quantum knot for the creation time
(a) T = 0.01 ms, (b) T = 0.1 ms, (c) T = 1.0 ms, and (d) T = 2.0 ms. The first, second, and third columns correspond to spinor components
ζ+1, ζ0, and ζ−1, respectively, and the fourth column corresponds to the spin density |ζ †Fζ | at the y = 0 plane. Here ρ0 = R/2, B0 = 0.5 G,
the field of view in each panel is 20 × 10 μm2, and the peak particle density corresponds to np = 2.5 × 1011 cm−2. The peak spin density of
all panels is normalized to unity.

component, corresponding to d̂ pointing to positive or negative
z [see Eq. (2)], fills the central region and the boundary, as
well as the core around the central axis of the condensate. The
combination of ζ±1 components, corresponding to d̂ residing

)b()a(

)d()c(

FIG. 4. Preimages of nematic vectors d̂ = x̂ (red region) and
d̂ = −x̂ (blue region) for (a) T = 0.01 ms, (b) T = 0.1 ms,
(c) T = 1.0 ms, and (d) T = 2.0 ms. Here ρ0 = R/2, B0 = 0.5 G,
and the surfaces show the volumes, inside which |dx | > 0.97.

|+1 0 1

R

R/2

R/4

R/6

R/8

R/10

x
z

(a)

(b)

(c)

(d)

(e)

(f)

0 np

FIG. 5. Column particle densities of different spin states in a
quantum knot as indicated for (a) ρ0 = R, (b) ρ0 = R/2, (c) ρ0 =
R/4, (d) ρ0 = R/6, (e) ρ0 = R/8, and (f) ρ0 = R/10. Here T =
0.1 ms, B0 = 50 mG, the field of view in each panel is 20 × 10 μm2,
and the peak particle density is np = 2.5 × 1011 cm−2.
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(a) (b)

(c) (d)

(e) (f)

FIG. 6. Preimages of d̂ = x̂ (red region), d̂ = −x̂ (blue region), and d̂ = ẑ (green region) in a created quantum knot for (a) ρ0 = R,
(b) ρ0 = R/2, (c) ρ0 = R/4, (d) ρ0 = R/6, (e) ρ0 = R/8, and (f) ρ0 = R/10. Here T = 0.1 ms, B0 = 50 mG, and the shown surfaces enclose
the volumes inside which |dx | > 0.95 or dz > 0.95. The green region is not shown for x > 0.

along the xy plane, fills the toroidal volume in between the ζ0

component [9].
Ideally, the spin density vanishes for the polar phase.

However, the spin density increases with the knot creation
time, indicating a transition from the polar phase to the
ferromagnetic phase in the condensate. The rapid decay of the
polar phase is due to the spatial variations in the nematic vector
field leading to spin currents [8]. We attribute the destruction
of the knot structure at long creation times to this transition
because the nematic vector field is only well defined in the
polar phase. The transition to the ferromagnetic phase is further
evidenced by the spatially separated ζ±1 states for T = 2.0 ms.

Even a well-defined knot created in T = 0.01 ms will
ultimately be destroyed due to the aforementioned spin
currents [8]. Hence, while being topologically stable entities,
the knots are destroyed in a relatively short time compared
to the condensate lifetime. Importantly, the time scale of
the decay is long enough for their observation. Furthermore,

the decay of the knot does not necessarily lead to the full
degradation of the underlying topological structure, which is
an interesting topic for future research.

The calculated preimages of d̂ = x̂ and d̂ = −x̂, shown in
Fig. 4, display two linked rings. The preimages are closed
curves in real space, along which the nematic vector points to
a constant direction. The linked structure starts to depart from
the conventional Hopf link as the knot creation time increases.
Finally, for T > 1.0 ms, the link cannot be identified and the
Hopf charge vanishes.

B. Creation of nested knots

The particle densities and the calculated preimages for
various choices of ρ0 are shown in Figs. 5 and 6, respectively,
with T = 0.1 ms and B0 = 50 mG. The calculated Hopf
charge increases with decreasing ρ0 and the particle density
distributions show the increase in the number of knot cores as
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ρ0 decreases. The particle density distributions are consistent
with those of multiple nested knot structures. The number of
linked rings in the preimages increases according to the Hopf
charge. The spin currents emerging from the tightly wound
knot structure result in a fast decay of the polar phase [8].
In the case of knots with Q > 5, the spin currents lead to
noticeable degradation of the knot already within the time
scale of the creation ramp (not shown).

In the cases with Hopf charge Q > 1, two linked rings
appear Q times in a nested structure, as is evident from the
preimages in Figs. 6(c)–6(f). These cases require a more
careful topological inspection. Let us take Q = 2 as an
example and, for clarity, consider the scaled coordinate system
(x ′,y ′,z′) = (x,y,2z) in which the condensate is spherical.
The preimages of d̂ = ±x̂′ display two Hopf links. The two
links are disconnected from each other such that the inner
link resides in the region r ′ < R′/2 and the outer link in
R′/2 < r ′ < R′. This holds for all choices of two different
vectors d̂ 
= ẑ′.

The preimage of d̂ = ẑ′ includes a line along the z′ axis
as well as two spheres with radii R′ and R′/2. The inner
sphere with radius R′/2 can be compactified into a point, since
d̂ = ẑ′ throughout the surface, thus compactifying the three-
dimensional ball with r ′ � R′/2 into S3. This compactification
procedure defines the usual Hopf map in the region r ′ � R′/2.

Topologically, the outer region is now homeomorphic to a
three-dimensional ball with r ′ � R′ as the sphere at r ′ = R′/2
is compactified into a point as described above. The outer
sphere at r ′ = R′ is further compactified into another point,
giving rise to another appearance of the Hopf map in the region
R′/2 � r ′ � R′. Similar compactification procedures can be
applied for the cases with Q > 2, giving rise to the Q-fold
nested Hopf maps.

IV. CONCLUSION

We have numerically studied an unusual application of the
CD protocol to create topological knot structures in the nematic
vector field of spin-1 BECs. Using this precise control scheme
for the external magnetic field, knots with unit Hopf charge
are created in the simulations for magnetic-field ramp times
10 μs � T � 1 ms. For longer ramp times the spin density
is observed to increase in the condensate and the polar phase
decays into the ferromagnetic phase and consequently the knot
structure is lost. Furthermore, our results show that knots with
Hopf charge up to Q = 5 can be created by varying the param-
eter ρ0, which determines the radius of the core of knot. Knots
with Q > 1 exhibit interesting topology with nested Hopf links
repeating Q times. The knot structures are relatively short lived
due to the emerging spin currents and hence detailed studies
of their decay dynamics, related topology, and possible stabi-
lization mechanisms are interesting directions for future work.
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