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ABSTRACT 
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Jyväskylä: University of Jyväskylä, 2017, 68 p. (+included articles)  
(Jyväskylä Studies in Computing 
ISSN 1456-5390; 271) 
ISBN 978-951-39-7284-4 (nid.) 
ISBN 978-951-39-7285-1 (PDF) 
Finnish summary 
Diss. 
 
 
The recent advancements in cellular mobile technology and smart phone usage 
have opened opportunities for researchers and commercial companies to 
develop ubiquitous low cost localization systems. Radio frequency (RF) 
fingerprinting is a popular positioning technique which uses radio signal 
strength (RSS) values from already existing infrastructures to provide 
satisfactory user positioning accuracy in indoor and densely built outdoor 
urban areas where Global Navigation Satellite System (GNSS) signal is poor 
and hard to reach. However a major requirement for the RF fingerprinting to 
maintain good localization accuracy is the collection and updating of large 
training database. The Minimization of Drive Tests (MDT) functionality 
proposed by 3GPP LTE Release 10 & 11 has enabled cellular operators to 
autonomously gather and update necessary amount of RF fingerprint samples 
by utilizing their subscriber user equipments (UEs). The main objective of this 
thesis is to propose a framework for RF fingerprint positioning (RFFP) of 
outdoor UEs using MDT data and to further improve its performance capability 
to provide better localization. In the first part only LTE base-station (BS) RSS 
values were used to improve grid-based RF fingerprint positioning (G-RFFP) by 
using novel approaches: using overlapped grid-cell layouts (GCL), weighting 
based grid-cell unit selection and Artificial Intelligence based G-RFFP method. 
In the second part real measurement RSS values from LTE BS and WLAN 
access points (APs) were utilized and a generic measurement method referred 
to as GMDT was proposed to correlate WLAN RSS to LTE RSS measurements 
and its significance to RFFP was studied using a partial fingerprint matching 
technique. To remove the computational cost associated with training data 
preprocessing a new cluster-based RF fingerprint positioning (C-RFFP) method 
was proposed. This thesis provides a good source of information and novel 
techniques for cellular operators to build a low cost RF fingerprint positioning 
system which can deliver acceptable results in emergency user localization.  
 
Keywords: RF fingerprinting, LTE, WLAN, Mahalanobis distance, Kullback-
Leibler divergence, K-nearest Neighbor, K-means clustering, Hierarchical 
clustering, Fuzzy C-means clustering 
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1 INTRODUCTION 

1.1 Motivation 

Locating which is a fundamental need of human beings ever since they came 
into existence is a process used to determine the location of one position relative 
to other known positions. In recent technological era it is possible to localize 
persons and objects in real time by exploiting wireless radio transmission 
characteristics. The principles of all radio frequency (RF) positioning systems 
rely on the properties of electromagnetic waves and simple geometric 
principles. The first navigational aid radio direction-finding system was 
patented in 1902 (Stone, 1902). After that for almost 100 years until the late 
1990s, RF positioning applications were mainly used as a navigational aid to 
ships, aircrafts and terrestrial vehicles. One of the main motivations for civilian 
mobile position location is safety – a mandatory requirement for emergency call 
originated by dialing 112 in Europe and 911 in the U.S.A (Reed et al., 1998). 
With the evolution of mobile cellular telephony and increasing popularity of 
smart phones with positioning capability a wide range of Location-based 
services (LBSs) starts to play a key role in Information Society and the way 
people live and interact (Chen, 2012). Mobile LBSs mainly include five 
categories of application: 1) mapping and navigation, 2) search and information, 
3) tracking, 4) social networking and 5) mobile advertising. It is expected that
the global revenues coming from real-time locating systems technology will
amount to more than six billion Euros in 2017 (Dardari et al., 2012). However
still today there is no ubiquitous positioning solution that delivers high
localization accuracy under all circumstances anytime/anywhere (indoors and
outdoors).

Many research and commercial organizations tried to improve accuracy 
and precision using different sensing technologies including ultrasonic time-of-
flight, infrared proximity, radio signal strength (RSS) and time-of-flight, optical 
vision and so on. First, these location systems do not offer coverage in both 
outdoor and indoor environments; second, these technologies require expensive 
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infrastructure, time consuming calibration, or special tags, beacons, and sensors 
(Campos and Lovisolo, 2015). For outdoor mobile UE localization GNSS (e.g. 
GPS, GLONASS) is most popular positioning system, due to its integration into 
smartphones and other UEs. However it performs rather poorly in GNSS signal 
degraded environments such as dense urban regions or inside buildings (Ben-
Moshe et al., 2011). An alternative positioning approach has been suggested by 
3rd Generation Partnership Project (3GPP) in Long Term Evolution (LTE) 
cellular networks (3GPP, 2009a), (Knutti et al., 2015). A major driving force to 
estimate mobile UE location is the requirement for E-911 emergency positioning 
in the North American market. This requirement for network-based methods 
should have accuracies of 100 meters for 67% and 300 meters for 95% of cellular 
mobile phone calls. In 2003 the European Union also adopted a regulation for 
the calls originating from cell phones to the pan-European emergency number 
112; initially no precision requirements were specified. Four positioning 
techniques have been included in 3GPP Release 11: (1) Enhanced Cell ID 
(ECID)-  positioning accuracy depends upon cellular BS coverage size, (2) 
Assisted-Global Navigation Satellite System (AGNSS) - suffers from Non-Line-
of-Sight (NLOS) signal propagation, (3) Observed Time Difference Of Arrival 
(OTDOA) uses triangulation techniques which is highly affected by multipath 
and NLOS propagation conditions frequently occurring in indoor and urban 
environments and (4) Uplink Time Difference Of Arrival (UTDOA) 
conceptually similar to OTDOA (Campos and Lovisolo, 2015), (3GPP, 2012a), 
(Vaghefi and Buehrer, 2014). 

Among the non-standard positioning methods included in LTE Release 9, 
RF fingerprint positioning (RFFP) is the most cost-efficient solution for indoor 
WLAN positioning (Sun et al., 2005), (Wigren, 2007), (Shi and Wigren, 2009), 
(Bahl and Padmanabhan, 2000), (Chan et al., 2008), (Milioris et al., 2012) as well 
as for outdoor mobile cellular positioning in densely built urban environments 
(Zhu and Durgin, 2005), (Laitinen et al., 2001), (Liu et al., 2010). Various popular 
positioning applications - Google Maps, Skyhook and Find my iPhone integrate 
multiple technologies such as Wireless Local Area Network (WLAN), 
GSM/UTMS and GNSS to form a hybrid positioning system. Place Lab has 
shown that RF fingerprint based positioning using existing radio beacon 
sources from GSM BSs and WLAN APs are sufficiently pervasive and can 
maximize coverage in most people’s daily lives with sufficient positioning 
accuracies in urban, suburban and residential areas (Anthony et al., 2005). 

Previous RFFP studies in the literature have mainly focused on indoor 
localization due to the difficulty in acquiring and analyzing large amounts of 
training data (Li et al., 2012). Typically such databases are created by collecting 
field measurements or using propagation model predictions (Zekavat and 
Buehrer, 2011). If propagation model predictions are used rather than real 
measurements, then the positioning accuracy is reduced (Aarnaes and Holm, 
2004). On the other hand, if operators like to create and maintain a large 
accurate measurement database, then extensive and expensive periodical drive 
test campaigns are needed. The conventional drive test method is a time 
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consuming manual process and the obtained data only covers certain area of 
the network, e.g., roads and motorways. A feature named minimization of 
drive tests (MDT) was adopted by 3GPP in its Release 10 & 11 specifications in 
order to regularly assess the quality of the cellular networks. MDT enables 
cellular operators to collect radio measurements from subscriber UE together 
with location information when the measurements are taken (Johansson et al., 
2012). Thus we were motivated to study RFFP localization performances in 
various outdoor environments using MDT data. 

1.2 Research Objectives and Scope 

Conventional RFFP methods comprises of two distinct phases: 1) the training 
phase collects RF fingerprints and store them in RF fingerprinting database; 2) 
the testing or positioning phase estimates an UE position by comparing an RF 
fingerprint collected by the test UE with the stored reference fingerprints. An 
ideal positioning system should be self-learning and environmentally adaptive, 
capable of building up information databases that store actual observations, 
and employ smart data analysis mechanisms (Olsson and Mulligan, 2012). The 
MDT feature incorporated in 3GPP has provided the automatic collection and 
updating of RF fingerprints of an area of interest. So far limited number of re-
searches haves been done on RFFP in LTE cellular networks using MDT data. 
The main goal of this thesis is to improve UE assisted network-based RFFP ac-
curacy in LTE cellular environments using MDT date and address the main 
challenges of RFFP based UE localization: generation and maintenance of radio 
map; pre-processing of RF fingerprints for enhancing accuracy; selection of 
BSs/APs for use in UE positioning; and estimation of the distance between a 
new RSS observation and the fingerprints (Kushki et al., 2007). In order to gen-
erate MDT data a state-of-the-art dynamic LTE system simulator was used. Re-
cently in 3GPP Release 12 a study has been conducted to access the potential of 
Radio Access Networks (RAN) level solutions for enhancing the internetwork-
ing between WLAN and LTE systems (3GPP, 2013a). As a hybrid positioning 
method with cellular and WLAN RSS provides excellent coverage for UE locali-
zation with adequate positioning accuracy this thesis aims to improve UE RFFP 
accuracy using LTE and WLAN RSS values. 

The main research objectives of this study are as follows: 
Utilizing LTE MDT data- 

1) To build a framework for GCL-based RFFP using MDT data in LTE net-
work deployments in rural, regular urban and heterogeneous urban en-
vironments. 

2) To evaluate overlapping GCL approach for enhancing G-RFFP UE locali-
zation accuracy. 

3) Use of artificial intelligence in order to optimize grid layout selection 
procedure and thus increasing the performance of G-RFFP. 
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Utilizing LTE and WLAN MDT (GMDT) data- 
4) To propose a generic architecture for MDT to include and correlate 

WLAN RSS measurements with LTE RSS measurements and evaluate 
the improvement of G-RFFP performance using the hybrid RSS values. 

5) To employ cluster-based RFFP approach for reducing computational 
complexity in training phase data pre-processing.  

6) To compare UE localization performances between cluster-based and 
traditional RFFP approaches. 

7) To evaluate the effectiveness of C-RFFP approach with variations in RF 
fingerprint recording device and RF fingerprint collection time between 
training radio map and test UE. 
 

The research objectives were achieved in two main stages. During the first 
stage we proposed a framework for G-RFFP using MDT radio map that consists 
of only LTE RSS values. To improve the UE positioning accuracy novel meth-
ods were developed and results were compared to the traditional G-RFFP 
method. Artificial intelligence was used to build an efficient G-RFFP system 
which automates GCL selection procedure as well as improves the user locali-
zation. The RFFP methods used in the first stage depends upon two phases: (1) 
in training phase grid-cell unit (GCU) wise manipulation of MDT data is carried 
out to create training signatures; and (2) in testing phase UE positions are esti-
mated using training signatures. During the second stage of study a generic 
architecture for MDT functionality was proposed to attach WLAN RSS values 
with LTE RSS. The performance improvement of G-RFFP with GMDT data was 
studied and results were compared to that of using MDT data. C-RFFP method 
was used to reduce training phase computational complexity and to deliver fast 
positioning output. Performance evaluation studies between various C-RFFP 
methods and G-RFFP method were conducted. 
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1.3 Main Contributions of the Thesis 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

FIGURE 1 Relationship between the research questions and included articles 
 

 
The relationship between the research questions and included articles are 

shown in Figure 1. In papers [PI] and [PII] we studied the potentials of MDT 
database assisted RFFP positioning in intra- and inter-frequency LTE network 
deployments with rural, urban and heterogeneous urban configurations. In [PI] 
we investigate the variations in UE positioning accuracy between Mahalanobis 
distance (MD) and Kullback-Leibler divergence (KLD) based RFFP methods 
with different GCL sizes. Here we assumed ideal cell detection criteria - every 
MDT sample contains equal number of neighbour BS RSS values. Then RFFP 
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performance evaluation was carried out in interference limited LTE system tak-
ing into account the 3GPP cell detection criterion in [PII]. In order to improve 
positioning accuracy of conventional G-RFFP method consisting of a single grid 
layout (SGL) in [PIII] an overlapping grid layout (OGL) based RFFP was pro-
posed which estimates unknown UE position through calculation of two small-
est weighted KLD grids. The proposed OGL method not only improved the 
positioning accuracy but also analysed more test MDT samples as compared to 
that of traditional SGL G-RFFP method. In [PIV] a novel multi-objective Genetic 
Algorithm (GA) based G-RFFP method (GA-RFFP) was proposed for autono-
mous calibration of GCL and thereby improving test UE localization accuracy. 
The robustness of the proposed method was tested by employing it in two dif-
ferent areas of LTE heterogeneous small cell (HSC) network scenario. Simula-
tion results showed that if sufficient amount of training data is available then 
GA-RFFP method can improve positioning accuracy of 56.74% over the conven-
tional GCL-RFFP method. An enhancement to LTE MDT architecture through 
minor changes to the 3GPP MDT framework was proposed in [PV] which al-
lows for the collection of location-aware radio measurements from WLAN APs. 
This functionality was referred to as generalized MDT (GMDT). To evaluate G-
RFFP performance of the proposed concept real world field measurements were 
collected from heterogeneous LTE and WLAN networks of an urban area of 
Tampere, Finland. It was found that G-RFFP positioning using RSS values from 
10 strongest WLAN APs along with LTE BSs could significantly reduce UE po-
sitioning error (PE) over that of using only LTE BS RSS fingerprints. To empha-
size the importance of GMDT a comparison study between G-RFFP methods 
using LTE only and LTE-WLAN RSS data was performed in [PVI] through 
choosing different GCL sizes and partial fingerprint matching (PFM) criteria. 

A novel cluster-based RF fingerprinting method for outdoor UE position-
ing was proposed in [PVII] which essentially removes the need of training data 
pre-processing complexity. It utilizes LTE serving BS ID to reduce computa-
tional time during UE positioning phase and delivers better results over G-
RFFP approach. In [PVIII] performance comparison study between K-nearest 
neighbours (KNN) based RFFP, Agglomerative Hierarchical Cluster (AHC) 
based RFFP, Fuzzy C-Means (FCM) cluster based RFFP and G-RFFP methods 
were conducted using GMDT data through different PFM cases. Finally in [PIX] 
we have evaluated the robustness and complexity C-RFFP methods with 
GMDT data have time difference between training RF fingerprints and test UE 
measurement samples using different UE devices. Experimental results showed 
that even under the effect of environmental changes and device variations C-
RFFP can improve positioning accuracy of outdoor UEs as compared to that of 
G-RFFP and KNN based positioning methods. 

 
 
 
 
 



21 
 
1.4 Author’s Role in Included Articles   

The author of this thesis is the main person in algorithm design, performance 
evaluation and writing of the articles [PIII] [PIV] [PVII] [PVIII] and [PIX].  In 
articles [PI] [PII] [PV] and [PVI], he contributed in data collection and analysis, 
system design and performance evaluation and analysis; he was responsible for 
writing the results and analysis parts of these articles. 

1.5 Other Publications 

The author has also researched other areas of nonlinear data analysis during the 
doctoral study and results are published in the following papers: 

1) Riaz Uddin Mondal, Tapani Ristaniemi & Munzura Raish Ud Doula. 
Genetic Algorithm Optimized Memory Polynomial Digital Pre-distorter for RF 
Power Amplifiers. International Conference on Wireless Communications & Signal 
Processing (WCSP), Hangzhou, China, 2013. 
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1.6 Organization of the Thesis 

This thesis is composed of following chapters: 
Chapter 2: This chapter provides the relevant theoretical knowledge of 

conventional RF fingerprint positioning methods. The MDT functionality and 
the dynamic LTE system simulator are briefly explained. Then a brief descrip-
tion of previous RF fingerprint based methods found in literature has been pre-
sented. 

Chapter 3: The research outcome of this thesis is presented in this chapter. 
Grid-based RFFP method and cluster-based RFFP methods evaluated in this 
thesis work are briefly explained and results are presented. The results of novel 
RFFP methods proposed in this study are compared to the conventional meth-
od.  

Chapter 4:  Finally concluding remarks are given and outlines the future 
studies relevant to the current topic. 



 

2 RF FINGERPRINTING USING MDT DATA 

2.1 Minimization of Drive Tests 

Coverage estimation is the first step for cellular network deployments which 
consists of signal strength estimation in the area to be served. To deal this cov-
erage prediction operators usually perform drive tests, which consist of geo-
graphically measuring different network metrics and indicators with motor ve-
hicles equipped with specialized mobile radio measurement equipment and 
GNSS System and then analyze the collected measurements to derive optimal 
parameters. Once the optimal parameters have been selected, the parameters 
are applied to the networks and another set of driving tests is carried out to 
evaluate the impact of the parameter tuning. Such calibration may have to be 
repeated until the expected level of performance is achieved. Drive tests gener-
ate a tremendous amount of data to be processed, allowing the operators to get 
realistic network information close to the actual user experience which is very 
useful and desired information by operators (Hamalainen et al., 2012).  Drive 
tests are quite an inefficient means to solve the coverage problems since they: (1) 
imply large Operational Expenditure (OPEX), (2) incur delays in detecting and 
predicting the coverage holes, (3) are an undesirable source of pollution, and (4) 
provide an incomplete picture of the “ground-truth” since they are limited to 
roads and other regions accessible by motor vehicles (Hamalainen et al., 2012). 
For this purpose, the 3GPP standardization body has been working on the min-
imization of the use of drive tests for LTE since Release 9 (3GPP, 2009b). In the 
study phase of the MDT the following use cases were considered: Coverage 
optimization, Mobility optimization, Capacity optimization, Parameterization 
for common channels, Quality of Service (QoS) verification. In Release 10, a 
Minimization of Drive Tests (MDT) work item (3GPP, 2012b; Hapsari et al., 
2012) for Universal Terrestrial Radio Access Network (UTRAN) was also in-
cluded with main focus on coverage optimization. Release 11 focuses on QoS 
verification, further improvements in coverage optimization, positioning en-
hancement and the study of other MDT use cases (Holma and Toskala, 2012). 
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The key idea of the MDT proposed by 3GPP is to take advantage of the geo-
location measurement capabilities of the recent advanced subscribers UEs as 
well as of the radio measurements performed any-time and anywhere as part of 
the Radio Resource Management (RRM) procedures. The main characteristic of 
MDT is that the UEs report their geo-located measurements to the network upon 
operator request. The collected MDT measurements are at operator’s direct dis-
position to ease any kind of (automated as well as manual) network operation, 
management and optimization task. 

The design principle of MDT in Release 10 includes (3GPP, 2012c): 
1)  support for real-time and non-real-time measurement reporting; 
2) acceptable end-user implications, for example, battery consumption and 
memory requirements    should be kept reasonable; 
3) correlation of the measurement results with time and location, indicating 
when and where the measurements were obtained, respectively. 

The MDT in Release 10 is built on control plane architecture as shown in 
Figure 2.  It consists of the OAM system, which initiates and controls MDT data 
collection, the RAN and the UE, where data is collected, and the trace collection 
entity (TCE), where MDT data is sent after collection. The core network has a 
general role in the signaling to control MDT and other trace features. The post 
processing, analysis, and visualization of collected MDT data in the TCE is not 
standardized. From network signaling perspective there are two methods to 
control MDT (3GPP, 2011a).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2 MDT architecture 
 
The first method is called “management-based MDT,” which uses control 

path A as shown in Figure 2. It reuses cell traffic trace feature to collect MDT 
measurements from randomly chosen UEs or a group of UEs that enter a cer-
tain geographical area. The second method is called “signaling-based MDT,” 
and uses control path B. It reuses subscriber and equipment trace feature to col-
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lect from a specific subscriber or equipment (3GPP, 2011b; Hapsari et al., 2012). 
Regardless of which method is used to control MDT, OAM is able to obtain and 
associate measurements from both the UE and the RAN. 

From radio configuration perspective, two types of MDT were defined 
(3GPP, 2011): 

1) Logged MDT is the procedure by which the UE performs logging of 
measurement results and reporting of the logged measurement results. By the 
definition of logging, the UE stores and accumulates measurement results with-
in its memory. The logged measurement results are reported afterwards when 
the reporting condition is met. This type of MDT is performed when the UE is 
in idle state (i.e., the UE has no setup connection with the RAN node).  

Each log entry consists of serving cell information, neighbouring cell in-
formation, time information, and location information. The neighbouring cell 
and location information are included only if available. Serving cell information 
consists of the Evolved Cell Global Identifier and measurement results for the 
serving cell in terms of Reference Signal Received Power (RSRP) and Reference 
Signal Received Quality (RSRQ). The neighbouring cell information spans the 
measurement results of E-UTRA cells, UTRA cells, GERAN cells, and 
CDMA2000 cells, depending on the UE capabilities. The measurement results of 
neighbouring cells are logged in decreasing order of the ranking criterion used 
for cell reselection. Within each log entry, a maximum of six intra-frequency 
neighbouring cells and three inter-frequency neighbouring cells per frequency 
can be included for E-UTRAN/UTRAN/CDMA2000 cells, and three GERAN 
cells per frequency/set of frequencies. A time stamp is included in each log en-
try.  

2) Immediate MDT is the procedure by which the UE performs measure-
ments and reports the measurement results as soon as the reporting condition is 
met. This type of MDT is performed when the UE is in active state (i.e., the UE 
has setup a connection with the RAN node). The general principle of Immediate 
MDT follows the existing RRM measurements and reporting mechanisms de-
fined in (3GPP, 2012d). The only enhancement required to support Release 10 
Immediate MDT is that the UE can be configured to tag accurate location in-
formation, if available, onto the measurement results reported to the network. 
Support for Immediate MDT is mandatory for all UEs, since the procedure for 
Immediate MDT is based solely on existing RRM measurement procedures. The 
standard allows any combinations between the above MDT types.  

Location information for MDT can be categorized into two different types: 
detailed location information and RF fingerprint. Detailed location information 
consists of at least latitude and longitude, whereas an RF fingerprint is a profile 
of measured signal strength from neighbouring cells. The RF fingerprint can be 
obtained by the network as part of the radio measurements reported by the UE 
and used to calculate the approximate location of the UE (e.g., by cell triangula-
tion) (3GPP, 2011b). Inclusion of detailed location information as part of MDT 
measurement reports is very important. In contrast to the best effort location 
information acquisition defined in 3GPP Rel-10, Rel-11 adopts the approach 
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that the network can request the UE to acquire location information for an MDT 
session that is being configured. This enhancement to improve location infor-
mation acquisition for MDT is based on the assumption that the positioning 
method used for calculating location information is standalone GNSS/GPS. For 
MDT that involves UE-based measurements, both radio measurements and lo-
cation information are measured at the UE. The UE tags the radio measure-
ments with location information and sends them together in the same meas-
urement report to the network, which then uses the UE-reported location in-
formation when performing analysis of the MDT data. However, some of the 
MDT measurements defined in 3GPP Rel-11 are performed by the RAN rather 
than by the UE. 

2.2 MDT Database Creation using Dynamic System Simulator 

In this work MDT data were generated using a proprietary dynamic sys-
tem simulator known as Freac. The Freac simulator models an E-UTRAN system 
in a downlink and an uplink direction by incorporating detailed implementa-
tions of various LTE functionalities such as radio resource management, link 
adaptation, scheduling, radio link detection and monitoring, radio measure-
ments for mobility management, and various models for user mobility and traf-
fic profiles. For an accurate estimation of packet error rates using different 
modulation and coding schemes the simulator maps a link level signal-to-
interference-plus-noise ratio (SINR) performance by following the methodology 
in (Brueninghaus et al., 2005). The system configuration follows mostly the 
3GPP simulation assumptions in (3GPP, 2006a) and (3GPP, 2009c) in order to 
model radio propagation, antenna characteristics, slow fading and fast fading. 
First the system is initialized, in this stage a simulation world is created with 
pre-determined configuration and location of network elements and user posi-
tions. Here one simulation step takes 1/14000 seconds, during the time interval, 
spatial location of a user is recalculated and radio conditions are updated. UEs 
monitor the radio link quality of all E-UTRAN Node B (eNBs); the strongest eNB 
is the serving eNB and other eNBs interfere with the connection between the 
UE and the serving cell. The core part of MDT modelling is how the RSRP and 
RSRQ measurements are done. RSRP is defined as the linear average over the 
power contributions of the resource elements that carry cell-specific reference 
signals (CRS) within the considered measurement bandwidth (3GPP, 2012e).  

In LTE, transmitted energy is divided into subcarriers in frequency do-
main and Orthogonal Frequency-Division Multiplexing (OFDM) symbols in time 
domain. One subcarrier and one OFDM symbol forms a resource element in 
LTE. A physical resource block contains 12 adjacent subcarriers and 14 consecu-
tive OFDM symbols. During simulations the measurement bandwidth was con-
figured to consist of the six centremost Physical Resource Blocks (PRBs). RSRP 
and RSRQ modelling begins by determining a radio link between eNB and UE. 
The radio link is antenna specific and is given by, 
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       (1) 

 
where, leiu is the radio link between eNB i and UE u for one resource ele-

ment es,sc. The total attenuation of the radio link is a product of pathloss pliu(diu) 
depending on the distance diu; lognormal slow fading factor sfiu depending on 
UE’s spatial location; average power of complex fast fading factor |ffiu(es,sc)|2 
varying for each resource element e indexed by the OFDM symbol s and subcar-
rier sc; and antenna gain gi( iu, iu) depending on the angular difference of the 
UE and the eNB antenna direction in horizontal plane iu and vertical plane iu. 
The radio link is used to determine the received power per resource element rxe 

iu which given by, 
 

        (2) 
 
where rxeiu is the received power and txei is the transmitted power per re-

source element from eNB i. For calculating an instantaneous RSRP denoted by 
rsrp(t), the received power is averaged over the resource elements in the meas-
urement bandwidth containing Cell-Specific Reference Signal (CRS) symbols 
for antenna port 0. The measurement bandwidth consisted of the six centermost 
PRBs and the measurement period for the instantaneous RSRP is one subframe 
that consists of 14 OFDM symbols. The six PRBs contain 48 resource elements 
that transmit the CRS symbols. These resource elements are distributed in fre-
quency and time domain. A set S={1,4,7,11} denotes the indexes of OFDM sym-
bols that carry CRS symbols for antenna port 0 whereas a set RSsN denotes the 
indexes of subcarriers that contain the CRS symbol on the measurement band 
during the OFDM symbol s. The linear average of instantaneous RSRP for tth 
subframe is given by,  

 
       (3) 

 
where NrsN equals to 12 and it is the total number of subcarriers per 

OFDM symbol that transmit the reference symbols for antenna port 0 on the 
measurement bandwidth of six PRBs. The variable Ns is 4 and this corresponds 
to the size of S i.e., the number of OFDM symbols containing reference symbols 
per subframe. A detail explanation of the simulator and modelling aspects is 
given in Appendix A of (Turkka, 2014). 

2.3 Basic Principle of RF Fingerprinting 

As a fingerprint is unique to a human, the properties of a radio signal are typi-
cal for the position where it is transmitted or received. A RF fingerprint or RF 
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signature in wireless positioning is the set of measurable signal characteristics 
that depend on the position of transmission or reception (Sand, 2014). Each sig-
nature is registered at a unique location - typically at points on a uniformly 
spaced grid throughout a given environment. The basic idea behind location 
fingerprinting technique is to associate physically measurable properties to dis-
crete locations throughout a deployment area. A fingerprinting method then 
compares a measured fingerprint of a test UE to the fingerprint entries of that 
database in order to determine the database fingerprint that matches best. This 
best match then provides the most likely position of that UE. Thus RF finger-
printing methods are also known as ‘database correlation’ methods (DCMs) 
and ‘pattern matching’ methods. These properties can then act as location iden-
tifiers. The greater the spatial variability of the signatures, the greater the capac-
ity of the system to discriminate between locations. RF fingerprinting tech-
niques are categorized mainly by the type of properties which are collected. The 
three major RF properties that have been implemented to date are: RSS, the 
time domain Channel Impulse Response (CIR) and the Frequency Coherence 
Function (FCF). RSS is the most prevalent in commercially deployed wireless 
systems due to many factors, most notably its robustness and good penetration 
in NLOS conditions, its simple data structure, and the computational ease with 
which it can be measured (Gentile, 2013).  

The process of RF fingerprinting can be divided into the following two 
primary phases (Vaghefi and Buehrer, 2014): 

Offline Training Phase: RF fingerprints are collected through field meas-
urements or generated using simulation models to construct a ‘radio map’ and 
are stored in a database called RF fingerprint Correlation Data-Base (CDB). 
Each RF fingerprint stored in the CDB is associated with a specific position. 

Online Localization Phase: Upon arrival of a signal from test UE, the sig-
nal signature of interest is extracted and compared to the radio map using one 
or more pattern matching techniques.  

 
 
 
 
 
 

 
 

 
 

FIGURE 3 A simplified schematic diagram of RF fingerprinting  
Then, the mobile position is estimated by selecting the best match or by in-

terpolating among the best matches on the radio map. 
An RF fingerprint can be classified as either a target or reference fingerprint. 

A target RF fingerprint (T_fing) is the RF fingerprint associated with the test UE 
that is to be localized. It contains signal parameters measured by the UE or by 
its anchor cells. The reference RF fingerprints (R_fings) are the RF fingerprints 
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collected or generated during the training phase and stored in the CDB (Zeka-
vat and Buehrer, 2011). 

A simple RF fingerprinting operation in UE-assisted cellular network 
based positioning system is depicted in Figure 3 and explained as follows: 

First (step 1), the UE sends a position request containing T_fing to the lo-
cation server through the RAN. The RAN then (step 2) communicates with the 
location server, usually through a gateway. Upon receiving the position request 
and T_fing the location server queries the CDB (step 3) for R_fings, which is 
returned in sequence (step 4). The location server then compares the T_fing 
with returned R_fings to obtain the UE position estimate (step 5), which is sent 
back to RAN (step 6) and then to the UE (step 7) (Campos and Lovisolo, 2015). 

RSS fingerprinting systems have been successfully deployed in dense ur-
ban and indoor environments by Skyhook Wireless and Ekahau, respectively. 
Skyhook Wireless’s RF fingerprinting technology has attracted attention from 
the major players in the mobile device industry such as Apple and Google 
(Wortham, 2009). The technique is very practical and delivers decent accuracy 
(tens of meters) for mobile location applications in outdoor urban environments 
where Wi-Fi APs are plentiful. 

RF fingerprinting techniques can be categorized into two broad categories:  
Deterministic technique: Here the signal strength of an access point at a 

Location is represented by a scalar value and non-probabilistic approach is used 
to estimate the user Location (Vaghefi and Buehrer, 2014; Smailagic and Kogan, 
2002).  

Probabilistic technique: Information about the signal strength distributions 
from the access points are stored in the radio map and probabilistic techniques 
are used to estimate the user location (Roos et al., 2002; Youssef, 2003). 

2.3.1 Cellular Mobile Network Based RFFP 

In cellular mobile networks BSs have fixed geographical positions. Each BS 
broadcasts its CID and Location Area Identifier (LAI) to the subscriber UEs 
within its coverage area. The geographical coordinates of the serving BS of a UE 
can be used to estimate its approximate position (Trevisani and Vitaletti 2004). 
In (Pages-Zamora et al., 2002) Angle of Arrival (AOA) measurements of several 
radio links between the base stations and the UE were used to estimate client 
position. Here UE position is approximated according to the angle measure-
ments and using information of BSs geographical coordinates. Authors in 
(Deng and Fan, 2000) have used Time of Arrival (TOA) based positioning sys-
tem to convert the time difference between bursts sent by the UE into distance 
and trilateration is used to estimate UE position. Time Difference of Arrival 
(TDOA) technique was used in (Shin and Sung, 2002) and (Gustafsson and 
Gunnarsson, 2003) which require the simultaneous transmission of two signals 
having different frequencies. These signals reach the UE at different times; 
which is measured and converted into distance. Once three distance measure-
ments are completed trilateration is used to estimate the UE position. Enhanced 
Observed Time Difference (E-OTD) technique was used in (Charitanetra and 
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Noppanakeepong, 2003) which require synchronization between network enti-
ties (BSs and UEs). Here each BS broadcasts messages within its coverage area 
and UE compares the relative times of arrival of these messages to estimate its 
distance from each visible base station. In AOA and other signal timing based 
methods UE location is calculated under the assumption of line-of-sight RF sig-
nal propagation between the BSs and the UE. In densely built urban areas se-
vere multipath propagation characteristic of RF signal makes it difficult to de-
tect the angle of arrival or time of arrival of the direct component, as a result the 
resolution of these measurements is not as good as in open propagation envi-
ronments. Hence UE positioning performance of AOA and TDOA based meth-
ods is not optimal in urban environments. These methods also require hard-
ware modifications to the network and to handsets as well. Using real life GSM 
measurements authors in (Laitinen et al., 2001) has shown that the positioning 
accuracy of RFFP method is better than that of AOA or E-OTD in urban envi-
ronments and acceptable for many applications in a suburban environment also. 
However a disadvantage of this method is that the impulse response measure-
ment technique used is not standardized, thus it requires software changes in 
the UEs. Moreover, reporting of such measurements to the location server is 
also not standardized, which reduces the degree of applicability of this DCM 
method. Hence authors in (Borkowski and Lempiaeinen, 2005) have introduced 
Pilot Correlation Method (PCM) for UE positioning which is entirely based on 
standardized measurements and procedures, therefore significantly reducing 
the deployment costs. Here the area of service coverage is divided into small 
positioning regions and for each such region the most probable situation of 
Common Pilot Channels visibility with corresponding results of Received Sig-
nal Code Power (RSCP) measurements is stored in Serving Radio Network 
Controller (SRNC). Size of the positioning regions is tuned according to the de-
sired accuracy for planned location sensitive applications. Outdoor real data 
from Elisa UMTS network in urban environment in Tampere city in Finland 
was used for evaluating the method. The positioning accuracy obtained by the 
PCM method fulfilled the safety requirements for network-based solutions and 
due to its simple procedure of positioning the overall latency does not intro-
duce any limits in various potential applications. In (Borkowski and Lempi-
ainen, 2006) authors have presented an extended work where enhanced cell-ID 
+ Round Trip Time (RTT) (ECID+RTT) based cellular positioning method was 
evaluated. This technique is based on multiple time measurements and requires 
a slight software update in the UEs. The reported accuracy of the ECID+RTT for 
67% of the location estimates varies from 60m-100m in urban scenario. In (Aho-
nen and Laitinen, 2003) UE positioning was performed using DCM approach 
with simulated data generated for a UMTS microcell network layout in urban 
areas. Here in order to take advantage of the urban propagation environment 
and to avoid typical problems related to multipath channel delay profiles in 
locations were used for the DCM method and results were compared to two 
standard localization techniques OTDOA and CID. For the DCM approach only 
the strongest cell is measured and used in the correlation with the database. It 
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was found from simulation results that DCM circumvents most of the urban 
environment related issues as compared to the OTDOA method. The accuracy 
achieved with DCM is adequate for most localization applications and within 
the range required by emergency services. In (Zimmermann et al., 2004) DCM 
method is utilized for network-based UE location estimation where wave prop-
agation software generated the training database. Extended Walfisch-Ikegami 
Model was used to create simulated data for the urban scenario. In such an ur-
ban scenario mean location error was below 100m which outperformed simple 
CID based positioning. In (Lakmali and Dias, 2008) authors have proposed 
novel methods to improve RF fingerprint positioning using GSM signal 
strength values in indoor and outdoor environments. Due to multi-path propa-
gation and small-scale fading measured RSS value at a particular location 
would vary time to time and also not all the detectable cells would appear in all 
the measurements. Hence for outdoor positioning ten measurements were used 
at the UE to be located. Here database search was reduced based on the serving 
BS of each database fingerprint and for fingerprint matching new cost functions 
were presented based on the Manhattan distance and the Euclidean distance. 
For UE positioning in the urban scenario Nearest Neighbour based location es-
timation has given the best result. The proposed method showed excellent per-
formance over CID and trilateration methods for outdoor positioning and is 
nearly compliant with FCC-US E911 accuracy requirement. A path loss model-
ing based UE location estimation method was proposed in (Lin and Juang, 2005) 
which uses Cost231 Hata model. Here through calculating differences of down-
link signal attenuations circles are drawn along which the test UE may lie and 
from the intersection of the curves UE position is estimated.  The advantages of 
the proposed method include no need for a perfect path loss modeling, the re-
duction in shadowing impact on location, low computational complexity, and 
applications for existing systems without hardware development. The obtained 
results showed that the proposed method outperforms CID method in a real 
GSM cellular network environment in urban Taipei. Authors in (Varshavsky et 
al., 2005) have pointed out that positioning methods based on Infrared (Hopper 
et al., 1993), ultrasound (Priyantha et al., 2000) and Bluetooth localization sys-
tems (Aalto et al., 2004) work well indoors, but deploying these technologies to 
the wide area is either cost prohibitive or not technically possible. GSM-based 
localization systems have the potential to detect the places that people visit in 
their everyday lives with good localization accuracies for both indoor and out-
door environments. Devices that people do carry with them most of the time 
that have continuous network connectivity is the cellular mobile phones which 
have low power consumption, ubiquitous connectivity, established interface 
metaphors, wide adoption and they can offer indoor-outdoor place detection 
capabilities. Client-based GSM localization can provide an adequate solution 
both in terms of coverage and accuracy. Experimental results showed that using 
GSM it is feasible to achieve 2-5 meters median error and room-level indoor 
localization and 70-200 meters median error for outdoor UE positioning. In 
(Chen et al., 2006) authors have examined the feasibility of a client-side, beacon-
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based GSM outdoor localization system where the UE can position itself in a 
privacy-observant manner and can use cell towers from all surrounding cellular 
network operators to compute location without requiring assistance from the 
network operators. The approach also used existing hardware in mobile phones 
without requiring any additional hardware. RF fingerprints were collected hav-
ing records of CIDs as well as observed signal strength in dBm for up to seven 
GSM cells from three different GSM network providers. External antennas for 
the GSM modems and GPS units were placed on the car roof to improve signal 
reception. The complete trace contains 6756 unique cells spanning an 18Km x 
25Km region of the Seattle metropolitan area, USA collected over a period of 
three months and test trace was collected two weeks after the training trace was 
collected. Positioning accuracy of three positioning algorithms was evaluated: a 
simple centroid algorithm (LaMarca et al., 2005), fingerprinting (Bahl and Pad-
manabhan, 2000) and Monte Carlo localization with Gaussian Processes signal 
propagation model (Schwaighofer et al., 2003). Five factors affecting positioning 
accuracy were examined: location algorithm choice, scan set size, simultaneous 
use of cells from different providers, training and testing on different devices, 
and calibration data density. All three algorithms performed better in higher 
tower density area than lower tower density area; the fingerprinting algorithm 
performs much better than centroid method. Both the fingerprinting and Gauss-
ian Processes algorithms improve in accuracy when more cells were used for 
positioning. Fingerprinting was the most accurate in the high-density urban 
area and performed well in the low-density area as well. However, fingerprint-
ing was the most fragile of the algorithms, requiring dense training data; it was 
also the most fragile to the addition of new cells during the calibration drive. In 
(Ibrahim and Youssef, 2012) authors have proposed a probabilistic Received 
Signal Strength Indicator (RSSI)-based fingerprinting system- ‘CellSense’ for 
GSM mobile phones. In order to reduce complexity of constructing a probabilis-
tic fingerprint ‘CellSense’ uses gridding, where the area of interest is divided 
into a grid and signal strength histogram is constructed for each grid cell. This 
increases the scalability of the technique. To further reduce the computational 
overhead a hybrid technique- ‘CellSense-Hybrid’ was proposed which com-
bines a probabilistic estimation phase with a deterministic refinement phase; it 
is also robust to changes in its parameter values. Performance of ‘CellSense’ and 
‘CellSense-Hybrid’ techniques were analysed under two different testbeds rep-
resenting rural and urban environments using three different cellular network 
providers. Experimental results show that positioning accuracy of ‘CellSense-
Hybrid’ method is better than other techniques with at least 108.57% in rural 
areas and at least 89.03% in urban areas with more than 5.4 times savings in 
running time compared with other state-of-the-art RSSI-based GSM localization 
techniques. A path loss (PL) model based RF fingerprinting approach was sug-
gested in (Nurminen et al., 2012) where the number of required path loss pa-
rameters was kept small to keep down the computational complexity and the 
amount of information required in the positioning phase. A measurement cam-
paign was accomplished to evaluate the performance of different algorithms in 
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a real use case. It was found that estimating the path loss parameter uncertain-
ties and taking them into account in the positioning phase has significant influ-
ence on the positioning performance. Here both accuracy and consistency of the 
proposed method were compared to the conventional methods. It was shown 
that a Gauss–Newton optimization algorithm can provide satisfactory accuracy 
and consistency with less computational cost. A probabilistic approach of UE 
localization in a real GSM outdoor environment was presented in (Li et al., 2013) 
through investigating the use of clustering and Principal Component Analysis 
(PCA). Here clustering was done on the RSS tuples based on the deviations of 
the raw RSS from the estimated path loss model for each RSS component. When 
compared to traditional approaches, the results indicate that applying the PCA 
method to transform the RSS data within each cluster and the application of 
kernel density estimator algorithm can improve the position estimation accura-
cy in complex urban environment as well as reducing the computational bur-
den and storage.  A new Adaptive Enhanced cell-ID (AECID) based fingerprint 
localization method was proposed in (Wigren, 2007). Here whenever a high 
precision A-GPS or OTDOA UE positioning measurement is received, the CIDs, 
the TA, the signal strengths and AOA information are measured and sent to be 
stored as reference points in clusters. After collecting sufficient amount of refer-
ence points in a cluster, a polygon is computed with the contraction polygon 
algorithm, and then it is stored in a database of fingerprinted polygons. When a 
positioning request is received, the list of own and neighbor CIDs; the TA are 
retrieved; RSS and AOA measurements are performed and quantized to create 
the fingerprint of the test UE. The polygon that corresponds to the fingerprint is 
collected from the database and reported. In (Wigren, 2011) the author tried to 
refine the clustering step of the AECID positioning method presented in 
(Wigren, 2007) through automatic cluster smoothing, outlier removal and clus-
ter splitting algorithms for UE positioning in LTE cellular environment. The 
accuracy of the polygon computation scheme of the AECID algorithm was im-
proved and the associated computational complexity was reduced. Numerical 
results of (Wigren, 2011) showed that the proposed algorithm significantly im-
proves the possibility for the polygon computation algorithm to produce highly 
accurate polygons and thereby improving UE localization. 

2.3.2 WLAN Based RFFP and Hybrid RFFP Techniques 

A comparison study between RF signal propagation path loss-based RFFP (PL-
RFFP) and grid-based RFFP approaches in terms of positioning accuracy for 
simulated outdoor cases was performed in (Laitinen et al., 2011). It was found 
that the G-RFFP method performed better than PL-RFFP method in terms of 
positioning accuracy, even if the estimates for channel characteristics in the as-
sumed path loss model are perfect. PL-RFFP is much more sensitive to channel 
impairments such as fast fading and shadowing than G-RFFP approach. It was 
also observed that by varying the parameters in G-RFFP method (such as the 
grid size and the number of neighbour points used in the estimation) its posi-
tioning accuracy can be improved.  



33 
 

In (Kim et al., 2014) a 2-stage hybrid position estimation framework for 
outdoor RFFP using WLAN RSS was proposed. The system consists of three 
elements: grid size determination - a variable grid size is obtained depending 
upon the density of collected fingerprints; data filtering - the WLAN APs that 
have lower RSSI values compared to a threshold RSSI value are eliminated in 
the reference fingerprint for each grid and this threshold is coherently applied 
to the measured fingerprint pattern of a test UE during position estimation 
phase; and position estimation - first based on the reference fingerprint map a 
probabilistic distribution map for each AP is built. When a fingerprint pattern 
of a test UE is measured, all the overlapped probabilistic distribution maps of 
APs are retrieved and then the estimated position of the test UE is determined 
from the most overlapped grid. When compared to the existing RFFP ap-
proaches the proposed method achieves a better performance in both average 
error of estimation and deviation of errors.  

In a RF fingerprint Wi-Fi positioning system (WPS) grid size determina-
tion is one of the main concerns of. The most desirable situation is the uniform 
assignment case where a single, effective fingerprint can be assigned to each 
grid. However, in most cases, fingerprint collection cannot be performed uni-
formly and the collected fingerprints are scattered: partially dense and partially 
scarce. It is hard to find any relation between grid segmentation size and posi-
tion estimation quality. Hence in (Kim et al., 2014) a data clustering method was 
presented to perform irregular grid segmentation. Based on the statistical sig-
nificance test for RF fingerprints, collected fingerprints were merged to generate 
grids which had an irregular form to cover the geographical area. Compared 
with conventional fingerprint data alignment approaches, this method achieved 
better performance in position estimation. 

Authors in (Kim and Yeo 2014) have proposed a coherent data-filtering 
framework where the number of APs for each reference fingerprint is main-
tained, with an effective RSSI threshold level. By maintaining a common 
threshold for both the reference fingerprint database and test UE fingerprint an 
effective dimension of the fingerprints was obtained, which imparts good posi-
tion estimation quality, with sufficiently fast running speed. Real life RF finger-
print data were collected from Seoul's Gangnam district, China and the pro-
posed method was compared to the existing RFFP approaches for fingerprint 
filtering. It showed better performance in UE positioning accuracy.  

Although GNSS offers good outdoor location accuracy of around 10m, it 
incurs a serious energy cost that can drain a fully charged phone battery in 8.5 
hours (Gaonkar et al., 2008). Hence in (Constandache et al., 2009) authors have 
developed an energy-efficient localization framework called ‘EnLoc’ as an alter-
nate localization technologies, based on WiFi or GSM. The framework charac-
terizes the optimal localization accuracy for a given energy budget, and devel-
ops prediction based heuristics for real-time use. 

In a study conducted in (Roos et al., 2002) WPS positioning performance 
of three different methods- nearest neighbour based RFFP, Probabilistic RFFP 
based on kernel function and probabilistic RFFP based on histogram were com-
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pared in experimental tests. The results showed that upon a moderate amount 
of effort used in collecting training data produces practically applicable results 
with an average location estimation error below 2 meters. In the experiments 
performed, the two probabilistic methods produced slightly better results than 
the nearest neighbour method. The probabilistic methods were found to be rela-
tively robust with respect to the number of base stations used, the amount of 
calibration data collected, and the length of the history used in the location es-
timation. 

Recorded radio map can be outdated when signal-strength values change 
over time due to environmental dynamics and repeated data calibration is ex-
pensive. Thus a novel method called Location Estimation using Model Trees 
(LEMT) was proposed in (Yin et al., 2008) for estimating UE locations even 
when RSS samples are dynamically changing over time. This algorithm can take 
real-time RSS values at each time point into account and make use of the de-
pendency between the estimated locations and reference points. This technique 
can effectively accommodate the variations of signal strength over different 
time periods without the need to repeatedly rebuild the radio maps. The effec-
tiveness of LEMT is demonstrated using two real data sets collected from an 
802.11b wireless network and a Radio Frequency Identification (RFID)-based 
network. Experimental results show that compared with existing adaptive 
techniques, LEMT is much more robust to the reduction in the number of refer-
ence points.  

A low-cost system for UEs to discover and communicate their position in 
the physical world has long been identified as a key primitive for emerging 
mobile applications. Authors in (Cheng et al., 2005) conducted a comparative 
study between three Wi-Fi positioning algorithms - centroid based RFFP (La-
Marca et al., 2005), KNN based RFFP (Bahl and Padmanabhan, 2000) and Parti-
cle filters (Hightower and Boriello, 2004) based RFFP. It was found that with 
dense Wi-Fi coverage, the specific algorithm used for positioning is not as im-
portant as other factors including composition of the neighbourhood, age of 
training data, density of training data sets and noise in the training data.  

The accuracy of a Wi-Fi fingerprint localization system greatly depends on 
the quality of its radio map. Authors in (Kim et al., 2006) observed that the AP 
location estimation error could be large for war driving, seriously affecting the 
UE positioning accuracy. They also claimed that war walking is more effective 
than war driving for collecting signals because people can walk very close to 
buildings and walking is much slower than driving. In (Tsui et al., 2010) au-
thors have analysed four properties (RSS values of APs, amount of fingerprints 
collected, GNSS labelling of calibration points and uniformity of the calibration 
points) of driving and walking radio maps which may affect UE positional ac-
curacy. According to their findings to improve war driving localization follow-
ing factors should be addressed: 1) choosing devices that report a smaller min-
imum RSS, 2) obtaining multiple samples by using multiple devices at each AP 
location, 3) choose uniformly distributed calibration points on the radio map 
and 4) offset the GNSS lag effect. 
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As an alternative to GPS hardware and its unavailability indoors, project 
Place Lab (LaMarca et al., 2005) proposed a positioning method that uses WiFi 
and GSM sensors for localization. It tries to achieve two goals: (1) maximizing 
coverage across entire metropolitan areas, and (2) providing a low barrier to 
entry by utilizing pre-deployed hardware. Authors create a wireless map of a 
region by war-driving in the area which is composed of sampled GPS locations, 
WiFi access points and GSM towers audible at these locations. This wireless 
map is then distributed to phones. When a phone travels through the mapped 
area, it estimates its own location by matching its list of audible WiFi APs/GSM 
towers to the wireless map. Place Lab experiments in downtown Seattle, USA 
exhibit a median positioning error of 13 to 40m with WiFi, and around 94 to 
196m with GSM.  

An experimental analysis for outdoor WLAN fingerprinting system was 
implemented in urban area of Shenzhen, China in (Liu et al., 2010). The RFFP 
method used KNN and utilizes mean fingerprinting (average RSS value collect-
ed from each AP) to estimate the user's location. The main advantage of this 
method is its simplicity to set up and reasonable level of accuracy. It was ob-
served that fingerprinting system provides a better positioning accuracy in the 
dense urban areas by adopting reasonable grid spacing and the number of APs.  

In (Magro and Debono, 2007) a Genetic Algorithm (GA) based location de-
tection method was proposed which uses cellular network information such as 
CID and transmitted RSS as input to search the whole network coverage area 
for the most probable point of origin. A dynamic UMTS radio model was used 
to simulate real field measurements of the RSS variations. Here GA was em-
ployed in the triangulation algorithm which operates by generating an initial 
random population of candidate locations and repeatedly modifying this popu-
lation to evolve towards better solutions. Simulation results showed that the 
algorithm is capable of locating UE in 72% of the cases in an urban environment 
within a range of 450 meters. 

In order to reduce both the average location error and average time to 
produce a position fix, in comparison to the work presented in (Magro and 
Debono, 2007) authors in (Campos and Lovisolo, 2013; Campos and Lovisolo, 
2010) propose an alternative for the initialization of the first generation popula-
tion of GA. Instead of selecting individuals throughout the whole service area it 
restrains the randomly selected first population individuals to the predicted 
best server area of the serving BS. Test results from an 850 MHz GSM network 
in a metropolitan area showed that an average reduction of 91% in the time to 
produce a position fix could be achieved with reductions of 20% and 15% in the 
50th and 90th percentile location errors respectively in comparison to the ap-
proach followed in (Magro and Debono, 2007). 

 



 

3 DATA PROCESSING 

3.1 Genetic Algorithm 

Evolutionary computing was introduced in the 1960s by I. Rechenberg in the 
work “Evolution strategies”. The most popular technique in evolutionary com-
putation research has been the GA. In the year 1975John Holland developed 
this idea in his book “Adaptation in natural and artificial systems”. Holland’s 
theory has been further developed and now GAs stand up as a powerful tool 
for solving search and optimization problems. Search is one of the more univer-
sal problem solving methods for such problems one cannot determine a prior 
sequence of steps leading to a solution. Search can be performed with either 
blind strategies or heuristic strategies (Bolc and Cytowski, 1992). Blind search 
strategies do not use information about the problem domain. Heuristic search 
strategies use additional information to guide search move along with the best 
search directions. There are two important issues in search strategies: exploiting 
the best solution and exploring the search space (Booker, 1987). Random search 
is an example of a strategy which explores the search space, ignoring the exploi-
tation of the promising regions of the search space. GA is a class of general pur-
pose search methods combining elements of directed and stochastic search 
which can produce a remarkable balance between exploration and exploitation 
of the search space. The usual form of a GA is described by Goldberg (Goldberg, 
1989). GAs are numerical optimization algorithms inspired by both natural se-
lection and natural genetics. The algorithms are simple to understand and easy 
to implement. GAs have proved themselves capable of solving many complex 
problems where other traditional methods have experienced difficulties. An 
important feature of GA is that it is a stochastic Algorithm, and the second very 
important point is that GAs always consider a population of solutions. The al-
gorithm can recombine different solutions to get better ones and so, it can use 
the benefits of assortment. The robustness of the algorithm should also be men-
tioned as something essential for the algorithm success. Robustness refers to the 
ability to perform consistently well on a broad range of problem types. There is 
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no particular requirement on the problem before using GAs. All these features 
make GA a really powerful optimization tool and it is currently the most prom-
inent and widely used computational models of evolution. GA, differing from 
conventional search techniques, start with an initial set of random solutions 
called population satisfying boundary and/or system constraints to the problem. 
Each individual in the population is called a chromosome (or individual), repre-
senting a solution to the problem at hand. These are usually random and spread 
throughout the search space. The chromosomes evolve through successive itera-
tions called generations; during each generation, the chromosomes are evaluated, 
using some measures of fitness. A typical GA uses three operators: selection, 
crossover and mutation to direct the population over a series of generations to-
wards convergence at the global optimum (Coley, 1999). To create the next gen-
eration, new chromosomes, called offspring, are formed by either merging two 
chromosomes from current generation using a crossover operator or by modify-
ing a chromosome using a mutation operator. A new generation is formed by 
selection, according to the fitness values, some of the parents and offspring, and 
rejecting others so as to keep the population size constant. Fitter chromosomes 
have higher probabilities of being selected. At the beginning of genetic search, 
there is a widely random and diverse population and crossover operator tends 
to perform wide-spread search for exploring all solution space. As the high fit-
ness solutions develop, the crossover operator provides exploration in the 
neighbourhood of each of them. After several generations, the algorithms con-
verge to the best chromosome, which hopefully represents the optimum or 
suboptimal solution to the problem.  

In general, a GA has five basic components, as summarized by Micha-
lewicz (Michalewicz, 1994): 

1) A genetic representation of potential solutions to the problem. 
2) A way to create a population (an initial set of potential solutions). 
3) An evaluation function rating solutions in terms of their fitness. 
4) Genetic operators that alter the genetic composition of offspring (cross-

over, mutation, selection, etc.). 
5) Parameter values that genetic algorithm uses (population size, probabil-

ities of applying genetic operators, etc.). 
Advantages:  
GAs have proved themselves capable of solving many large complex 

problems where other methods have experienced difficulties (Coley, 1999). The 
advantages of GA mainly include the simplicity of the approach, its robust re-
sponse to changing circumstances, and its flexibility (Sivanandam & Deepa, 
2008):  

1) A key advantage of GA is that it is conceptually simple; 2) GAs can be 
applied to any problems that can be formulated as function optimization prob-
lems; 3) GAs can be combined with more traditional optimization techniques; 4) 
The evaluation of each solution can be handled in parallel and selection only 
requires some serial operation; 5) Traditional methods of optimization are not 
robust to dynamic changes in the environment and they require a complete re-
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start for providing a solution, in contrary, GA can be used to adapt solutions to 
changing circumstances; and 6) It also has the ability to address problems for 
which there is no human expertise. 

Multi-objective Genetic Algorithms (MOGA):  
In principle, multiple-objective (MO) optimization problems are very dif-

ferent from single objective optimization problems. In a single objective case, 
the best solution is the one which is absolutely superior to all other alternatives 
while in the case of MOs, there does not necessarily exist such a solution be-
cause of conflict among objectives. A solution may be best in one objective but 
worst in other objectives. Therefore, there usually exists a set of solutions for the 
MO case which cannot simply be compared with each other. These solutions are 
called non-dominated solutions or Pareto optimal solutions. The inherent charac-
teristics of the GA demonstrate its ability to be a good solver for MO optimiza-
tion problems. The basic feature of the GA is the multiple directional and global 
search by maintaining a population of potential solutions from generation to 
generation. The population-to-population approach is useful to explore all Pareto 
solutions.  One special issue in MO optimization problems is the fitness assign-
ment mechanism, several such mechanisms have been proposed and applied in 
MO optimization problems (Gen & Cheng, 2000; Deb, 2001). A popular fitness 
assignment method based on Pareto ranking was first suggested by Goldberg 
(Goldberg, 1989). In (Srinivas and Deb, 1994) authors also developed a Pareto 
ranking-based fitness assignment called non-dominated sorting Genetic Algo-
rithm (NSGA) where the non-dominated solutions constituting a non-
dominated front are assigned the same dummy fitness value. These solutions 
are shared with their dummy fitness values and ignored in the further classifi-
cation process. Finally, the dummy fitness is set to a value less than the smallest 
shared fitness value in the current non-dominated front. Then the next front is 
extracted. This procedure is repeated until all individuals in the population are 
classified. Along with convergence to the Pareto-optimal set, it is also desired 
that a GA maintains a good spread of solutions in the obtained set of solutions. 
As an improvement of NSGA authors in (Deb et al., 2002) has developed 
NSGA-II which follows a fast non-dominated sorting procedure, an elitist strat-
egy in selection, a parameter less approach in preserving population diversity 
and a simple yet efficient constraint-handling method. 

3.2 K-Nearest Neighbours Algorithm 

In pattern recognition, the KNN algorithm is a method for classifying objects 
based on closest training examples in the feature space. The KNN algorithm is 
amongst the simplest of all machine learning algorithms. It is an instance based 
learning method and has been used in many applications in areas such as data 
mining, statistical pattern recognition, image processing. Here each new in-
stance is compared with existing ones using a distance metric and the closest 
existing instance is used to assign the class to the new one. This is called the 
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nearest-neighbour classification method. If more than one nearest neighbour is 
used and the majority class of the closest k neighbours is assigned to the new 
instance then it is termed the k-nearest-neighbour method (Witten and Frank, 
2005). 

The KNN algorithm is comprises of the following steps (Kozma, 2008): 1) 
A positive integer k is specified, along with a test sample; 2) k training samples 
are selected from the database which are closest to the test sample; 3) The most 
common classification of these entries are found out and, 4) This is the classifi-
cation given to the test sample. 

The best choice of k depends upon the data; generally, larger values of k 
reduce the effect of noise on the classification, but make boundaries between 
classes less distinct. It is simple to implement and does not require tuning com-
plex parameters to build a model. Since no training is involved in KNN algo-
rithm new training examples can be added easily to the sample data-base. Alt-
hough KNN algorithm is simple and effective, it is often slow. The obvious way 
to find which member of the training set is closest to an unknown test sample is 
to calculate the distance from every member of the training set and select the 
smallest. The time it takes to make a single prediction is proportional to the 
number of training samples. 

3.3 Data Clustering 

The goal of clustering is to assign data points with similar properties to the 
same groups and dissimilar data points to different groups. 
 

 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 4 A block-diagram of clustering algorithms  
 
As shown in Figure 4 clustering problems are mainly divided into two 

categories: hard clustering (or crisp clustering) and fuzzy clustering (or soft 
clustering). In hard clustering, data are divided into non-overlapping clusters, 
and in fuzzy clustering, a data sample may belong to two or more clusters with 
some probabilities. Hard clustering algorithms are subdivided into hierarchical 
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algorithms and partitioning algorithms. Partitioning algorithms create a one-
level non-overlapping partitioning of the data samples.  Hierarchical algorithms 
divide data samples into a sequence of nested partitions. 

3.3.1 K-means Clustering 

k-Means is a partitional clustering approach and it is one of the most widely 
used clustering algorithms (MacQueen, 1967). In conventional k-means algo-
rithm, for a given initial k clusters, it allocates data samples to the nearest clus-
ters and then repeatedly changes the membership of the clusters according to 
an error function until the error function does not change significantly or the 
membership of the clusters no longer changes (Gan and Wu, 2007). If D is a data 
set with n samples and C1,C2, . . . , Ck are initial k disjoint clusters of D then the 
error function is defined as: 
 

       (4) 
 
where (Ci) is the centroid of cluster Ci . d(x,  (Ci)) denotes the distance 

between a sample x and (Ci). A typical distance measure can be the Euclidean 
distance deuc. If x and y are two data samples in d-dimensional space, then Eu-
clidean distance between them is defined as: 

        (5)   

 
where, xj and yj are the values of the j th attribute of x and y, respectively. 
The k-means algorithm can be divided into two phases: the initialization 

phase and the iteration phase. In the initialization phase, the algorithm random-
ly assigns the samples into k clusters. In the iteration phase, the algorithm com-
putes the distance between each sample and each cluster and assigns the case to 
the nearest cluster.  

 
The algorithm works as follows: 
1) First k initial cluster centroids are chosen. 
2) Sample-to-cluster-centroid distances of all observations to each centroid 

are computed. 
3) Then there are two ways to proceed: i) Batch update - Each data sample 

is assigned to the cluster with the closest centroid; and ii) Online update – Sam-
ples are individually assigned to a different centroid if the reassignment de-
creases the sum of the within-cluster, sum-of-squares sample-to-cluster-centroid 
distances. 

4) k new centroid locations are computed from the average of the data 
samples in each cluster. 

5) Steps 2 through 4 are repeated until cluster assignments do not change, 
or the maximum number of iterations is reached. 
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The k-means algorithm is easy to implement and its time complexity is 
O(n). A major drawback of this algorithm is that it is sensitive to the selection of 
the initial partition and may converge to a local minimum if the initial partition 
is not properly chosen (Abonyi and Feil, 2007). Unfortunately, there is no gen-
eral theoretical solution to find the optimal number of clusters for any given 
data-set; a simple approach is to compare the results of multiple runs with dif-
ferent k clusters and choose the best one (Dougherty, 2013). 

3.3.2 Agglomerative Hierarchical Clustering 

Hierarchical clustering produces a set of nested clusters organized as a hierar-
chical tree, (which can be visualized as a dendrogram) that records the se-
quences of merges or splits. In AHC initially there are n clusters, each contain-
ing a single data sample. The number of clusters is reduced by one at each step 
of the algorithm by amalgamating a most similar pair of existing clusters and 
associating a height with the newly-formed cluster (Arabie et al., 1996). A gen-
eral agglomerative algorithm for hierarchical clustering can be described as fol-
lows (Murtagh, 1983): 

1) All inter-cluster dissimilarities are computed. 
2) New cluster is formed from two closest clusters. 
3) Dissimilarities between new cluster and other clusters are redefined. 
4) Step 2 is repeated until all objects are in one cluster. 
Here we need to compute the distances between old clusters and a new 

cluster formed by two clusters. In (Jambu, 1978) author proposed a general re-
currence formula that gives the distance between a cluster Ck and a cluster C 
formed by the fusion of clusters Ci and Cj , i.e., C = Ci  Cj . The formula is given 
by: 

  
D(Ck,Ci  Cj ) = iD(Ck,Ci) + jD(Ck,Cj ) + D(Ci,Cj ) + |D(Ck,Ci)  D(Ck,Cj )| 

+ ih(Ci) + jh(Cj ) + h(Ck)                           (6) 
 
where D(·,·) is a distance (e.g. Euclidean distance) between two clusters 

and h(Ci) denotes the height in the dendrogram of Ci . Different choices of the 
parameters i, j, , , i, j and  in (6), give different clustering strategy (algo-
rithm). Most hierarchical clustering algorithms are variants of the single-link 
(Sneath and Sokal, 1973), complete-link (King, 1967), and minimum-variance 
(Ward, 1963) algorithms. Among these the single-link (also known as nearest 
neighbour method, the minimum method, and the connectedness method) and 
complete-link algorithms are most popular; the former uses nearest neighbour 
distance and the later uses farthest neighbour distance to measure the dissimi-
larity between two groups (Abonyi and Feil, 2007). There are some drawbacks 
of AHC - (a) data points that have been incorrectly grouped at an early stage 
cannot be reallocated and (b) different similarity measures for measuring the 
similarity between clusters may lead to different results (Gan and Wu, 2007). 
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3.3.3 Fuzzy C-Means Based Clustering 

In many real life cases data clusters are not completely disjoined and data could 
be classified as belonging to one cluster almost as well as to another. Hence the 
separation of the clusters becomes a fuzzy notion and such data sets can then be 
more accurately handled by fuzzy clustering methods. In fuzzy clustering, each 
data sample can belong to more than one cluster and associated with each sam-
ple is a set of membership weights representing the strength of the association 
between that sample and a particular cluster (Dougherty, 2013). The fuzzy C-
means (FCM) is the most widely used fuzzy clustering technique. The FCM al-
gorithm is an extension of the k-means algorithm for fuzzy clustering and was 
first introduced in (Dunn, 1973; Bezdek, 1974).  

For a data set D = {x1, x2, . . . , xn}, the algorithm is based on iterative mini-
mization of the following objective function: 

 
                                                                  (7) 

 
where, V = {v1,……,vc} are cluster centers; U = [uik] is a c × n matrix, where 

uik is the ith membership value of the kth sample xk and the membership values 
satisfy the following conditions:  

 
                   (8) 

 
                   (9) 

 
     ;      (10) 

 
 is an exponent weight factor. 

The objective function is the sum of the squared Euclidean distances be-
tween each input sample and its corresponding cluster center, with the distanc-
es weighted by the fuzzy memberships. 

In iterative steps of the algorithm cluster centers and membership weights 
are changed which are given by: 

 
       (11) 

 
=           (12) 

 
For calculation of a cluster center all data samples are considered and the 

contributions of the samples are weighted by the corresponding membership 
values. For each sample its membership value in each cluster depends on its 
distance to the corresponding cluster center. The weight factor m controls the 
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“fuzziness” of the resulting clusters (Bezdek, 1981). The larger the value of m, 
the smaller the influence of samples with small membership values.  

 
The FCM clustering procedure consists of the following steps: 
1) First the number of cluster centers and exponent weight m value are 

chosen. Based on an approximation cluster membership weights U(0) are initial-
ized. Then Initial center centers V(0) are calculated and iteration counter is set to 

 = 1.  
2) Cluster centers are updated: given U( ), V( ) are calculated using equa-

tion (11). 
3) Cluster membership values are updated: given V( ), U( ) are calculated 

using equation (12).  
4) Iteration is stopped if  else iteration counter is set 

to  =  + 1 and returned to step 2, where  is a pre-specified number repre-
senting the smallest acceptable change in U. 

3.3.4 Self-Organizing Map (SOM) Based Clustering 

A SOM is a single-layer, unsupervised competitive neural network which pro-
duces a similarity graph of input data by converting the nonlinear statistical 
relationships between high-dimensional data into simple geometric relation-
ships of their image points on a low-dimensional display, usually a regular two-
dimensional grid of nodes (Kohonen, 2001). SOMs are particularly useful for 
visualization and cluster analysis as they can explore the groupings and rela-
tions within high-dimensional data.   

It proceeds first by initializing the synaptic weights in the network by as-
signing them small values picked from a random-number generator. Then the 
following three steps are repeated until formation of the feature map has been 
completed: 

1) Competition - For each input sample pattern, the neurons in the network 
compute their respective values of a discriminant function. The particular neu-
ron with the largest value of discriminant function is the winner of the competi-
tion. 

2) Cooperation - The winning neuron determines the spatial location of a 
topological neighbourhood of excited neurons, thereby providing the basis for 
cooperation among such neighbouring neurons. 

3) Synaptic Adaptation - This last step enables the excited neurons to in-
crease their individual values of the discriminant function in relation to the in-
put sample pattern through suitable adjustments applied to their synaptic 
weights. The adjustments enhance the response of the winning neuron to the 
subsequent application of a similar input sample pattern. 

 
The SOM algorithm goes through the following iterative steps (Kohonen, 

1990): 
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1) Initialization: Random values for the initial weight vectors wj(0) are cho-
sen; here wj(0) values are different for j= 1, 2, ..., l, where l is the number of neu-
rons in the lattice. Another way of initializing the algorithm is to select the 
weight vectors from the available set of input vectors in a random manner; here 
the advantage is that the initial map will be in the range of the final map. 

2) Sampling: A sample x is drawn from the input space with a certain 
probability; the vector x represents the activation pattern that is applied to the 
SOM lattice.  

3) Similarity matching: Best-matching neuron, i(x) is computed at time-step 
n by using a minimum-distance criterion-  

 
                            (13) 
 
4) Updating: The synaptic-weight vectors of all excited neurons are adjust-

ed by using the following update formula-  
 

      (14) 
 
where, is the learning-rate parameter and  is the neighbour-

hood function cantered around the winning neuron i(x); both  and  
are varied dynamically during the learning phase. 

5) Continuation: Until no noticeable changes in the feature map are ob-
served algorithm goes back to step 2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

4 RESEARCH CONTRIBUTION 

The main goal of this research is to develop and analyze a UE-assisted network-
based RF fingerprint positioning framework for outdoor UE localization using 
MDT and GMDT data of LTE cellular networks. The utilization of MDT data 
has addressed two major drawbacks of RFFP based UE positioning: (1) it has 
minimized the huge cost and effort associated with the drive test based data 
collection procedure, and (2) allowed network operators to update and main-
tain ‘radio map’ fingerprint data autonomously using subscriber UEs. Here we 
have used two different data sets: 1) MDT data- in the beginning we have used 
a state-of-the-art LTE Rel’10 dynamic system simulator to generate outdoor 
MDT data following the 3GPP specifications defining signal bandwidth, center 
frequency, signal propagation, slow fading and fast fading parameterization 
(3GPP, 2006b). This data contains LTE serving and neighboring BS signal 
strength values together with UE positioning information from homogeneous 
and heterogeneous LTE networks. 2) GMDT data: during the second stage we 
have collected real life LTE and WLAN signal strength values along with corre-
sponding GNSS positions using a popular data recording tool-Nemo handy 
installed in consumer mobile handsets. 

4.1 MDT Based Outdoor UE Localization Framework 

The research question to be addressed here is: 
Q1. To develop a framework for GCL-based outdoor RFFP using MDT da-

ta and to analyse the UE positioning performances in homogeneous and heter-
ogeneous LTE networks in various user environments. 

In [PI] we have developed a framework for G-RFFP using MDT data from 
LTE networks in rural, urban -regular and urban-heterogeneous configuration. 
For the rural and urban–regular network scenario all cellular BSs were on the 
same frequency layer and RF fingerprints consisted of measurements from serv-
ing BS and three neighboring BSs. While in the urban-heterogeneous LTE sce-
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nario macro eNBs and small BSs were deployed and measurements consisted of 
RSS values from four intra-frequency and three inter-frequency BSs. Here we 
were motivated to evaluate the performances of KLD and MD methods for UE 
positioning algorithms since in (Milioris et al., 2012) authors have used KLD for 
indoor WLAN positioning with good localization accuracy. We have assumed 
an ideal BS detection criterion in [PI] where every MDT report contains meas-
urements from four strongest BSs.  

Results: Two different rectangular GCU size were selected: 20-by-20 me-
ters and 40-by-40 meters and positioning results of KLD and MD were obtained 
using 10-fold cross-validation scheme, e.g. in each evaluation 90% of the UEs 
were used as training database and estimation was done for the remaining 10% 
of UEs. In rural scenario PE is high- for both MD and KLD methods the 68% 
and 95% of PE are around 260 and 530 meters respectively. Figure 5 shows the 
cumulative distribution function positioning errors of G-RFFP method in ur-
ban-regular and heterogeneous networks. It is found that best positioning accu-
racy was observed in heterogeneous network using KLD with 20-by-20 meters 
grid-cell layout- the PE values were 21 meters and 95 meters in the 68% and 95% 
of PE respectively which showed an improvement of 40% and 16% respectively 
over that of MD positioning results. It was found that when 40-by-40 meters 
GCL was used 68% and 95% of PEs increase for KLD method but remains ap-
proximately same for MD method. The overall result indicates that KLD based 
GRFF method can provide acceptable outdoor UE positioning accuracy when 
compared to the North American emergency positioning requirements (3GPP, 
2013b). 

 
 
 
 

FIGURE 5 PE CDF plot of G-RFFP in cellular LTE networks 
 
According to 3GPP specifications a cell can only be detected and meas-

ured if Ês/Iot (energy per symbol over interference plus noise) is above -6 dB 
and RSRP is above -127 dBm. In [PII] RF fingerprint positioning performance is 
evaluated taken into account the practical cell detection criteria. UE localization 
performance was compared between 20-by-20 meters and 40-by-40 meters 
GCLs using KLD method in heterogeneous small cell network scenario (Case0) 

a) UE positioning error in urban-
regular intra-frequency LTE network 

b)  UE positioning error in heterogene-
ous intra-frequency LTE network 
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and in sparse regular macro network scenario (Case4). In both cases, inter-
frequency LTE deployment consists of two layers of eNBs which operate on 
adjacent carriers. In the regular macro scenario, the BS sites in the higher fre-
quency layer are deployed in a coordinated manner whereas in the heterogene-
ous scenario a random uncoordinated deployment of small cells is employed.  

Results: Table 1 shows G-RFFP positioning error CDF percentiles of KLD 
method with and without considering the Ês/Iot criteria. 

 
TABLE 1    G-RFFP PE values using KLD method 

Scenario 
 

Ês/Iot 
criteria 

For 10-by-10 m Cell For 40-by-40 m Cell 

68% PE 95% PE 
 

68% PE 
 

95% PE 

Case 4 
(1750m) 

n/a 
 

127 m 
(-37%) 

281 m 
(-28%) 

106 m 
(-40%) 

259 m 
(-28%) 

-6 dB 
 203 m 395 m 177 m 362 m 

Case 0 
(500m) 

 

n/a 
 

22 m 
(-55%) 

63 m 
(-

49%) 

29 m 
(-42%) 

65 m 
(-50%) 

-6 dB 
 49 m 124 m 50 m 131 m 

 
The positioning error increased when Ês/Iot criterion was taken into ac-

count; in the table the minus percentages shown in first brackets indicate how 
much PE would decrease if ideal Ês/Iot criterion was used. It is found that for 
sparse Case 4 deployment, larger GCL results in better localization performance 
whereas in Case 0 smaller GCL provides the best performance. It can be seen 
form Table 1 that when sparse deployment changes to dense deployment, both 
the 68% and 95% of PE decreases and the obtained results fulfills easily the 
North American emergency positioning requirements. 

4.2 Improvement of Positioning Accuracy of G-RFFP Using OGL 
Approach 

In order to improve UE positioning accuracy of G-RFFP method we proposed a 
novel RF fingerprint algorithm in [PIII] based on an OGL technique and by de-
termining the estimated UE position using the two smallest KLD weighted val-
ues among the matched training signatures. OGL method increases the amount 
of training signatures and reduces the distances among the surrounding grid 
centers and thereby improves the positioning accuracy. However it increases 
the position output time needed as compared to that of the traditional SGL 
method. In OGL approach the whole area of interest is divided into multiple 
overlapped square grid layouts and all the training signatures generated from 
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these two GCLs are put together to create the whole training signature database. 
During the testing phase, first some training signatures are selected based upon 
BS id match with the test signature and then the KLD distances are calculated 
between the test signature and those training signatures. In order to determine 
the estimated position of the test signature, two smallest KLD grids are chosen 
and depending upon the weighted value the estimation position moves along 
the line joining the center locations of the corresponding grid units.  

Results: Here MDT data were generated from two different network sce-
narios: sparse regular macro (RM) and dense HSC network. The simulator took 
into account the absolute and relative measurement errors and -6 dB Es/Iot cell 
detection criterion. 

 
TABLE 2    PE results of SGL and OGL based G-RFFP using KLD Method 

Scenario Training Da-
ta (%) 

RF Finger-
print 

Algorithm 

For 10-by-10 m Grid For 40-by-40 m Grid 
68% PE 

(m) 
95% PE 

(m) 
68% PE 

(m) 
95% PE 

(m) 

RM  (ISD 
1750 M) 

 
90% 

SGL Based 29.73 165.29 43.53 196.30 
OGL Based 

 
31.41 

(+5.6%) 
147.49 

(-10.7%) 
40.86 

(-6.1%) 
161.75 

(-17.6%) 

 
10% 

SGL Based 72.00 228.80 72.48 225.45 
OGL Based 

 
63.96 

(-11.1%) 
206.05 
(-9.9%) 

65.03 
(-10.2%) 

203.70 
(-9.6%) 

HSC  
(ISD 500 

M) 

 
90% 

SGL Based 21.12 58.08 33.73 76.43 
OGL Based 

 
19.45 

(-7.9%) 
50.94 

(-12.2%) 
27.57 

(-18.2%) 
64.87 

(-15.1%) 

 
10% 

SGL Based 27.23 73.61 34.83 80.86 

OGL Based 25.14 
(-7.6%) 

66.47 
(-9.6%) 

28.28 
(-18.8%) 

68.71 
(-15.0%) 

 
To study how training data amount affects the performance of OGL meth-

od two different sets of training and test data sets were used. The first set con-
tained 90% of the MDT data samples for training and the estimation was done 
for the remaining 10% MDT samples while the second set used 10% samples as 
training data and the rest were used for testing. Table 2 shows the PE results of 
KLD based G-RFFP method in SGL and OGL approaches. Here it was found 
that the number of training signatures used in OGL method is about twice of 
that in SGL method for every simulation cases. The percentage within the first 
bracket under the PE value of each of the OGL based method indicates the deg-
radation (with a + sign) or improvement (with a - sign) in positioning as com-
pared to the SGL method. It can be seen that in HSC for 90% training case and 
for 10-by-10 meter GCL size OGL method has shown 18.2% and 15.1% of im-
provement in 68% and 95% of PE respectively over that of the SGL method. The 
OGL method has constructed more training signatures with different combina-
tions of BS IDs than the SGL method and hence it has analyzed more test sam-
ples than that of conventional SGL RFFP approach. 
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4.3 Improvement of Positioning Accuracy of G-RFFP Using Ge-

netic Algorithm 

The RF fingerprinting results of [PI] and [PIII] indicate that using a common 
GCL in different network scenarios and with varying amount of training data 
does not provide the best positioning accuracy in both 68% and 95% of PE val-
ues. It was also found that for different square Grid-cell layouts the 68% and 95% 
of PE results tend to conflict each other. Hence in [PIV] we have proposed a 
MOGA optimized RF fingerprint positioning (GAFP) method to make neces-
sary adjustments to the GCL during training data processing phase. Thus using 
MDT data cellular operators would be able to build a large RF fingerprint train-
ing database from UE’s in different network environments and update it as 
needed and then could utilize MOGAFP method for autonomous calibration of 
GCL with the updated MDT training database to deliver optimal positioning 
performance in both 68% and 95% of PE despite changes in the BS positions, 
surrounding structures or amount of MDT training samples. Since MOGA op-
erates over a set of potential solutions it is particularly well-suited to solve mul-
ti-objective problems over other stochastic search strategies (e.g., simulated an-
nealing, ant colony optimization or particle swarm optimization). In this work 
we have used the ‘gamultiobj’ function of Matlab R2014a which uses a con-
trolled elitist genetic algorithm, a variant of NSGA-II (Deb, 2001).  

Results: We have used two techniques to optimize the GCL- non-
overlapping GCL (NoGCL) and overlapping GCL (OGCL) approaches. 

 
TABLE 3    RFFP results of G-RFFP, GAFP-NoGCL and GAFP-OGCL methods 

 
GAFP 
Type 

Positioning Error 
68%-ile (m) 

Positioning Error 
95%-ile (m) 

Analyzed Test MDT 
Samples (%) 

G-RFFP GAFP G-RFFP GAFP G-RFFP GAFP 40m 30m 20m 40m 30m 20m 40m 30m 20m 
 

NoGCL 48.25 47.58 44.03 24.52 127.18 152.70 135.96 55.01 63.07 62.40 64.53 65.32 

 
OGCL 48.25 47.58 44.03 26.37 127.18 152.70 135.96 58.13 63.07 62.40 64.53 71.77 

 
Table 3 shows results of GAFP based NoGCL, OGCL and conventional G-

RFFP when applied to area ‘A’. Here 50% data was used for training; 25% data 
was for validation and rest of 25% of data used for testing. In both NoGCL and 
OGCL methods the GA population size was 100 and number of GA generations 
was 200. Here we can find that the with G-RFFP method the lowest PE values in 
68% and 95% of PE are 44.03 and 127.18 meters whereas for the GAFP NoGCL 
approach the reduced PE values are 24.52 and 55.01 meters respectively. Hence 
GAFP was able to improve positioning accuracy of 44.31% and 56.74% in the 68% 
and 95% of PE as compared to the conventional grid-based RF fingerprinting. It 
is also found from Table 3 that positioning accuracies shown by GAFP OGCL is 
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bit less than the NoGCL but it has analyzed more test samples as compared to 
NoGCL method. The robustness of the GAFP method was evaluated by using it 
in two different areas- ‘A’ and ‘B’ of 300m-by-300m. The proposed method was 
found to be consistent in improving UE positioning accuracy in each of these 
areas. 

4.4 G-RFFP Performance Evaluation Using GMDT Data 

Due to the recent demand of high data traffic it seems that next generation cel-
lular networks will consist of various 3GPP and non-3GPP access techniques. 
3GPP has studied the potential of RAN level solutions for enhancing the inter-
working between WLAN and LTE in Release 12 (3GPP, 2013). The autonomous 
collection of the coverage and quality information from both cellular and 
WLAN access networks should be supported in next generation interworking 
deployments for ensuring the cost efficient operation. In [PV] an enhancement 
to the 3GPP LTE MDT framework which we referred as GMDT has been pro-
posed to enable cellular operators for the collection of location-aware radio 
measurements from WLAN access networks. The GMDT solution allows au-
tonomous mapping of network coverage and improves RF fingerprint localiza-
tion in dynamic LTE/WLAN deployment scenarios in indoor and outdoor en-
vironments. The GMDT architecture is a potential solution for two important 
issues: 1) by correlating WLAN radio measurements with the 3GPP radio 
measurements and UE location information, cellular operators can get a com-
plete view of its heterogeneous network; 2) RF fingerprinting in LTE/WLAN 
deployment scenarios can be improved as compared to the case that uses only 
LTE RSS.  
 
TABLE 4    G-RFFP PE using GMDT with different number of APs 

Measurement 
Type 

 

Max. number of 
measured WLAN IDs 

68 %-ile 
PE [m] 

95 %-ile 
PE [m] 

 
WLAN + LTE 
(1800 MHz) 

 
 
 

All WLAN APs 22.42 47.78 
23 22.51 48.27 
18 22.65 48.10 
13 23.14 48.21 
10 23.32 48.60 
5 26.80 57.57 
2 35.43 80.52 
1 49.41 127.67 

LTE (1800 MHz) LTE BSs only 88.29 235.45 

 
Results: Here we have performed G-RFFP of outdoor UEs using partial 

fingerprint matching technique. An RF fingerprint consists of both LTE cell IDs 
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and WLAN AP IDs - they are treated equally in the localization algorithm. 
GMDT contributes to an increased amount of measurement report signaling as 
well as to higher memory requirements for UEs. 

In [PVI] we have used GMDT data that comprises of RSS field measure-
ments from LTE network operating on 800 MHz, 1800 MHz and 2600 MHz fre-
quency bands. Here G-RFFP was used in which per GCU a single training sig-
nature was formed from all the samples available in a particular GCU, since it is 
expected that the measurements recorded geographically close to each other 
will have similar signal characteristic and hence they can be combined to form 
one signature. This reduces the computational complexity by compressing the 
size of the search space i.e., total number of training signatures. It also reduces 
the amount of memory needed to store the training data. During the testing 
phase those training signatures that fulfill the partial matching condition are 
selected for distance calculation from the test signature. The best matching 
training signature is the one which minimize the Euclidean distance metric be-
tween the training and test signatures. 

Results: Here we have gone through a 10-fold cross validation procedure - 
training database contains 90% chunks and remaining 10% of chunks are tested 
to test every data sample in turn. RF fingerprinting results were obtained using 
20-by-20 meter and 40-by-40 meter of GCL sizes. Results depicts that UE posi-
tioning accuracy was worst when using only LTE 800 MHz measurements. Lo-
calization performance improved significantly when all available LTE bands 
were measured which increased the average dimensionality of LTE RF finger-
prints. It was found from the study that both the density and the dimensionality 
of the fingerprints have bigger impact on UE positioning accuracy than grid 
density. When larger GCL was used training signature dimensionality in-
creased and more test samples were analyzed by meeting partial fingerprinting 
condition. Whereas when GCL size was reduced from 40 meters to 10 meters, 
68% and 95% of PE values decreased by 41% and 18% for LTE+WLAN case re-
spectively; however percentage of discarded test samples increased from 3% to 
14%. 

4.5 C-RFFP Performance Evaluation Using GMDT Data 

We have proposed a novel cluster-based RF fingerprinting technique in [PVII] 
and [PVIII] for outdoor UE positioning using GMDT data. 

It has addressed the following four main challenges of RFFP (Kushki et al., 
2007): 

1) RF fingerprint generation and update: Here real life GMDT data were 
used which automates the training data collection and updating procedure. It 
also reduces the cost and time associated with traditional war driving data col-
lection procedure. Since GMDT data contains LTE as well as WLAN RSS values 
it increases UE positioning accuracy when compared to that of using only MDT 
data.  
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2) Preprocessing of recorded training data: The C-RFFP method does not 
need the time consuming training signature formation as compared to the G-
RFFP method. The only preprocessing needed here is to group the recorded 
GMDT data according to the LTE serving cell-ID. This reduces the search space 
for the C-RFFP method during UE localization phase and thereby enables it to 
estimate test UE position in short time with less computational cost. 

3) Selection of BS and APs for use in positioning: Seven LTE BS and 
WLAN AP signals sorted in descending order of signal strength values were 
selected for position estimation which were found to be effective from previous 
RFFP research results (Youssef, 2003),(Laitinen et al., 2012). We have analyzed 
the UE positioning accuracy with three different GMDT data sets: the 1st set 
contains three LTE and four WLAN signals, 2nd set consists of two LTE and five 
WLAN signals and 3rd set comprises of one LTE and six WLAN signals.     

4) UE position estimation method: In [PVII] effectiveness of CFFP method 
was compared to the conventional G-RFFP method. In [PVIII] we have evaluat-
ed performances of different cluster-based RF fingerprinting (C-RFFP) methods: 
K-Nearest Neighbor (KNN), Agglomerative Hierarchical Clustering (AHC) and 
Fuzzy C-Means (FCM) to that of a single GCL based RF fingerprint positioning 
method. 

A brief explanation of the C-RFFP technique is given by the following 
block diagram: 

 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 6 A block-diagram of C-RFFP Positioning Method 

1) First a GMDT group is selected according to the serving LTE BS ID of the test 
sample (TestSam) 

3) RSS values of TestSam and selected GMDT samples are grouped and clustering is 
performed 

4) Clustering criteria (CC) is checked: (i) multiple clusters are created and (ii) the 
cluster that contains TestSam has multiple GMDT samples. If CC is fulfilled go-to 

next step 5, otherwise reduce MT number and go-to step 2 

2) According to the matching threshold (MT) number GMDT samples are selected 
from the chosen group which have common LTE and WLAN IDs compared to the 

TestSam IDs 

5) The cluster which contains the TestSam is selected; and finally test UE position is 
estimated from the mean x-y coordinates of the GMDT samples of that cluster 
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If CC is not fulfilled after reaching the minimum MT number then the 
TestSam is considered as a non-analyzed sample.   
Results: Here in the training GMDT database multiple samples which contain 
similar LTE BS ID and WLAN AP ID and recorded from the same x-y coordi-
nate were merged into a single one. Training and test data-sets were created by 
randomly choosing chunks of 20 consecutive GMDTs samples. The G-RFFP 
method used a 10m-by-10m GCL which was chosen from several square grid-
cell layouts according to the best delivered positioning accuracy. Ten-fold cross-
validation method was used to obtain positioning results and Euclidean dis-
tance was used to measure the statistical difference between training finger-
prints and test samples. Test results of G-RFFP and C-RFFP methods obtained 
in [PVII] with three different GMDT data-sets are shown in Table 5. 
 
TABLE 5    G-RFFP and C-RFFP positioning results using GMDT data 

 

 
It can be seen that when 3rd GMDT data-set was used C-RFFP showed the 

best positioning accuracy for 80% of threshold matching: 35% improvement in 
PE for both the 68% and 95% of PE as compared to that of the G-RFFP. Results 
depicts that C-RFFP offers better positioning than G-RFFP when matching 
threshold is high and five or six WLAN signals are used.  

 
RFFP results of [PVIII] are shown in Table 6 which was obtained from ten-

fold cross-validation procedure for all four methods using common analyzed 
test GMDT samples. It can be seen that with 1st data-set PE results of G-RFFP 
and KNN are very similar whereas AHC and FCM have shown better position-
ing for MT - 6. For data set 2, KNN has reduced   PE values as compared to that 
of GCL. AHC and FCM methods have shown further improvement in both 68th 
and 95th percentiles of PE values than that of G-RFFP and KNN methods. 
When data set 3 was used, AHC based clustering has given the best positioning 

LTE BS 
and 

WLAN 
AP 

Matchi-
ng 

Thresho
-ld 

Using Common Test GMDTs between G-RFFP and C-
RFFP 

G-RFFP C-RFFP Common 
Test 

GMDT (%) 
68% 

PE(m) 
95% 

PE(m) 
68% 

PE(m) 
95% 

PE(m) 
LTE BS:3 

& 
WLAN 

AP:4 

80% 14.21 39.77 9.40 33.75 21.15 

60% 14.02 40.35 10.40 35.85 43.59 

40% 15.59 42.57 14.16 51.17 61.77 

LTE BS:2 
& 

WLAN 
AP:5 

80% 11.98 36.04 7.61 26.45 21.83 

60% 11.81 36.03 7.95 27.60 46.02 

40% 12.66 38.32 9.14 33.88 62.37 
LTE BS:1 

& 
WLAN 

AP:6 

80% 11.47 33.69 7.36 22.81 24.38 

60% 10.60 31.76 7.24 20.58 51.32 

40% 11.17 33.89 7.80 24.34 69.21 
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accuracy as compared to the other methods; for MT-3 AHC based C-RFFP 
method has shown a positioning improvement of 42.3% and 39.8 % in the 68% 
and 95% of PE as compared to that of the G-RFFP method. 

 
TABLE 6    Comparison of RFFP results between G-RFFP and C-RFFP methods 

 
LTE & 
WLAN 

MT. 
No. 

G-RFFP KNN AHC FCM Com-
mo-n 
Test 

GMD
T 

(%) 

68% 
PE 
(m) 

95% 
PE 
(m) 

68% 
PE 
(m) 

95% 
PE 
(m) 

68% 
PE  
(m) 

95% 
PE 
(m) 

68% 
PE 
(m) 

95% 
PE 
(m) 

LTE: 3 
& 

WLA
N:4 

6 14.20 39.70 13.23 39.68 9.35 33.78 9.84 34.63 18.71 
5 14.06 40.22 13.30 40.43 10.50 35.73 12.01 40.47 41.02 
4 15.27 41.99 13.74 41.51 12.61 42.32 13.55 44.03 55.92 
3 15.58 42.57 14.07 42.12 14.16 51.18 14.35 47.18 61.75 

LTE: 2 
& 

WLA
N:5 

6 14.58 40.63 10.61 33.99 7.48 25.69 7.52 26.51 20.90 
5 13.58 40.94 11.08 37.54 7.87 26.98 8.94 33.96 45.41 
4 13.87 41.74 11.40 37.94 8.66 31.34 9.77 36.05 58.22 
3 14.22 41.86 11.73 38.68 9.13 33.87 10.25 37.68 62.33 

LTE: 1 
& 

WLA
N:6 

6 14.06 38.24 9.32 31.39 7.27 21.80 7.35 25.53 22.06 
5 13.14 38.00 9.73 32.78 7.18 20.16 8.08 27.71 49.56 
4 13.19 39.30 10.12 36.08 7.49 22.44 8.93 32.53 64.76 
3 13.48 40.05 10.46 36.54 7.77 24.09 9.22 33.34 69.11 

 
These results indicate that in dense urban areas where multiple WLAN 

signals can be detected C-RFFP is capable of delivering better outdoor UE posi-
tioning than G-RFFP using data set two or three having seven LTE and WLAN 
signals strength values. 

4.6 Robustness and Time Complexity Analysis of C-RFFP Meth-
od Using GMDT Data 

In [PIX] we have evaluated the performances of four cluster-based RFFP meth-
ods using GMDT data when facing the following challenging issues: 

1) Time difference between recorded training database samples and test 
samples: the characteristics of RF signal propagation and absorption by sur-
rounding structures and human bodies causes variations in measured RSS val-
ues recorded from a fixed location; even changes in the environmental condi-
tions, such as temperature or humidity, affect the signals to a large extent. Here 
we have used seven months old training data to estimate test UE positions and 
compare results with conventional methods.     

2) Variation in recording device: under same wireless conditions meas-
ured RSS values from WLAN APs may differ significantly with the variation in 
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UE’s hardware (Hossain et al., 2007; Kjærgaard et al., 2008). Two different de-
vices were used to record training and test GMDT samples. 

3) Variation in number of APs used for UE positioning: since considering 
all available APs for position estimation increases the computational complexity 
of the positioning algorithm we have used two data sets- first set S1,n comprises 
of serving LTE RSRP and six WLAN RSSI values and the second set S2,n con-
tains serving LTE RSRP and ten WLAN RSSI values (Kushki et al., 2007; 
Laitinen et al., 2012). 

We have also determined the position estimation time of different C-RFFP 
methods. Here we compare the positioning accuracies of the C-RFFP methods 
themselves and between conventional G-RFFP and KNN based RFFP methods. 

Results: During training data collection process ‘Maximum RSS’ based AP 
selection methodology were followed where WLAN APs are sorted in descend-
ing order based on their RSS values. 

 
TABLE 7    PE results of ExStudy-2 using GMDT dataset S1,n and S2,n  

 

D. 
S. 

M
T 

G-RFFP KNN K-means AHC FCM 

68
% 
PE 
(m) 

95
% 
PE 
(m) 

Ana
. 

Sa
m. 
(%) 

68% 
PE 
(m) 

95% 
PE 
(m) 

Ana
. 

Sa
m. 
(%) 

68% 
PE 
(m) 

95
% 
PE 
(m) 

Ana
. 

Sa
m. 
(%) 

68% 
PE 
(m) 

95
% 
PE 
(m) 

Ana
. 

Sa
m. 
(%) 

68% 
PE 
(m) 

95% 
PE 
(m) 

Ana
. 

Sa
m. 
(%) 

 

S1,

n 

4 26.6 47.0 80.3 25.8 47.3 69.7 24.1 47.2 66.8 20.8 39.8 26.8 24.5 43.4 41.8 

3 27.2 49.2 96.5 27.0 53.4 94.6 25.2 51.2 93.7 21.5 41.7 60.5 25.5 50.2 78.1 

2 27.9 51.1 99.7 27.5 55.6 99.4 25.5 55.4 99.3 22.4 43.2 76.6 26.7 53.3 95.7 

 

S2,

n 

5 25.7 46.1 57.0 24.7 44.3 89.6 23.8 41.6 86.9 20.8 38.7 43.1 23.5 42.2 62.4 

4 26.7 47.6 85.5 25.8 46.8 97.5 24.5 42.8 96.6 22.0 42.0 67.0 24.3 43.0 87.4 

3 27.6 49.5 96.8 26.0 47.5 98.9 24.7 44.1 98.8 23.0 43.7 78.4 24.8 44.1 97.5 

2 28.1 50.8 99.7 26.2 49.3 99.9 24.9 46.2 99.9 23.4 45.2 82.9 25.2 46.4 99.4 

 
Here two experimental studies (ExStudy-1 and ExStudy-2) were carried 

out: in ExStudy-1 both training and test samples were selected from the same 
time period whereas in ExStudy-2 we used 32791 training GMDTs of September 
2014 and 3574 test samples (TestSams) of May 2015. Each of the selected TestSam is 
surround by more than ten training GMDTs within its three meter circular ra-
dius area to ensure the presence of sufficient number of training samples in its 
vicinity. Training and test data-sets comprises of randomly choosing data 
chunks of 20 sequentially recorded samples. Results of ExStudy-2 using G-
RFFP, KNN and C-RFFP methods are shown in Table 7 and Table 8. . It was 
found that AHC based RFFP has outperformed other positioning methods in 
both 68% and 95% of PE. For MT-2 all the methods have analyze maximum 
amount of TestSams when compared to the other MT values. For MT-2 using S1,n 
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AHC based C-RFFP improved positioning accuracy by 19.71% and 15.46% in 
68% and 95% of PE respectively over that of G-RFFP method. It was noticeable 
that when S2,n was used all the C-RFFP methods have analysed more test sam-
ples for different MT numbers as compared to that of S1,n . Also the deviations 
of 68% and 95% of PE results between different C-RFFP methods became less 
obvious when S2,n was used. 

 
TABLE 8    PE results of ExStudy-2 using SOM  

Method SOM 
Data Set S1,n S2,n 
Matching 
Threshold 

4 3 2 5 4 3 2 

68% PE 
(m) 

22.06 
 

23.05 25.27 24.78 23.83 24.53 24.81 

95% PE 
(m) 

34.84 
 

39.93 45.70 42.42 41.95 44.27 45.23 

Analysed 
Samples 

(%) 

2.96 15.44 39.22 4.92 15.52 31.00 48.57 

 
In this study we determined the average computation time taken by dif-

ferent methods. Here only G-RFFP method needs training time. It is also found 
that when data-set S2,n was used positioning time increases for all the methods 
as compared to that of S1,n due to the increase of data dimension in S2,n. For da-
ta-set S1,n AHC based C-RFFP has given best positioning accuracy taking short-
est time as compared to other methods. 

From both the experimental studies we found that C-RFFP methods per-
form better than G-RFFP and KNN methods even using old training database 
and under recording device variation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

5 CONCLUSIONS 

The advancements in smartphone technologies and popularization of it has en-
abled us to use various wireless positioning technologies which include GNSS, 
methods to exploit signal-of-opportunities, such as cellular LTE/4G, WiFi, RFID, 
Bluetooth, infrared (IR), magnetic field, camera, and various other hybrid solu-
tions. Although a seamless positioning system for both outdoor and indoor en-
vironment is yet to be developed; RF fingerprint based systems have gained 
good popularity and commercial use in the recent years. One of the core chal-
lenges of RFFP based positioning method is the collection and updating of the 
training database. The recently proposed MDT functionality has opened a new 
opportunity for cellular operators to utilize RFFP methods for offering a cheap 
and ubiquitous positioning solution to their subscribers.   

The present research work was conducted in two parts: In the beginning 
we proposed a framework for grid-based RFFP in LTE network using simulated 
MDT data. Methods were proposed to improve G-RFFP positioning accuracy 
and autonomous calibration of GCL. In the second part we have used real life 
GMDT data consisting of LTE and WLAN RSS values and compared the results 
of G-RFFP positioning using MDT and GMDT data. In here we have proposed 
cluster-based RFFP with vastly reduces the training phase data processing 
computational cost and also outperforms GRFF based UE positioning accuracy.    

In publications [PI] and [PII] grid-based RF fingerprinting performance 
was evaluated using LTE MDT data in heterogeneous, regular urban and rural 
environments to study the effects of intra and inter-frequency RSS measure-
ments in UE localization. Kullback-Leibler Divergence and Mahalanobis Dis-
tance based position estimation methods were used and two different GCLs 
were used over the area of interest. Simulation results indicate that GRFF meth-
od gives best performance in dense urban heterogeneous LTE network using 
KLD method. It was also found that when cell detection criterion was consid-
ered less number of LTE BSs were detected which consequently reduces UE 
positioning performance. In order to improve positioning accuracy an overlap-
ping GCL approach was followed in [PIII] using KLD method in sparse regular 
macro and dense heterogeneous small cell network scenario with varying 
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amount of training data and GCL size. This novel method used weighted geo-
metric center from two nearest grid-cell units for estimating the test UE location. 
When compared to the conventional single grid-cell GRFF method the pro-
posed method showed the best performance for 10% of training data using 
40m-by-40m GCL in dense heterogeneous LTE network. In [PIV] we proposed a 
multi-objective Genetic Algorithm based G-RFFP method for autonomous cali-
bration of GCL using training data to deliver better UE positioning than tradi-
tional G-RFFP method. Two different approaches were followed to optimize 
GCL size and robustness of the proposed method was evaluated by applying 
the method in two different areas of interest. The GAFP method showed 56.74% 
of improvement in 95% of PE value over the conventional G-RFFP method. 

A generic measurement architecture referred to as GMDT for already ex-
isting MDT functionality was proposed in [PV] to correlate WLAN measure-
ments with LTE RSS values. Here we have analyzed the RFFP performance im-
provements for the proposed concept with LTE and WLAN field measurements. 
Results showed that when 10 strongest WLAN RSS along with LTE RSS were 
used an improvement of 74% was achieved over that of using only LTE RSS. In 
[PVI] the importance of GMDT functionality was emphasized by showing the 
improvements of G-RFFP positioning performances over conventional ap-
proach. In this work we have used partial fingerprint matching technique for 
test sample positioning. Different GCLs were utilized and also two different 
LTE frequency bands- 800MHz (intra-frequency) and 1800MHz (intra- and in-
ter-frequency) measurements were used. Experimental results depicts that 
RFFP using GMDT data and higher matching threshold gives much better posi-
tioning accuracy compared to that of LTE only measurements. Partial finger-
print  matching became useful since when using 100% matching was done more 
than one-third test samples were discarded; and lowering the matching thresh-
old enabled us to analyze more test samples but with a degradation of position-
ing accuracy. 

We proposed a novel cluster-based RFFP technique for outdoor UE locali-
zation using GMDT data in [PVII] which does not go through training phase 
data pre-processing as compared to the traditional G-RFFP method. It utilizes 
AHC clustering and uses LTE cell-ID technique to reduce the search space for 
test GMDT positioning and also delivers better result over conventional single-
grid G-RFFP method. During the evaluation of the proposed C-RFFP method 
we have used three different sets of GMDT data and different MT values. 
Through analyzing the common test sample estimation results it was found that 
using a data set comprising of only serving LTE BS and six WLAN AP RSS val-
ues the positioning result of C-RFFP method shows an improvement of 35% in 
the 68% of PE CDF values over that of the G-RFFP method. In [PVIII] four 
methods were used for UE positioning using three GMDT data-sets and four 
MT numbers. Analyzing the common analyzed test samples by the methods it 
was found that for a single LTE and six WLAN RSS training dataset using MT-3 
AHC based C-RFFP method performs the best showing an improvement of 42.3% 
and 39.8% in the 68% and 95% values of PE over that of G-RFFP method.  
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The main goal of [PIX] was to analyze the robustness of the C-RFFP meth-
od when there are variations in the data recording device and there exists a 
time difference between training data collection and test data estimation. For 
this purpose four C-RFFP methods were used and results were compared to the 
G-RFFP and KNN based RFFP methods. Here two experiments were carried 
out: in the 1st experiment training and test data samples were selected from the 
same time period of recording while in the 2nd experiment training GMDT data-
set was recorded in September 2014 and test data in May 2015. Each of the se-
lected test GMDT was surrounded by ten training data samples in its three me-
ter circular radius area in order to ensure good availability of training data 
samples near the test sample. Although there were degradations in positioning 
accuracies for every RFFP methods with variations in data-collection device and 
recording time but the estimated positioning results were acceptable; which 
shows that the C-RFFP methods are robust enough to output good UE position-
ing in such variations. When considering mostly analyzed test samples with 
variations in MT number it was found that using seven LTE and WLAN RSS 
and MT-2 ACH based C-RFFP provided the best UE positioning accuracy with 
an improvement of 15.46% and 22.30% in 95% of PE as compared to that of G-
RFFP and KNN methods respectively. We have also evaluated the computa-
tional time complexity among the RFFP methods and found that AHC based 
RFFP also outputs UE positioning taking the shortest time - this result will vary 
depending mainly upon the number of training samples and data dimension. 

Future work: 
In our ongoing work we are trying to address the following issues:  
1) In order to evaluate the performance of C-RFFP method as ubiquitous 

positioning technique our next goal is to use GMDT data which would be 
measured in outdoor as well as indoor environments. 

2) There is big impact of training data density on UE positioning accuracy 
and percentage of analyzed test samples. Hence we can make a detail evalua-
tion of it by analyzing every test GMDT sample and categorize them in differ-
ent groups according to the number of training samples surrounding it. 

3) The recording device variation should be addressed taking into account 
not only the mobile cellular phones but also tablets and laptops of various 
manufacturers. 

4) In our previous work the assignment of initial number of clusters was 
not similar for the different C-RFFP methods, thus for a better evaluation of the 
cluster based RFFP methods the same initial K number could be used. 

5) The amount of training samples affect the computational time needed to 
output a position estimation of different C-RFFP methods. In order to evaluate 
the real time applicability of C-RFFP methods it would be necessary to calculate 
the time complexity with different amount of training data. 
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YHTEENVETO (FINNISH SUMMARY) 

Radiotaajuussormenjälkeen pohjautuvat paikannusmenetelmät 

Viimeaikaiset edistysaskeleet langattoman tietoliikenteen saralla ovat avanneet 
kysynnän yhä tarkemmille ja luotettavimmille paikannusratkaisuille. Radiotaa-
juussormenjälkeen pohjautuva paikannus on yksi mielenkiintoisista ratkaisuis-
ta tällä saralla. Se käyttää olemassaolevien järjestelmien lähettämiä radiosignaa-
leita hyväkseen luodakseen kullekin paikalle ominaisen sormenjäljen, joka 
koostuu kyseisellä paikalla havaituista signaaleista ja niiden voimakkuuksista. 
Kyseiselle paikannustavalle yksi isoimmista haasteista on riittävän opetusin-
formaation kerääminen luotettavasti. Viimeaikaiset edistysaskeleet 3GPP star-
dardoinnissa edesauttavat tässä haasteessa, ja tämän nk. MDT-toiminnalli-
suuden myötä mobiilipäätelaitteet raportoivatkin sovitun käytännön mukaan 
havaitsemastaan radioympäristöstä. Tässä väitöskirjassa päätavoite on esittää 
tapoja, joilla tätä MDT toiminnallisuutta käytetään hyväksi radiotaajuuspai-
kannuksessa. Työssä käsitellään sekä pelkän solukkoverkkodatan hyväksikäyt-
töä paikannuksessa että langattomien lähiverkkojen mukanaantuomaa lisäar-
voa paikannustarkkuuden parantamisessa. Työssä käytetään tekoälyyn ja ko-
neoppismenetelmiin pohjautuvia ratkaisuja. Työn tuloksena esitetään uudenlai-
sia ja kustannustehokkaita tapoja paikannuksen, jonka tarkkuus yltää viran-
omaisten asettamiin vaatimuksiin hätätilapaikannuksen suhteen. 
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Abstract—This paper proposes a novel technique to enhance 
the performance of grid-based Radio Frequency (RF) fingerprint 
position estimation framework. First enhancement is an 
introduction of two overlapping grids of training signatures. As 
the second enhancement, the location of the testing signature is 
estimated to be a weighted geometric center of a set of nearest 
grid units whereas in a traditional grid-based RF fingerprinting 
only the center point of the nearest grid unit is used for 
determining the user location. By using the weighting-based 
location estimation, the accuracy of the location estimation can be 
improved. The performance evaluation of the enhanced RF 
fingerprinting algorithm was conducted by analyzing the 
positioning accuracy of the RF fingerprint signatures obtained 
from a dynamic system simulation in a heterogeneous LTE small 
cell environment. The performance evaluation indicates that if 
the interpolation is based on two nearest grid units, then a 
maximum of 18.8% improvement in positioning accuracy can be 
achieved over the conventional approach. 

Keywords— Grid-based RF fingerprint; Kullback-Leibler 
Divergence; Minimization of Drive Tests 

I.  INTRODUCTION 
Various location-based services in wireless communication 
networks depend on mobile positioning. Commercial 
examples range from low-accuracy methods based on cell 
identification to high-accuracy methods combining wireless 
network information and satellite positioning. These methods 
are typically network centric, where the position is determined 
in the network and presented to the user via a specific service. 
Due to logistical reasons, the position is estimated from static 
snapshot measurements, possibly provided by the mobile 
station (MS) [1]. A major driving force to estimation mobile 
user location is the requirement for E-911 emergency 
positioning in the North American market. This requirement 
calls for accuracies of 50 meters (68%) and 150 meters (95%) 
in the terminal-dependent case and 100 meters (68%) and 300 
meters (95%) in the network-dependent case [2]. Today, the 
Global Navigation Satellite System (GNSS) is the most 
effective positioning technology in the outdoor open 
environments [3]. However it has limitations such as poor 
performance in built-up areas and high power consumption. 
These limitations led to the development of positioning 
techniques based on the wireless networks. These technologies 

include a variety of time-of-arrival techniques (ToA and 
TDoA), angle-of-arrival techniques (AoA), and location 
fingerprinting techniques [4]. Typically, RF fingerprinting 
refers to a database correlation method where the position is 
estimated by comparing the radio measurements e.g., the RF 
fingerprint of the user equipment (UE) with the training 
fingerprints in the correlation database. The training 
fingerprints consist of received signal strength (RSS) radio 
measurements from several base stations (BS) that are used to 
provide a fingerprint of the radio conditions at a specific 
geographical location. Typically, this location is determined 
with an accurate positioning method, for example GNSS. 
Hence, fingerprinting is a positioning method which exploits 
the already existing infrastructures such as cellular networks 
[5] and WLANs [6]. 

One of the biggest challenges of RF fingerprinting is the 
burden of creating and maintaining the correlation database of 
the training fingerprints. Operators can maintain the 
correlation database by conducting extensive and expensive 
periodical drive test campaigns to collect the required 
measurements. However, the concept of Minimization of 
Drive Tests (MDT) provides a framework for gathering user 
reported location-aware radio measurements from commercial 
mobile phones that can be used for creating and maintaining 
such training databases [7], [8]. In fact, one of the benefits of 
MDT is that it provides an efficient way to automate the 
collection of training fingerprints in Universal Terrestrial 
Radio Access Network (UTRAN) and Evolved-UTRAN 
(EUTRAN) cellular systems. The MDT procedure allows 
operators to collect radio measurements, i.e. received signal 
strength and quality, with UE location information and a time 
stamp. It is worth noting that for immediate MDT, the network 
can make a request to UE to attempt to make GNSS location 
information available for MDT [8]. 

In our previous work [9], [10], we have evaluated the RF 
fingerprint positioning accuracy using Kullback-Leibler 
Divergence (KLD) and Mahalanobis distance with a single 
grid layout (SGL) in rural, urban and heterogeneous small cell 
networks. Although the positioning accuracy in dense urban 
scenario was good, the positioning error (PE) did not fulfill the 
E-911 requirements in the rural case.  

In this work, we propose a novel RF fingerprint algorithm 
to enhance the positioning accuracies further for rural case and 
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also in the dense urban scenario. The proposed enhancements 
are based on an overlapping grid layout technique to produce 
the training signatures and to determine the estimated position 
using the two smallest KLD weighted values among the 
matched training signatures. The effect of using the 
overlapping grid layout (OGL) is that it increases the training 
signatures as well as reduces the distances among the 
surrounding grid centers and thereby improving the 
positioning accuracy. However it increases the computational 
time needed to estimate the testing UE positions as compared 
to that of the traditional SGL method by a small amount. 

 This paper is organized as follows. Section 1 gives an 
introduction to the research problem. In Section 2, first 
conventional SGL RF fingerprinting and then the OGL 
approach using Kullback-Leibler Divergence method is 
described. Finally in Section 3, the performance evaluation of 
the enhancements is discussed in the light of extensive system 
simulations.

II. GRID-BASED RF FINGERPRINTING FRAMEWORK 

A. Single Grid Layout 
In SGL approach, RF fingerprinting correlation database is 

compressed to present the geographical space G={g1, g2, …, 
gN} e.g., “area of interests” as a regular tessellation of N 
square grid units gi as depicted in Fig. 1. Each grid unit gi is 
associated with a center point having coordinates ci={xi,yi} 
and a set of RF fingerprint training signatures Si={si,1, si,2, …, 
si,k} which will depend upon different sets of same BS id MDT 
samples. Hence, a training signature si,j is the jth signature 
associated with ith grid unit and it is constructed from n 
different MDT measurement samples. Each sample in Mi,j 
contains detailed location information e.g., x and y coordinate 
obtained from GNSS receiver, and m RSS measurement e.g., 
Reference Signal Received Power (RSRP) in EUTRAN, from 
different BSs. 

1 1 1,1 1,m

,

n,1 n,m

i j

n n

x y rsrp rsrp

x y rsrp rsrp
M , (1) 

where, rsrp1,m is the 1st RSRP measurement with a BS 
identifier m. Moreover, Euclidean distance between the 
detailed locations of the n measurement samples and the 
center point of ci suggests that the nearest grid unit is gi. For 
ensuring an efficient and fast processing of the measurement 
data, the MDT training measurements are compressed e.g., for 
each grid gi, the signatures in Si stores only the means and the 
covariance of the received signal strengths between the 
detected BSs in Mi,j as discussed in [9], [10].  
 

B. Overlapping  Grid Layout 
In Overlapping Grid Layout (OGL) approach, the whole 

area of interest is divided into square grids similar to the SGL 
approach but there are now multiple layouts which overlap 
each other. In the present work, OGL consisted of two grid 

layouts denoted by OGL1 and OGL2 having same sized square 
grids. OGL2 was placed in a fashion that an OGL1 grid unit is 
overlapped by ¼th area of an OGL2 grid unit. In this way  
OGL1 grid unit is fully overlapped by four OGL2 grid units as 
shown in Fig. 2, here the squares with blue border lines 
belongs to OGL1 layout and the blue stars represents the 
corresponding grid centers, whereas the squares with green 
border lines and green stars depicts the OGL2 layout.  Thus the 
center points of four OGL2 grid units fall on the four corners of 
the overlapped OGL1 grid unit.  

Training signatures are formed in grid-wise manner. A 
training signature comprises of a set MDT samples that are 
located within a grid unit and these MDTs were reported to 
have the same BS ids. The same set of training samples is used 
to form the training signatures for OGL1 and then for OGL2. 
Because of the offset between the layouts mostly different 
training signatures will be associated with the layouts. 
Inherently some common signatures will exist between these 
layouts. All the training signatures belonging to OGL1 and 
OGL2 layouts are put together to create the whole training 
signature database. 

During the testing phase, all training signatures that match 
with the testing signature BS ids are searched, and then the 
KLD distances are calculated between the testing signature 
and those training signatures. In KLD method, training and 
testing phase signatures e.g., mean vectors u and covariance 
matrices  parameterize multivariate Gaussian distributions 
p(x|u, ), and therefore, the method aims to exploit 
interdependencies among the received signal strengths 
between BSs by using covariance matrices for training and 
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Fig. 3: Sparse regular macro scenario 

testing phase signatures as given by the following closed form 
KLD equation:  

             

                             (2) 

 

where, uu, and ûi,t corresponds to the mean received signal 
strength values, while u and i,t represents the covariance 
matrices of the received signal strength values of the testing 
and training signatures respectively. Here, tr() denotes the 
trace of matrix, -1 denotes the inverse of covariance matrix  
and I is the identity matrix. It is a non-symmetric measure of 
the difference between testing and training signature 
probability distributions pu and pi,t. Two grid units are selected 
which correspond to the two smallest KLD distance values 
among all the matched training signatures. Now the estimation 
point for the testing signature is calculated to be in between 
the center points of these two grids according to the KLD 
weight factor of the corresponding grids. For example, in Fig. 
2, the testing signature 1 i.e., ‘test sig.1’, has two matched 
training signatures: ‘tr.sig. 2’ which belongs to OGL1 and 
‘tr.sig 3’ of OGL2 layout. In order to determine the estimated 
position for the testing signature, the KLD values of these two 
training signatures are used as weights and depending upon 
the weighted value the estimation point moves along the line 
joining the center points of the corresponding grid units as 
described in next section.  

C. Weighted Overlapping Grid Layout 
The enhanced algorithm for a grid-based RF fingerprinting 

uses the weighted geometric center of a set of nearest grid 
units to determine the location of a testing signature in a two 
dimensional grid. Formally, the geometric center (or centroid) 
is an arithmetic mean of a set of points weighted by special 
weight i.e., point density or mass. In the context of this paper, 
the KLD metric is used to find the n nearest grid units and to 
weight the arithmetic mean. 

To determine the location of a testing signature si, a subset 
Gi = {g1, g2, …, gk} of nearest grid units based on KLD metric 
is chosen depending upon the matched BS ids of the testing 
signature. In addition, each grid unit in Gi is assigned with a 
weight wj and therefore a set of weights Wi = {w1, w2, …, wk} 
is obtained. Since, the KLD metric is smallest for the nearest 
grid unit, the weighting factors are inversely proportional to 
KLD metric for ensuring that more weight is given to the 
nearest grid unit. The weighting factor wj for jth grid unit gj in 
subset Gi is given as,  

 

1 1

1
1

1 1
j

j k k

j
l ll l

w                 (3) 

where, j is the KLD metric between testing signature si and 
jth grid unit in the subset Gi of the k nearest grid units. Note 
that the weights in Wi are normalized so that they sum up to 1. 

Therefore, the weighted geometric center of the testing 
signature is obtained from, 

T[ , ] ( ) [ , ]i i i i ix y w x y

where wi, xi, and yi are column vectors containing the weights 
and x and y coordinates of the k nearest grid units in Gi.  
Moreover, (.)T is a vector transpose operation. Hence, (4) 
gives the scalars xi and yi which is the location of the weighted 
arithmetic mean of the points in Gi and the estimated location 
of si. In this study, k is equal to 2, so only two nearest 
neighbors where considered for analyzing the location 
estimates for testing signatures. 

III. PERFORMANCE EVALUATION 

A. Simulation Scenario 
In this study we have conducted a performance evaluation 

of our enhanced RF fingerprinting method having two 
overlapping grid layouts with the traditional single grid layout. 
For this purpose, we have performed two simulations in two 
different network scenarios, (i) sparse regular macro (RM) and 
(ii) heterogeneous small cell (HSC) network as illustrated in 
Fig. 3 and Fig. 4 respectively. Both scenarios are the same as 
in [10] and those were simulated by using a state-of-the-art 
LTE Rel’10 dynamic system simulator to model both the 
downlink and the uplink in an OFDM symbol resolution with 
several radio resource management, scheduling, mobility, 
handover and traffic modeling functionalities. Simulation 
parameters and mathematical models are based on the 3GPP 
specifications, (especially in the simulation assumptions in 
3GPP TR 36.839) defining parameterization for used 
bandwidth, center frequency, path-loss, slow fading, and fast 
fading [11]. Moreover, UE measurements e.g., RSRP, were 
implemented in the simulator taking into account the technical 
requirements for the absolute and relative measurement errors 
and -6 dB Ês/Iot cell detection criterion as in [12]. 

 The RM network consisted of 57 BSs operating on primary 
frequency band (CC0) and 36 sectored high power Pico BSs 
operating on non-overlapping secondary carrier (CC1). Inter-

1 1 1
, , , , ,,

1|| ˆ ˆ ˆln
2 i t i t i t u i t u

T
ii u tu t ud p p trû û Iu u
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Fig. 4: Heterogeneous small cell scenario 

site distance between the BSs on CC0 and CC1 are 1750m and 
875m, respectively. Locations of three-sectored Pico sites on 
CC1 were shifted to be in between the macro BSs on CC0 as 
depicted in Fig. 3 with red triangels. In RM scenario a total of 
82320 MDT samples were generated for the analysis. For this  
case we have picked up the MDT samples from an area 
enclosed by the blue hexagon as shown in Fig. 3 in order to 
maintain size similarity between the RM and HSC scenarios.  
 The HSC network consisted of 57 macro BSs having inter-
site distance of 500m and operating on CC0 band. In addition, 

36 small cells with omni-directional antennas were randomly 
deployed in the coverage area of 12 centermost macro BSs as 
depicted in Fig. 4 with red circles. Distance to the nearest 
inter-site small cell varied from 50m to 170m with average 
distance being 95m. In HSC scenario, UEs were moving only 
in the area of 12 centermost macro BSs but were able to 
monitor all detected cells. In RM scenario, UEs were moving 
in one specific area with area size similar to the simulation 
area in HSC scenario. In total, 1200 randomly moving outdoor 
vehicular UEs (30 km/h) were distributed uniformly to the 
simulation area. Traffic profile consisted of data generated by 
MDT reports which were sent once per second, however, 
100% resource block loading was used for creating 
interference limited simulation environment which is more 
challenging from cell detection point of view. More details 
abou the used simulation parameters can be found in the Table 
I in [10].  

B. Performance Results 
In this study the positioning accuracies were analyzed using 
two different amounts of training data and testing data. First 
90% of the MDT data samples were used in training and the 
estimation was done for the remaining 10% MDT samples. 
Then 10% of the MDT data samples were taken for training 
and 90% for the testing purpose. Such an approach was 
selected for studying how the amount of training data affects 
the performance of OGL method. The training and the testing 
database samples are selected in call-wise manner e.g., all 
MDT reports from single UE belongs always either on the 
training or the testing database. This is done to avoid too 

optimistic positioning results in cases where consecutive 
measurements from one UE are found in training and testing 
databases. The number of training signatures used and 
analyzed test signature percentages in SGL and OGL methods 
are given in Table I. From this table we can find that number 
of training signatures used in OGL is about twice the number 
used in SGL for all the different simulations.  

TABLE I. ANALYZED RF FINGERPRINT SIGNATURES OF SGL AND OGL 
LAYOUTS 

Grid-
cell size 

Scen-
ario 

Train-
ing 

Data 
(%) 

Total no. of 
Training 

Signatures 
(Absolute) 

Analyzed Test 
Signatures (%) 

SGL OGL SGL OGL 

10
-B

Y
-1

0 
M

 

RM  
(ISD 

1750M) 

90% 16443 32758 83.19 84.86 

10% 2044 4092 62.19 69.07 

HSC  
(ISD 

500M) 

90% 48808 97687 71.66 73.39 

10% 6319 12707 47.60 55.14 

40
-B

Y
-4

0 
M

 
RM  
(ISD 

1750M) 

90% 7090 14222 82.64 85.72 

10% 1709 3401 64.02 73.80 

HSC  
(ISD 

500M) 

90% 22079 44219 70.50 74.62 

10% 

 
5321 10677 47.74 61.43 

TABLE II. POSITIONING ACCURACY PERFORMANCE EVALUATION 

 
Scen-
ario 

Trai-
ning 
Data 
(%) 

RF 
Finger-

print 
Algori-

thm

For 10-by-10 m Grid  For 40-by-40 m Grid 

68% PE 
(m)  

95% PE 
(m) 

68% PE 
(m) 

95% PE 
(m) 

 

RM  
(ISD 
1750

M) 

 
 

90% 

 
SGL 

Based 

 
29.73 

 
165.29 

 
43.53 

 
196.30 

 
OGL 
Based 

 
31.41 

(+5.6%) 

 
147.49 

(-10.7%) 

 
40.86 

(-6.1%) 

 
161.75 

(-17.6%) 
 
 

10% 

 
SGL 

Based 

 
72.00 

 
228.80 

 
72.48 

 
225.45 

 
OGL 
Based 

 
63.96 

(-11.1%) 

 
206.05 
(-9.9%) 

 
65.03 

(-10.2%) 

 
203.70 
(-9.6%) 

 

HSC  
(ISD 
500 
M) 

 
 
 

90% 

 
SGL 

Based 
 

 
21.12 

 
58.08 

 
33.73 

 
76.43 

 
OGL 
Based 

 
19.45 

(-7.9%) 

 
50.94 

(-12.2%) 

 
27.57 

(-18.2%) 

 
64.87 

(-15.1%) 
 
 

10% 

 
SGL 

Based

 
27.23 

 
73.61 

 
34.83 

 
80.86 

 
OGL 
Based 

 

 
25.14 

(-7.6%) 
 

 
66.47 

(-9.6%) 

 
28.28 

(-18.8%) 

 
68.71 

(-15.0%) 
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It is noticeable from Table I that for 90% of training data 
the increased percentage of analyzed test signatures for OGL 
as compared to SGL method is about 1.7% and 3% for 10 by 
10 m and 40 by 40m grid-cells respectively. Whereas for 10% 
of training data the improvement shown by OGL method over 
SGL is about 7% and 10% for 10 by 10 m and 40 by 40m 
grid-cells respectively in analyzing the test signatures. 
The simulation results for the conventional SGL and the 
proposed OGL RF fingerprint positioning in RM and HSC 
scenarios are given in Table II. Here 68 and 95 percentiles 
give the positioning error (PE) in meters for SGL and OGL 
methods using different training data sets during simulations. 
The percentage within the first bracket under the PE value of 
each of the OGL based method indicates the degradation (with 
a + sign) or improvement (with a - sign) in positioning as 
compared to the SGL method. For example, in the HSC 10% 
training case with 40m by 40m grid the SGL fingerprint 
positioning algorithm has given 34.83 meters and 80.86 
meters of PE in the 68 and 95 percentiles respectively whereas 
that of OGL is 28.28 meters and 68.71 meters respectively. 
Hence OGL method has reduced the PE by 18.8% and 15.0% 
in 68 and 95 percentiles respectively as compared to that of 
the SGL method. Also for HSC 90% training case with the 
same grid size OGL has shown 18.2% and 15.1% of 
improvement in 68 and 95 percentiles respectively over that of 
the SGL. Table I depicts that almost in every simulated study 
OGL RF Fingerprinting performs better than SGL method. 
Moreover, it is worth highlighting that if only 10% samples 
are available for constructing the training signatures, 40-by-40 
meters OGL can outperform 10-by-10 meters SGL 
performance.  

In our present study the MDT samples comprising the 
testing signatures tend to be distributed over several training 
grid units, as a result positioning accuracies were improved 
when an overlapping grid layout is used for the formation of 
training signatures and then the centroid point is determined 
from the two smallest weighted KLD grids. The OGL method 
has constructed more training signatures with different 
combinations of BS IDs than the SGL method. Therefore, it is 
more probable to find matching combination of BS IDs in 
OGL method. Hence the proposed algorithm not only 
improves the positioning accuracy but it can also analyze more 
testing samples.  

IV. CONCLUSION 
This paper proposed two enhancements for grid-based RF 
fingerprint position estimation framework. First enhancement 
is an introduction of overlapping grid layout to form training 
signatures. In the second enhancement, the location of the 
testing signature is estimated to be a weighted geometric 
center of a set of nearest grid units. This is different from the 
traditional grid-based RF fingerprinting where only the center 
point of the nearest grid unit is used for determining the user 
location. The performance evaluation of the enhanced RF 

fingerprinting algorithm was conducted by analyzing the 
positioning accuracy of the RF fingerprint signatures obtained 
from a dynamic LTE system simulation.   

The proposed enhancements can increase the number of 
training signatures that needs to be analyzed for finding the 
nearest grid but in addition the positioning accuracy is 
increased, specifically in cases where only a limited amount of 
data is used for constructing the training signatures. The 
performance evaluation indicates that the proposed 
overlapping grid layout method using KLD can provide a 
maximum of 18.8% improvement in positioning accuracy as 
compared to that of the conventional single grid layout 
approach. 
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Abstract— In this paper we propose a novel optimization 
algorithm for grid-based RF fingerprinting to improve 
user equipment (UE) positioning accuracy. For this 
purpose we have used Multi-objective Genetic Algorithm 
(MOGA) which enables autonomous calibration of grid-
cell layout (GCL) for better UE positioning as compared to 
that of the conventional fingerprinting approach. 
Performance evaluations were carried out using two 
different training data-sets consisting of Minimization of 
Drive Testing measurements obtained from a dynamic 
system simulation in a heterogeneous LTE small cell 
environment. The robustness of the proposed method has 
been tested analyzing positioning results from two 
different areas of interest. Optimization of GCL is 
performed in two ways: (1) array-wise calibration of the 
grid-cell units using non-overlapping GCL and (2) creating
an overlapping GCL to cover of whole simulation area 
with different rectangular grid-cell units. Simulation
results show that if sufficient amount of training data is 
available then the proposed method can improve 
positioning accuracy of 56.74% over the conventional grid-
based RF fingerprinting.   

Keywords- Grid-based RF fingerprinting; Minimization of Drive Tests; 
Multi-objective Genetic Algorithm; Kullback-Leibler Divergence. 

I. INTRODUCTION

Positioning in wireless networks is dependent on the mobility 
of users and the dynamic nature of both the environment and 
radio signals. Users expect the same level of performance 
whether they are indoors or outdoors in a rural or urban 
environment. So far no single positioning method, including 
GPS, works well in all environments [1]. Receivers in Global 
Navigation Satellite Systems (GNSS) such as GPS or 
GLONASS tend to output inaccurate location estimations 

while operating in urban regions, mostly due to the density of 
tall buildings, which often block a receiver's line of sight to 
the navigation satellites [2]. Among the non-standard 
positioning methods included in LTE Release 9, RF 
fingerprinting is the most cost-efficient solution for indoor 
WLAN positioning [3], [4], [5] as well as for outdoor mobile 
cellular positioning in densely built urban environments [6], 
[7]. RF fingerprinting, also known as database correlation 
method (DCM) finds a user’s position by mapping RF 
measurements obtained from the UE onto an RF map, where 
the map is typically based on detailed RF predictions or site 
surveying results.  
An ideal positioning system should be self-learning and 
environmentally adaptive, capable of building up information 
databases that store actual observations, and employ smart 
data analysis mechanisms [1]. In order to achieve such a goal, 
a functionality known as Minimization of Drive Tests (MDT) 
has been proposed in LTE Release 10 which reduces the huge 
cost and efforts associated with the conventional drive test 
measurement procedure. MDT provides a framework for 
gathering user reported location-aware radio measurements 
from commercial mobile phones that can be used for creating 
and maintaining RF fingerprint training databases [8], [9]. It 
allows operators to autonomously build and update large 
training database for RF fingerprinting from various locations 
of user experience along with available location information 
from UEs without extra hardware installation.    
In [10] and [11] grid-based RF fingerprinting has shown good 
positioning performance in rural, urban and heterogeneous 
small cell networks scenario using MDT simulated data. An 
overlapping grid-cell layout (GCL) based RF fingerprinting 
approach was proposed in [12] which further improves the 
positioning accuracy. The performance results of [11] indicate
that using a common GCL in different network scenarios does 
not provide the best positioning accuracy in both 68%-ile and 
95%-ile of positioning error (PE) estimation. It was also found 



from [12] that positioning performances varies of a GCL that 
is composed of same square grid-cell units when amount of 
training data is varied. From literature review we did not find 
an explicit method for optimizing GCL in grid-based RF 
Fingerprint positioning. In [13] GA was used to reduce the 
correlation space in RF fingerprinting location method to 
improve location accuracy and authors have claimed their 
method to be suitable for UE positioning in urban 
environments. Authors in [14] have proposed a location 
detection algorithm which employs cell-id positioning 
enhanced by triangulation. The process was accelerated 
through the application of a GA. 
In this paper, we propose a novel method based on MOGA to 
develop an autonomous grid-based RF fingerprinting by 
optimizing the GCL in order to achieve the best possible 
positioning accuracy despite changes in cellular network 
scenarios and amounts of training data. This would render the 
positioning system an adaptive one which can make necessary 
adjustments to the grid-cell size along with the structural and 
environmental changes of the surrounding for an optimal RF 
fingerprint positioning performance. 
The following section contains a brief description of the 
conventional RF fingerprinting using MDT measurements. In 
section III first a brief description of multi-objective GA is 
given, and then the MOGA optimized RF fingerprint 
positioning (GAFP) method is explained. Finally section 4
discusses the performance evaluation of GAFP in the light of 
extensive system simulations.  

II. RF FINGERPRINTING USING MDT MEASUREMENTS

A.  Minimization of drive tests  
Conventional drive tests consume significant time and human 
efforts to obtain reliable data [8]. MDT is a feature introduced 
in 3GPP Release 10 that enables operators to utilize UE to 
collect radio measurements and associated location 
information, in order to assess network performance while 
reducing the large operation expenditure associated with 
traditional drive tests. Location information for MDT can be 
categorized into two different types: detailed location 
information and RF fingerprint. Detailed location information 
is typically obtained by GPS or Global Navigation Satellite 
System (GNSS) positioning method, but can also be obtained 
by other positioning methods supported by the UE and the 
network, e.g., Observed Time Difference of Arrival 
(OTDOA), Assisted -GNSS (Assisted-GPS) or Enhanced Cell 
ID (E-CID). Whereas in RF fingerprint type of MDT a profile 
of measured signal strength from neighboring cells is created. 
A major difference between conventional drive tests and MDT 
is that conventional drive tests use a controlled application 
with known traffic characteristics, whereas MDT uses 
ordinary user traffic with largely unknown characteristics [9].  
Thus operators are able to build a large RF fingerprint training 
database from UE’s in different network environments and up-
date it as needed. This urges for an autonomous RF 
fingerprinting method which makes necessary calibration to its 
GCL with the updated MDT training database. 

B. Grid-cell Based RF Fingerprinting 
In a conventional grid-cell layout (CGCL) based RF 
fingerprinting method using Kullback-Leibler Divergence 
(KLD) has two main phases [3], [10], [11]:  
Training Phase: First an offline processing and manipulation of 
MDT correlation database takes place. A layout of adjoining 
rectangular or square grid-cell units are formed over the whole 
geographical area of interest.  Each of these grid units gi is 
associated with a center point having coordinates ci={xi,yi} as 
shown in Fig.1. Then unit-wise creation of training signatures 
is performed by gathering MDT measurements having signal 
strength values, e.g., Reference Signal Received Power (RSRP) 
from same set of base-stations (BSs). Hence depending upon 
the size of a grid-cell unit I and the availability of MDT 
measurement samples within that grid, it  may contain multiple 
training signature Si,j={si,1, si,2, …, si,j}, where j is the total 
number of signatures. Each signature consists of multiple MDT 
measurements collected from that particular grid-cell unit 
having RSRP values from similar BS Ids along with detail 
location information of corresponding MDT measurement 
positions. For example the signature s1,1 as shown in Fig. 1 
consists of four MDT samples and can be expressed by: 

1,1 1,1 1,1

1,1

1,4 1,4 1,4

c ID rsrp
s

c ID rsrp
=                             (1) 

where, ci,j is a vector of x and y coordinates for an MDT 
measurement, IDi,j stands for the cell identities which is same 
for all the samples that form a signature and the vector rsrpi,j
contains RSRP values of corresponding MDT samples.   

  

Fig.1 illustrates a conventional grid-based RF fingerprinting 
method. Here the area of interest has been divided into four 
square grid-cells, all of which have the same arm length of 20 
meters and corresponding grid centers as depicted by c1, c2, c3
and c4. The training MDT samples are shown here by blue dots 
while the testing samples by red dots. It can be seen from this 
figure that no all the training samples which belong to a grid-
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Figure 1. 20-by-20 meter grid-cell layout of a conventional RF 
fingerprint positioning 



cell form training signatures, but only those which matches in 
BS ids.  

Testing Phase: During this phase testing signatures are formed 
from the MDT samples obtained from a particular UE. As we 
can see from the Fig.1 we have multiple training signatures and 
one testing signature depicted by u in this example. At first 
training signatures are collected which match with the testing 
signature BS IDs. Here if we assume that we have three such 
matched training signatures- s1,3, s2,2, and s3,2, then KLD is 
calculated between u and matched training signature RSRP 
values. Now if the KLD between u and s3,2 gives the minimum 
value then the center location of grid-cell 3, which is c3 is 
chosen to be the estimated position for the MDT samples of 
testing signature u. The closed form KLD equation is given by:    

                
         (2) 

where, uu, and ûi,t corresponds to the mean received signal 
strength values, while u and i,t represents the covariance 
matrices of the received signal strength values of the testing 
and training signatures respectively. Here, tr() denotes the 
trace of matrix, -1 denotes the inverse of covariance matrix 
and I is the identity matrix. It is a non-symmetric measure of 
the difference between testing and training signature 
probability distributions pu and pi,t. 

III. GRID-CELL LAYOUT OPTIMIZATION USING GENETIC 
ALGORITHM 

A. Motivation 
From our previous work in this field it is clear that GCL 
optimization is necessary to make RF fingerprinting an 
adaptive positioning technique which would deliver its 
optimal performance in both 68%-ile and 95%-ile of PE 
despite changes in the BS positions, surrounding structures or 
amount of MDT training samples used [10],[11],[12]. Here 
our goal is to autonomously select a GCL which would deliver 
optimal positioning performance in both the 68%-ile and 95%-
ile value of PE. From simulation results we found that using 
square GCs between 20m-by-20m to 40m-by-40m, for 
different square Grid-cell layouts the 68 and 95 percentiles of 
positioning error tends to be conflicting - when 68%-ile value 
of PE decreases then 95%-ile value increases and vice-versa. 
Therefore we were motivated to use a popular Multi-Objective 
Evolutionary Algorithm (MOEA) know as  Multi-Objective 
GA (MOGA) to select the proper GCL for RF fingerprinting,
where the objective functions are 68th and 95th percentiles of 
positioning error. The reason for employing MOGA is that 
other stochastic search strategies (e.g., simulated annealing, 
ant colony optimization or particle swarm optimization) do not 
guarantee to find the true Pareto optimal set but, instead, aim 
to generate a good approximation of such set in a reasonable 
computational time. On the other hand, MOEAs are 
particularly well-suited to solve multi-objective problems 
because they operate over a set of potential solutions. This 
feature allows them to generate several elements of the Pareto 
optimal set in a single run. Furthermore, MOEAs are less 

susceptible to the shape or continuity of the Pareto front than 
traditional mathematical programming techniques, require 
little domain information and are relatively easy to implement 
and use.    

B. Genetic Algorithm Optimized RF Fingerprinting 
The term genetic algorithms refer to a subset of evolutionary 
algorithms that model biological processes to optimize highly 
complex cost functions. GA is capable of yielding a robust 
search by implicitly sampling hyper-plane partitions of a 
search space. A single hyper-plane, commonly referred to as 
schema, is the theoretical foundation on which the algorithm 
was developed as first introduced by John Holland in 1975 
[15]. Here a population represents a group of potential 
solution points and a generation represents an algorithmic 
iteration. A chromosome is comparable to a design point and a 
gene is comparable to a component of the design vector. 
Given a population of designs, three basic operations are 
applied: reproduction, crossover, and mutation. Reproduction 
involves selecting design vectors from the current generation 
to be used in the next generation and whether or not a design 
is selected depends on its fitness value. Fitness, which is 
determined by a fitness function, is an indication of how 
desirable a design is in terms of surviving into the next 
generation. The selection probability represents the chance for 
survival and is proportional to a design’s fitness value. Once a 
new generation of designs is determined, crossover is 
conducted as a means to introduce variations into the 
population of designs. Crossover is the process of combining 
or mixing two different designs. The next operation, which 
also is used to introduce variations into the population, is 
mutation. It is a random process that entails altering part of a 
design’s genetic string. In our simulations we have used the 
multi-objective GA function ‘gamultiobj’ of Matlab R2014a 
which uses a controlled elitist genetic algorithm, a variant of 
NSGA-II [16]. This controlled elitist GA favors individuals 
that can help increase the diversity of the population even if 
they have a lower fitness value. It is very important to 
maintain the diversity of population for convergence to an 
optimal Pareto front. This is done by controlling the elite 
members of the population as the algorithm progresses. Two 
options 'ParetoFraction' and 'DistanceFcn' are used to control 
the elitism. The Pareto fraction option limits the number of 
individuals on the Pareto front and the distance function helps 
to maintain diversity on a front by favoring individuals that 
are relatively far away on the front. Here a crowding distance 
for each member is calculated and it is used in the selection 
process in order to spread the solutions along the Pareto front. 
In the present work two approaches were followed to optimize 
the GCL using MOGA:  
(1) Non-overlapping GCL (NoGCL) approach: Here the 
length of a chromosome is twice the number obtained dividing 
the length of the area of interest by the lower bound. The first 
half genes of a chromosome are allocated as lengths of the 
grid-cell units (GCUs) sequentially in a row one after another 
from left to right. While the second half genes are for the 
heights of the corresponding grid-cell units. In this approach 
MOGA tries to select GCUs design which is replicated 
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column-wise to cover the whole area of interest. For the 
example shown in Fig. 2, the NoGCL approach will use a 
chromosome length of 60 genes for 10m-by-10m square GCL. 
Using MOGA operators the GAFP searches for the optimal 
GCL which consists of different rectangular GCUs along a 
row while he same GCU is used along a column. 

(2) Overlapping GCL (OGCL) approach: In the second 
approach the total gene number of a chromosome equals the 
multiplications of the numbers obtained dividing the length 
and height of the area of interest by the lower bound. The 
chromosome allocation used in the present research is 
depicted in Fig. 2 where the area of interest spans over 300m-
by-300m and only 20m-by-20m square GCUs constructs the 
GCL. So in this case there are 15 GCUs along the rows as well 
as 15 GCUs along the columns. As we can see from the Fig.2 
a chromosome comprises of 450 genes. In each of the 
chromosomes 30 consecutive genes starting from the left of 
the chromosome string is allocated to the lowest row of GCUs 
as indicated by number 1 in the figure, the next 30 consecutive 
genes belongs to the 2nd row and so on. In each of these sets 
of genes the first 15 genes are allocated to the lengths of 
GCUs starting from left side and rest of the 15 genes are 
allocated to the heights of the corresponding GCUs. In this
approach, we have fixed the base-position of each of the 
GCUs according to the lower bound of the GCU, which is 
20m along the columns heights. So, only for the 20m-by-20m 
square GCU there will be no overlapping, otherwise for all 
GCL overlapping GCUs will cover the area of interest. Hence 
for any chromosome GCU layout begins from row 1 according 
to the first 30 consecutive genes and then the next 30 genes 
are allocated to row 2 where for each of the GCU the lower 
base is 20m above the base of row1. Hence there will be fixed 
number of overlapping GCUs along the columns, except the 
20m-by20m GCL. The OGCL approach is computationally 
more expensive as compared to that of the NoGCL approach.    
  
Initial population was generated using real valued 
chromosome genes. For the NoGCL approach the lower and 
upper bounds of the GCU were 10m and 30m respectively. 
For the OGCL approach we have selected the bounds to be 

20m and 40m respectively in order to reduce the chromosome 
length. In both the approaches initial population contains GCL 
having square GCUs ranging between the lower and upper 
bounds covering the whole area of interest while the rest of the 
chromosomes comprise of random real valued genes within 
the lower and upper bounds of the respective approaches. It is 
worth mentioning that for creating the training signatures only 
those GUCs are selected which fall inside the area of interest, 
since for various chromosome structures some GCL will cover 
far bigger area as compared to our area of interest.  

The MOGA operation is given by the following flowchart: 

The fitness function of the proposed GAFP method is given 
below: 

     

Create validation signatures UE-wise 

Create grid-cell layout according to the chromosome  

Group MDT samples grid-wise and form training signatures 

Select training signatures having same BS IDs as that of a 
validating signature 

Calculate KLD values and select the grid-cell that corresponds to 
the smallest training signature KLD   

Calculate 68 and 95 percentiles of positioning error 

Figure 4. A block diagram representation of GAFP fitness function   
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Figure 2. Allocation of a chromosome for overlapping GCL 
approach   
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Figure 3. A flowchart of MOGA   



We have divided the total number of MDT samples obtained 
from the area of interest into three sets: (i) training data, (ii) 
validation data and (iii) test data. As we can see from Fig.4, 
GAFP uses the training data to create training signatures and 
the validation data to calculate the fitness values of the 
chromosomes in different generations. Finally the test data is 
used to evaluate the performance of the GAFP optimized 
GCL.  
GAFP delivers no single optimum solution but a series of 
equally optimal ones. In order to select a single solution we 
have adopted the approach of the evolution line as a posteriori 
preference articulation technique that uses weights to prioritize 
objectives after the Pareto front has been obtained [19]. The 
evaluation line is drawn in the objective space using a 
weighted function that reflects the preferences towards the 
objectives. The advantage of the function is that it leans the 
evaluation line towards the preferred objectives. Here Pareto-
optimal solution is evaluated based on its point-line distance 
from the evaluation line. This criterion overcomes the issue of 
non-convex areas of the Pareto front, as each solution is 
evaluated based on its closeness to the evaluation line. In our 
simulations equal weight was given to the objective functions 
to select the optimal solution while evaluating the GAFP 
positioning accuracy.     
      

IV. PERFORMANCE EVALUATION

A. Simulation Scenario
In this study we have performed test simulations in 
heterogeneous small cell (HSC) network scenario as illustrated 
in Fig. 5. It was simulated by using a state-of-the-art LTE 
Rel’10 dynamic system simulator to model both the downlink 
and the uplink in an OFDM symbol resolution with several 
radio resource management, scheduling, mobility, handover 
and traffic modeling functionalities. Simulation parameters and 
mathematical models are based on the 3GPP TR 36.839 
specifications, defining parameterization for used bandwidth, 
center frequency, path-loss, slow fading, and fast fading 0. 
Moreover, UE measurements e.g., RSRP, were implemented in 
the simulator taking into account the technical requirements for 
the absolute and relative measurement errors and -6 dB Ês/Iot 
cell detection criterion as in 0. 

The HSC network consisted of 57 macro BSs having inter-site 
distance of 500m and operating on CC0 band. In addition, 36 
small cells with omni-directional antennas were randomly 
deployed in the coverage area of 12 centermost macro BSs as 
depicted in Fig. 5 with red circles. Distance to the nearest inter-
site small cell varied from 50m to 170m with average distance 
being 95m. Here, UEs were moving only in the area of 12 
centermost macro BSs but were able to monitor all detected 
cells.  

In order to check the robustness of our proposed method the 
total area of interest which is 300m-by-600m has been equally 
divided into two squares, each of 300m-by-300m. In Fig 5 
these square areas are indicated by alphabetic letters- A and B
with dotted black lines showing their boundaries. Within area-
A there were 36184 MDT samples and within area-B the 
number of MDT samples are 36375. In total, 1623 randomly 
moving outdoor vehicular UEs (30 km/h) were distributed 
uniformly to the simulation area, where 100% resource block 
loading was used for creating interference limited simulation 
environment which is more challenging from cell detection 
point of view. Traffic profile consisted of data generated by 
MDT reports which were sent once per second. More details 
about the used simulation parameters can be found in [11].

B. MOGA Parameters 

The parameters used in the MOGA are summerized in Table I.

TABLE I. MOGA PARAMETERS USED IN SIMULATIONS

 Parameters Type/Value 

Selection type Tournament 

Crossover type and  Scattered  
Crossover fraction 0.8 
Mutation function Constraint dependent 
Fitness functions 68 percentile value of PE, 95 percentile 

value of PE 

Chromosome length 60 and 450 for Non-overlapping and 
Overlapping approaches respectively  

Population size 60 and 100 

Stopping criteria 200 generations and spread of Pareto 
solutions less than tolerance: 0.0001 

Pareto fraction 0.35 

C. Simulation Results 
Robustness Evaluation: For this purpose we have chosen two 
different areas- A and B with different training, validation and 
testing datasets in the simulations. In both of the simulations 
only 10% training data were used to form the training 
signatures, 30% MDT samples were used for validation 
purpose of the GAFP fitness evaluation and rest of 60% data 
for testing the optimized GCL. Here we have used the 
computationally less expensive NoGCL approach with a GA 
population size of 50; it has taken 127 and 132 GA 
generations for area A and B respectively. A comparison study 
between CGCL and NoGCL methods positioning performance 
is shown in Table II. Here we have results from three different 
CGCL grid-cell layouts: 30m-by30m, 20m-by-20m and 10m-
by-10m following the conventional grid-based RF 
fingerprinting. We have chosen these CGCL grid-cell layouts 
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as the grid-cell size parameter used in NoGCL simulations 
range between 30m to 10m. The Pareto front and average 
distance between chromosomes are shown in Fig. 6(a) and 
6(b) respectively, obtained from NoGCL simulation in area B. 
We can see from the 68%-ile and 95%-ile results in Table II 
that the GAFP NoGCL approach gives less PE as compared to 
CGCL in both the areas A and B. In area B the NoGCL 
approach shows an improvement of 10.5% in the 95%-ile PE 
over that of the 10m-by-10m CGCL method. The analyzed 
test MDT sample percentage is bit higher in area A and bit 
lower in area B for the NoGCL than that of the CGCL method. 
The third row in Table II shows the performance results for 
the whole area of interest, i.e.  combined area A and B. Here 
we have used the optimized GCL solutions from the NoGCL 
method simulated separately in areas A and B. Here also the 
NoGCL has better positioning accuracies in both 68%-ile and 
95%-ile as compared to the CGCL. All these results show the 
effectiveness of the proposed GAFP method despite changes 
in cellular network structure.  
Next we have evaluated the GAFP positioning accuracy 
through increasing amount of training data: 50% data for 
training signature creation, 25% for validation and 25% for 
testing. In this case area A was chosen for simulation and both 
NoGCL and OGCL approaches were used. In both methods 
the GA population size was 100 and number of GA 
generations was 200. The results are shown in Table III; here 
we have three different CGCL simulations: 40m-by-40m, 
30m-by-30m and 20m-by-20m. For both the NoGCL and 
OGCL approaches the grid-cell size ranges between 40m to 

20m. Here we can find that the with CGCL method the lowest 
PE values in 68%-ile and 95%-ile are 44.03 and 127.18 meters 
whereas for the GAFP NoGCL approach we have much 
reduced PE values of 24.52 and 55.01 meters respectively. 
Hence the proposed method shows an excellent improvement 
in positioning accuracy of 44.31% and 56.74% in the 68%-ile 
and 95%-ile as compared to the conventional grid-based RF 
fingerprinting.          
       

TABLE II. POSITIONING ACCURACY PERFORMANCE EVALUATION OF CGCL AND GAFP NOGCL METHODS WITH 10% TRAINING DATA

Area of 
Interest 

Positioning Error 

68 %-ile (m) 

Positioning Error 

95 %-ile (m) 

Analyzed Test MDT 

Samples (%) 

CGCL GAFP 

NoGCL 

CGCL GAFP 

NoGCL 

CGCL GAFP 

NoGCL 30 m 20 m 10 m 30 m 20 m 10 m 30 m 20 m 10 m 

AREA A 51.53 49.21 47.27 44.96 131.64 128.47 130.58 115.75 57.99 57.33 55.95 59.94 

AREA B 40.12 34.93 33.02 30.73 93.29 85.21 76.32 65.85 52.84 56.16 52.60 52.82 

AREA AB 45.99 40.05 42.13 38.07 115.02 109.32 110.27 98.49 55.83 54.63 57.06 56.84 

TABLE III. PERFORMANCE EVALUATION OF CGCL, GAFP NOGCL AND GAFP OGCL METHODS WITH 50% TRAINING DATA

GAFP 
Type 

Positioning Error 

68 %-ile (m) 

Positioning Error 

95 %-ile (m) 

Analyzed Test MDT 

Samples (%) 

CGCL 

GAFP 

CGCL 
GAFP 

CGCL 
GAFP 

40 m 30 m 20 m 40 m 30 m 20 m 40 m 30 m 20 m 

NOGCL 48.25 47.58 44.03 24.52 127.18 152.70 135.96 55.01 63.07 62.40 64.53 65.32 

OGCL 48.25 47.58 44.03 26.37 127.18 152.70 135.96 58.13 63.07 62.40 64.53 71.77 

(b) 

(a) 

Figure 6. (a) Pareto front obtained from NoGCL method    
(b) Average distance between chromosomes 



It can be seen from Table III that positioning accuracies 
shown by GAFP OGCL is bit less than the NoGCL but it 
has analyzed 6 more percentage of test samples as 
compared NoGCL method. The histogram of the chosen 
chromosome from OGCL method in shown in Fig. 7. As we 
can see the widths and heights of the grid-cell units are
mostly chosen to be in-between 21 to 27 meters.  

V. CONCLUSION

In this paper we propose a novel method to improve the 
positioning accuracy of grid-based RF fingerprinting through 
autonomous calibration of grid-cell layout. For this purpose 
multi-objective GA is used for selecting the best possible grid-
cell layout over the area of interest so that RF fingerprinting 
gives the optimal output. Comparison study with conventional 
grid-based RF fingerprinting shows that GA optimized RF 
fingerprinting has the ability to calibrate the grid-cell layout in 
an optimal way for improved RF fingerprinting despite the 
change in the cellular network. It was found that with 
sufficient amount of training data the proposed method is able 
provide very good positioning accuracy as compared to that of 
the conventional RF fingerprinting.    
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Abstract— In this paper we propose a novel cluster-based 
RF fingerprinting method for outdoor user-equipment 
(UE) positioning using both LTE and WLAN signals. It 
uses a simple cost effective agglomerative hierarchical 
clustering with Davies-Bouldin criterion to select the 
optimal cluster number. The positioning method does not 
require training signature formation prior to UE position 
estimation phase. It is capable of reducing the search space 
for clustering operation by using LTE cell-ID searching 
criteria. This enables the method to estimate UE 
positioning in short time with less computational expense. 
To validate the cluster-based positioning real-time field 
measurements were collected using readily available 
cellular mobile handset equipped with Nemo Handy 
software. Output results of the proposed method were 
compared with a single grid-cell layout based RF 
fingerprinting method. Simulation results show that if a 
single LTE and six WLAN signal strengths are used then 
the proposed method can improve positioning accuracy of 
35% over the grid-based RF fingerprinting.       

Keywords-component; LTE cell-ID; Grid-based RF fingerprinting; 
Hierarchical Clustering; Minimization of Drive Tests.

I. INTRODUCTION

Location is a vital component in consumer services like social 
media, search, advertising and navigation. For authorities, 
mobile location is mandatory for emergency-call location, and 
can also be used for road-traffic management and machine-to-
machine purposes. GPS-based consumer navigation devices 
have reached mass market status, benefits are undeniable: it is 
ubiquitous and always available, high-accuracy positioning 
[1]. However, GPS has two major drawbacks: the signals 
broadcast by the satellites are too weak to be received indoors 
in places such as shopping malls, and in dense urban 
environments not enough satellites are visible to obtain 
positioning fixes in a reasonable time. The popularity of IEEE 
802.11 infrastructures, their low deployment cost, and the 
advantages of using them for both communication and 
positioning, make them an attractive choice. Therefore, 
authors in [2] have proposed a portable positioning system, 
that utilizes both GPS and Wi-Fi-based pattern matching 

methods to estimate the position [2][3]. To improve this 
combined GPS and Wi-Fi-based Pattern Matching Method, in 
[4] authors proposed to assign weights to different weather 
conditions, determined the position of the mobile terminal by 
the Euclidean distance, and adjusted the weights according to 
the environment. Wi-Fi positioning system based on 
fingerprinting was evaluated in the Sydney CBD area where 
Wi-Fi APs are densely deployed and test results show that it 
works well for outdoor localization with errors in the tens of 
meters [4]. Also in [5] authors have carried out experimental 
analysis for outdoor fingerprinting system, implemented over 
the WLAN and demonstrated that it is feasible to perform 
outdoor positioning with reasonable accuracy using 802.11-
based positioning. A three-phase methodology (measurement, 
calibration and estimation) for locating mobile stations (MS) 
in an indoor environment using wireless technology was 
proposed in [6] where combination of fingerprint and cluster 
based positioning system was developed to overcome the 
problem of the relative effect of doors and walls on signal 
strength and the system is independent of the hardware 
technology manufacturer. A new algorithm was proposed in 
[7] for enhancing the performance of adaptive enhanced cell-
ID (AECID) fingerprint positioning in LTE, where clustering 
was employed to increase the accuracy of the polygon 
computation scheme of the AECID algorithm. The basic 
positioning method in most cellular communication systems is 
the cell-identity (cell-ID) method which has the advantage of 
short response time and thus it fulfills the time to first fix 
(TTFF) requirement for E-911 emergency positioning in the 
North American market which is specified to be below 30s. 
This method is applicable in all situations where there is 
cellular coverage.  
One major requirement of RF fingerprint based positioning is 
to create and maintain the big correlation database in order to 
update the training fingerprints with surrounding structural 
and environmental changes. Operators usually conduct 
extensive and expensive periodical drive test campaigns to 
fulfill this requirement. The operational expenditure (OPEX) 
associated with traditional drive tests can be removed by a 
feature introduced in 3GPP Release 10, known as 
Minimization of Drive Tests (MDT) which enables operators 
to utilize users’ equipment to collect radio measurements and 
associated location information [8]. MDT provides a 
framework for gathering user reported location-aware radio 



measurements from commercial mobile phones that can be 
used for creating and maintaining such training database. This 
procedure allows operators to collect radio measurements, i.e. 
received signal strength and quality, with UE location 
information and a time stamp [9].
In our previous work grid-cell based RF fingerprinting 
(GRFFP) has shown good positioning accuracy in dense urban 
scenario using MDT samples obtained from a dynamic LTE 
system simulator [10][11]. To improve the user equipment 
(UE) positioning accuracy using grid-based RF fingerprinting, 
weighted Kullback-Leibler Divergence based overlapping 
grid-cell layout method was proposed in [12]. However 
GRFFP delivers good positioning when two requirements are 
fulfilled: (i) training signatures need to be updated in regular 
interval of time, (ii) an optimal grid-cell layout needs to be 
chosen for different cellular network scenario and for the 
amount of available training MDT samples.        
In this study we propose a simple cluster-based RF 
fingerprinting (CRFFP) method which does not go through 
any training phase to estimate UE position. It uses MDT 
samples comprising of both LTE and Wi-Fi signals; we refer 
to this as generalized MDT (GMDT). The CRFFP takes 
advantage of the LTE serving cell-ID based searching 
technique to deliver UE positioning in short time. Here we 
also analyze the UE positioning accuracy with three different 
combinations of LTE and Wi-Fi signals and results were 
compared with the traditional GRFFP method.    

The following section contains a brief description of 
the GMDT field measurements used in this study and then the 
conventional GRFFP method is explained. In Section III, first 
description of the proposed CRFFP is given, then test results 
obtained with GRFFP and CRFFP positioning methods are 
presented, and finally concluding remarks are given. 

II. GRID-BASED RF FINGERPRINTING  

A. Generalized MDT 
According to 3GPP specifications MDT enables the operation, 
administration, and maintenance (OAM) system to collect 
radio measurements from the UE, together with location 
information if available when the measurements are taken [8]. 
Here we propose a GMDT that is capable of collecting Wi-Fi 
signal strengths along with the LTE and UE location 
information. There are two main reasons behind this: (i) RF 
fingerprinting gives very good positioning accuracy using Wi-
Fi signal strengths in outdoors (especially in dense urban 
areas), (ii) to decrease the search space in CRFFP positioning 
which also shortens the operation time. In order to create the 
GMDT database we have used Samsung Galaxy S3 (LTE 
capable) which was installed with a handheld drive test 
software application- Nemo Handy. This application is very 
suitable for performing measurements both outdoors and 
indoor spaces while the device being simultaneously used as a 
regular mobile phone [13]. LTE reference signal received 
power (RSRP) and WLAN received signal strength 
indicator (RSSI) measurements were recorded from a 
residential urban area in Tampere, Finland during September 

2014 as shown in Figure 1. Two measurement campaigns 
were done for 800 and 1800 MHz LTE bands, in the 1800 
MHz case, inter-frequency measurements were also reported 
according to the measurement configuration provided by the 
network. Hence in this study we have used GMDT samples 
from LTE 1800 MHz measurements. 

More than 150 kilo-metres of measurements were collected by 
feet, bicycle and car covering approximately an area of 0.33 
square kilo-metres. In all measurements, the route was 
repeated at least twice to ensure that enough measurement 
samples are collected for each grid unit.  

As we can find from Figure 2 that every GMDT sample 
contains at least 1 serving LTE base-station (BS) signal and 
98% of the samples comprises of more than 5 WLAN access 
points (AP). A study conducted in [14], measured the 
significance of Wi-Fi APs for UE position estimation where 
good results were obtained by limiting the Wi-Fi AP number 
to seven for all analyzed samples. In [15] the selection of APs 
was done based on the largest signal strength values recorded 
at each location. Hence we were motivated to use seven 
signals in total including both LTE BSs and WLAN APs. So, 
every GMDT contains the serving LTE BS ID of the recording 
mobile handset. Both LTE and WLAN signals were sorted in 
descending order of signal strength values. We have also used 
three different sets of GMDT samples by choosing different 
combinations of LTE and WLAN signals from the total 
database.  

Figure 2: (a) Number of detected LTE cells and (b) WLAN APs per 
measurement sample.

Figure 1: GMDT field measurement area in Tampere, Finland 

(a) (b) 



A set of GMDT measurement can be defined by:  

              (1) 
where, j=1, 2 and 3 referring different GMDT set, N is the 
total number of measurement samples of a particular set. The 
nth GMDT sample of a set can be presented by a row vector:  

                         (2) 
where, denotes the LTE BS IDs and WLAN AP IDs, 

stands for the corresponding RSRP and RSSI values, 
and contains the x-y coordinates of the UE obtained from 
GNSS position information.       

B. A Simple Grid-based RF Fingerprinting Method 
Here we have used a single grid-cell layout based RF 
fingerprinting method by segmenting the whole geographical area 
of interest with square grid-cell units (GCU). We have used 
Euclidean distance to measure the statistical difference 
between training fingerprints and test samples since it has 
previously been used for outdoor RF fingerprinting in order to 
obtain good UE positioning accuracy [16].
Training Phase of GRFFP: In conventional GRFFP method 
multiple training signatures are formed within a single GCU 
[10][11]. To reduce the searching time to find the best match 
training signature for a test sample and also to reduce the related 
computational cost, a single training signature (TrainSig) is 
created from all the training GMDT samples (GMDTs) that 
belong to a one particular GCU. The TrainSig formed from all the 
GMDT samples of ith GCU (GMDTsi

All) is define as follows: 
     

                      (3)
where,  contains all unique LTE BS IDs and WLAN AP 
IDs obtained from GMDTsi

All, is a vector of the 
corresponding LTE RSRP and WLAN RSSI values, and 
is the reference x-y coordinate calculated from the mean 
values of x and y coordinates of GMDTsi

All.
An example training signature creation and test phase 
matching of GRFFP method is illustrated in Figure 3. Here for 
simplicity only two GCUs are shown, the blue dots inside a 

GCU represent its GMDT samples and the small red triangle 
depicts the corresponding reference position. We can find 
from Figure 3 that GCU 2 has two samples: GMDT2

1 and 
GMDT2

2 represented by two row vectors. Here black squares 
containing  (L1 indicates LTE BS ID number 1, W1 is 
for WLAN AP ID-1), the corresponding  values (SL

1

indicates RSRP of LTE BS ID-1, SW
1 is RSSI of WLAN AP 

ID-1) are within the green squares and  are inside the blue 
squares. For GCU 2 a single training signature-  has 
been created from GMDT2

1 and GMDT2
2. It has three parts: 

(i) contains all unique LTE and WLAN IDs. (ii) 
comprises of mean RSRP and RSSI values for common LTE 
and WLAN IDs, otherwise the RSRP values are copied from 
either GMDT2

1 or GMDT2
2. And (iii)  gives the reference 

x-y coordinates calculated from the mean x and y coordinates 
of GMDT2

1 and GMDT2
2.   

Test Phase of GRFFP: To test a GMDT we first compare its 
LTE and WLAN IDs with all the training signatures available 
and select those signatures which meet the least matching 
threshold. For example in Figure 3,  contains four 
matching IDs: L1, L4, W2 and W5 which are common to the 
Test sample (TestSam), hence we have 57% of ID match 
between TestSam and . Now if the minimum matching 
threshold is set to 50% then  is selected for distance 
measurement. As shown by red dotted arrows in Figure 3, 
only common RSRP and RSSI values are used to calculate the 
Euclidean distance between TestSam and A simplified 
Mahalanobis distance equation is used for distance calculation 
where the inverse covariance matrix is replace by an identity 
matrix: 

     (4) 
where, and  denotes the RSRP and RSSI values of the 
TestSam and a selected TrainSig respectively and is the identity 
matrix. After separate calculation of all the distances between 
a TestSam and the selected training signatures; the TrainSig
corresponding to the smallest Euclidean distance is chosen for 
positioning purpose. The estimated position of that TestSam is 
given by  of the chosen TrainSig.
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Figure 3: Training and test phases of grid-cell based RF fingerprinting 



III. CLUSTER-BASED RF FINGERPRINTING

A. An Efficient Cluster-based Positioning Algorithm 
At first the GMDT samples of the total data-base are sorted 
into different GMDT groups according to the serving LTE BS 
ID. For testing a sample the group that matches the serving 
LTE BS ID of that TestSam is selected. From this selected 
group GMDT samples are selected which fulfill the least 
matching threshold- the matching is similar to the one 
described in section II (B), the only difference is that here 
matching is between TestSam and a GMDT sample of the 
selected group. Now for the clustering purpose, the 
values of the TestSam and the selected GMDTs are put together 
in the same pool. We have used a simple agglomerative 
hierarchical clustering with Davies-Bouldin criterion to select 
the optimal cluster number [17]. This criterion is based on a 
ratio of within-cluster and between-cluster distances. The 
Davies-Bouldin index (DB) is defined by the follow equation:   

            (5) 

where, Di,j is the within-to-between cluster distance ratio for 
the ith and jth clusters. Di,j is given by, 

              (6) 

where,  is the average distance between each point in the ith
cluster and the centroid of the ith cluster.  is the average 
distance between each point in the ith cluster and the centroid 
of the jth cluster.  is the Euclidean distance between the 
centroids of the ith and jth clusters. The optimal cluster 

number is obtained between 1 to 6 clusters using the smallest 
Davies-Bouldin index value. After multiple clusters are 
formed, clustering criteria (CC) is checked: the cluster which 
contains the TestSam must have two GMDTs. If CC is met, then 
the cluster that contains the TestSam is selected and TestSam UE 
position is calculated from the mean x-y coordinates of all 
GMDTs of that cluster. If CC is not fulfilled the matching 
threshold is reduced and clustering is performed again in order 
to analyze the TestSam. Thus CRFF method does not need any 
prior training before the test phase; it utilizes the cell-ID 
advantages in reducing the search space thereby reduces 
position estimation time. Hence it offers a computationally 
less expensive RF fingerprinting method which can be 
implemented in real-time using GMDT. CRFFP positioning 
method is described in Figure 4. 

   

    

B.  Experimental Results: Outdoor UE positioning 
In the total GMDT data-set we have merged multiple samples into a single one which contain similar LTE BS ID and WLAN AP 
ID and were recorded from the same x-y coordinate. In order to avoid over-optimal results consecutive GMDTs have been 
grouped into chunks of 20 samples in sequence. Training and test data-sets were created by randomly choosing such data chunks. 

TABLE I: RESULTS OF GRFFP AND CRFFP METHODS USING LTE AND WLAN SIGNALS

LTE
and

WLAN
Combi-
nation

Matc-
hing

Thres
-hold 

Using Total Test GMDT Samples Using Common Test GMDTs between GRFFP 
and CRFFP 

GRFFP CRFFP GRFFP CRFFP Comm.
Test

GMDT 
(%) 

68% 
PE
(m) 

95%  
PE
(m) 

Test
GMDT  

(%) 

68% 
PE
(m) 

95%  
PE
(m) 

Test
GMDT  

(%) 

68% 
PE
(m) 

95%  
PE
(m) 

68% 
PE
(m) 

95%  
PE
(m) 

LTE
BS:3 & 
WLAN
AP:4 

80% 16.91 45.41 85.86 9.40 33.74 21.17 14.21 39.77 9.40 33.75 21.15 

60% 17.65 47.78 97.68 10.39 35.84 43.60 14.02 40.35 10.40 35.85 43.59 

40% 17.88 48.99 99.96 14.16 51.17 61.77 15.59 42.57 14.16 51.17 61.77 

LTE
BS:2 & 
WLAN
AP:5 

80% 15.16 42.69 85.36 7.58 26.39 21.94 11.98 36.04 7.61 26.45 21.83 

60% 16.04 44.76 97.51 7.94 27.59 46.04 11.81 36.03 7.95 27.60 46.02 

40% 16.33 45.92 100 9.14 33.88 62.37 12.66 38.32 9.14 33.88 62.37 

LTE
BS:1 & 
WLAN
AP:6 

80% 14.29 40.31 85.43 7.33 22.80 24.59 11.47 33.69 7.36 22.81 24.38 

60% 15.09 42.54 97.02 7.24 20.56 51.35 10.60 31.76 7.24 20.58 51.32 

40% 15.35 43.42 99.97 7.80 24.34 69.21 11.17 33.89 7.80 24.34 69.21 

1. Select GMDT Group According to the serving LTE BS ID of TestSam

3. Group Together  values of TestSam and Selected GMDT samples 
and Perform Hierarchical Clustering with Davies-Bouldin Criterion    

4. Check Clustering Criteria: (i) Multiple Clusters are Created and (ii) The 
Cluster that Contains TestSam has Multiple GMDTs. If CC is fulfilled Go-to 

Next Step 5, otherwise reduce Matching Threshold and Go-to Step 3     

2. Select GMDT samples which are Equal and Above the Matching 
Threshold for the TestSam IDs         

5. Select the Cluster which Contains the Test GMDT; then Estimate Test 
UE Position from the mean x-y coordinates of the GMDTs of that Cluster   

Figure 4: Block-diagram of the CRFFP Positioning Method 



In the simulations we have used 23080 training GMDTs and 
2565 samples were tested. The GRFFP method uses a 10m-
by-10m grid-cell layout which was chosen from several square 
grid-cell layouts according to the delivered positioning 
accuracy.  Tenfold cross-validation method was used to obtain 
positioning results for both GRFFP and CRFFP methods with 
three different GMDT data-sets as shown in Table I. For the 
1st GMDT data-set each sample is constructed with maximum 
3 LTE BS signals (LTEBS) and 4 WLAN AP signals 
(WLANAP); in 2nd GMDT data-set there are 2 LTEBS and 5 
WLANAP; and the 3rd set comprises of only 1 LTEBS and 6 
WLANAP . In Table I the second column indicates the different 
matching threshold used in both of the methods. After that UE 
positioning error (PE) results (68%-ile and 95 %-ile values) 
along with the analyzed test sample percentages are given 
when both methods use all the test samples. From these results 
we can find that when 80% matching threshold was used the 
68 %-ile and 95 %-ile PEs of CRFFP are lower than that of 
respective GRFFP PE values, but the GRFFP method has 
analyzed more test samples than CRFFP. Hence on right side 
of Table I we have PE results considering only those test 
samples which were analyzed in both methods. This help to 
compare the proposed method with the GRFFP in the best 
possible way. It is found from the simulation results with 
common test results that when 1st data-set was used, CRFFP 
has given lower PE in both 68%-ile and 95 %-ile values for 
80% and 60% of matching threshold. However when the 
threshold is lowered to 40%, GRFFP has given better 
positioning in 95 %-ile than that of CRFFP. With the 2nd data-
set CRFFP outperforms GRFFP in both percentile values and 
also for all three matching thresholds used. The best 
positioning accuracy given by CRFFP is with the 3rd data-set 
and for 80 % of threshold: it has shown 35% improvement in 
positioning accuracy for both the 68%-ile and 95%-iles as 
compared to that of the GRFFP. It is clear from the results that 
CRFFP offers better positioning than GRFFP when matching 
threshold is high and 5 or 6 WLAN signals are used. Hence in 
dense urban areas where multiple WLAN signals can be 
detected CRFFP is capable of providing good outdoor UE 
positioning with GMDT samples. 

IV. CONCLUSION

In this paper we propose a novel cluster-based RF 
fingerprinting method  for outdoor UE positioning which uses 
LTE and WLAN signals. It provides better positioning 
accuracy as compared to that of grid-based RF fingerprinting.  
The benifit of the cluster-based approach is that it uses simple 
clustering method and no prior training phase for estimating 
test UE positioning. During cluster operation it reduces the 
searching space by utilizing LTE cell-ID; thus delivers output 
result in short time. The proposed method is capable of 
providing good positioning by using only serving LTE BS 
signal and six WLAN AP signals. Hence the present research 
outcome suggests that the next MDT functionality should 
include WLAN signals into consideration; which would 
benefit cellular operators to develop cost-effective solutions 
for developing real-time positioning systems.   
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Abstract— In this paper we evaluate user-equipment (UE) 
positioning performance of three cluster-based RF 
fingerprinting methods using LTE and WLAN signals. 
Real-life LTE and WLAN data were collected for the 
evaluation purpose using consumer cellular-mobile 
handset utilizing ‘Nemo Handy’ drive test software tool. 
Test results of cluster-based methods were compared to 
the conventional grid-based RF fingerprinting. The 
cluster-based methods do not require grid-cell layout and 
training signature formation as compared to the grid-
based method. They utilize LTE cell-ID searching 
technique to reduce the search space for clustering 
operation. Thus UE position estimation is done in short 
time with less computational cost. Among the cluster-based 
methods Agglomerative Hierarchical Cluster based RF 
fingerprinting provided best positioning accuracy using a 
single LTE and six WLAN signal strengths. This method 
showed an improvement of 42.3 % and 39.8 % in the 68th 
percentile and 95th percentile of positioning error (PE) 
over the grid-based RF fingerprinting.

Keywords- LTE cell-ID; Grid-based RF fingerprinting; K-
Nearest Neighbor; Hierarchical Clustering; Fuzzy C-means; 
Minimization of Drive Tests 

I. INTRODUCTION

Over the next decade the integration of location services 
into our day-to-day life will increase significantly as 
technologies mature and accuracy improves. Currently, as an 
accurate and reliable outdoor localization system Global 
Navigation Satellite System (GNSS) has revolutionized 
navigation-based applications running on automotive GNSS-
enabled devices and smart phones. However, GNSS relies on 
special hardware support, has high complexity, high battery 
consumption and the access to GPS signals is limited in some 
environments, such as urban areas with many high buildings, 
mountainous terrain and indoor areas [1]. Received Signal 
Strength (RSS) based fingerprinting localization has been the 
most widely used technique for user positioning during the last 
few decades [2-3]. Researchers are studying how to conduct 
radio signal positioning through signals from existing wireless 
infrastructure, such as cellular networks [2], WiMaX [3] and 
WiFi [4-5] networks. The rapid expansion of Wi-Fi access 

points (AP) across the urban/indoor environments made it 
possible for researchers to envision alternatives to TOA-based 
systems. One success story for deployment in the urban 
environment is Skyhook Wireless [6]. Skyhook realized the 
potential of exploiting Wi-Fi signals emitted from residential 
homes and offices that are continuously in use. They have 
improved localization by building databases of Wi-Fi 
signatures tied to locations that could be integrated to aid in 
the localization process. Wi-Fi based fingerprint positioning 
system was evaluated in the Sydney CBD area and test results 
show that it works well for outdoor localization with errors in 
the tens of meters [7]. In [8] authors have carried out outdoor 
fingerprinting over WLAN and achieved good accuracy using 
802.11-based positioning.  

In this study we have evaluated cluster-based RF finger- 
printing approaches which have taken into account four key 
challenges of fingerprint positioning [5]:  

1) RF fingerprint generation: the factors affecting 
fingerprint generation are the placement and number of survey 
points and time samples. Most approaches have selected such 
parameters experimentally. In order to avoid such difficulties 
we have used real life Minimization of Drive Tests (MDT) 
date - a feature introduced in 3GPP Release 10 which enables 
operators to utilize users’ equipment to collect radio 
measurements and associated location information [9].  

2) Preprocessing of recorded training data for reducing 
computational complexity: in [4] authors have proposed an 
offline clustering of locations aiming to reduce the search space 
to a single cluster. Chen et al. in [10] consider the similarity of 
signal values, as well as the covering APs, to generate a set of 
clusters using K-means to improve the power efficiency of 
mobile devices. Both of the above clustering techniques are 
carried out offline based on the training data. This hampers the 
operation of the system over time since WLAN infrastructures 
are highly dynamic and APs can be easily moved or discarded, 
in contrast to their base-station counterparts in cellular systems, 
which generally remain intact for long periods of time [5]. 
Therefore, we have used a combination of LTE and WLAN 
signal strengths, generalized MDT (GMDT) which gives us the 
opportunity to use LTE serving cell-ID based searching 
technique to deliver user-equipment (UE) positioning in short 
time with less computational cost. 



                                    

3) Selection of APs for use in positioning: in a typical 
dense urban WLAN environment the number of available APs 
is much higher than three and using all available APs increases 
the computational complexity of the positioning algorithm. In 
this research we have chosen seven LTE and WLAN signals 
for position estimation which has been found to be effective 
from previous Wi-Fi positioning results [11].   

4) User equipment (UE) position estimate based on a new 
RSS observation: in the simplest case, the Euclidean distance 
is used to find the distance between the new RSS observation 
and the center of the training RSS vectors at each survey point 
or grid cell units [12][13]. However, choosing an optimal grid-
cell layout requires computational power and training time 
[14]. Hence, we have selected cluster-based RF fingerprinting 
(CRFFP) methods: K-Nearest Neighbor (KNN), 
Agglomerative Hierarchical Clustering (AHC) and Fuzzy C-
Means (FCM) which do not create training signatures through 
grid-cell layout during the training phase. To verify the 
effectiveness of CRFFP methods UE positioning results were 
compared to that of the conventional grid-cell based RF 
fingerprint positioning (GRFFP).

The rest of the paper is organized as follows: Section II 
contains a brief description of the recorded GMDT field 
measurements and then the conventional GRFFP method is 
described. In section III we explain three different CRFFP 
methods.  Experimental test results of GRFFP and CRFFP 
methods are shown in section IV. Finally we draw some 
concluding remarks in section V. 

II. GRID-BASED RF FINGERPRINTING  USING GMDT 

A. Generalized MDT Measurements 
Drive tests are the main source for collecting measurement 

data from cellular networks which is costly and time 
consuming. The problem that drive tests need human effort to 
collect measurement data and that only spot measurements can 
be performed, has led to automated solutions which include the 
UEs from the end user. The feature for this evolution in the 
3GPP standard is named MDT [14]. Here we were motivated to 
use GMDT data which is an enhancement to the LTE 
Minimization of Drive Tests architecture allowing the 
collection of location-aware radio measurements from WLAN 
access networks as well. Grid-based RF fingerprinting test 
results show that GMDT data containing only the single 
strongest WLAN measurement in addition to the LTE RF 
fingerprint can improve the 67th percentile location accuracy 
from 88.2 m to 49.4 m [15]. The GMDT database were created 
with the help of a popular drive test software application 
known as Nemo Handy installed in Samsung Galaxy S3 (LTE 
capable) [16]. This handheld drive test tool is very suitable for 
performing measurements both outdoors and in crowded indoor 
spaces while being simultaneously used as a regular mobile 
phone. In our research we have recorded reference signal 
received power (RSRP) values of LTE serving and neighboring 
base station (BS) signals and received signal strength 
indicator (RSSI) values of WLAN APs. About 150 kilo-metres 
of measurements were collected by feet, bicycle and car 
covering approximately an area of 0.33 square kilo-metres of  a 

residential urban area in Tampere, Finland during September 
2014 as shown in Fig. 1. 

The GMDT samples used in this study were from LTE 
1800 MHz measurements, in which 800 MHz inter-frequency 
measurements were also reported according to the 
measurement configuration provided by the network. Every 
route was repeated at least twice to ensure that enough 
measurement samples were collected for each grid unit. From 
the measurements we have found that all the GMDT samples 
contain at least one serving LTE BS RSRP and 98% of the 
samples comprises of more than five WLAN RSSI values. 
Authors in [15] have selected WLAN APs based on the largest 
signal strength values recorded at each location. Hence we 
have chosen seven signal strength values in total including 
both LTE RSRPs and WLAN RSSIs. Both RSRP and RSSI 
values were sorted in descending order of signal strength 
values. We were interested to see how different combinations 
of LTE and WLAN signals affect the UE positioning 
performance using the same fingerprinting method. Thus three 
different sets of GMDT samples were created by choosing 
different combinations of LTE and WLAN signals from the 
total database. A GMDT measurement set is defined by: 

Mj = {sj,1, sj,2,…, sj,N}   (1)

where, j=1, 2 and 3 refers to the different GMDT sets, N is 
the total number of measurement samples of any particular set. 
The nth GMDT sample of a set is given by a row vector: 

Sj,n = {LWID, RSSLW, PXY}  (2) 

where, LWID denotes the LTE BS IDs and WLAN AP IDs,  
RSSLW comprises of the corresponding RSRP and RSSI values, 
and  PXY contains the x-y coordinates of the UE obtained from 
GNSS information. 

B. Grid-cell based RF Fingerprint Positioning 
A conventional single grid-cell layout based RF 

fingerprinting method was used, which segmented the whole 
geographical area of interest into 10m-by-10m square grid-cell 
units (GCU). Euclidean distance was used to measure the 
statistical difference between training fingerprints and test 
samples, as previous WLAN-based UE positioning research 
suggests it to be effective [17].  

Training Phase: To reduce the searching time of the best match 
training signature for a test sample and also to reduce the related 
computational cost, a single training signature (TrainSig) is created 

Fig. 1: GMDT field measurement area in Tampere, Finland



                                    

from all the training GMDT samples that belong to a particular 
GCU. The TrainSig formed from all the GMDT samples of ith 
GCU (GMDTsi

All) is defined as follows:  

Traini
sig = {TSID

LW, RSSTS
LW, PRef

XY}  (3) 

where, TSID
LW contains all unique LTE BS IDs and WLAN 

AP IDs obtained from GMDTsi
All, RSSTS

LW is a vector of the 
corresponding mean LTE RSRP and WLAN RSSI values, and  
PRef

XY is the reference x-y coordinate calculated from the mean 
values of x and y coordinates of GMDTsi

All. 

Test Phase: To test a GMDT sample we first compare its 
LTE and WLAN IDs with all the training signatures available 
and select those signatures which meet a least matching 
threshold. The minimum matching threshold (MT) was set to 
three, so in this case all the training signatures that contain at 
least three or higher number of LTE and WLAN IDs similar to 
that of test sample will be chosen. The maximum MT number 
was set to six. A simplified Mahalanobis distance equation is 
used for distance calculation where the inverse covariance 
matrix is replaced by an identity matrix: 

d(TestSam, TrainSig) = { (uTe  uTr)T I (uTe  uTr) }       (4) 

where,  uTe and  uTr denotes the RSRP and RSSI values of 
the TestSam and a selected TrainSig respectively and I is the 
identity matrix. After separate calculation of all the distances 
between a TestSam and the selected training signatures; the 
TrainSig corresponding to the smallest Euclidean distance is 
chosen for test UE positioning. The estimated position of that 
TestSam is given by PRef

XY of the chosen TrainSig. 

III. CLUSTER-BASED RF FINGERPRINT POSITIONING

A. K-nearest Neighbors Cluster-Based Positioning 
KNN is one of the basic algorithms used for UE positioning 

using RF fingerprint [18]. In this work we have chosen K to be 
5 which has given good positioning result in WLAN 
positioning performed in [19]. Here the only processing 
required during the data collection phase is to group the GMDT 
samples according to the LTE serving BS ID. During the 
positioning phase the first task is to choose the group of GMDT 
samples according to the LTE serving BS ID of the test GMDT 
sample. Then for selecting training GMDT samples (TrainSam) 
we start with the highest MT number: 7 and select n TrainSam
which match with the TestSam IDs. If we do not get any TrainSam 
corresponding to the chosen MT then MT is lowered to the 
next integer number and select n TrainSam that matches with the 
TestSam IDs. This process continues until we get multiple 
matched TrainSam or the lowest MT is reached. Now Euclidean 
distance is used to choose five closest GMDTs with the KNN 
algorithm: 

DTrainSam, TestSam = { j=1
n (TrainRSS  TestRSS) }     (5) 

where, TrainRSS and TestRSS are vectors of LTE RSRP and 
WLAN RSSI values of TrainSam and TestSam respectively.

The test UE position is estimated from the mean x-y 
coordinate value of the five selected TrainSam. 

B. Agglomerative Hirarchical Cluster-based Positioning
The AHC clustering method uses Davies-Bouldin criterion 

to select the optimal cluster number [20]. This criterion is 
based on a ratio of within-cluster and between-cluster 
distances. The Davies-Bouldin index (DB) is defined by the 
follow equation:   

DB = (1/k){ i=1
k maxj i (Di,j) }                    (6) 

where, k is the number of clusters, Di,j is the within-to-
between cluster distance ratio for the ith and jth clusters. Di,j is 
given by:            Di,j = (di¯ + dj¯)/di,j             (7) 

where, di¯ is the average distance between each point in 
the ith cluster and the centroid of the ith cluster. dj¯ is the 
average distance between each point in the ith cluster and the 
centroid of the jth cluster. di,j is the Euclidean distance between 
the centroids of the ith and jth clusters. During evaluation 
optimal cluster number is set between 1 to 6 using the smallest 
Davies-Bouldin index value. When multiple clusters are 
formed, clustering criteria (CC) is followed: the cluster which 
contains the TestSam must contain at least two GMDTs. AHC-
based positioning method is described in Fig. 2. 

C. Fuzzy C-Means Cluster-Based Positioning 
FCM has effectively been used in WLAN indoor 

localization [21]. Here we have used it for outdoor positioning 
using GMDT data. Its implementation steps are similar to that 
of the AHC-based fingerprint positioning. In this method in 
step 3 as shown in Fig. 2, we have added another criterion that 
if the number of selected GMDT samples is more than six than 
initial number of clusters assigned to FCM method is 6 
otherwise 2. FCM starts with an initial guess for the cluster 
centers, which are intended to mark the mean location of each 
cluster and it also assigns every data point a membership grade 
for each cluster. By iteratively updating the cluster centers and 
the membership grades for each data point, it moves the 
cluster centers to the right location. This iteration is based on 
minimizing the objective function for the partition of the 
selected GMDT data-set [22]: 

Jm(u,v) = i=1
c

k=1
nui,k

m Dk  vi
2   (8) 

where, Jm is the objective function, n is the number of 
samples in the data set, c is the number of clusters (1  c  n), 
ui,k is the element of partition matrix U of size (c x n) 
containing the membership function, vi is the center of the ith

1. Select GMDT Group According to the serving LTE BS ID of TestSam

2. Select GMDT samples which are Equal and Above the Matching 
Threshold for the TestSam IDs

3. Group Together RSSTS
LW values of TestSam and Selected GMDT 

samples and Perform AHC Clustering with Davies-Bouldin Criterion

4. Check Cluster Criteria: (i) Multiple Clusters are Created and (ii) The 
Cluster that Contains TestSam has Multiple GMDTs. If CC is fulfilled Go-
to Next Step 5, otherwise reduce Matching Threshold and Go-to Step 3

5. Select the Cluster which Contains the Test GMDT; then Estimate Test 
UE Position from mean x-y coordinates of the GMDTs of that Cluster

Fig. 2: Block-diagram of the AHC-based Positioning Method



                                    

cluster, and m is a weighting factor that controls fuzziness of 
the membership function. The matrix U is constrained to 
contain elements in the range of [0, 1] such that i=1

c uik = 1  
for each ui,k(1  k  n). The norm Dk  vi is the distance 
between the sample Dk and the clusters center vi . 

IV. EXPERIMENTAL RESULTS: OUTDOOR UE POSITIONING

Before the positioning phase we have processed the whole 
GMDT data-set by merging multiple samples into a single one 
which were recorded from the same x-y coordinate and also 
contain similar LTE BS and WLAN AP IDs. In order to avoid 
over-optimal results consecutive GMDTs have been grouped 
into chunks of 20 samples in sequence. Training and test data-
sets were created by randomly choosing such data chunks. Test 
results were derived from three different GMDT sets: The 1st

set contains 3 LTE and 4 WLAN signals, 2nd set consists of 2  
LTE and 5 WLAN signals and 3rd set is for 1 LTE and 6

WLAN signals. The number of training and test GMDTs were 
23080 and 2565 respectively. Results shown in Table I were 
obtained from 10 fold cross-validations for testing all GMDTs. 
The 1st and 2nd columns of Table I corresponds to the different 
LTE-WLAN sets and the matching threshold numbers and after 
that we can find the 68th and 95th percentile values of UE 
positioning error for each of the methods. The analyzed test 
GMDT percentage is attached to positioning error (PE) values 
for each of the methods. Table I shows that GCL method is 
capable of analyzing almost 100% of test GMDT and the PE 
values for any given data set remain the same for different MT 
values. The KNN and FCM perform better for MT-6 and 
similar results were obtained for MT-5 case as compared to that 
of the GCL method, both KNN and FCM have analyzed less 
percentages of test samples than that of GCL. Thus for a better 
comparison between the methods we have prepared Table II 
where the PE results of all four methods are calculated for 
common analyzed test GMDT samples as given in the last 
column of Table II. 

TABLE I. RESULTS OF GRFFP AND CRFFP METHODS USING ALL GMDT TEST DATA

LTE & 
WLA

N 
MT. 
No. 

GRFFP KNN AHC FCM 

68% PE 
(m) 

95%  
PE (m) 

Test 
GMDT 

(%) 

68% 
PE (m) 

95%  
PE (m) 

Test 
GMDT  

(%) 

68% 
PE (m) 

95%  
PE (m) 

Test 
GMDT  

(%) 

68% 
PE (m) 

95%  
PE (m) 

Test 
GMDT  

(%) 
LTE:3 

& 
WLA
N:4 

6 17.89 49.17 99.52 12.95 40.34 63.12 9.34 33.66 19.05 12.35 38.16 30.02 
5 17.88 49.06 99.89 15.76 47.55 89.27 10.49 35.64 41.13 16.56 51.45 68.49 
4 17.89 49.05 99.99 16.86 50.29 98.02 12.60 42.30 55.96 18.51 56.83 91.21 
3 17.89 49.05 99.99 17.15 51.56 99.87 14.16 51.18 61.75 19.28 59.58 98.93 

LTE:2 
& 

WLA
N:5 

6 16.29 45.82 99.72 11.00 36.83 66.38 7.45 25.63 21.57 8.89 33.58 29.89 
5 16.30 45.85 99.86 14.88 44.75 90.92 7.87 26.88 45.78 13.48 43.46 69.89 
4 16.31 45.89 99.90 15.92 46.75 98.60 8.64 31.31 58.32 15.56 46.57 93.13 
3 16.33 45.92 99.99 16.15 47.20 99.87 9.13 33.87 62.35 16.11 48.25 99.09 

LTE:1 
& 

WLA
N:6 

6 15.28 43.32 99.57 9.75 33.25 64.03 7.27 21.38 24.16 7.80 28.64 29.42 
5 15.31 43.34 99.69 13.48 41.87 89.47 7.18 19.91 51.02 11.01 35.98 67.21 
4 15.31 43.34 99.83 15.02 45.56 98.61 7.49 22.41 65.09 13.37 42.91 92.60 
3 15.32 43.36 99.87 15.22 46.07 99.75 7.77 24.09 69.12 14.01 44.57 98.77 

TABLE II. RESULTS OF GRFFP AND CRFFP METHODS USING COMMON GMDT TEST DATA

LTE & 
WLAN 

MT. 
No. 

GRFFP KNN AHC FCM Common 
Test 

GMDT  
(%)

68%  
PE (m) 

95%  
PE (m) 

68%  
PE (m) 

95%  
PE (m) 

68%  
PE  (m) 

95%  
PE (m) 

68%  
PE (m) 

95%  
PE (m) 

LTE:3 & 
WLAN:4 

6 14.20 39.70 13.23 39.68 9.35 33.78 9.84 34.63 18.71
5 14.06 40.22 13.30 40.43 10.50 35.73 12.01 40.47 41.02 
4 15.27 41.99 13.74 41.51 12.61 42.32 13.55 44.03 55.92 
3 15.58 42.57 14.07 42.12 14.16 51.18 14.35 47.18 61.75 

LTE:2 & 
WLAN:5 

6 14.58 40.63 10.61 33.99 7.48 25.69 7.52 26.51 20.90
5 13.58 40.94 11.08 37.54 7.87 26.98 8.94 33.96 45.41
4 13.87 41.74 11.40 37.94 8.66 31.34 9.77 36.05 58.22
3 14.22 41.86 11.73 38.68 9.13 33.87 10.25 37.68 62.33 

LTE:1 & 
WLAN:6 

6 14.06 38.24 9.32 31.39 7.27 21.80 7.35 25.53 22.06 
5 13.14 38.00 9.73 32.78 7.18 20.16 8.08 27.71 49.56 
4 13.19 39.30 10.12 36.08 7.49 22.44 8.93 32.53 64.76
3 13.48 40.05 10.46 36.54 7.77 24.09 9.22 33.34 69.11



                                    

Here it is found that with the 1st GMDT set PE results of 
GCL and KNN are very similar. AHC and FCM have shown 
better positioning results for MT number of 5 and 6, but for 
MT-3 and MT-4 PEs are higher than that of GCL and KNN. 
For data set 2, KNN has reduced the PEs a bit in both the PE-
percentile values as compared to that of GCL; whereas FCM 
has shown further improvement in 68th percentile and 95th 
percentile of PE values than that of KNN method. With the 
same data set AHC has outperformed FCM based positioning 
performance. Also with data set 1, AHC based clustering has 
given the best positioning accuracy as compared the other 
methods. For MT-3 in data set 1 common analyzed test GMDT 
percentage was the highest 69.11 and in this case AHC method 
has shown an improvement in positioning accuracy of 42.3% 
and 39.8 % in the 68th percentile and 95th percentile values of 
PE as compared to that of the GCL method. These results 
indicate that in dense urban areas where multiple WLAN 
signals can be detected CRFFP is capable of delivering better 
outdoor UE positioning than GRFFP using data set 2 or 3 
having seven LTE and WLAN signals strength values. 

V. CONCLUSION

Here we proposed cluster-based RF fingerprinting methods 
for outdoor UE positioning using seven LTE and WLAN 
signals. Only seven LTE RSRP and WLAN RSSI signal 
strength values were used to perform a comparative study 
between the GRFFP and CRFFP methods. The cluster-based 
positioning reduces the search space by taking advantage of 
LTE cell-ID based searching technique. As a result CRFFP 
methods give faster UE positioning output with less 
computational cost. They do not need training signature 
formation during offline phase as compared to the 
conventional GRFFP method. Among the three CRFFP 
methods used in this research AHC based RF fingerprinting 
provided the best UE positioning accuracy using only serving 
LTE RSRP and six WLAN RSSI values. Hence as a cost-
effective real time RF fingerprinting method, AHC based 
positioning would certainly be a good choice for any cellular 
operator. 
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Abstract Wireless Local Area Network (WLAN) position-

ing has become a popular localization system due to its low-

cost installation and widespread availability of WLAN

access points. Traditional grid-based radio frequency (RF)

fingerprinting (GRFF) suffers from two drawbacks. First it

requires costly and non-efficient data collection and updating

procedure; secondly the method goes through time-con-

suming data pre-processing before it outputs user position.

This paper proposes Cluster-based RF Fingerprinting

(CRFF) to overcome these limitations by using modified

Minimization of Drive Tests data which can be autono-

mously collected by cellular operators from their subscribers.

The effect of environmental changes and device variation on

positioning accuracy has been carried out. Experimental

results show that even under these variations CRFF can

improve positioning accuracy by 15.46 and 22.30% in 95

percentile of positioning error as compared to that of GRFF

and K-nearest neighbour methods respectively.

Keywords RF fingerprint positioning · K-nearest

neighbors · K-means clustering · Hierarchical clustering ·

Fuzzy C-means clustering

1 Introduction

Location systems have long been identified as an important

component of a wide set of applications such as for E-911

emergency positioning, personal navigation and Location-

Based Services in outdoor environments. The role of a

positioning system is to estimate and report geographical

location information pertaining to the user for the purposes

of management, enhancement, and personalization of ser-

vices. At present Global Navigation Satellite System

(GNSS) is the most popular positioning system for mobile

devices in outdoor environments. However, GNSS geolo-

cation performs poorly in dense urban areas and inside

buildings, where satellites are not visible by mobile user

equipment (UE) [1]. With the rapid increase in Wireless

Local Area Network (WLAN) access points (AP) in

metropolitan areas and due to their ubiquitous coverage in

large environments, outdoor location systems based on

WLAN have gained recent attention in research and com-

mercial applications [2–4]. WLAN positioning works

better than GNSS in dense metropolitan areas, both out-

doors and indoors owing to its greater received signal

strength and lower attenuation [3]. WLAN received signal

strength (RSS) measurements can be obtained relatively

effortlessly and inexpensively without the need for addi-

tional hardware [5]. Moreover, RSS-based positioning is

non-invasive, as all sensing tasks can be carried out on the

mobile UE, eliminating the necessity for central processing

[6]. Skyhook [7] has used Wi-Fi signals emitted from

residential homes and offices to build a cost-effective

location system on a global scale. Several existing WLAN

methods have aimed to use theoretical path loss (PL)

models whose parameters are estimated based on training

data [8]. Given an RSS measurement and PL model, the

distances from the UE to at least three APs are determined,

and trilateration is used to obtain the UE position. The

limitations of such an approach are the dependence on prior

topological information and assumption of isotropic RSS

contours [9]. Alternatively, the RSS-position relationship

has been characterized implicitly using a training-based

& Riaz Uddin Mondal

riaz.u.mondal@student.jyu.fi
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method known as location fingerprinting. Positioning

results from urban and sub-urban areas with WCDMA and

GSM networks in [10] shows that radio-frequency (RF)

fingerprinting is a better method than PL model based

localization. An RF fingerprint-based positioning system

has two phases. First, offline training phase: RSS and

corresponding location data are collected to create a ‘radio

map’ with sufficient representation of spatiotemporal RSS

properties of the area. Second, online location determina-

tion phase: the system uses the signal strength samples

received from a test UE to ’search’ the radio map to esti-

mate the user location.

In order to enhance WLAN RSS based indoor posi-

tioning pedestrian dead reckoning (PDR) is often used.

PDR uses an inertial measurement unit (IMU) which has

three-axis accelerometers and gyroscopes to detect a user

direction changes between footsteps. The user heading

change is computed by projecting the gyroscope mea-

surements to the horizontal plane. Authors [42] have

proposed a novel linear model for PDR and compared it to

conventional nonlinear models. For this purpose they have

used Kalman filter (KF), the extended Kalman filter (EKF),

and the unscented Kalman filter (UKF). The evaluation

shows that despite being simpler than the traditional

methods, it performs especially well in situations where the

initial heading and position are not known.

In this work, cluster-based RF fingerprinting (CRFF)

method is used with data similar to Minimization of Drive

Tests (MDT) data [11]. CRFF method divides a group of a

MDT data-set into a certain number of subsets or clusters,

so that the members in the same cluster are similar in terms

of their RSS values. The proposed CRFF confronts the

following main challenges of RF fingerprint based UE

positioning:

1.1 RF Fingerprint Collection and Updating

The conventional way of creating fingerprint training data-

base is to periodically conduct extensive drive test cam-

paigns which are time-consuming and unpractical for

building a metropolitan-scale radio map of the locating

system [12, 41]. A major drawback of this method is to

update the training radio map when new APs are deployed

and existing APs are decommissioned. The accuracy of any

location estimation system is highly dependent on the

density of the set of collected fingerprints which is difficult

to achieve through conventional drive test methods [13].

To solve this issue we have used generalized MDT

(GMDT) data that allows UEs to collect location-aware

radio measurements from LTE BSs as well as WLAN

access networks [14]. GMDT allows cellular operators to

collect and update big RF fingerprint data-base autono-

mously using subscribers UE without any additional

hardware instalment. This is the most cost effective solu-

tion to build and maintain fine-grained radio map to

increase the accuracy of UE localization.

1.2 Pre-processing of Training Data

In most cellular-communication systems the basic posi-

tioning method is based upon cell-identity (cell-ID) which

reports the identity of the cell to which the terminal is

connected to [15]. It has sort response time but the accu-

racy is low [16]. Author in [17] has proposed an adaptive

enhanced cell-ID localization method which uses an offline

cluster based fingerprinting to enhance the positioning

performance. To reduce computational complexity and

search space in WLAN positioning authors in [18] and [19]

have conducted offline clustering of locations based on the

training data. However the operation of these systems are

hampered over time since WLAN infrastructures are highly

dynamic and APs can be easily moved or discarded, in

contrast to the BS counterparts in cellular systems, which

generally remain intact for long periods of time. Our pro-

posed CRFF method utilizes GMDT data to output result in

sort time and does not go through time consuming training

data processing phase.

1.3 AP Selection for UE Positioning

In a typical urban environment, the number of detected

WLAN APs is greater than usually necessary for UE

position estimation. RSS is dependent on the relative dis-

tance of the UE and each AP. It is affected by the topology

of the surrounding environment in terms of obstacles

causing non line-of-sight RF signal propagation; thus

subsets of available APs may report correlated readings.

Hence considering all available APs for position estimation

increases the computational complexity of the positioning

algorithm [6]. To simplify the training data collection

process we have adopted the ‘Maximum RSS’ (MRSS)

based selection methodology where APs are sorted in

descending order based on their maximum RSS value and a

certain part is chosen to create the training database [20].

1.4 Position Estimation Using New RSS Observation
and Radio Map

This essentially involves a distance calculation between the

RSS observation of a test UE and the training records;

Euclidean distance has been used in this study [21]. UE

location estimation using RSS measurements is a difficult

task due to the noisy characteristics of signal propagation

and absorption by surrounding structures and human bod-

ies. Even changes in the environmental conditions, such as

temperature or humidity, affect the signals to a large
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extent. As a consequence, the signal strength recorded from

an AP at a fixed location varies with [19]. Moreover RSS

values measured from WLAN APs may differ significantly

with the UE’s hardware even under the same wireless

conditions [22, 23]. In order to study the effect time and

device variation on UE positioning we have collected

GMDT data using different devices in two different times

of a year.

The main goal of this research is to use four popular

clustering algorithms namely: k-means, Hierarchical

Clustering, Fuzzy C-Means Clustering and Self-Organizing

Map based clustering in conjunction to our proposed CRFF

method and also to compare these CRFF methods with

GRFF and KNN in terms of positioning accuracy and

computational time complexity. Thereby we can evaluate

which clustering algorithm performs the best using the

proposed CRFF technique. The rest of the paper is orga-

nized as follow. Section 2 describes the GMDT data

collection and pre-processing steps. The conventional grid-

based RF fingerprinting (GRFF) method, K-nearest

neighbours (KNN) based positioning and CRFF methods

are explained in Sect. 3. Section 4 presents the experiment

results and their performance comparison. Finally, Sec-

tion 5 concludes the paper and gives some future directions

to this effort.

2 Offline Data Collections and Pre-processing

2.1 GMDT Data Measurement

The 3rd Generation Partnership Project (3GPP) has been

studying solutions for enhancing the interworking between

WLAN and LTE in Release 12 and 13 [24]. Authors in [14]

have proposed an enhancement to the LTE MDT referred

to as GMDT with minor changes to the 3GPP MDT

framework which enables WLAN APs to be added to the

MDT report containing LTE network measurements as

well as the UE location information.

To build the GMDT data-base commercially available

mobile phones installed with drive test software known as

‘Nemo Handy’ was used [25]. This enabled us to measure

reference signal received power (RSRP) values of Long

Term Evolution (LTE) serving and detected Base Stations

(BS) and received signal strength indicator (RSSI) values

of WLAN APs with corresponding GNSS locations of the

UEs. Both LTE and WLAN signal strengths were recorded

in dBm and GNSS latitude and longitude values were

converted to Universal Transverse Mercator (UTM) coor-

dinate system values. About 150 km of measurements were

recorded by feet, bicycle and car from a residential urban

area in Tampere, Finland. In order to collect enough

measurement samples from the area of interest every route

was repeated at least twice during the data recording per-

iod. Table 1 summarizes the parameters of two data

collection campaigns.

2.2 GMDT Data Pre-processing

Our proposed positioning system is network-based system

where a positioning server (GMDT server) is used to store

and update the ‘radio map’ through merging multiple

GMDT samples recorded from the same x–y coordinate

comprising of similar LTE BS and WLAN AP IDs to form

a single fingerprint of mean RSS values of the constituent

GMDTs. Since the strongest APs provide good probability

of coverage over time [18]; we have chosen a subset of APs

with the highest observation RSS values. In indoor WLAN

positioning seven WLAN RSSI values were used by

authors in [20] to obtain acceptable positioning accuracies.

Authors in [14] have noticed that increasing WLAN APs

after ten provides little to no gain in UE positioning per-

formance. Hence in this study we have compare the UE

positioning performances of two different sets of RSS

values Sj,n where, j = 1 and 2 refers to different GMDT

data-sets and n is the total number of GMDT samples. The

first set S1,n comprises of serving LTE RSRP and six

WLAN RSSI values while the second set S2,n contains

serving LTE RSRP and ten WLAN RSSI values. We can

represent a GMDT sample of a set by a row vector:

Sj;n ¼ fLWID; RSSLW ; PXYg ð1Þ
where, LWID denotes the LTE BS IDs and WLAN AP IDs,

RSSLW corresponds to RSRP and RSSI values, and PXY

Table 1 Summary of two different data recording campaigns

Time of data

collection

Area of

interest

(km2)

No. of BSs

and APs

No. of

GMDT

samples

Mobile

device

Wi-Fi module LTE and WLAN signal

frequency

Sampling frequency of

LTE and WLAN

Sept. 2014

(5 days)

0.33 16 and

1776

21,954 Samsung

GT-I9305

Murata

M2322007

LTE-1800 and 800 MHz

WLAN-2.4 and 5 GHz

2 samples/sec. and 1

sample/5 s

May 2015

(6 days)

0.34 13 and

2280

87,930 Samsung

SM-

G900F

Murata

KM4220004

LTE-1800 and 800 MHz 4

and 5 GHz

2 samples/sec. and 1

sample/5 s
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contains x–y coordinates of the UEs obtained from GNSS

positioning information.

Training phase of GRFF method: We have used a con-

ventional single grid-cell layout based fingerprinting. The

whole geographical area of interest is segmented into 10 m-

by-10 m square grid-cell units (GCU). As shown in Fig. 1a

the GMDT samples of a given data-set Sj,n are grouped in

different GCUs. For any particular GCU a single training

signature TrainSig is formed from all its samples. This

shortens the searching time during the UE position esti-

mation phase and reduces the computational cost. The

TrainSig formed from all the GMDT samples of ith GCU

can be defined by:

Trainisig ¼ TSLWID ; RSSLWTS ; PXY
Ref

� � ð2Þ
where, TSID

LW contains all unique LTE BS IDs and WLAN

AP IDs obtained from samples of the GCU, RSSLWTS is a

vector of the corresponding mean LTE RSRP and WLAN

RSSI values, and PXY
Ref is the reference x–y coordinate

calculated from the mean values of x and y coordinates of

the samples.

Training phase of CRFF method: The GMDT samples

of a given data set Sj,n are grouped according to unique

LTE serving BS IDs. Hence literally it does not require any

data-processing during the training phase.

3 Position Estimation Phase

The test UE first sends a positioning request to the GMDT

server along with the recorded cell-IDs and associated

RSS values. After matching and data processing GMDT

server sends the position estimation information to the test

UE.

3.1 Test Phase of GRFF Method

As shown in Fig. 1b the LWID of test GMDT sample

(TestSam) is compared to TSID
LW of all the training signatures

of the data server to select those signatures which meet a

minimum matching threshold (MT) value. In our study this

minimum MT number for both GMDT sets were set to two.

Therefore for MT-2 all the training signatures that contain

at least two or higher number of LWID as compared to the

test GMDT are selected: a partial ID match procedure. The

maximum MT numbers for S1,n and S2,n were four and five

respectively. Euclidean distance was used to measure the

statistical difference between a test sample and selected

training signatures which was found to be effective in

WLAN-based indoor UE positioning [26]. Here we have

used a simplified Mahalanobis distance (MD) equation

where the inverse covariance matrix is replaced by an

identity matrix:

d TestSam;TrainSig
� � ¼ pf uTe � uTrð ÞT I uTe � uTrð Þg ð3Þ

where, uTe and uTr denotes the RSRP and RSSI values of

the TestSam and a TrainSig respectively and I is the identity

matrix. Separate calculations are done to measure all the

distances between a TestSam and training signatures. The

TrainSig that corresponds to the smallest Euclidean distance

is chosen for UE positioning. The estimated position of the

TestSam is obtained from PXY
Ref of the chosen TrainSig.

3.2 Test Phase of KNN Based Positioning

The most well-known pattern matching algorithm is K

nearest neighbour (KNN) [5]. In order to satisfy the

acceptable localization accuracy with low computation

effort KNN has been used for WLAN UE positioning by

UE GMDT 
Server

Testing Phase

Selection of Matched 
Training Signatures 

from GCUs

Distance Calculation 
between Test GMDT & 

Training Signatures

Conventional GRFF

GMDT Group is 
Chosen According to 
Test Sample LTE ID

Proposed CRFF 

UE Positioning 
from Selected 

TrainSig GMDT

Clustering is 
Performed on 

Selected Group

Cluster Selection and 
UE Position 
Estimation

(b) 

UE positioning phase

(a)

Training phase

UE GMDT 
Server

GCU Creation and grouping of 
GMDTs in separate GCUs

GCU-wise Training 
Signature Formation

Conventional GRFF

GMDT Group Formation according to Serving LTE BS ID

Proposed CRFF 

Training Phase

Fig. 1 Block diagram of GRFF

and CRFF positioning methods.

a Training phase, b UE

positioning phase
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several researchers [3, 21, 27, 28]. Here first we select the

training GMDT group (TrainGrp) according to the LTE

serving BS ID of the TestSam. Then multiple GMDT sam-

ples are selected from TrainGrp according to the partial ID

matching. The partial matching begins with the highest MT

number and until multiple partially matched training

samples (GMDTPM) are obtained MT number is sequen-

tially lowered towards the minimum. Now according to the

lowest Euclidean distance a maximum of five closest

GMDTs are chosen using the following KNN equation:

dðGMDTPM ; TestSamÞ ¼ pf
Xn

j¼1
ðGMDTRSS � TestRSSÞg2

ð4Þ
where, GMDTRSS and TestRSS are vectors of LTE RSRP and

WLAN RSSI values of GMDTPM and TestSam respectively.

The estimated position of a test UE is calculated from

mean x–y coordinates of the selected GMDTPM samples.

3.3 Test Phase of CRFF Methods

The main steps of the proposed CRFF method is depicted

in Fig. 2.

3.3.1 K-means Cluster Based Positioning

The k-means method is a widely used clustering technique

in scientific and industrial applications [29]. Although it

offers no accuracy guarantee, its simplicity and speed are

very appealing in practical RF fingerprint positioning. It

has been successfully used in indoor mobile localization

and also in outdoor positioning as an energy efficient RF

fingerprinting method [30, 31]. Here k-means++ algorithm

was used which is faster to implement and also improves

the performance of Lloyd’s algorithm [32]. The methods

begins with a set of xi data points where i = 1,2,…,n and a

pre-defined maximum cluster number K. The task is to

choose K centres ck so as to minimize the following dis-

tance function,

d x; cð Þ ¼
Xn

i¼1
jxi � ck j: ð5Þ

Here each centroid is the component-wise median of the

sample points in that cluster. Assuming D(xi) denotes the

shortest distance from a data point to the already chosen

cluster centre k-means++ algorithm performs the following

steps:

1. The first centre c1 is chosen uniformly at random from

x.
2. A new centre ck is chosen from x with probability

DðxiÞ2
Pn�1

i¼1

DðxiÞ2
:

3. Step (2) is repeated until all k centres are chosen.

4. For each ck, data points are assigned to it which are

closer to it than any other ck.
5. New ck is computed from the mean of all data points

that belongs to the previous ck.
6. Steps (4) and (5) are repeated until c no longer

changes.

Depending upon number of GMDTPM samples

(GMDTPM
num) differentK values were assigned for k-means++

algorithm so that clustering takes place even with less

GMDTPM
num. K is set to 6 if GMDTPM

num ≥ 20, K is 3 if 20[
GMDTPM

num ≥ 10 and K is 2 if 10[GMDTPM
num ≥ 2.

3.3.2 Agglomerative Hierarchical Cluster Based
Positioning

Hierarchical clustering is a technique that constructs a tree-

like nested structure of clusters. In agglomerative hierar-

chical clustering (AHC), one starts by considering each

data point as a single cluster and follows by merging two

neighbouring clusters at each step of the process [33]. In

this study we have used weighted-linkage based AHC

clustering since it has shown good positioning performance

in GSM outdoor UE localization [34]. The neighbouring

clusters are chosen based on a linkage criterion where

1. To estimate the position of a test sample, a GMDT group is selected from training data according to the 
serving LTE BS ID of the test sample 

3. The test sample is added to this group and clustering is done 

4. Clustering criteria is checked: a cluster is valid only if it contains multiple GMDTs. If the TestSam does not 
belong to any cluster reduce matching threshold and go-to Step 2 

2. For a particular MT number GMDT samples are selected which have enough common cell-ID/APs as 
compared to the test sample  

5. Select the cluster which contains the TestSam; the estimated UE position is obtained from the mean x-y 
coordinates of the GMDTs of that cluster 

Fig. 2 Block-diagram of CRFF

based UE fingerprint

positioning

Int J Wireless Inf Networks (2017) 24:413–423 417

123



weighted average distance determines the distance between

two clusters. In order to select the optimal cluster number

in AHC method we have used Davies-Bouldin criterion

[35]. This criterion is based on a ratio of within-cluster and

between-cluster distances. Minimum Davies–Bouldin

index (DB) indicates the potential number of clusters in the

data:

DB Kð Þ ¼ 1=Kð Þf
Xk

i¼1
maxj 6¼iðDi;jÞg ð6Þ

where, K is the initial maximum number of clusters, Di,j is

the within-to-between cluster distance ratio for the ith
and jth clusters. Di,j is given by; Di,j = (di¯ + dj¯)/di,j,
where,di¯ is the average distance between each point in ith
cluster and centroid of the ith cluster dj¯ is the average

distance between each point in jth cluster and centroid of

the jth cluster di, j is the Euclidean distance between cen-

troids of the ith and jth clusters. Here we have selected

K = 6 if GMDTPM
num[10 and K = 2 when GMDTPM

num\10,

so that clustering still takes place when there is lees number

of GMDTPM
num samples.

3.3.3 Fuzzy C-Means Cluster Based Positioning

Fuzzy C-means (FCM) is a data clustering technique—a

dataset is partitioned into multiple clusters with every data-

point in the dataset belonging to every cluster to a certain

degree. Authors in [36] and [37] have used FCM in WLAN

indoor localization to obtain good positioning accuracy and

also to reduce the computation time as compared to a

conventional GRFF method. We have assigned different

initial cluster size c depending on number of GMDTPM
samples: c = 6 if GMDTPM

num ≥ 20; c = 3 if GMDTPM
num\20

and GMDTPM
num ≥ 10; and c = 2 if GMDTPM

num \ 10 and

GMDTPM
num [ 2. FCM starts with an initial guess for the

cluster centres, which are intended to mark the mean

location of each cluster and it also assigns every data point

a membership grade for each cluster. By iteratively

updating the cluster centres and the membership grades for

each data point, it moves the cluster centres to the right

location. This iteration is based on minimizing the objec-

tive function for subdividing the selected GMDT data-set

[38]:

Jm u; vð Þ ¼
Xc

i¼1

Xn

k¼1

umi;k jjDk � vijj2 ð7Þ

where, n is the number of samples in the data set, c is the

number of clusters (1 ≤ c ≤ n),ui,k is the element of partition

matrix U of size (c x n) containing membership function, vi
is the centre of ith cluster, and m is a weighting factor that

controls fuzziness of membership function. The matrix U is

constrained to contain elements in the range of [0, 1] such

that
Pc

i¼1 uik ¼ 1 for each uik(1 ≤ k≤n). The norm jjDk �

vijj is the distance between the sample Dk and the clusters

centre vi.

3.3.4 Self-Organizing Map Based Positioning

SOM was introduced as an unsupervised competitive

learning algorithm of the artificial neural networks by

Finnish Professor Teuvo Kohonen in the early 1980s, SOM

is also called the Kohonen map. A Self Organizing Map

(SOM) is a single layer neural network, where neurons are

set along an n-dimensional grid. Each neuron has as many

components as the input patterns. Training a SOM requires

a number of steps to be performed in a sequential way. For

an input sample the SOM training phase consists of three

steps: (1) to evaluate the distance between input sample

and each neuron of the SOM; (2) to select the neuron

(node) with the smallest distance from the sample; and (3)

to correct the position of each node according to the results

of step 2), in order to preserve the network topology. Steps

1–3) can be repeated more than once for each input sample

until stopping criteria is reached. The SOM technique is

simple yet effective in capturing the properties of the input

space and it can be used for clustering input data.

In [43] and [44] authors have used SOM to compute

virtual coordinates that are effective for location-aided

routing in Wireless Sensor Networks (WSN). In [44] syn-

chronous readings collected by all the sensor nodes were

used to build the training set for the SOM. After training

the model, the localization task was performed using new

sensor readings to sort nodes on the basis of their proximity

to a virtual grid of nodes. In [45] authors have used SOM to

develop an indoor locating and tracking system using Wi-

Fi RSS values. They have achieved good positioning

accuracy by using SOM technique. In this study we have

employed SOM as another CRFF method for outdoor user

localization using GMDT data.

4 Experimental Results and Discussion

To evaluate the robustness of the positioning methods with

changes in recording device and surrounding environment

two experimental studies (ExStudy-1 and ExStudy-2) were

carried out. In ExStudy-1 both training and test samples

were selected from the same time period—September

2014. Here training and test data-sets comprises of ran-

domly choosing data chunks of 20 sequentially recorded

samples.

Table 2 shows the UE positioning results of ExStudy-1

obtained from 10 fold cross-validations. In this study only

GMDT data-set S1,n was used. In each of experimental

studies the number of training and test GMDTs were

23,080 and 2565 respectively. Table 2 shows the 68th and
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95th percentile cumulative distribution function (CDF)

values of positioning error (PE) for each of the positioning

methods along with the percentage of analysed TestSams
corresponding to different MT values.

Table 3 shows results of ExStudy-2 where both S1,n, and
S2,n datasets were used. These datasets contain 32,791

training GMDTs of September 2014 and 3574 TestSams of
May 2015. Here each of the selected TestSam is surround by

more than ten training GMDTs within its 3 m circular

radius area to ensure the presence of sufficient number of

training samples in its vicinity. It is found from Tables 2, 3

and 4 that for MT-2 all the methods have analyze maxi-

mum amount of TestSams.
The bar plot of Fig. 3a, b shows 68th and 95th percentile

PE values respectively corresponding to MT-2 of both

studies using dataset S1,n. In every study AHC based RFFP

has outperformed other positioning methods in both 68%-

ile and 95%-ile of PE. For MT-2 in ExStudy-1 AHC has

shown an improvement of 40.52% and 21.66% in 68%-ile

and 95%-ile of PE respectively as compared to that of the

GRFF method. For the same MT value and using S1,n in

ExStudy-2 AHC improves positioning accuracy by 19.71%

and 15.46% in 68%-ile and 95%-ile of PE respectively over

that of GRFF method. In ExStudy-2 AHC outperforms

KNN by 18.54% and 22.30% in 68%-ile and 95%-ile of PE

respectively. However in both of the studies AHC has

analyzed lower percentages of TestSams. From Table 3 it

was found that when S2,n is used in ExStudy-2 positioning

performences of K-means and FCM does not differ sig-

nificantly from that of the AHC method for MT values of 2,

3 and 4. It is also noticeable that corresponding to each of

these MT values K-means and FCM have analyzed more

TestSams than AHC based positioning.

In Table 4 gives the PEs of SOM based RFFP for

ExStudy-2 using GMDT dataset S1,n and S2,n. It has given
better positioning accuracies when compared to GRFF,

Table 2 Positioning error results of ExStudy-1 using GMDT dataset S1,n

MT GRFF KNN K-means AHC FCM

68%

PE

(m)

95%

PE

(m)

Ana.

Sam.

(%)

68%

PE

(m)

95%

PE

(m)

Ana.

Sam.

(%)

68%

PE

(m)

95%

PE

(m)

Ana.

Sam.

(%)

68%

PE

(m)

95%

PE

(m)

Ana.

Sam.

(%)

68%

PE

(m)

95%

PE

(m)

Ana.

Sam.

(%)

4 15.3 43.1 99.3 15.0 45.5 98.6 10.0 36.3 84.6 8.2 31.2 74.9 11.0 38.8 84.6

3 15.3 43.3 99.8 15.2 46.0 99.7 11.5 40.4 94.9 9.0 33.8 80.8 12.8 42.6 96.2

2 15.3 43.4 99.9 15.2 46.0 99.8 11.5 40.5 95.0 9.1 34.0 81.0 12.8 42.7 96.3

Table 3 Positioning error results of ExStudy-2 using GMDT dataset S1,n and S2,n

D. S. MT GRFF KNN K-means AHC FCM

68%

PE

(m)

95%

PE

(m)

Ana.

Sam.

(%)

68%

PE

(m)

95%

PE

(m)

Ana.

Sam.

(%)

68%

PE

(m)

95%

PE

(m)

Ana.

Sam.

(%)

68%

PE

(m)

95%

PE

(m)

Ana.

Sam.

(%)

68%

PE

(m)

95%

PE

(m)

Ana.

Sam.

(%)

S1,n 4 26.6 47.0 80.3 25.8 47.3 69.7 24.1 47.2 66.8 20.8 39.8 26.8 24.5 43.4 41.8

3 27.2 49.2 96.5 27.0 53.4 94.6 25.2 51.2 93.7 21.5 41.7 60.5 25.5 50.2 78.1

2 27.9 51.1 99.7 27.5 55.6 99.4 25.5 55.4 99.3 22.4 43.2 76.6 26.7 53.3 95.7

S2,n 5 25.7 46.1 57.0 24.7 44.3 89.6 23.8 41.6 86.9 20.8 38.7 43.1 23.5 42.2 62.4

4 26.7 47.6 85.5 25.8 46.8 97.5 24.5 42.8 96.6 22.0 42.0 67.0 24.3 43.0 87.4

3 27.6 49.5 96.8 26.0 47.5 98.9 24.7 44.1 98.8 23.0 43.7 78.4 24.8 44.1 97.5

2 28.1 50.8 99.7 26.2 49.3 99.9 24.9 46.2 99.9 23.4 45.2 82.9 25.2 46.4 99.4

Table 4 Positioning error

results of ExStudy-2 using SOM

with GMDT dataset S1,n and S2,n

Method SOM

Data set S1,n S2,n

Matching threshold 4 3 2 5 4 3 2

68% PE (m) 22.06 23.05 25.27 24.78 23.83 24.53 24.81

95% PE (m) 34.84 39.93 45.70 42.42 41.95 44.27 45.23

Analysed Samples (%) 2.96 15.44 39.22 4.92 15.52 31.00 48.57
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KNN, K-means and FCM based RFFP but with significant

reduction of analyzed TestSams. For MT-2 its 68%-ile and

95%-ile results closely resemble that of AHC results. For

higher MT values the analyzed percentages of TestSams are
even less.

The average computation time taken by the GRFF and

cluster based methods are shown in Table 5; where

n = 3574 is the total number of GMDT data samples;

NGCU = 5478 is the total number of GCUs in GRFF

method, d = 2–7 for data-set S1,n and d = 2–11 for data-set

S2,n—is the data dimension of a GMDT sample; K = 2–6 is

the number of initial clusters; Kn = 100 is the number of

neurons in SOM and T = 1 to 6 for data-set S1,n and T = 1–

10 for data-set S2,n—is the number of iterations taken by an

algorithm to converge. The computation time of all the

positioning methods other than GRFF depend upon the

T. We can find from Table 5 that only the GRFF needs

training time—which is very long compared to the testing

time of any method. It is also found that UE position

estimation time increases for all the methods when data-set

S2,n was used as compared to that of S1,n—due to the

increase in data dimension.

AHC has taken the least amount of time for UE positioning

in both of the experimental Studies. But due to its high com-

putational complexity, which is at leastO (N2) it may not be a

suitablemethod for a large-scale data-set. SinceK, d, andT are
usually much less than N, the time complexity of K-means

method is approximately linear; hence this algorithm scales

well to large-scale data-sets [39, 40]. SOM based RFFP has

taken much longer time to output position estimation as

compared to rest of the methods. It is worth mentioning that

depending upon the choice of the initial cluster sizeK both the

performances and execution time of themethodsmight differ.

Hence as a future work we intend to compare positioning

accuracies of the methods with variations inK numbers. Also

it worth comparing the results with less number of training

samples in the vicinity of a test sample.

5 Conclusion

The conventional grid-based RF fingerprinting positioning

heavily depends on training phase data-processing and also

the output result varies upon the chosen grid-cell size. In

Fig. 3 Comparison of PE results between ExStudy-1 and ExStudy-2 for MT-2. a 68th percentile PE values (meters), b 95th percentile PE values

(meters)

Table 5 Execution time analysis of different methods in ExStudy-2

Methods Time complexity Average elapsed time (seconds) for S1,n Average elapsed time (seconds) for S2,n

GRFF Depends on n, NGCU, and d 591.9551 (for training)

0.6062 (for testing)

1005.5040 (for training)

1.0145 (for testing)

KNN O(n d) 0.9367 1.7078

K-means O(n K d T) 1.1492 1.9058

AHC O(n2 logn) 0.0788 0.1302

FCM Near O(n) 1.1003 1.7887

SOM O(d + Kn) 5.94 12.24
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this study we have used GMDT data for outdoor UE

positioning in urban area using cluster-based fingerprint

positioning that does not go through a training phase data

processing. Proposed CRFF method can provide improved

positioning accuracy with less computational cost over

traditional GRFF and KNN methods. CRFF continues to

perform better than GRFF and KNN even when facing

recording device variation and environmental changes. For

lower MT value SOM performs similar to AHC method but

it fails to analyze considerable amount of test samples and

also it takes the longest execution time for positioning.

With data-set having eleven RSS K-means and FCM based

CRFF improves positioning accuracies and analyzes 99%

test data. From this study it is found that using GMDT data

consisting of seven RSS values AHC based CRFF has

given best positioning accuracy taking shortest time as

compared to other methods. Hence using GMDT data

cellular operators can utilize AHC based RF fingerprinting

to provide fast and acceptable results for outdoor UE

positioning.
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