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ABSTRACT

In this thesis, we analyze backward stochastic differential equations. We
begin by introducing stochastic processes, Brownian motion, stochastic in-
tegrals, and Itô’s formula. After that, we move on to consider stochastic
differential equations and finally backward stochastic differential equations.
The backward stochastic differential equations are of the form

Yt = ξ +

∫ T

t
f(s, Ys, Zs)ds−

∫ T

t
ZsdBs for all t ∈ I a.s.,

where the function f : Ω×I×R2 → R is a random generator and the random
variable ξ is a terminal value of the Y -process at time T . The main topic
of this thesis are backward stochastic differential equations under quadratic
assumptions. The assumptions we consider for the random generator f
and the terminal value ξ of the quadratic backward stochastic differential
equations are as follows:
(P1) There exists α, β ≥ 0, γ > 0 such that for all (t, ω) ∈ [0, T ]× Ω

the function (y, z) 7→ f(t, y, z) is continuous and
|f(ω, t, y, z)| ≤ α+ β|y|+ γ

2 |z|
2 for all (ω, t, y, z) ∈ Ω× [0, T ]× R2.

(P2) E
[
eγe

βT |ξ|] <∞.
(P3) There exists a λ > γeβT such that E

[
eλ|ξ|

]
<∞.

Obviously (P3) implies (P2). We prove that under these assumptions the
backward stochastic differential equation has at least one solution (Y,Z)
such that for some C > 0 and for all t ∈ [0, T ], a.s.,

−1

γ
logE[φt(−ξ)|Ft] ≤ Yt ≤

1

γ
logE[φt(ξ)|Ft],

where φt solves a special differential equation associated to this problem and

E
[ ∫ T

t
|Zs|2ds

∣∣∣ Ft ] ≤ CE[eλ|ξ| ∣∣∣ Ft ].



TIIVISTELMÄ

Tässä tutkielmassa analysoimme takaperoisia stokastisia differentiaaliyhtälöitä.
Aloitamme esittelemällä stokastiset prosessit, Brownin liikkeen, stokastiset
integraalit ja Itôn kaavan. Tämän jälkeen siirrymme tarkastelemaan stokastisia
differentiaaliyhtälöitä ja lopulta takaperoisia stokastisia differentiaaliyhtälöitä.
Takaperoiset stokastiset differentiaaliyhtälöt ovat muotoa

Yt = ξ +

∫ T

t
f(s, Ys, Zs)ds−

∫ T

t
ZsdBs kaikilla t ∈ I m.v.,

missä funktio f : Ω×I×R2 → R on satunnaisgeneraattori ja satunnaismuut-
tuja ξ on Y-prosessin päätearvo hetkellä T . Tämän tutkielman pääaiheena
on takaperoiset stokastiset differentiaaliyhtälöt kvadraattisilla oletuksilla.
Käsittelemämme kvadraattisten stokastisten differentiaaliyhtälöiden oletuk-
set koskien satunnaisgeneraattoria f ja päätearvoa ξ ovat seuraavat:
(P1) On olemassa α, β ≥ 0, γ > 0 siten, että kaikilla (t, ω) ∈ [0, T ]× Ω

funktio (y, z) 7→ f(t, y, z) on jatkuva ja
|f(ω, t, y, z)| ≤ α+ β|y|+ γ

2 |z|
2 kaikilla (ω, t, y, z) ∈ Ω× [0, T ]× R2.

(P2) E
[
eγe

βT |ξ|] <∞.
(P3) On olemassa λ > γeβT siten, että E

[
eλ|ξ|

]
<∞.

Selvästi oletuksesta (P3) seuraa oletus (P2). Todistamme, että näiden ole-
tusten ollessa voimassa, takaperoisella stokastisella differentiaaliyhtälöllä on
vähintään yksi ratkaisu (Y,Z) siten, että jollekin C > 0 ja kaikille t ∈ [0, T ],
m.v.,

−1

γ
logE[φt(−ξ)|Ft] ≤ Yt ≤

1

γ
logE[φt(ξ)|Ft]

missä φt ratkaisee a tietyn ongelmaan liittyvän differentiaaliyhtälön, ja

E
[ ∫ T

t
|Zs|2ds

∣∣∣ Ft ] ≤ CE[eλ|ξ| ∣∣∣ Ft ].
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1. Introduction

In this thesis, we analyze Backward Stochastic Differential Equations
(BSDEs), especially in the quadratic form. In Section 2 the most im-
portant definitions, such as of a stochastic process, a filtration, and a
martingale, are introduced. The time set I for the stochastic processes
is chosen to be the closed interval between 0 and some constant T > 0,
i.e. I := [0, T ]. This choice is because of the nature of most of the
BSDEs that have a terminal condition on a finite time horizon T > 0.

After introducing the basic definitions, the Brownian motion will
be defined. It is a fundamental stochastic process in the theory of sto-
chastic differential equations. The main source regarding this topic is
the monography of Karatzas and Shreve [9]. Also, the usual conditions
and the augmentation of the natural filtration of a stochastic process
are introduced. For technical reasons, the relation between the Brow-
nian motion, the augmentation and the usual conditions is important.

Stochastic integration is a way to describe stochastic processes.
The stochastic integral is a generalization of the Riemann-Stieltjes-
integral, where the integrands and the integrators are stochastic pro-
cesses. The space of suitable integrands is an L2-space, whereas the
integrator is required to be a Brownian motion. Both of the require-
ments can be extended, but possible extensions are not covered by this
thesis.

Itô’s formula is a fundamental identity concerning the relation
between stochastic processes and stochastic integrals. In stochastic
analysis, it is a replacement of the mean value theorem from real anal-
ysis. It is an important tool for understanding and solving stochastic
differential equations as well as backward stochastic differential equa-
tions. Itô’s formula is applied repeatedly throughout this thesis.

As well as deterministic integrals can be generalized to stochas-
tic counterparts, so in the case of differential equations. A Stochastic
Differential Equation (shortened SDE and sometimes called a forward
stochastic differential equation to be separated from a backward sto-
chastic differential equation) determines a starting point for the pro-
cess (the value of the stochastic process at time 0) and indicates certain
random behaviour with respect to the time variable. The random be-
haviour includes two terms. One term consists of a Lebesgue-integral
and the other term consists of a stochastic integral. By stochastic
differential equations one can model stochastic processes that satisfy
a desired random behavior. Solving a stochastic differential equation
gives an explicit form of the modeled stochastic process. In Section
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3 the stochastic integrals, Itô’s formula, and the stochastic differential
equations are introduced.

The main goal of this thesis and the topic of Section 4 is to study
backward stochastic differential equations. As well as the forward sto-
chastic differential equation, a backward stochastic differential equation
models a certain random behaviour with respect to the time variable.
However, instead of a starting point, the backward stochastic differen-
tial equation determines the terminal value of the stochastic process at
time T. Because of the random nature of the process, in general, the
terminal value of the process should be defined as a random variable
instead of some constant.

BSDEs were first introduced by Bismut [1] and the theory was
later extended by Pardoux and Peng in [12] and [13], El Karoui, Peng,
and Quenez in [7], Pardoux in [11], and Briand, Delyon, Hu, Pardoux,
and Stoica in [2]. Pardoux and Peng [12] were the first to prove an
existence and uniqueness theorem for the backward stochastic differ-
ential equations under Lipschitz conditions. Kobylanski [10] obtained
an existence theorem for the backward stochastic differential equations
under quadratic conditions. Briand and Hu [3, 4] and Delbaen, Hu,
and Richou [5, 6] studied the quadratic case further. In [3], Briand
and Hu showed an existence theorem and certain regularity conditions
for the solution of the backward stochastic differential equation. This
existence result and the regularity conditions are proved at the end of
this thesis.
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2. Preliminaries

2.1. Basic definitions.
In this chapter, the most important definitions concerning general sto-
chastic processes are introduced. A stochastic process is a fundamental
object throughout this thesis. It can be considered to be a random
function with a time variable. The stochastic processes can be used to
model random behavior with respect to time.

Definition 2.1. Let (Ω,F ,P) be a probability space and let I := [0, T ]
for some T ∈ (0,∞). A stochastic process is a family of random
variables (Xt)t∈I where Xt : Ω→ R.

Remark 2.2.

(i) The value of the random variable Xt describes the state of the
process at time t.

(ii) The time set I can be defined in other ways as well. For example,
I := [0,∞) is a sufficient time set for a process that has no ter-
minal time. For discrete processes I := {1, ..., n} with n ∈ N or
I := N are appropriate time sets. However, mainly the time set
I := [0, T ] is considered in this thesis.

Definition 2.3. Let X = (Xt)t∈I and Y = (Yt)t∈I be stochastic pro-
cesses. The processes X and Y are

(i) indistinguishable if P(Xt = Yt ∀t ∈ I) = 1, and
(ii) modifications of each other if P(Xt = Yt) = 1 for all t ∈ I.

Definition 2.4. Let (Ω,F ,P) be a probability space. A set of σ-algebras
(Ft)t∈I is called a filtration if Fs ⊂ Ft ⊂ F for all 0 ≤ s < t ≤ T .

The filtration describes the idea of information at a certain time. The
elements of a filtration Ft can be understood to be the known events
of the probability space. As time moves forward the amount of infor-
mation grows, since the filtration becomes finer, and thus, the amount
of known events grows.

Definition 2.5. A probability space (Ω,F ,P) equipped with a filtration
(Ft)t∈I is called a stochastic basis.

Definition 2.6. Let (Ω,F ,P, (Ft)t∈I) be a stochastic basis. A stochas-
tic process X = (Xt)t∈I is called

(i) adapted with respect to (Ft)t∈I if Xt is Ft-measurable for all
t ∈ I,

(ii) progressively measurable with respect to (Ft)t∈I if X : [0, s]×
Ω→ R with X(t, ω) := Xt(ω) is B([0, s])⊗ Fs-measurable for all
s ∈ I,
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(iii) continuous if the function t 7→ Xt(ω) is continuous for all ω ∈
Ω,

(iv) RCLL if for all ω ∈ Ω the function t 7→ Xt(ω) is right-continuous
and has left limits i.e.

lim
s→t+

Xs(ω) = Xt(ω)

for all t ∈ [0, T ) and

lim
s→t−

Xs(ω) ∈ R

for all t ∈ (0, T ],
(v) predictable if X : [0, T ] × Ω → R with X(t, ω) := Xt(ω) is

measurable with respect to the sigma-algebra generated by all con-
tinuous stochastic processes,

(vi) integrable if E|Xt| <∞ for all t ∈ I, and
(vii) square integrable if EX2

t <∞ for all t ∈ I.

An adapted process can be interpreted to be a process, where at each
time the past behaviour and the current situation of the process is
known. On the other hand, a continuous process is a process which
does not have jumps. An RCLL process is allowed to have a countable
amount of jumps. Progressive measurability, integrability, and square
integrability are technical concepts which are required for some of the
results given later in this thesis.

Definition 2.7. Let (Ω,F ,P, (Ft)t∈I) be a stochastic basis. A stochas-
tic process M = (Mt)t∈I is called a martingale provided that

(i) M is adapted,
(ii) M is integrable, and

(iii) E[Mt|Fs] = Ms a.s. for all 0 ≤ s ≤ t ≤ T .

The space of martingales is denoted by M and the space of continuous
square integrable martingales M = (Mt)t∈I with M0 = 0 a.s. is denoted
by Mc,0

2 .

Remark 2.8. The last property (iii) of a martingale is called the mar-
tingale property. The martingale property states that at each time t
the conditional expectation given Ft of any future state of a martingale
is the value of the martingale at time t. Thus, one can not predict the
expected direction of a martingale by the historical behaviour of it.
The martingales are, for example, used to model fair games where the
expected value of wins and losses are balanced between the players of
the game.

Definition 2.9. A stochastic process M∗ = (M∗
t )t∈I is called a super-

martingale provided that
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(i) M∗ is adapted,
(ii) M∗ is integrable, and

(iii) E[M∗
t |Fs] ≤M∗

s a.s. for all 0 ≤ s ≤ t ≤ T .

Definition 2.10. Let (Ω,F ,P, (Ft)t∈I) be a stochastic basis. A random
variable τ : Ω → I is called a stopping time if {τ ≤ t} ∈ Ft for all
t ∈ I.

2.2. Brownian Motion.
The Brownian motion is our driving stochastic process of the theory
of stochastic differential equations. Aside of being a stochastic process
itself, it is also used to define other processes. Later in this thesis, the
Brownian motion is the basis to define stochastic integrals, stochas-
tic differential equations, and finally backward stochastic differential
equations.

Let us first give an idea of one possible construction of the Brow-
nian motion. First we define a stochastic process X = (Xn)n∈N in the
following way. Let N1, N2, N3, ... ∼ N (0, 1) be independent normally
distributed random variables with mean 0 and variance 1. Moreover,
let S0 := 0 and Sn :=

∑n
i=1Ni for n = 1, 2, 3, .... The process X is

defined by

(1) Xt := Sbtc + (t− btc)Nbtc+1.

The process X defined above is a continuous stochastic process
with linear transitions between time points 0,1,2,3,... The process X
can be rescaled so that the set of base points is a finer set of time points,
for example at time points 0, 1

2
, 1, 3

2
, 2, 5

2
, ... The modified process X2

would be defined by

X2
t :=

X2t√
2
.

The latter process is distributed as the former one in the coarser set of
time points 1, 2, 3, ...

If we define stochastic processes Xn by

Xn
t :=

Xnt√
n

for n = 1, 2, 3, ..., one gets piece-wise linear continuous stochastic pro-
cesses based on the time grid {0, 1

n
, 2
n
, 3
n
, ...}. It is actually possible

to construct a continuous stochastic process that is distributed like
any process Xn at the given time grid {0, 1

n
, 2
n
, 3
n
, ...}. This continuous

stochastic process is called a Brownian motion. We give the formal
definition for the Brownian motion, where the time interval is set to be
I := [0, T ].
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Definition 2.11. A stochastic process B = (Bt)t∈I is called a Brow-
nian motion provided that

(i) B0(ω) = 0 for all ω ∈ Ω,
(ii) B is continuous,

(iii) the random variables Btn−Btn−1 , ..., Bt1−Bt0 are independent for
all n ∈ N, 0 ≤ t0 ≤ t1 ≤ ... ≤ tn ≤ T ,

(iv) Bt −Bs ∼ N (0, t− s) for all 0 ≤ s ≤ t ≤ T .

Remark 2.12. The Brownian motion is also often called a Wiener
process. Robert Brown (1773-1858) described a physical phenomenon
of particles moving randomly in water. Louis Bachelier (1870-1946)
studied a similar phenomenon of stock market prices. Norbert Wiener
(1894-1964) constructed mathematically the stochastic process mod-
elling these phenomena.

Before giving an existence theorem for the Brownian motion, we define
the weak convergence for the probability measures in a metric space.

Definition 2.13. Let (S, ρ) be a metric space with a Borel σ-field B(S).
Let (Pn)∞n=1 be a sequence of probability measures in (S,B(S)) and let P
be another probability measure in (S,B(S)). Then the sequence (Pn)∞n=1

converges weakly to the probability measure P, if

lim
n→∞

∫
S

f(s)dPn(s) =

∫
S

f(s)dP(s)

for all bounded and continuous functions f : S → R.

The previous construction with Xn
t := Xnt√

n
has a limit process, which

is a Brownian motion, as shown by the following invariance principle
of Donsker. Before formulating the invariance principle of Donsker, we
need to define a measurable space of continuous functions.

Definition 2.14. Let
(
C[0, T ], du

)
be the metric space of continuous

functions on [0, T ] equipped with the uniform norm du. One can refer
to the set of Borel-sets of the space

(
C[0, T ], d

)
by B(C[0, T ]) so that(

C[0, T ],B(C[0, T ])
)

is a measurable space.

Theorem 2.15 (The Invariance Principle of Donsker). Let (Ω,F ,P)
be a probability space and let (ξi)

∞
i=1 be a sequence of independent, iden-

tically distributed random variables with mean zero and finite variance
σ2 > 0. Let the random variables Sn be defined by Sn :=

∑n
i=1 ξi

for n = 1, 2, 3, ... and S0 := 0. Let the processes X = (Xt)t∈I and
Xn = (Xt)

n
t∈I for n = 1, 2, 3, ... be defined by Xt := Sbtc+(t−btc)Nbtc+1,

and Xn
t := Xnt√

n
. Let Pn be the probability measure on the space of the

continuous functions
(
C[0, T ),B(C[0, T ])

)
defined by Pn(A) := P(Xn ∈
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A) for all A ∈ B(C[0, T ]). Then the sequence (Pn)∞n=1 of probabil-
ity measures converges weakly to a measure P∗. Moreover, the process
B = (Bt)t∈I , Bt := ω(t) is a Brownian motion on the probability space(
C[0, T ],B(C[0, T ]), P ∗

)
.

The proof is given in [9, p. 70-71].

Remark 2.16. One can also give a corresponding theorem for the
Brownian motion on the interval [0,∞). In that case the space of
continuous functions

(
C[0,∞)),B(C[0,∞))

)
can be equipped with a

metric defined by

d(ω1, ω2) :=
∞∑
n=1

1

2n
max

t∈[n−1,n]

{
|ω1(t)− ω2(t)|, 1

}
for all ω1, ω2 ∈ C[0,∞).

Definition 2.17. Let (Ω,F ,P) be a probability space and X = (Xt)t∈I
be a stochastic process. The filtration (FXt )t∈I defined by FXt := σ(Xs :
s ∈ [0, t]) is called the natural filtration of X. Moreover let

N := {A ⊂ Ω : there exists B ∈ F such that A ⊂ B and P(B) = 0}.
The filtration (Ft)t∈I ,Ft := σ(FXt ∪ N ) is called the augmentation
of (FXt )t∈I .

Remark 2.18. Note that the augmentation of (FXt )t∈I is not neces-
sarily a filtration in (Ω,F ,P). However, (Ω,F ,P) can be extended to

include the sets from N by letting F̃ := σ(F ∪ N ) and P̃(A) := P(B)

when B4A ∈ N . Now (Ω, F̃ , P̃) is a probability space and the aug-

mentation of (FXt )t∈I is a filtration in (Ω, F̃ , P̃). The probability space

(Ω, F̃ , P̃) is called the completion of (Ω,F ,P).

Definition 2.19. A stochastic basis (Ω,F ,P, (Ft)t∈I) satisfies the usual
conditions provided that the following is satisfied:

(i) N ⊂ F0,
(ii) the filtration (Ft)t∈I is right-continuous i.e. Ft =

⋂
s>tFs for all

t ∈ [0, T ).

Proposition 2.20. Let B be a Brownian motion on a probability space
(Ω,F ,P). Then the stochastic basis (Ω, F̃ , P̃, (Ft)t∈I), where (Ω, F̃ , P̃)
is the completion of (Ω,F ,P) and (Ft)t∈I is the augmentation of (FBt )t∈I ,
satisfies the usual conditions.

The first property (i) of the usual conditions is clear by the definitions
of the augmentation and the completion. The right-continuity is proved
in [9, p. 90-91]. The proof is given for strong Markov processes. In
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[9, p. 86] it is shown that the Brownian motion is a strong Markov
process.

Remark 2.21. Proposition 2.20 allows us to assume that the Brow-
nian motion is defined on a stochastic basis that satisfies the usual
conditions. From now on, the usual conditions are assumed whenever
a stochastic basis is introduced. The assumption of the usual conditions
is necessary for some results given later.

Proposition 2.22. Let B = (Bt)t∈I be a Brownian motion and (Ft)t∈I
be the augmentation of (FBt )t∈I . Then

(i) B is (Ft)t∈I-adapted,
(ii) the random variable Bt−Bs and the σ-algebra Fs are independent

for all 0 ≤ s ≤ t ≤ T .

The proof is given in [9, p. 116-117].

Definition 2.23. Let (Ω,F ,P, (Ft)t∈I) be a stochastic basis. An (Ft)t∈I-
adapted Brownian motion B is called (Ft)t∈I-Brownian motion pro-
vided that the random variable Bt −Bs and the σ-algebra Fs are inde-
pendent for all 0 ≤ s ≤ t ≤ T .

Remark 2.24. Proposition 2.22 states, that a Brownian motion is
an (Ft)t∈I-Brownian motion, where (Ft)t∈I is the augmentation of the
natural filtration of the Brownian motion.
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3. Stochastic Differential Equations

3.1. Stochastic Integration.
Using stochastic integrals one can describe stochastic processes. The
stochastic integral is a generalization of the Riemann-Stieltjes-integral,
where the integrands and the integrators are stochastic processes. In
this thesis the stochastic integrals are defined for L2-processes as in-
tegrands, which are defined in this chapter. Before considering the
L2-processes, we consider simple processes. First, the stochastic inte-
gration is defined on the space of simple processes, and after that the
definition is extended to the larger L2-space.

Definition 3.1. Let L = (Lt)t∈I be a stochastic process on a stochastic
basis (Ω,F ,P, (Ft)t∈I). The process L is called simple provided that
there exist time points 0 =: t0 < t1 < ... < tN := T and random
variables ξ0, ξ1, ...ξN−1 such that

(i) ξi is Fti-measurable for all i ∈ {0, ..., N − 1},
(ii) supω∈Ω |ξi(ω)| <∞ for all i ∈ {0, ..., N − 1},

(iii) Lt =
∑N

i=1 ξi−11(ti−1,ti](t) for all t ∈ I.

The space of simple processes is denoted by L0.

Remark 3.2. A simple process L in (Ω,F ,P, (Ft)t∈I) is (Ft)t∈I-adapted.

Now, we are ready to give the first definiton for the stochastic integral.

Definition 3.3. Let L ∈ L0 and B be a Brownian motion on a sto-
chastic basis (Ω,F ,P, (Ft)t∈I). Then the stochastic integral of L is
the stochastic process (It(L))t∈I where

It(L) :=
N∑
i=1

ξi−1(Bti∧t −Bti−1∧t) for all t ∈ I.

Remark 3.4. The stochastic integral (It(L))t∈I for a simple process L
is (Ft)t∈I-adapted which follows from the facts that the simple process
L and the Brownian motion are adapted.

Now, let us define the L2-space and consider the stochastic integration
on that.

Definition 3.5. Let L2 be the space of the progressively measurable

processes L = (Lt)t∈I with E
∫ T

0
L2
tdt <∞.

Remark 3.6.

(i) Above, the integral
∫ T

0
L2
tdt is a well-defined random variable

which follows from the progressive measurability and Fubini’s the-

orem. Therefore the expected value E
∫ T

0
L2
tdt can be defined.
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(ii) The simple processes are in L2.

Proposition 3.7. Let L ∈ L2.

(i) There exists a sequence (Ln)∞n=0 ⊂ L0 such that

lim
n→∞

E
∫ T

0

|Lt − Lnt |2dt = 0.

There also exists an adapted continuous process X = (Xt)t∈I such
that

lim
n→∞

E|Xt − It(Ln)|2 = 0.

(ii) Let (Ln)∞n=0, (L̂
n)∞n=0 ⊂ L0 be such that

lim
n→∞

E
∫ T

0

|Lt − Lnt |2dt = lim
n→∞

E
∫ T

0

|Lt − L̂nt |2dt = 0.

Then there exist continuous and adapted processes X = (Xt)t∈I
and X̂ = (X̂t)t∈I such that

lim
n→∞

E|Xt − It(Ln)|2 = 0 and lim
n→∞

E|X̂t − It(L̂n)|2 = 0.

Moreover, any such processes X and X̂ are indistinguishable.

The proof of the part (i) is given in [9, p. 134-137] and the proof of
the part (ii) is given in [9, p. 137-139].

Now, we are ready to define the stochastic integral for L2-processes.

Definition 3.8. Let L ∈ L2 and (Ln)∞n=0 ⊂ L0 be such that

lim
n→∞

E
∫ T

0

|Lt − Lnt |2dt = 0.

Then, the stochastic integral of L is an adapted continuous process
(It(L))t∈I for which

lim
n→∞

E|It(L)− It(Ln)|2 = 0.

Remark 3.9.

(i) Proposition 3.7 verifies that the stochastic integral of an L2-process
is well defined. The assertion (i) provides that the process (It(L))t∈I
exists and the assertion (ii) provides that it is unique up to indis-
tingushability.

(ii) The stochastic integral of an L2-process is a generalization of the
stochastic integral of an L0-process. Therefore, the same notation
It(L) can be used for both integrals.

(iii) Often the stochastic integral It(L) at time point t is denoted by∫ t
0
LsdBs.
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(iv) We also use the definition
∫ t
s
LudBu:=It(L) − Is(L) for 0 ≤ s ≤

t ≤ T .

According to the notation of the part (iii) of the last remark, the L2-
space can be interpreted as the space of suitable integrands, where the
integrator is required to be a Brownian motion. The definition of the
stochastic integrals can be extended in a way that the space of suitable
integrands is larger than the the L2-space. Also, the integrators can be
generalized to be other stochastic processes than a Brownian motion.
However, these extensions are not covered in this thesis.

Proposition 3.10. Let L,K ∈ L2 and α, β ∈ R. Then

(i) (It(L))t∈I ∈Mc,0
2 ,

(ii) It(αL+ βK) = αIt(L) + βIt(K) for all t ∈ I a.s.,

(iii) E|It(L)|2 = E
∫ t

0
L2
udu for all t ∈ I.

The proof is given in [9, p. 138-140].

Remark 3.11. The last property (iii) of Proposition 3.10 is called
Itô’s isometry.

Proposition 3.12. Let L,K ∈ L2 such that It(L) = It(K) a.s. for all
t ∈ I. Then L = K dP⊗ dt-a.s.

Proof. According to Itô’s isometry

E
∫ T

0

(Lu −Ku)
2du = E|IT (L−K)|2

= 0,

since L−K ∈ L2. �

3.2. Itô’s Formula.
Itô’s formula is a fundamental identity concerning the relation between
stochastic processes and stochastic integrals. It is an important tool
for understanding and solving stochastic differential equations as well
as backward stochastic differential equations. Below, Itô’s formula is
stated for one process as well as for two processes.

Definition 3.13. Let f : [0, T ]×R→ R be a continuous function such

that all partial derivatives ∂f
∂s

, ∂f
∂x

, ∂2f
∂x2

, where (s, x) ∈ (0, T ) × R, are
continuous and can be continuosly extended to [0, T ] × R. Then it is
said that f belongs to C1,2([0, T ]× R).

Proposition 3.14 (Itô’s Formula). Let f ∈ C1,2([0, T ]× R) and X =

(Xt)t∈I , Xt := X0 +
∫ t

0
bsds+

∫ t
0
σsdBs be a stochastic process where

(i) X0 is an F0-measurable random variable,
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(ii) the process b = (bs)s∈I is progressively measurable and satisfies∫ t
0
|bs|ds <∞ a.s.,

(iii) σ = (σs)s∈I ∈ L2,
(iv)

(
∂f
∂x

(s,Xs)σs
)
s∈I ∈ L2.

Then we have that, a.s.,

f(t,Xt) = f(0, X0) +

∫ t

0

∂f

∂s
(s,Xs)ds+

∫ t

0

∂f

∂x
(s,Xs)bsds

+

∫ t

0

∂f

∂x
(s,Xs)σsdBs +

1

2

∫ t

0

∂2f

∂x2
(s,Xs)σ

2
sds

for all t ∈ I.

This proposition is stated in [9, p. 153] and proved in [9, p. 230] with
the help of the theorem stated and proved in [9, p. 149-153].

Remark 3.15. The stochastic integral can also be extended so that
Itô’s formula holds with a weaker assumption than

(
∂f
∂x

(s,Xs)σs
)
s∈I ∈

L2.

Definition 3.16. Let f : [0, T ] × R2 → R be a continuous function

such that all partial derivatives ∂f
∂s

, ∂f
∂x

, ∂f
∂y

, ∂2f
∂x2

, ∂2f
∂y2

, and ∂2f
∂x∂y

, where

(s, x, y) ∈ (0, T )× R2, are continuous and can be continuosly extended
to [0, T ]× R2. Then it is said that f belongs to C1,2([0, T ]× R2).

Proposition 3.17 (Itô’s Formula). Let f ∈ C1,2([0, T ]×R2) and X =

(Xt)t∈I , Xt := X0+
∫ t

0
asds+

∫ t
0
LsdBs, Y = (Yt)t∈I , Yt := Y0+

∫ t
0
bsds+∫ t

0
KsdBs be a stochastic processes where

(i) X0 is an F0-measurable random variable,
(ii) the process a = (as)s∈I is progressively measurable and satisfies∫ t

0
|as|ds <∞ a.s.,

(iii) L = (Ls)s∈I ∈ L2,
(iv)

(
∂f
∂x

(s,Xs, Ys)σs
)
s∈I ∈ L2.

(v) Y0 is an F0-measurable random variable,
(vi) the process b = (bs)s∈I is progressively measurable and satisfies∫ t

0
|bs|ds <∞ a.s.,

(vii) K = (Ks)s∈I ∈ L2,
(viii)

(
∂f
∂y

(s,Xs, Ys)σs
)
s∈I ∈ L2.

Then we have that, a.s.,

f(t,Xt, Yt) = f(0, X0, Y0) +

∫ t

0

∂f

∂s
(s,Xs, Ys)ds
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+

∫ t

0

∂f

∂x
(s,Xs, Ys)asds+

∫ t

0

∂f

∂y
(s,Xs, Ys)bsds

+

∫ t

0

∂f

∂x
(s,Xs, Ys)LsdBs +

∫ t

0

∂f

∂y
(s,Xs, Ys)KsdBs

+
1

2

∫ t

0

∂2f

∂x2
(s,Xs, Ys)L

2
sds+

1

2

∫ t

0

∂2f

∂y2
(s,Xs, Ys)K

2
sds

+

∫ t

0

∂2f

∂x∂y
(s,Xs, Ys)LsKsds

for all t ∈ I.

This proposition as well as the previous one is proved in [9, p. 149-153]
and [9, p. 230]. The statement in [9] is a general one and it contains
both of the cases.

3.3. Stochastic Differential Equations.
As well as deterministic integrals can be generalized to stochastic coun-
terparts, so is the case for the differential equations. A stochastic
differential equation (sometimes called a forward stochastic differen-
tial equation to be separated from a backward stochastic differential
equation) determines a starting point for the process (the value of the
stochastic process at time 0) and indicates certain random behaviour
with respect to the time variable. The random behaviour includes two
terms. One term consists of a Lebesgue-integral and another term con-
sists of a stochastic integral. By stochastic differential equations one
can model stochastic processes that satisfy a certain random behavior.
Solving a stochastic differential equation gives an explicit form of the
modeled stochastic process. Below, the stochastic differential equation
is defined formally.

Definition 3.18. Let (Ω,F ,P, (Ft)t∈I) be a stochastic basis that sat-
isfies the usual conditions, x0 ∈ R, b, σ : I × R → R be continuous
functions and B = (Bt)t∈I be an (Ft)t∈I-Brownian motion. A stochas-
tic process X = (Xt)t∈I is a solution to the stochastic differential
equation (SDE)

dXt = b(t,Xt)dt+ σ(t,Xt)dBt,

X0 = x0

provided that

(i) X is continuous and (Ft)t∈I-adapted,
(ii) X0 = x0 for all ω ∈ Ω,

(iii) Xt = x0 +
∫ t

0
b(s,Xs)ds+

∫ t
0
σ(s,Xs)dBs ∀t ∈ I a.s.,
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(iv) E
∫ T

0
|σ(s,Xs)|2ds <∞.

Remark 3.19. In the previous definition, the point x0 describes the
starting point of the process X. The function b : I × R → R describes
the drift behaviour of the process X, while the function σ : I ×R→ R
describes the volatility of the process X. If one omits the second term
σ(t,Xt)dBt, then the stochastic differential equation becomes a first
order ordinary differential equation.

Next, we are going to formulate an existence and uniqueness theorem
for the stochastic differential equations.

Theorem 3.20. Let x0 ∈ R, let (Ω,F ,P, (Ft)t∈I) be a stochastic ba-
sis, that satisfies the usual conditions, let B = (Bt)t∈I be an (Ft)t∈I-
Brownian motion, and let b, σ : I × R → R be continuous functions
such that there exists K > 0 for which

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K|x− y|
for all t ∈ I, x, y ∈ R. Then there exists a stochastic process X =
(Xt)t∈I which is a solution to the SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dBt,

X0 = x0.

Moreover, X is square integrable and unique up to indistinguishibility
in (Ω,F ,P, (Ft)t∈I).

The proof is given in [9, p. 287-290].
We will need the following well known estimate for the solution

of Theorem 3.20 (see for example [8, Proposition 4.3.1, p. 93-97]).

Proposition 3.21. The solution X = (Xt)t∈I of Theorem 3.20 satisfies

E sup
t∈I
|Xt|p <∞

for all p ∈ (0,∞).

In the example below, Theorem 3.20 and Itô’s formula are used to find
a solution to linear stochastic differential equations.

Example 3.22. Let us find a solution to the following SDE:

dXt = (b1Xt + b2)dt+ (σ1Xt + σ2)dBt

X0 = x0
(2)

where b1, b2, σ1, σ2 ∈ R. Firstly, we note that

|(b1x+ b2)− (b1y + b2)|+ |(σ1x+ σ2)− (σ1y + σ2)|
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= |b1||x− y|+ |σ1||x− y|
= (|b1|+ |σ1|)|x− y|
= K|x− y|,

where
K := (|b1|+ |σ1|).

According to Theorem 3.20, there exists a square integrable solution,
which is unique up to indistinguishability. Let X = (Xt)t∈I be this
solution. Now defining

f(s, x, y) := x exp
((σ2

1

2
− b1

)
s− σ1y

)
gives by Itô’s Formula (Proposition 3.17) that

f(t,Xt, Bt) = x0 +

∫ t

0

(
σ2

1

2
− b1

)
f(s,Xs, Bs)ds

+

∫ t

0

b1f(s,Xs, Bs) + b2 exp
((σ2

1

2
− b1

)
s− σ1Bs

)
ds

+

∫ t

0

σ1f(s,Xs, Bs) + σ2 exp
((σ2

1

2
− b1

)
s− σ1Bs

)
dBs

−
∫ t

0

σ1f(s,Xs, Bs)dBs +
1

2

∫ t

0

σ2
1f(s,Xs, Bs)ds

−
∫ t

0

σ2
1f(s,Xs, Bs) + σ1σ2 exp

((σ2
1

2
− b1

)
s− σ1Bs

)
ds

= x0 +

∫ t

0

(b2 + σ1σ2) exp
((σ2

1

2
− b1

)
s− σ1Bs

)
ds

+

∫ t

0

σ2 exp
((σ2

1

2
− b1

)
s− σ1Bs

)
dBs

for all t ∈ I a.s. Therefore, we can conclude that

Xt = exp
((
b1 −

σ2
1

2

)
s+ σ1Bs

)
f(t,Xt, Bt)

= e

(
b1−

σ21
2

)
s+σ1Bs

[
x0 +

∫ t

0

(b2 + σ1σ2)e

(
σ21
2
−b1
)
s−σ1Bsds

+

∫ t

0

σ2e

(
σ21
2
−b1
)
s−σ1BsdBs

]
for all t ∈ I a.s.



16 TIMO EIROLA

4. Backward Stochastic Differential Equations

4.1. Backward Stochastic Differential Equations.
The stochastic differential equation (SDE) presented earlier deals with
a process X = (Xt)t∈I , where the starting point X0 = x0 is given and
the process fullfills the equation

Xt = x0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs ∀t ∈ I a.s.

However, the setting can be also turned the other way round. Let us
study the setting, where the terminal value of the process XT = ξ
is given, and the process satisfies the backward stochastic differential
equation (BSDE), where the integration intervall is [t, T ]. The BSDEs
were first introduced by Bismut [1] and the theory was later extended
by Pardoux and Peng in [12] and [13].

Definition 4.1. Let (Ω,F ,P, (Ft)t∈I) be a stochastic basis. Let f :
Ω× I ×R2 → R be a function, where the function (y, z) 7→ f(ω, t, y, z)
is continuous for all ω ∈ Ω, t ∈ I, the stochastic process (ω, t) 7→
f(ω, t, y, z) is predictable for all y, z ∈ R. Then f is called a random
generator.

Definition 4.2. Let (Ω,F ,P, (Ft)t∈I) be a stochastic basis, let B =
(Bt)t∈I be a Brownian motion such that (Ft)t∈I is the augmentation of
the natural filtration of B, let f : Ω× I ×R2 → R be a random genera-
tor, and let ξ be an FT -measurable, square integrable random variable.
Then the pair (Y, Z) = ((Yt)t∈I , (Zt)t∈I) is said to be the solution to the
backward stochastic differential equation BSDE(f, ξ) provided
that

(i) Y is a continuous and (Ft)t∈I-adapted stochastic process,
(ii) Z ∈ L2,

(iii) E
∫ T

0
|f(t, Yt, Zt)|dt <∞, and

(iv) Yt = ξ +
∫ T
t
f(s, Ys, Zs)ds−

∫ T
t
ZsdBs ∀t ∈ I a.s.

Definition 4.3. The random variable ξ of the previous definition is
called terminal value.

Remark 4.4.

(i) Often the first argument of a random generator f(ω, t, y, z) is
omitted. When using the form f(t, y, z) one has to remember
that the function is not deterministic in general.
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(ii) The random variable ξ corresponds the terminal value of the sto-
chastic process Y at time T:

YT = ξ +

∫ T

T

f(s, Ys, Zs)ds−
∫ T

T

ZsdBs = ξ a.s.

(iii) Notice that in the forward stochastic differential equation the ter-
minal value XT is a square integrable random variable. Similarly,
here it is reasonable to demand ξ to be a square integrable random
variable.

(iv) The BSDE(f, ξ) can be formally be written as

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdBs.

Example 4.5. Let X = (Xt)t∈I be a solution to the SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dXt,

X0 = x0.

Then

Xt −XT = x0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs

−x0 −
∫ T

0

b(s,Xs)ds−
∫ T

0

σ(s,Xs)dBs

= −
∫ T

t

b(s,Xs)ds−
∫ T

t

σ(s,Xs)dBs ∀t ∈ I a.s.,

which implies that

Xt = XT −
∫ T

t

b(s,Xs)ds−
∫ T

t

σ(s,Xs)dBs ∀t ∈ I a.s.,

Therefore (X, σ(s,X)) is a solution to the BSDE(f, ξ), where f(t, y, z)
:= −b(t, y) and ξ := XT .

Remark 4.6. As Example 4.5 illustrates, the setting of BSDEs is more
general than the setting of SDEs. The given form of a BSDE with two
processes Y and Z has become established in the literature.

Theorem 4.7 (Martingale representation theorem).
Let (Ω,F ,P, (Ft)t∈I) be a stochastic basis that satisfies the usual con-
ditions, let X be a square integrable, FT -measurable random variable,
and let B = (Bt)t∈I be a Brownian motion such that (Ft)t∈I is the aug-
mentation of the natural filtration of B. Then there exists a stochastic
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process Ψ = (Ψt)t∈I ∈ L2 such that

E[X|Ft] = E[X] +

∫ t

0

ΨsdBs

a.s. for all t ∈ I.

The proof is given in [9, p. 185].

Example 4.8. Let us analyze the BSDE(0, ξ), i.e.

Yt = ξ −
∫ T

t

ZsdBs,

where ξ is an FT -measurable, square integrable, random variable. Let
X = (Xt)t∈I be a stochastic process defined by Xt := E[ξ|Ft]. Then, X
is (Ft)t∈I-adapted. According to the martingale representation theorem
(Theorem 4.7) there exists a stochastic process Z = (Zt)t∈I ∈ L2 such
that

Xt = E[ξ|Ft] = E[ξ] +

∫ t

0

ZsdBs

a.s. for all t ∈ I. Now, we can define Y = (Yt)t∈I by

Yt := E[ξ] +

∫ t

0

ZsdBs.

Therefore, Y is a continuous modification of X that is (Ft)t∈I-adapted.
Moreover, we have that

Yt − YT = E[ξ] +

∫ t

0

ZsdBs − E[ξ]−
∫ T

0

ZsdBs

= −
∫ T

t

ZsdBs

for all t ∈ I a.s., which implies that

Yt = YT −
∫ T

t

ZsdBs

= E[ξ|FT ]−
∫ T

t

ZsdBs

= ξ −
∫ T

t

ZsdBs,

for all t ∈ I a.s., and therefore, (Y, Z) is a solution to the BSDE(0, ξ).

Definition 4.9. Let S2 be the space of continuous and adapted sto-
chastic processes X = (Xt)t∈I with E

[
supt∈[0,T ] X

2
t

]
< ∞. Let S∞ be

the space of bounded continuous, and adapted stochastic processes.
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In [2] Briand, Delyon, Hu, Pardoux, and Stoica stated the following
existence and uniqueness theorem.

Theorem 4.10 (Theorem 4.1, [2]). Let the following assumptions hold:

(i) Let ξ be an FT -measurable, square integrable random variable.
(ii) Let f : Ω× I × R2 → R be a random generator.

(iii) E
( ∫ T

0
f(t, 0, 0)dt

)2
<∞

(iv) There exists a C > 0 such that for all y, z, y, z ∈ R, ω ∈ Ω, and
t ∈ I one has that

|f(ω, t, y, z)− f(ω, t, y, z)| ≤ C(|y − y|+ |z − z|)
Then there exists a pair (Y, Z) = ((Yt)t∈I , (Zt)t∈I), where Y ∈ S2 and
Z ∈ L2, such that (Y, Z) solves the backward stochastic differential
equation BSDE(f, ξ). Moreover, the processes Y and Z are unique in
S2 and L2, which means that for such solutions (Y, Z) and (Y ∗, Z∗)
one has

E
[

sup
t∈[0,T ]

(Yt − Y ∗t )2
]

= 0

and

E
∫ T

0

(Zt − Z∗t )2dt = 0.

Theorem 4.10 follows from the work of Pardoux and Peng [12, 13], El
Karoui, Peng, and Quenez [7], Pardoux [11], and Briand, Delyon, Hu,
Pardoux, and Stoica [2].

Example 4.11. Let us analyze the BSDE

Yt = ξ +

∫ T

t

(as + bsYs + csZs)ds−
∫ T

t

ZsdBs,

where (bs)s∈I and (cs)s∈I are bounded and progressively measurable
stochastic processes, (as)s∈I ∈ L2, and ξ is an FT -measurable, square
integrable random variable.

Let Γ = (Γt)t∈I be the S2-solution to the SDE

dXt = btXtdt+ ctXtdBt,

X0 = 1.

i.e.

Γt = 1 +

∫ t

0

bsΓsds+

∫ t

0

csΓsdBs

for all t ∈ I a.s. We claim that

Yt = E
[

ΓT
Γt
ξ +

∫ T

t

as
Γs
Γt
ds

∣∣∣∣Ft]
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for all t ∈ I a.s.
Firstly, we notice that the assumptions (i)-(vi) of Theorem 4.10

hold in the setting given above. Therefore, there exists a unique solu-
tion (Y, Z) = ((Yt)t∈I , (Zt)t∈I) ∈ (S2,L2). Now, we have that

Yt − Y0 = ξ +

∫ T

t

(as + bsYs + csZs)ds−
∫ T

t

ZsdBs

−ξ −
∫ T

0

(as + bsYs + csZs)ds+

∫ T

0

ZsdBs

= −
∫ t

0

(as + bsYs + csZs)ds+

∫ t

0

ZsdBs

for all t ∈ I a.s., which implies that

Yt = Y0 −
∫ t

0

(as + bsYs + csZs)ds+

∫ t

0

ZsdBs

for all t ∈ I a.s. Now defining

f(s, x, y) := xy

gives by Itô’s Formula (Proposition 3.17)

f(t,Γt, Yt) = Y0 +

∫ t

0

YsbsΓsds−
∫ t

0

Γs(as + bsYs + csZs)ds

+

∫ t

0

YscsΓsdBs +

∫ t

0

ΓsZsdBs +

∫ t

0

csΓsZsds

= Y0 −
∫ t

0

asΓsds+

∫ t

0

(csYs + Zs)ΓsdBs

for all t ∈ I a.s. Therefore,

ΓtYt − ΓTYT = f(t,Γt, Yt)− f(T,ΓT , YT )

= Y0 −
∫ t

0

asΓsds+

∫ t

0

(csYs + Zs)ΓsdBs

−Y0 +

∫ T

0

asΓsds−
∫ T

0

(csYs + Zs)ΓsdBs

=

∫ T

t

asΓsds−
∫ T

t

(csYs + Zs)ΓsdBs

for all t ∈ I a.s., which implies that
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ΓtYt = ΓTYT +

∫ T

t

asΓsds−
∫ T

t

(csYs + Zs)ΓsdBs

for all t ∈ I a.s. Taking conditional expectation with respect to Ft
from both sides gives

ΓtYt = E
[
ΓTYT +

∫ T

t

asΓsds

∣∣∣∣Ft]
for all t ∈ I a.s., since E[ΓtYt|Ft] = ΓtYt and E

[ ∫ T
t

(csYs+Zs)ΓsdBs

∣∣∣Ft] =

0 for all t ∈ I. The latter is true, since
( ∫ t

0
(csYs + Zs)ΓsdBs

)
t∈I

is a

martingale (see Lemma 4.12 below).
Finally, dividing both sides by Γt and replacing YT with ξ gives

Yt = E
[

ΓT
Γt
ξ +

∫ T

t

as
Γs
Γt
ds

∣∣∣∣Ft]
for all t ∈ I a.s.

Lemma 4.12. The stochastic process
( ∫ t

0
(csYs + Zs)ΓsdBs

)
t∈I

of the

Example 4.11 is a martingale.

Proof. Firstly, one realizes that

∫ T

0

((csYs + Zs)Γs)
2ds ≤ 2 sup

s∈I
Γ2
s

(
T sup

s∈I
c2
s sup
s∈I

Y 2
s +

∫ T

0

Z2
sds
)

< ∞
a.s., since (cs)s∈I is bounded, (Γs)s∈I and (Ys)s∈I are continuous sto-
chastic processes and (Zs)s∈I ∈ L2. Therefore, by Itô’s isometry (Propo-

sition 3.10)
( ∫ t

0
(csYs + Zs)ΓsdBs

)
t∈I

is a local martingale (see Defini-

tion A.1 of Appendix A).
Next, we conclude that

E
(∫ T

0

((csYs + Zs)Γs)
2ds
) 1

2 ≤ E sup
s∈I
|Γs|
(∫ T

0

(csYs + Zs)
2ds
) 1

2

≤
(
E sup

s∈I
|Γs|2

) 1
2
(
E
∫ T

0

(csYs + Zs)
2ds
) 1

2

< ∞,
since (cs)s∈I is bounded, (Ys)s∈I ∈ S2, (Zs)s∈I ∈ L2, and E sups∈I |Γs|2 <
∞ by Proposition 3.21.
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According to Theorem A.4 of Appendix A, there exists C > 0
such that

E sup
t∈I

∣∣∣ ∫ t

0

(csYs + Zs)ΓsdBs

∣∣∣ ≤ CE
(∫ T

0

((csYs + Zs)Γs)
2ds
) 1

2
<∞,

which implies that the family

{∫ σ
0

(csYs + Zs)ΓsdBs : σ ∈ Σ

}
is

uniformly integrable, when Σ is the class of all stopping times σ :
Ω → I. Therefore, according to Proposition A.5 of Appendix A( ∫ t

0
(csYs + Zs)ΓsdBs

)
t∈I

is a martingale.

�

In Example 4.11 we were able to find an explicit solution for the Y -
process of the BSDE. In Example 4.13 below we have a special case of
the BSDE of Example 4.11, where we can find an explicit solution for
the Z-process as well.

Example 4.13. Let us find a solution to the following BSDE:

Yt = eBT+T +

∫ T

t

Ysds−
∫ T

t

ZsdBs.

We claim that
Yt = e

5
2
T− 3

2
t+Bt

for all t ∈ I a.s. and
Zt = e

5
2
T− 3

2
t+Bt

dP⊗ dt-a.s.
In the Example 4.11 we were able to find an explicite representa-

tion of the process Y. However, the solution can be simplified in this
special case. We have

Yt = E
[

ΓT
Γt
eBT+T

∣∣∣∣Ft],
for all t ∈ I a.s., where

Γt = 1 +

∫ t

0

Γsds.

Above, we have an ordinary differential equation with a solution Γt = et

for all t ∈ I. Therefore, we can deduce that, a.s. for all t ∈ I,

Yt = eT−tE
[
eBT+T

∣∣Ft]
= eT−tE

[
eBT−BteBt+T

∣∣Ft]
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= eT−teBt+TE
[
eBT−Bt

∣∣Ft]
= e2T−t+BtE

[
eBT−Bt

]
= e2T−t+BtE

[
eBT−t

]
= e2T−t+Bte(T−t)/2

= e
5
2
T− 3

2
t+Bt .

If f : [0, T ] × R → R is defined by f(s, x) := ex−
3
2
s, we have by Itô’s

formula (Proposition 3.14) that, a.s.,

eBT−
3
2
T = f(T,BT )

= 1−
∫ T

0

3

2
eBs−

3
2
sds+

∫ T

0

eBs−
3
2
sdBs +

1

2

∫ T

0

eBs−
3
2
sds

= 1 +

∫ T

0

eBs−
3
2
sdBs −

∫ T

0

eBs−
3
2
sds.

Multiplying both sides by e
5
2
T gives, a.s.,

eBT+T = e
5
2
T +

∫ T

0

e
5
2
T− 3

2
s+BsdBs −

∫ T

0

e
5
2
T− 3

2
s+Bsds.

On the other hand, inserting the solution of the process Y into the
original BSDE at t = 0 gives, a.s.,

e
5
2
T = eBT+T +

∫ T

0

e
5
2
T− 3

2
s+Bsds−

∫ T

0

ZsdBs.

Combining the equations above gives, a.s.,∫ T

0

ZsdBs =

∫ T

0

e
5
2
T− 3

2
s+BsdBs.

Now, Proposition 3.12 gives

Zt = e
5
2
T− 3

2
t+Bt

dP⊗ dt-a.s.

4.2. Quadratic Backward Stochastic Differential Equations.
We start with formulating assumptions on the random generator f and
the terminal value ξ of a BSDE:

(P1) There exists α, β ≥ 0, γ > 0 such that for all (t, ω) ∈ [0, T ]× Ω
the function (y, z) 7→ f(t, y, z) is continuous and
|f(ω, t, y, z)| ≤ α+β|y|+ γ

2
|z|2 for all (ω, t, y, z) ∈ Ω× [0, T ]×R2.

(P2) E
[
eγe

βT |ξ|] <∞.
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(P3) There exists λ > γeβT such that E
[
eλ|ξ|

]
<∞.

Remark 4.14. Notice that (P3) implies (P2). In some places we will
only assume (P1) or (P1) and (P2). In the following we need to assume
that α ≥ β

γ
. However, by setting α large enough, this assumption can

be satisfied without losing any of the properties (P1)-(P3).

Theorem 4.15 (Optional sampling theorem). Let (Ω,F ,P, (Ft)t∈I) be
a stochastic basis, let X = (Xt)t∈I be a continuous martingale, and let
τ : Ω→ I be a stopping time. Then we have that

EXτ = EX0.

The proof is given in [9, p. 19-20].

Example 4.16. Let us analyze the BSDE

Yt = ξ +
1

2

∫ T

t

Z2
sds−

∫ T

t

ZsdBs,

where ξ and eξ are square integrable random variables, and where we

assume that E
∫ T

0
Zsds <∞. We have

Yt − Y0 = ξ +
1

2

∫ T

t

Z2
sds−

∫ T

t

ZsdBs

−ξ − 1

2

∫ T

0

Z2
sds+

∫ T

0

ZsdBs

= −1

2

∫ t

0

Z2
sds+

∫ t

0

ZsdBs,

which implies that

Yt = Y0 −
1

2

∫ t

0

Z2
sds+

∫ t

0

ZsdBs.

Let f(s, x) := ex. Then by Itô’s formula (Proposition 3.14)

eYt = eY0 − 1

2

∫ t

0

eYsZ2
sds+

∫ t

0

eYsZsdBs +
1

2

∫ t

0

eYsZ2
sds

= eY0 +

∫ t

0

eYsZsdBs

as long as
(
eYsZs

)
s∈I ∈ L2. Therefore,

eYt − eYT = eY0 +

∫ t

0

eYsZsdBs − eY0 −
∫ T

0

eYsZsdBs
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= −
∫ T

t

eYsZsdBs,

which implies that

eYt = eξ −
∫ T

t

eYsZsdBs.

Let us define ξ∗ := eξ, Y ∗ = (Y ∗t )t∈I by Y ∗t := eYt , and Z∗ = (Z∗t )t∈I by
Z∗t := eYtZt. Then the above equation can be written in the following
way:

Y ∗t = ξ∗ −
∫ T

t

Z∗sdBs.

According to the Example 4.8, there exists a solution (Y ∗, Z∗) to the
BSDE(0, ξ∗) above. Let us show that Y ∗t > 0 for all t ∈ I a.s.

Let us define

τ0(ω) := inf{t ∈ I : Y ∗t (ω) = 0} ∧ T.
We have that Y ∗T > 0 a.s. by assumption. Now, according to Theorem
4.15 (Optional sampling theorem) we have that

EY ∗τ = EY ∗0 .
On the other hand, we notice that

EYτ = E1{τ0<T}0 + E1{τ0=T}ξ = E1{τ0=T}ξ
∗

and
EY ∗0 = EY ∗T = Eξ∗.

Therefore, we have that

E1{τ0=T}ξ
∗ = Eξ∗,

which implies that τ0 = T a.s. and therefore Y ∗t > 0 for all t ∈ I a.s.

Now, setting Yt := log Y ∗t and Zt :=
Z∗t
Y ∗t

gives a candidate for

solution to the original BSDE. We can define that Yt := 0 and Zt := 0
for all t ∈ I on the set {ω ∈ Ω : Y ∗t (ω) ≤ 0 for some t ∈ I} if needed.

4.3. Existence of Quadratic BSDEs.
We are going to formulate and prove some existence results and regular-
ity conditions for the backward stochastic differential equations under
the conditions (P1)-(P3).

For the following, we need to introduce the functions φt and H.

Definition 4.17. Let α, β ≥ 0, γ > 0 be the parameters defined in
(P1)-(P3). The function H : R→ R is defined by

H(φ) := γα1(−∞,1)(φ) + φ(γα + β log φ)1[1,∞)(φ).
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For t ∈ I, the function φt : R→ R is defined by

φt(z) := exp

(
γα

eβ(T−t) − 1

β

)
exp

(
zγeβ(T−t)),

if β > 0 and z ≥ 0,

φt(z) := eγα(T−t)eγz

if β = 0 and z ≥ 0,

φt(z) := eγz + γα(T − t),
if eγz + γαT ≤ 1 and z < 0,

φt(z) := [eγz + γα(T − t)]1(S,T ](t) + exp

(
γα

eβ(S−t) − 1

β

)
1[0,S](t),

where S ∈ I is a constant such that eγz + γα(T − S) = 1, if β >
0, eγz + γαT > 1 and z < 0, and

φt(z) := [eγz + γα(T − t)]1(S,T ](t) + eγα(S−t)
1[0,S](t),

where S ∈ I is a constant such that eγz + γα(T − S) = 1, if β =
0, eγz + γαT > 1 and z < 0.

Proposition 4.18. Let α, β ≥ 0, γ > 0. Then the function φt of the
Definition 4.17 satisfies the following differential equation:

φt(z) = eγz +

∫ T

t

H
(
φs(z)

)
ds

for all t ∈ I, z ∈ R, where H is as in the Definition 4.17. Moreover,
the following properties hold for the functions H and φt:

(i) The function φ 7→ H(φ) is increasing, continuous, and convex on
R.

(ii) The function t 7→ φt(z) is decreasing and continuous for z ∈ R.
(iii) The function z 7→ φt(z) is increasing and continuous for t ∈ I.

Proof. The properties (i)-(iii) are straightforward to check. To show
that the differential equation is satisfied, it is sufficient to show, that

(i) the function t 7→ φt(z) is the antiderivative of the function t 7→
−H

(
φt(z)

)
on I, and

(ii) φT (z) = eγz,

since then the fundamental theorem of calculus gives

φt(z)− φT (z) =

∫ T

t

H
(
φs(z)

)
ds,

which implies that
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φt(z) = φT (z) +

∫ T

t

H
(
φs(z)

)
ds = eγz +

∫ T

t

H
(
φs(z)

)
ds.

Case β > 0 and z ≥ 0: For all t ∈ I one has

∂φt(z)

∂t
=

∂

∂t

[
exp

(
γα

eβ(T−t) − 1

β

)
exp

(
zγeβ(T−t))]

= −γeβ(T−t)(βz + α)

[
exp

(
γα

eβ(T−t) − 1

β

)
exp

(
zγeβ(T−t))]

= −
[
γα + β

(
γα

eβ(T−t) − 1

β
+ zγeβ(T−t)

)]
φt(z)

= −
[
γα + β log φt(z)

]
φt(z)

= −H
(
φt(z)

)
and

φT (z) = exp

(
γα

eβ(T−T ) − 1

β

)
exp

(
zγeβ(T−T )

)
= eγz.

Case β = 0 and z ≥ 0: For all t ∈ I

∂φt(z)

∂t
=

∂

∂t

[
eγα(T−t)eγz

]
= −γα

[
eγα(T−t)eγz

]
= −γαφt(z)

= −H
(
φt(z)

)
and

φT (z) = eγα(T−T )eγz = eγz.

Case z < 0 and eγz + γαT ≤ 1: For all t ∈ I

∂φt(z)

∂t
=

∂

∂t

[
eγz + γα(T − t)

]
= −γα = −H

(
φt(z)

)
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and

φT (z) = eγz + γα(T − T ) = eγz.

Case β > 0, z < 0, and eγz + γαT > 1: Let S ∈ I be such that
eγz + γα(T − S) = 1. Then, for all t ∈ [0, S),

∂φt(z)

∂t
=

∂

∂t

[
exp

(
γα

eβ(S−t) − 1

β

)]

= −γαeβ(S−t)

[
exp

(
γα

eβ(S−t) − 1

β

)]

= −

[
γα + β

(
γα

eβ(S−t) − 1

β

)]
φt(z)

= −
[
γα + β log φt(z)

]
φt(z)

= −H
(
φt(z)

)
and for all t ∈ (S, T ] one has

∂φt(z)

∂t
=

∂

∂t

[
eγz + γα(T − t)

]
= −γα = −H

(
φt(z)

)
.

Moreover, since φ 7→ H(φ) and t 7→ φt(z) are continuous functions, we
have that

lim
t→S−

∂φt(z)

∂t
= lim

t→S−

[
−H

(
φt(z)

)]
= lim

t→S+

[
−H

(
φt(z)

)]
= lim

t→S+

∂φt(z)

∂t

and therefore, for all t ∈ I

∂φt(z)

∂t
= −H

(
φt(z)

)
.

Finally

φT (z) = eγz + γα(T − T ) = eγz.

Case β = 0, z < 0, and eγz + γαT > 1: Let S ∈ I be such that
eγz + γα(T − S) = 1. Then, for all t ∈ [0, S)
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∂φt(z)

∂t
=

∂

∂t

[
eγα(S−t)

]
= −γα

[
eγα(S−t)

]
= −γαφt(z)

= −H
(
φt(z)

)
.

In the case t ∈ (S, T ] we get, as for β > 0,

∂φt(z)

∂t
= −H

(
φt(z)

)
.

Moreover, as in the previous case we have that

lim
t→S−

∂φt(z)

∂t
= lim

t→S+

∂φt(z)

∂t
and therefore, for all t ∈ I

∂φt(z)

∂t
= −H

(
φt(z)

)
.

Finally

φT (z) = eγz + γα(T − T ) = eγz.

�

Theorem 4.19 (Comparison theorem). Let the following assumptions
hold:

(i) Let f, f̂ : Ω× I × R× R→ R be random generators.
(ii) Let the function (ω, t) 7→ f(ω, t, 0, 0) be in L2.

(iii) Let the function (ω, t) 7→ f̂(ω, t, 0, 0) be in L2.
(iv) For all y, z, y, z ∈ R and t ∈ I, there exists C > 0 such that,

|f(ω, t, y, z)− f(ω, t, y, z)| ≤ C(|y − y|+ |z − z|) a.s.

(v) For all y, z, y, z ∈ R and t ∈ I, there exists Ĉ > 0 such that,

|f̂(ω, t, y, z)− f̂(ω, t, y, z)| ≤ Ĉ(|y − y|+ |z − z|) a.s.

(vi) Let (Y, Z) and (Ŷ , Ẑ) be solutions of BSDE(f, ξ) and BSDE(f̂ , ξ̂)
in the sence of Theorem 4.10.

(vii) Let ξ ≥ ξ̂ a.s. and f(t, Ŷt, Ẑt) ≥ f̂(t, Ŷt, Ẑt) dP⊗ dt-a.s.

Then Yt ≥ Ŷt a.s. for all t ∈ I.

The proof is given in [7, Theorem 2.2].
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Theorem 4.20. Let (Ω,F ,P, (Ft)t∈I) be a stochastic basis that satis-
fies the usual conditions, and let M = (Mt)t∈I be a super-martingale.
Then the super-martingale M has an RCLL modification which is also a
super-maringale if and only if the function t 7→ EMt is right-continuous.

The proof is given in [9, p. 16-17].

Lemma 4.21. Assume that the property (P1) holds for a random gen-
erator f , let ξ be a bounded FT -measurable random variable, and let
(Y, Z) be a solution to the BSDE(f, ξ) such that Y is a bounded, con-
tinuous, and (Ft)t∈I-adapted stochastic process. Then we have that,
a.s.,

(3) − 1

γ
logE[φt(−ξ)|Ft] ≤ Yt ≤

1

γ
logE[φt(ξ)|Ft].

Proof. Define Φt := E[φt(ξ)|Ft] for all t ∈ I. Because for 0 ≤ s ≤ t ≤ T
we have

E[Φt|Fs] = E
[
E[φt(ξ)|Ft]|Fs

]
≤ E[φs(ξ)|Fs] = Φs

a.s., the stochastic process (Φt)t∈I is a super-martingale. Moreover,
by dominated convergence, the map t → EΦt = Eφt(ξ) is continuous.
Applying Theorem 4.20 there exists an RCLL modification of (Φt)t∈I
which is taken in the sequel.

The martingale representation theorem (Theorem 4.7) gives a sto-
chastic process Ψ = (Ψt)t∈I ∈ L2 such that

E
[
eγξ +

∫ T

0

E
[
H(φs(ξ))

∣∣Fs]ds∣∣∣Ft]
= E

[
eγξ +

∫ T

0

E
[
H(φs(ξ))

∣∣Fs]ds]+

∫ t

0

ΨsdBs

(4)

for all t ∈ I a.s. Now it follows from Proposition 4.18 that, a.s.,

Φt = E[φt(ξ)|Ft]

= E
[
eγξ +

∫ T

t

H(φs(ξ))ds
∣∣∣Ft]

= E
[
eγξ +

∫ T

t

E
[
H(φs(ξ))

∣∣Fs]ds∣∣∣Ft]
= E

[
eγξ +

∫ T

0

E
[
H(φs(ξ))

∣∣Fs]ds∣∣∣Ft]− ∫ t

0

E
[
H(φs(ξ))

∣∣Fs]ds
= E

[
eγξ +

∫ T

0

E
[
H(φs(ξ))

∣∣Fs]ds]+

∫ t

0

ΨsdBs
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−
∫ t

0

E
[
H(φs(ξ))

∣∣Fs]ds
= eγξ +

∫ T

t

E
[
H(φs(ξ))

∣∣Fs]ds− ∫ T

t

ΨsdBs.

On the other hand, a.s.,

Yt − Y0 = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdBs

−ξ −
∫ T

0

f(s, Ys, Zs)ds+

∫ T

0

ZsdBs

= −
∫ t

0

f(s, Ys, Zs)ds+

∫ t

0

ZsdBs,

which implies that, a.s.,

Yt = Y0 −
∫ t

0

f(s, Ys, Zs)ds+

∫ t

0

ZsdBs.

Let Pt := eγYt and Qt := γeγYtZt. Then by Itô’s formula (Proposition
3.14), a.s.,

Pt = eγYt

= eγY0 +

∫ t

0

γeγYs(−f(s, Ys, Zs))ds

+

∫ t

0

γeγYsZsdBs +
1

2

∫ t

0

γ2eγYsZ2
sds

= P0 −
∫ t

0

F (s, Ps, Qs)ds+

∫ t

0

QsdBs,

where F (s, p, q) := 1p>0

[
γpf

(
s, log p

γ
, q
γp

)
− q2

2p

]
. Therefore, a.s.,

Pt − PT = P0 −
∫ t

0

F (s, Ps, Qs)ds+

∫ t

0

QsdBs

−P0 +

∫ T

0

F (s, Ps, Qs)ds−
∫ T

0

QsdBs

=

∫ T

t

F (s, Ps, Qs)ds−
∫ T

t

QsdBs,

which implies that, a.s.,



32 TIMO EIROLA

Pt = PT +
∫ T
t
F (s, Ps, Qs)ds−

∫ T
t
QsdBs

= eγξ +
∫ T
t
F (s, Ps, Qs)ds−

∫ T
t
QsdBs.

Let

A(s, y, z) := H(y) + E
[
H(φs(ξ))

∣∣Fs]−H(Φs)

and

B(s, y, z) := H(y) + F (s, Ps, Qs)−H(Ps).

From the convexity of H we get that, a.s.,

E
[
H(φs(ξ))

∣∣Fs]−H(Φs)

= E
[
H(φs(ξ))

∣∣Fs]−H(E[φs(ξ)|Fs]) ≥ 0.
(5)

On the other hand, for any p > 0, q ∈ R, (P1) implies that

F (s, p, q) = γpf
(
s,

log p

γ
,
q

γp

)
− q2

2p

≤ p(γα + β| log p|) +
q2

2p
− q2

2p

= p(γα + β| log p|)
≤ γα1(−∞,1)(p) + p(γα + β log p)1[1,∞)(p)

= H(p),

since α ≥ β
γ

as we have assumed in the Remark 4.14. The fact

F (s, Ps, Qs)−H(Ps) ≤ 0

together with the fact

E
[
H(φs(ξ))

∣∣Fs]−H(Φs) ≥ 0

implies that

A(s, Ps, Qs) ≥ B(s, Ps, Qs)

for all s ∈ I, ω ∈ Ω. We note that, a.s.,

Φt = eγξ +

∫ T

t

A(s,Φs,Ψs)ds−
∫ T

t

ΨsdBs

and

Pt = eγξ +

∫ T

t

B(s, Ps, Qs)ds−
∫ T

t

QsdBs.

Since Φ and P are bounded and therefore square integrable, it is pos-
sible to use the comparison theorem (Theorem 4.19) to get Φt ≥ Pt
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a.s., which implies that Yt ≤ 1
γ

log(E[φt(ξ)|Ft]) a.s. The other in-

equality Yt ≥ − 1
γ

log(E[φt(−ξ)|Ft]) follows from the fact, that the

property (P1) is satisfied also with the random generator (ω, t, y, z) 7→
−f(ω, t,−y,−z), and therefore, a.s.,

−Yt ≤
1

γ
log(E[φt(−ξ)|Ft]).

�

Proposition 4.22 (Theorem 2.3, [10]). Assume (P1) and assume that
the terminal value ξ is bounded. Then the BSDE(f, ξ) has at least one
solution (Y, Z) in S∞ × L2. Moreover, there exists a minimal solution
(Y ∗, Z∗) to the BSDE(f, ξ) such that given any ξ′ ≥ ξ a.s., where ξ′ is
bounded as well, and (Y ′, Z ′) is a solution as above to the BSDE(f, ξ′),
one has Y ∗t ≤ Y ′t for all t ∈ I a.s.

Proposition 4.23 (Proposition 2.4, [10]). Let f, f 1, f 2, f 3, ... : Ω×I×
R2 → R be a set of random generators and ξ, ξ1, ξ2, ξ3, ... be a set of
bounded FT -measurable random variables such that for some C,K ≥
0,M > 0

(i) the sequence (fn)n∈N converges a.s. locally uniformly to f ,
(ii) the sequence (ξn)n∈N converges a.s. to ξ,
(iii) for all (ω, t) ∈ Ω× I and all y, z ∈ R one has

|fn(ω, t, y, z)| ≤ K + C|z|2,
(iv) for all n ∈ N the BSDE(fn, ξn) has a solution (Y n, Zn) in S∞×
L2 such that for all t ∈ I one has Y n

t ≤ Y n+1
t ≤M a.s.

Then, there exists (Y, Z) ∈ S∞×L2 which is a solution to the BSDE(f, ξ),
such that limn→∞ Y

n = Y uniformly on [0, T ] and limn→∞ Z
n = Z in

L2 i.e., a.s.,

lim
n→∞

E
∫ T

0

(Zn
t − Zt)2dt = 0.

Corollary 4.24. Let f, f 1, f 2, f 3, ... : Ω× I ×R2 → R be random gen-
erators and ξ, ξ1, ξ2, ξ3, ... be bounded FT -measurable random variables
such that for some M > 0

(i) the sequence (fn)n∈N converges a.s. locally uniformly to f ,
(ii) the sequence (ξn)n∈N converges a.s. to ξ,

(iii) supn∈N,ω∈Ω |ξn(ω)| <∞,
(iv) supn∈N |fn(ω, t, y, z)| ≤ α+β|y|+ γ

2
|z|2 for all ω ∈ Ω, t ∈ I, y, z ∈

R,
(v) for all n ∈ N the BSDE(fn, ξn) has a solution (Y n, Zn) in S∞×
L2 such that for all t ∈ I one has Y n

t ≤ Y n+1
t ≤M a.s.
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Then, there exists (Y, Z) ∈ S∞×L2, which is a solution to the BSDE(f, ξ),
such that limn→∞ Yn = Y a.s. in C([0, T ]) and limn→∞ Zn = Z in L2.

Proof. Let r := 1
γ

log φ0(M) <∞. Then according to the Lemma 4.21,
a.s.,

|Y n
t | ≤

1

γ
logE[φt(|ξn|)|Ft]

≤ 1

γ
logE[φ0(sup

n∈N
|ξn|)|Ft]

≤ 1

γ
log φ0(M)

= r

(6)

for all t ∈ I, n ∈ N. Let p : R→ R be defined by

p(x) :=
xr

max{r, |x|}
.

Then, p(x) = x for |x| ≤ r, which implies, that (Y n, Zn) solves the
BSDE(gn, ξn), where gn : Ω× I × R2 → R is defined by gn(t, y, z) :=
fn(t, p(y), z). Moreover,

|gn(t, y, z)| = |fn(t, p(y), z)|

≤ α + β|p(y)|+ γ

2
|z|2

≤ α + βr +
γ

2
|z|2.

(7)

Also, the sequence (gn)n∈N converges a.s. locally uniformly to g : Ω ×
I×R2 → R defined by g(t, y, z) := f(t, p(y), z). Now, Proposition 4.23
can be applied to get (Y, Z) ∈ S∞ × L2 such that, a.s.,

(8) Yt = ξ +

∫ T

t

g(s, Ys, Zs)ds−
∫ T

t

ZsdBs,

and limn→∞ Yn = Y a.s. in C([0, T ]) Therefore, |Yt| ≤ r a.s., which
implies that p(Yt) = Yt and f(t, Yt, Zt) = g(t, Yt, Zt) a.s. for all t ∈ I.
Therefore, a.s.,

(9) Yt = ξ +

∫ T

t

f(s, Y, Z)ds−
∫ T

t

ZsdBs.

�

Proposition 4.25. Let M = (Mt)t∈I be an RCLL martingale. Then
limt→T Mt = MT a.s.

Proposition 4.25 is stated in [9, p. 18-19] and proved in [9, p. 42].
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Corollary 4.26. Let (Ω,F ,P, (Ft)t∈I) be a stochastic basis that satis-
fies the usual conditions, and let X be an integrable random variable.
Then the stochastic process

(
E[X|Ft]

)
t∈I has an RCLL modification.

Proof. The statement follows from Theorem 4.20 since the function
t→ E

[
E[X|Ft]

]
= EX is continuous. �

The following theorem is a modified version of the first part of [3,
Theorem 2]. We provide a proof with slight differences.

Theorem 4.27. Assume (P1) and (P2) and define for k ∈ N the
stopping times

τk := inf
{
t ∈ I :

1

γ
logE[φ0(|ξ|)|Ft] ≥ k

}
∧ T.

Then one has the following:

(1) limk→∞ P
({
ω ∈ Ω : τk(ω) < T

})
= 0.

(2) There exists an adapted and continuous process Y = (Yt)t∈I such
that YT = ξ a.s. and such that for all t ∈ I and k ∈ N a.s.

−1

γ
logE[φt(−ξ)|Ft] ≤ Yt ≤

1

γ
logE[φt(ξ)|Ft]

and a progressively measurable Z = (Zt)t∈I such that

(a)
∫ T

0
|Zt|2dt <∞ a.s.,

(b) E
∫ τk

0
|Zt|2dt <∞ for all k ∈ N,

(c) Yt∧τk = Yτk +
∫ τk
t∧τk

f(s, Ys, Zs)ds−
∫ τk
t∧τk

ZsdBs for all t ∈ I, k ∈
N a.s.

Proof. First we check that

lim
k→∞

P
({
ω ∈ Ω : τk(ω) < T

})
= 0.

For this we observe that

lim
k→∞

P
({
ω ∈ Ω : τk(ω) < T

})
= lim

k→∞
P
({
ω ∈ Ω : ∃t ∈ [0, T ) such that

1

γ
logE[φ0(|ξ|)|Ft] ≥ k

})
= P

({
ω ∈ Ω : sup

t∈[0,T )

1

γ
logE[φ0(|ξ|)|Ft] =∞

})
= 0

because E[φ0(|ξ|)] < ∞ by (P2) and because the stochastic process(
E[φ0(|ξ|)|Ft]

)
t∈I can be assumed to be continuous (see [14, p. 200,

Theorem 3.4]) by choosing a continuous modification.



36 TIMO EIROLA

Let us show the rest of the theorem. (Case 1): Let ξ ≥ 0 a.s. For
n ∈ N, let ξn := ξ ∧ n, and let (Y n, Zn) be the minimal solution of the
BSDE(f, ξn) given in Theorem 4.22. Then

Y n
t = ξn +

∫ T

t

f(s, Y n
s , Z

n
s )ds−

∫ T

t

Zn
s dBs

for t ∈ I a.s. According to the Lemma 4.21 we have that, a.s.,

(10) − 1

γ
logE[φt(−ξn)|Ft] ≤ Y n

t ≤
1

γ
logE[φt(ξ

n)|Ft].

Theorem 4.22 implies that Y n
t ≤ Y n+1

t a.s. for all t ∈ I, n ∈ N. Let
Y = (Yt)t∈I be defined by

Yt := sup
n∈N

Y n
t .

Now, 0 ≤ φt(−ξn) ≤ φ0(|ξ|) and 0 ≤ φt(ξ
n) ≤ φ0(|ξ|). Because

E[φ0(|ξ|)] <∞, the dominated convergence theorem implies that, a.s.,

−1

γ
logE[φt(−ξ)|Ft] = −1

γ
log
(

lim
n→∞

E[φt(−ξn)|Ft]
)
≤ lim

n→∞
Y n
t = Yt,

and similarly, a.s.,

1

γ
logE[φt(ξ)|Ft] =

1

γ
log
(

lim
n→∞

E[φt(ξ
n)|Ft]

)
≥ lim

n→∞
Y n
t = Yt.

Therefore we have that, a.s.,

−1

γ
logE[φt(−ξ)|Ft] ≤ Yt ≤

1

γ
logE[φt(ξ)|Ft].

The latter inequality implies, that for each S ∈ (0, T ) one has, a.s.,

lim sup
t→T

Yt ≤ lim sup
t→T,t≥S

1

γ
logE[φt(ξ)|Ft]

≤ lim
t→T,t≥S

1

γ
logE[φS(ξ)|Ft]

=
1

γ
logE[φS(ξ)|FT ]

=
1

γ
log φS(ξ),

(11)

where the second last equality follows from Proposition 4.25 and Corol-
lary 4.26. Therefore, by S ↗ T , we have that, a.s.,
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(12) lim sup
t→T

Yt ≤ lim
S→T

1

γ
log φS(ξ) = ξ.

Similar arguments can be applied to lim inft→T Yt. For each S ∈ (0, T )
one has, a.s.,

lim inf
t→T

Yt ≥ lim inf
t→T,t≥S

(
− 1

γ
logE[φt(−ξ)|Ft]

)
≥ lim

t→T,t≥S

(
− 1

γ
logE[φS(−ξ)|Ft]

)
= −1

γ
logE[φS(−ξ)|FT ]

= −1

γ
log φS(−ξ).

(13)

and therefore, a.s.,

(14) lim inf
t→T

Yt ≥ − lim
S→T

1

γ
log φS(−ξ) = ξ.

Because

lim sup
t→T

Yt ≤ ξ ≤ lim inf
t→T

Yt,

a.s., we can conclude that, a.s.,

lim
t→T

Yt = ξ.

For k ≥ 1, let τk be the stopping time defined above. Moreover, let
(Y n

k , Z
n
k ) =

(
(Y n

k (t), Zn
k (t))

)
t∈I be defined by

(Y n
k (t), Zn

k (t)) := (Y n
t∧τk , Z

n
t 1{t≤τk}(t))

for all t ∈ I, k, n ∈ N and let ξnk := Y n
τk

for all k, n ∈ N. Then we have
that, a.s. for all t ∈ I,

(15) Y n
k (t) = ξnk +

∫ T

t

1{s≤τk}(s)f(s, Y n
k (s), Zn

k (s))ds−
∫ T

t

Zn
k (s)dBs,

where k, n ∈ N. Now, Corollary 4.24 implies that, a.s. for all t ∈ I,

Yk(t) = ξk +

∫ T

t

1{s≤τk}(s)f(s, Yk(s), Zk(s))ds−
∫ T

t

Zk(s)dBs,
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where k, n ∈ N, (Yk) = (Yk(t))t∈I is defined by Yk(t) := supn∈N Y
n
k (t)

and (Zk) = (Zk(t))t∈I is defined by Zk(t) := limn→∞ Z
n
k (t) in L2. By

definition, we have that

Yt∧τk = sup
n∈N

Y n
t∧τk ,

Yk+1(t ∧ τk) = sup
n∈N

Y n
k+1(t ∧ τk) = sup

n∈N
Y n
t∧τk∧τk+1

= sup
n∈N

Y n
t∧τk , and

Yk(t) = sup
n∈N

Y n
k (t) = sup

n∈N
Y n
t∧τk

(16)

for all ω ∈ Ω, t ∈ I, k ∈ N, which implies that

Yt∧τk = Yk+1(t ∧ τk) = Yk(t).

for all t ∈ I, k ∈ N. Therefore for 0 ≤ t < T , one can set a random
variable k∗ large enough to satisfy t < τk∗ ≤ T to realize that

Yt = Yk(t)

for all t ∈ I, k ≥ k∗. Thus, Y is a continuous process on [0, T ). On the
other hand,

Zk+1(t)1{t≤τk}(t) = lim
n→∞

Zn
k+1(t)1{t≤τk}(t) in L2, and

Zk(t) = lim
n→∞

Zn
k (t) in L2.

(17)

for all k ∈ N. Now, one can realize that

Zn
k+1(t)1{t≤τk}(t) = Zn

t 1{t≤τk+1}(t)1{t≤τk}(t) = Zn
t 1{t≤τk}(t) = Zn

k (t),

for all ω ∈ Ω, t ∈ I, k, n ∈ N, which implies that Zk+1(t)1{t≤τk}(t) =
Zk(t) dP⊗ dt-a.s. Finally, one can define the process Z = (Zt)t∈I . For
t ∈ [0, T ), let Zt be defined by Zt := Zk(t), where t ∈ [τk−1, τk) and let
ZT := 0 . Then, it follows from the equation (15) that (Y, Z) gives a
solution to the BSDE

(18) Yt∧τk = Yτk +

∫ τk

t∧τk
f(s, Ys, Zs)ds−

∫ τk

t∧τk
ZsdBs.

(Case 2): Let ξ be allowed to have negative values as well, and let us
indicate the proof in this case.

For n, p ∈ N, let ξn,p := ξ+∧n−ξ−∧p, and let (Y n,p, Zn,p) be the
minimal solution of the BSDE(f, ξn,p) given in Theorem 4.22. Then,
for n, p ∈ N,

Y n,p
t = ξn,p +

∫ T

t

f(s, Y n,p
s , Zn,p

s )ds−
∫ T

t

Zn,p
s dBs
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for all t ∈ I a.s. According to Lemma 4.21, a.s.,

(19) − 1

γ
logE[φt(−ξn,p)|Ft] ≤ Y n,p

t ≤ 1

γ
logE[φt(ξ

n,p)|Ft].

Theorem 4.22 implies that

Y n,p+1
t ≤ Y n,p

t ≤ Y n+1,p
t

a.s. for all t ∈ I, n, p ∈ N. Let Y = (Yt)t∈I be defined by

Yt := inf
p∈N

(
sup
n∈N

Y n,p
t

)
.

Now, 0 ≤ φt(−ξn,p) ≤ φ0(|ξ|) and 0 ≤ φt(ξ
n,p) ≤ φ0(|ξ|). Because

E[φ0(|ξ|)] <∞, the dominated convergence theorem gives that, a.s.,

−1

γ
logE[φt(−ξ)|Ft] = −1

γ
log
(

lim
p→∞

lim
n→∞

E[φt(−ξn,p)|Ft]
)

≤ lim
p→∞

lim
n→∞

Y n,p
t

= Yt,

and similarly, a.s.,

1

γ
logE[φt(ξ)|Ft] =

1

γ
log
(

lim
p→∞

lim
n→∞

E[φt(ξ
n,p)|Ft]

)
≥ lim

p→∞
lim
n→∞

Y n,p
t

= Yt.

We conclude that, a.s.,

−1

γ
logE[φt(−ξ)|Ft] ≤ Yt ≤

1

γ
logE[φt(ξ)|Ft].

As in (Case 1), we have that a.s.,

lim
t→T

Yt = ξ.

Now, a.s.,

(20)

Y n,p
t∧τk = Y n,p

τk
+

∫ T

t

1{s≤τk}(s)f(s, Y n,p
s , Zn,p

s )ds−
∫ T

t

1{s≤τk}(s)Z
n,p
s dBs,

and Corollary 4.24 gives that
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(21) Y k
t = ξk +

∫ T

t

1{s≤τk}(s)f(s, Y k
s , Z

k
s )ds−

∫ T

t

Zk
s dBs

a.s., where (Y k) = (Y k
t )t∈I is defined by Y k

t := infp∈N
(

supn∈N Y
n,p
t∧τk

)
and (Zk) = (Zk

t )t∈I is defined by Zk
t := limp→∞ limn→∞ 1{t≤τk}(t)Z

n,p
t

in L2. Now, by definition

Yt∧τk = inf
p∈N

(
sup
n∈N

Y n,p
t∧τk

)
,

Y k+1
t∧τk = inf

p∈N

(
sup
n∈N

Y n,p
t∧τk+1∧τk

)
= inf

p∈N

(
sup
n∈N

Y n,p
t∧τk

)
, and

Y k
t = inf

p∈N

(
sup
n∈N

Y n,p
t∧τk

)
,

(22)

which implies that

Yt∧τk = Y k+1
t∧τk = Y k

t .

Therefore for 0 ≤ t < T , one can set a random variable k∗ large enough
to satisfy t < τk∗ ≤ T to realize that

Yt = Y k
t

for all k ≥ k∗. Thus, Y is a continuous process on [0, T ). On the other
hand,

Zk+1
t 1{t≤τk}(t) = lim

p→∞
lim
n→∞

1{t≤τk+1}(t)Z
n,p
t 1{t≤τk}(t) in L2, , and

Zk
t = lim

p→∞
lim
n→∞

1{t≤τk}(t)Z
n,p
t in L2.

(23)

for all k ∈ N. Now, one can realize that

1{t≤τk+1}(t)Z
n,p
t 1{t≤τk}(t) = 1{t≤τk}(t)Z

n,p
t = Zn

t 1{t≤τk}(t)

for all ω ∈ Ω, t ∈ I, k, n, p ∈ N, which implies that Zk+1
t 1{t≤τk}(t) = Zk

t

dP ⊗ dt-a.s. Finally, one can define the process Z = (Zt)t∈I . For
t ∈ [0, T ), let Zt be defined by Zt := Zk

t , where t ∈ [τk−1, τk) and let
ZT := 0 . Then (Y, Z) gives a solution to the BSDE

(24) Yt∧τk = Yτk +

∫ τk

t∧τk
f(s, Ys, Zs)ds−

∫ τk

t∧τk
ZsdBs,

�



QUADRATIC BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS 41

Proposition 4.28 (Doob’s maximal inequality). Let (Mt)t∈I be an
RCLL martingale and 1 < p <∞. Then

E
[

sup
t∈I
|Mt|p

]
≤
(

p

p− 1

)p
E|MT |p.

Proposition 4.28 is stated in [9, p. 13-14].

Proposition 4.29. Let (Mt)t∈I be an RCLL martingale and 1 < p <
∞. Then, a.s.,

E
[

sup
s∈[t,T ]

|Ms|p
∣∣∣Ft] ≤ ( p

p− 1

)p
E
[
|MT |p

∣∣Ft].
Proof. Let At ∈ Ft. Then∫

At

sup
t∈[t,T ]

|Ms|pdP = E sup
s∈[t,T ]

|1AtMs|p

≤
(

p

p− 1

)p
E|1AtMT |p

=

∫
At

(
p

p− 1

)p
|MT |pdP

(25)

because (1AtMs)s∈[t,T ] is a martingale. �

The following proposition is a generalization of a result given in the
proof of [3, Theorem 2].

Proposition 4.30. Assuming (P1) and (P2), the processes Y and Z of
Theorem 4.27 satisfy the following inequality a.s. for all 0 ≤ r ≤ t ≤ T :

1

2
E
[ ∫ t

r

|Zs|2ds
∣∣∣Fr ] ≤ E

[ 1

γ2
sup
s∈[r,t]

eγ|Ys|+
1

γ

∫ t

r

eγ|Ys|(α+β|Ys|)ds
∣∣∣Fr ].

Proof. The inequality

−1

γ
logE[φt(−ξ)|Ft] ≤ Yt ≤

1

γ
logE[φt(ξ)|Ft]

of Theorem 4.27 implies that, a.s.,

eγ|Yt| ≤Mt
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where Mt := E[φ0(|ξ|)|Ft)] can be assumed to be an RCLL martingale
according to Corollary 4.26. Now Doob’s maximal inequality (Propo-
sition 4.28) gives for 1 < p <∞ that

E
[

sup
t∈I

epγ|Yt|
]
≤ E

[
sup
t∈I
|Mt|p

]
≤
(

p

p− 1

)p
E|MT |p

=

(
p

p− 1

)p
E[φ0(|ξ|)]p <∞,

(26)

where the last inequality follows from property (P2).

Let τn be defined by

τn := inf

{
t ≥ 0 :

∫ t

0

e2γ|Ys||Zs|2ds ≥ n

}
∧ T

for all n ∈ N. Then τn is a stopping time for all n ∈ N. Moreover, the
function s 7→ Ys(ω) is continuous for all ω ∈ Ω and we may assume

that
∫ T

0
|Zs(ω)|2ds <∞ for all ω ∈ Ω. Therefore∫ T

0

e2γ|Ys||Zs(ω)|2ds <∞

for all ω ∈ Ω and there exists n(ω) ∈ N such that∫ T

0

e2γ|Ys||Zs(ω)|2ds < n(ω)

and limn→∞ τn(ω) = T .

Moreover, let u : [0,∞] 7→ R be defined by

u(x) :=
1

γ2
(eγx − 1− γx).

Then g : [0, T ] × R → R, g(s, x) := u(|x|) belongs to C1,2([0, T ] × R).
Now Itô’s formula (Proposition 3.14) gives for 0 ≤ r ≤ t ≤ T that, a.s.,

u(|Yt∧τn|)− u(|Yr∧τn|)
= g(t ∧ τn, Yt∧τn)− g(r ∧ τn, Yr∧τn)

= g(0, Y0) +

∫ t∧τn

0

∂g

∂s
(s, Ys)ds−

∫ t∧τn

0

∂g

∂x
(s, Ys)f(s, Ys, Zs)ds

+

∫ t∧τn

0

∂g

∂x
(s, Ys)ZsdBs +

1

2

∫ t∧τn

0

∂2g

∂x2
(s, Ys)Z

2
sds
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−g(0, Y0)−
∫ r∧τn

0

∂g

∂s
(s, Ys)ds+

∫ r∧τn

0

∂g

∂x
(s, Ys)f(s, Ys, Zs)ds

−
∫ r∧τn

0

∂g

∂x
(s, Ys)ZsdBs −

1

2

∫ r∧τn

0

∂2g

∂x2
(s, Ys)Z

2
sds.

=

∫ t∧τn

r∧τn

[
− u′(|Ys|)sgn(Ys)f(s, Ys, Zs) +

1

2
u′′(|Ys|)Z2

s

]
ds

+

∫ t∧τn

r∧τn
u′(|Ys|)sgn(Ys)ZsdBs.

Rearranging terms, property (P1), and the facts that u′(x) ≥ 0, u′′(x)−
γu′(x) = 1 for all x ≥ 0, imply that, a.s.,

0 = u(|Yt∧τn|)− u(|Yr∧τn|)

+

∫ t∧τn

r∧τn

[
u′(|Ys|)sgn(Ys)f(s, Ys, Zs)−

1

2
u′′(|Ys|)Z2

s

]
ds

−
∫ t∧τn

r∧τn
u′(|Ys|)sgn(Ys)ZsdBs

≤ u(|Yt∧τn|)− u(|Yr∧τn|)

+

∫ t∧τn

r∧τn

[
u′(|Ys|)(α + β|Ys|)−

1

2

(
u′′(|Ys|)− γu′(|Ys|)

)
Z2
s

]
ds

−
∫ t∧τn

r∧τn
u′(|Ys|)sgn(Ys)ZsdBs

= u(|Yt∧τn|)− u(|Yr∧τn|) +

∫ t∧τn

r∧τn

[
u′(|Ys|)(α + β|Ys|)−

1

2
Z2
s

]
ds

−
∫ t∧τn

r∧τn
u′(|Ys|)sgn(Ys)ZsdBs.

Now it follows that, a.s.,
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1

2

∫ t∧τn

r∧τn
Z2
sds ≤ u(|Yt∧τn|)− u(|Yr∧τn|) +

∫ t∧τn

r∧τn
u′(|Ys|)(α + β|Ys|)ds

−
∫ t∧τn

r∧τn
u′(|Ys|)sgn(Ys)ZsdBs

≤ 1

γ2
sup
s∈[r,t]

eγ|Ys| +
1

γ

∫ t∧τn

r∧τn
eγ|Ys|(α + β|Ys|)ds

−
∫ t∧τn

r∧τn
u′(|Ys|)sgn(Ys)ZsdBs.

(27)

Taking conditional expectation with respect to Fr from both sides
gives, a.s.,

1

2
E
[ ∫ t∧τn

r∧τn
|Zs|2ds

∣∣∣Fr] ≤ E
[ 1

γ2
sup
s∈[r,t]

eγ|Ys|+
1

γ

∫ t∧τn

r∧τn
eγ|Ys|(α+β|Ys|)ds

∣∣∣Fr],
since

(
u′(|Ys|)sgn(Ys)Zs

)
s∈I ∈ L2 and therefore, a.s.,

E
[ ∫ t∧τn

r∧τn
u′(|Ys|)sgn(Ys)ZsdBs

∣∣∣ Fr ] = 0.

Since the inequality above holds for all n ∈ N and τn → T as n → ∞
it follows that, a.s.,

1

2
E
[ ∫ t

r

|Zs|2ds
∣∣∣Fr ] ≤ E

[ 1

γ2
sup
s∈[r,t]

eγ|Ys|+
1

γ

∫ t

r

eγ|Ys|(α+β|Ys|)ds
∣∣∣Fr ].

�

Lemma 4.31. For all α, β ≥ 0 and γ, ε > 0, there exists κ > 0 such
that

eγ|y|(α + β|y|) ≤ κe(γ+ε)|y|

for all y ∈ R.

Proof. Let h : [0,∞] 7→ R be defined by h(x) := (α + βx)e−εx. Since
h is a continuous function with limx→∞ h(x) = 0, there exists κ such
that κ ≥ h(x) for all x ≥ 0. Now we get that

h(|y|) ≤ κ for all y ∈ R

⇐⇒ (α + β|y|)e−ε|y| ≤ κ for all y ∈ R

⇐⇒ eγ|y|(α + β|y|) ≤ κe(γ+ε)|y| for all y ∈ R.
(28)

�
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Now, we are ready to prove the main theorem of this thesis. The
following theorem states that there exists a solution for the quadratic
BSDE. It is a modified version of the of [3, Theorem 2]. We provide
some details for the proof of the last part of [3, Theorem 2] here with
the help of Theorem 4.27 and Proposition 4.30.

Theorem 4.32. Assuming (P1) and (P3), the processes Y and Z of
Proposition 4.30 give a solution to the BSDE(f, ξ). Moreover there
exists C > 0 such that for all t ∈ I we have, a.s.,

(29) − 1

γ
logE[φt(−ξ)|Ft] ≤ Yt ≤

1

γ
logE[φt(ξ)|Ft]

and

(30) E
[ ∫ T

t

|Zs|2ds
∣∣∣ Ft ] ≤ CE

[
eλ|ξ|

∣∣∣ Ft ].
Proof. We have proved the inequality (29) in Theorem 4.27.

Let us prove the inequality (30). Theorem 4.27, Proposition 4.29,
Proposition 4.30, and Lemma 4.31 imply that for ε > 0 such that
(γ + ε)eβT ≤ λ one has

1

2
E
[ ∫ T

t

|Zs|2ds
∣∣∣ Ft ]

≤ E
[

1

γ2
sup
s∈[t,T ]

eγ|Ys| +
1

γ

∫ T

t

eγ|Ys|(α + β|Ys|)ds
∣∣∣∣ Ft ]

≤ E
[

1

γ2
sup
s∈[t,T ]

eγ|Ys| +
κ

γ

∫ T

t

e(γ+ε)|Ys|ds

∣∣∣∣ Ft ]
≤

(
1

γ2
+
κ(T − t)

γ

)
E
[

sup
s∈[t,T ]

e(γ+ε)|Ys|
∣∣∣∣ Ft ]

=

(
1

γ2
+
κ(T − t)

γ

)
E
[(

sup
s∈[t,T ]

eγ|Ys|
) γ+ε

γ
∣∣∣∣ Ft ]

≤
(

1

γ2
+
κ(T − t)

γ

)
E
[(

sup
s∈[t,T ]

E[φ0(|ξ|)|Fs)]
)p ∣∣∣∣ Ft ]

≤
(

1

γ2
+
κ(T − t)

γ

)(
p

p− 1

)p
E
[(
φ0(|ξ|)

)p ∣∣∣∣ Ft ]
= CE

[(
eγe

βT |ξ|
) γ+ε

γ

∣∣∣∣ Ft ]
= CE

[(
e(γ+ε)eβT |ξ|

) ∣∣∣∣ Ft ]
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≤ CE
[(
eλ|ξ|

) ∣∣∣∣ Ft ]
where p := γ+ε

γ
∈ (1,∞) and

C :=

(
1

γ2
+
κ(T − t)

γ

)(
p

p− 1

)p
exp

(
pγα

eβT − 1

β

)
,

if β > 0 and

C :=

(
1

γ2
+
κ(T − t)

γ

)(
p

p− 1

)p
epγαT ,

if β = 0.
Finally, we can show that (Y, Z) is a solution to the BSDE(f, ξ).

One can see that Z ∈ L2 since according to (P3)

E
∫ T

t

|Zs|2ds ≤ 2CE
[
eλ|ξ|

]
<∞.

According to Theorem 4.27 we have that for all t ∈ I and k ∈ N, a.s.,

Yt∧τk = Yτk +

∫ τk

t∧τk
f(s, Ys, Zs)ds−

∫ τk

t∧τk
ZsdBs,

where

τk := inf
{
t ∈ I :

1

γ
logE[φ0(|ξ|)|Ft] ≥ k

}
∧ T.

By sending k →∞ we get that τk → T and for all t ∈ I, a.s.,

Yt = YT +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdBs.

�

4.4. Uniqueness of Quadratic BSDEs.
The previous subsection considered the existence of the quadratic BS-
DEs. The results were mainly based on the article [3] of Briand and Hu
and the article [10] of Kobylanski. After those papers, Briand and Hu
considered the uniqueness of quadratic BSDEs with convex generators
in [4]. In [5] and [6], Delbaen, Hu, and Richou continued the work on
the uniqueness. Next, we state the main uniqueness results of [4], [5],
and [6] without proofs.

Theorem 4.33. Let the property (P1) hold. Moreover, let us assume
that

(i) the function z 7→ f(ω, t, y, z) is convex for all ω ∈ Ω, t ∈ I, y ∈ R,
(ii) f(t, y, z) − f(t, ŷ, z) ≤ β|y − ŷ| for all ω ∈ Ω, t ∈ I, y, ŷ, z ∈ R,

and
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(iii) er|ξ| <∞ for all r > 0.

Then there exists a pair (Y, Z) = ((Yt)t∈I , (Zt)t∈I), where Y ∈ S2 and
Z ∈ L2 such, that (Y, Z) solves the backward stochastic differential
equation BSDE(f, ξ). Moreover, the processes Y and Z are unique in
S2 and L2, which means that for solutions (Y, Z) and (Y ∗, Z∗) one has

E
[

sup
t∈[0,T ]

(Yt − Y ∗t )2
]

= 0

and

E
∫ T

0

(Zt − Z∗t )2dt = 0.

The proof is given in [4, Corollary 6].

Theorem 4.34. Let the property (P1) hold. Moreover, let us assume
that

(i) the function z 7→ f(ω, t, y, z) is convex for all ω ∈ Ω, t ∈ I, y ∈ R,
and

(ii) there exists K > 0 such that f(ω, t, y, z)− f(ω, t, ŷ, z) ≤ K|y− ŷ|
for all ω ∈ Ω, t ∈ I, y, ŷ, z ∈ R.

Suppose that there exists a solution (Y, Z) = ((Yt)t∈I , (Zt)t∈I), where
Y ∈ S2 and Z ∈ L2 such, that (Y, Z) solves the backward stochastic
differential equation BSDE(f, ξ) and that there exists p > γ, ε > 0
such that

E
[
ep supt∈I Y

−
t + eεsupt∈IY

+
t
]
<∞.

Then the processes Y and Z are unique in S2 and L2 among the pro-
cesses satisfying the condition above.

The proof is given in [5, Theorem 3.3].

Theorem 4.35. Let the following assumptions hold:

(i) ξ is a square integrable random variable such that Ee−γξ <∞.
(ii) The function g : R→ R is C2, convex, and satisfies g(0) = 0.

(iii) There exists C > 0 such that g(z) ≤ C + γ
2
z2 for all z ∈ R.

(iv) There exists an R ≥ 0 and ε > 0 such that for all z ∈ R with
|z| > R one has g′′(z) ≥ ε.

Then the BSDE(f, ξ), where f(t, y, z) := g(z) has a unique solution
(Y, Z) such that {Yτ : τ : Ω→ I stopping time } and {e−Yτ : τ : Ω→ I

stopping time } are uniformly integrable and that
∫ T

0
|Zs|2ds <∞ a.s.

The proof is given in [6, Theorem 4.1].
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Appendix A.

Definition A.1. Let M = (Mt)t∈I be a continuous and adapted sto-
chastic process. M is called a local martingale provided that there
exists an increasing sequence (σn)∞n=1 of stopping times such that 0 ≤
σ1 ≤ σ2 ≤ ... ≤ T , P(∃n ∈ N : σn = T ) = 1, and (Mt∧σn)t∈I is a
martingale for all n ∈ N.

Proposition A.2. Let X = (Xt)t∈I be a progressively measurable sto-

chastic process with
∫ T

0
X2
sds < ∞ a.s. Then (

∫ t
0
XsdBs)t∈I is a local

martingale.

The proof is given in [9, p. 144-147].

Remark A.3. We have not defined the stochastic integral for the pro-

gressively measurable processes with
∫ T

0
X2
sds <∞ a.s. However, this

extension is possible such that (
∫ t

0
XsdBs)t∈I is a local martingale. The

details are left out of this thesis.

Proposition A.4 (Burkholder-Davis-Gundy inequalities). Let M =

(Mt)t∈I be the local martingale of the form (
∫ t

0
XsdBs)t∈I from Remark

A.3. Then

cE
[ ∫ T

0

X2
t ds
] 1

2 ≤ E sup
t∈I
|Mt| ≤ CE

[ ∫ T

0

X2
t ds
] 1

2
,

where c, C > 0 are constants.

The proof is given in [14, p. 160-166].

Proposition A.5. Let Σ be the class of all stopping times σ : Ω→ I.
Let M = (Mt)t∈I be a local martingale such that the family {Mσ : σ ∈
Σ} is uniformly integrable, i.e. for all ε > 0 there exists c > 0 such
that supσ∈Σ E

[
1{|Mσ |>c}|Mσ|

]
< ε. Then M is a martingale.

Proposition A.5 is stated in [9, p. 36].
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