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Abstract	11

We developed a temperature sum model to predict the daily pollen release of alder, based on pollen12
data collected with pollen traps at seven locations in Finland over the years 2000 to 2014. We estimated13
the model parameters by minimizing the sum of squared errors (SSE) of the model, with weights that14
put more weight on binary recognition of daily presence or absence of pollen. The model results suggest15
that alder pollen ripens after a couple of warm days in February, while the whole pollen release period16
typically takes up to 4 weeks. We tested the model residuals against air humidity, precipitation and wind17
speed, but adding these meteorological features did not improve the model prediction capacity.18

Our model was able to predict the onset of pollen season with similar accuracy as models describing19
only the start of the pollen release period (average prediction error 8.3, median 5.0 days), while for the20
end of the pollen release period the accuracy of our predictions was not as good. We split the pollen21
data into odd and even years, and fitted our model separately to each half. Difference in the parameter22
values suggests a biennial behavior in the onset of pollen ripening, with almost two weeks of difference23
in the modeled starting date of the pollen development. Monte Carlo resampling of the observation24
data confirmed that the difference is not just a random anomaly in the data.25

Introduction	26

In Finland, alder (Alnus sp.) is together with the far less common hazel (Corylus sp.) the starter of the27
allergenic pollen season. It belongs to the Betulaceae family including also birch (Betula sp.), which is the28
most important genus for pollen allergies in Finland. The major allergen of alder (Aln g 1) resembles the29
major allergen of birch (Bet v 1) both structurally and immunochemically (Matthiessen et al. 1991,30
Pehkonen and Rantio-Lehtimäki 1995), and allergic cross reactivity is common. The temporal sequence31
of alder and birch flowering lengthens the period of allergenic exposure for those sensitive to32
Betulaceae pollen. Moreover, exposure to high alder pollen counts may increase the sensitiveness to33
pollen later on during the season (Emberlin et al. 1997). In their study concerning alder and birch,34
Jantunen et al. (2012) found a fair correlation between allergy symptoms and pollen counts, but further35
concluded that the risk of developing symptoms is influenced by the progression of the Betulaceae36



pollen season. Therefore, more accurate predictions of the onset of alder pollen release, by means of1
modeling, would help the allergy sufferers to manage their symptoms.2

A number of phenological models have been produced to predict the onset of alder flowering. Some of3
these are simple temperature sum models, starting the temperature sum accumulation from a fixed day4
in spring (Linkosalo 2000, Linkosalo et al. 2006). Also more complex models including a chilling submodel5
have been proposed (Andersen 1991, Jato et al. 2000, Rodríguez-Rajo et al. 2006, 2009, González-6
Parrado et al. 2006). However, Linkosalo (2000) found that the temperature sum model without the7
chilling submodel performs better for predicting the start of alder flowering in Finland, and Linkosalo et8
al. (2008) showed that this applies at least to later-flowering species also when using independent data9
for model evaluation.10

The pollen release period of birch was predicted using temperature sum as the driving environmental11
variable of pollen release in a previous paper (Linkosalo et al. 2010).  With the application to provide12
input for the long range transport model, another version of the model was produced, using also air13
humidity and wind speed as controls of the pollen release (Sofiev et al. 2013). The latter model is in use14
of a prediction system for birch long-range pollen transport events (Siljamo et al. 2013). For this study,15
we used similar model structures than in the two papers mentioned above.16

The aim of this study was to develop and test a pollen release model for alder. Our model uses only17
temperature sum as control of the pollen release period. Further we tested if additional environmental18
variables would improve the prediction potential of the model. We split the data to odd and even years19
and fitted the model separately to each half. Difference in optimal model parameter values revealed a20
biennial behaviour in the onset of pollen ripening. We utilised Monte Carlo resampling from a large21
matrix of parameter values combinations to enhance the calculation efficiency of the Monte Carlo22
resampling.23

Materials	and	methods	24

There are two common species of alder in Finland, namely Black Alder (Alnus glutinosa (L.) Lam.) and25
Grey Alder (Alnus incana (L.) Moench.).  Using historical time series of onset of flowering, Linkosalo26
(2000) found that in Finland Black Alder starts flowering on average 6 days before Grey Alder. However27
in the pollen trap data, it is not possible to distinguish between the pollen of the two species.28

We used alder pollen data counts measured at seven pollen measurement sites (table 1, Fig. 1). The29
sampling followed the Burkard-spore trap procedure described by Hirst (1952). In Turku, where the30
flowering starts first of all observations sites, the pollen data is collected throughout the year. On the31
other sites the collection is started once pollen is observed in the Turku site, and carried on until the32
pollen season has clearly ended.33

The traps were located on open rooftops. The alder pollen grains were identified and counted on bi-34
hourly basis, taking 2 randomized samples per each strip representing a 2 hour time period (Mäkinen35
1981). The resulting variable was average pollen grain concentration /m3. We studied the pollen counts36
on a daily basis, and daily data were summed up from the bi-hourly samples for each day.37



The meteorological data were obtained from the Finnish Meteorological Institute1
(https://en.ilmatieteenlaitos.fi/open-data). The weather stations were located on average 8 kilometers2
from the corresponding pollen trap. Tri-hourly data from meteorological stations closest to the pollen3
traps were used and daily averages (or in the case of precipitation, daily sum) were calculated for the4
analyses.5

Boreal wind-pollinated trees typically show quite large inter-annual variation in the amount of pollen6
release, and alder is no exception. There are some attempts to model the pollen amounts based on7
weather conditions and pollen intensity of previous years (Masaka and Magushi 2001, Ranta et al.8
2008), but these models lack prediction power on independent data (Ranta et al. 2008). Therefore we9
decided to normalize the pollen amounts for each year, and focus our modeling on the timing of the10
pollen release only. For this purpose, the total accumulated pollen amount for each year and site was11
calculated, and daily pollen observations were divided with this annual total. Similarly, the pollen model12
predicts the daily pollen amounts as fractions of annual total. As the pollen count captures with Burkard13
traps is normalized, we used it as proxy for the released pollen, which was then predicted with the14
model.15

The pollen model predicts the ripening of the pollen to depend on a temperature sum, TS, accumulated16
from a fixed starting date, t0, in spring. Temperature sum is accumulated from the fraction of daily17
temperature, T, above a critical temperature threshold, TCrit. The cumulative amount of ripened pollen,18
P, is modeled to increase as a linear function between two temperature sum thresholds TSmin and TSmax,19
as was modeled for birch by Linkosalo et al. (2010).20
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Our model assumes that the pollen is released as it ripens. The model has 4 parameters, the starting23
date t0, critical temperature threshold TCrit, and the two temperature sum thresholds TSmin and TSmax.24

We estimated the model parameters by minimizing the sum of squared errors (SSE) between the model25
predictions and measured data. To emphasize the model accuracy in predicting the start and end of the26
pollen season, we modified the calculation of SSE with a weight function W, that was 1 in the case both27
observed (O) and predicted (P) pollen counts were positive, but had a value of 10 if either predicted or28
observed pollen count was zero:29

( ) = 1, ( ) > 0 ( ) > 0
10, ( ) = 0 ( ) = 0 (3)30
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Parameter estimation of phenological models tends to be a challenge to optimization algorithms, and1
take a multitude of model evaluations. To reduce the calculation time, to be able to find the parameter2
set that minimizes the model prediction error, and to be sure that we have reached a global minimum of3
the SSE, we calculated the model in a large matrix of parameter values, covering the potential range of4
parameters, and at the same time fine enough to correspond to sufficient accuracy of parameter values.5
In phenological models, both observations and temperature data come with a time-step of one day, so6
this was obvious value for the starting day parameter, t0. On a typical spring day, the temperature is7
several degrees above the temperature threshold used in the model, so we concluded that a step of one8
degree-day will be sufficient for the two temperature-sum thresholds, TSmin and TSmax. Finally we chose a9
step of 0.1 °C for the temperature threshold TCrit. After calculating the model predictions in the matrix,10
finding the optimal parameter combination was simply finding the minimum SSE value in the matrix.11

To evaluate the data dependency of our model parameters, we did a Monte Carlo –resampling of pollen12
observations, in which each combination of year and sampling site acted as one data point. We picked13
49 random data points from each subset of observations with resampling, and repeated this 900 times.14
We then picked the model prediction deviations for the random data points for the whole parameter15
matrix, summed up the SSE values for all parameters combinations, and found the parameter values16
that minimized the SSE value for that specific subset on observations. Thus the model parameter17
estimation for each Monte Carlo sample was done by tallying the model predictions errors for all18
observations drawn into that sample, over the whole parameter value matrix, and then selecting the19
parameter combination that resulted in the smallest sum of squared prediction errors. The models and20
scripts managing the parameter-related data were written in R, and the calculations were done on a21
Unix mainframe calculation server, using at most 25 parallel cores.22

We classified the days into 4 classes depending on if the observed and model predicted pollen release23
were positive or zero. We further classified the days where observations were positive but predictions24
were zero, or the other way round, to three classes, before, during and after the predicted pollen25
release period.26

Preliminary results indicated that the model parameters would have different values for the odd and27
even years, so we split the pollen data to two subsets and fitted the model to both subsets28
independently.29

Results	30

We first fitted the model to all the observed data. Adding the weights as in eq. 3 to 5 improved the31
prediction accuracy of the starting date of pollen release considerably. Minimizing the SSE without the32
weights would sum the squared difference of the modeled and observed pollen count for each day.33
Adding the weights emphasize the binary recognition of presence of pollen, and improved the model34
considerably. The resulting model gave rather good estimates for the start of the pollen release period,35
average deviation was -8.3 days (table 2), which is of the same magnitude as with temperature sum36
models predicting observed onset of flowering (Linkosalo 2000). Negative values indicate that the37
observed date precedes the predicted. The median prediction error is -5.0 days, indicating that the38



distribution of the errors is skewed. The mean error for Turku is considerably large and negative, which1
is probably due to long range transported pollen present in the Turku observations. In Turku the pollen2
data is collected continuously throughout the year, while on the other sites the collection is only started3
when the presence of pollen is observed in the Turku site.4

Similar analysis for the end of the pollen season show much larger deviation of the predicted end of the5
season from the observed one (table 3). Typically the prediction error of the model is positive, so there6
are pollen observations after the last predicted pollen release date. The penalty coefficient in the SSE7
calculation (eq. 3 to 5) tends to set the end of the predicted pollen release period for the first8
occurrence of consecutive multiple days without observed pollen. We therefore conclude that the9
observed airborne pollen during the days after the model has predicted the pollen release period to end10
are likely to be cases of long-range transported pollen from more Northerly locations. The model-11
predicted pollen season is on average 24.2 days, and the length is consistent throughout the sites on the12
same year (table 4).13

On counting the binary pollen event days, the model caught correctly 1860 “event” days, but missed 72414
days and falsely predicted the pollen release to take place on 1472 days (Table 5a). However, of the15
1472 “false alarms”, a majority, 872 cases occurred during the modeled pollen release period, that is16
between the predicted starting and ending dates of the pollen season (Table 5b). Therefore it is likely17
that these dates are such that the air was washed from pollen due to local precipitation or some similar18
event. In a similar fashion, majority of the “misses” were after the modeled pollen season had ended, so19
these are likely to be cases of long-range transport events (Table 5b).20

We split the data to two halves, odd and even years, and used Monte Carlo resampling to produce 90021
different subsamples of each half of the date. We fitted the model separately to each subsample of the22
data by finding a set of parameter values that minimize the SSE.  We then calculated distributions of the23
model parameters for each half and over the Monte Carlo samples. The model parameter values for24
either half of the data were remarkably stable, there were very few Monte Carlo samples where any of25
the parameter values differed from those values for the majority (fig 2). The optimal parameter values26
for each half of the data were, however, different (table 6). Especially the starting day parameter value27
differed considerably for the two data sets, by 11 days (day-of-year 44 vs. 55, for odd and even years).28
When splitting the data to early and late years, the parameter values for the two subsets were similar29
(Table 6).30

The result suggests that alder shows a biennial behavior of the timing of onset of pollen development in31
spring. When comparing the model parameters, they mostly deviated in the value of the starting date of32
temperature sum accumulation.  There was also a slight difference in the temperature sum threshold for33
the start of the pollen season, but taking into account the low value of critical temperature, the34
difference should not make much difference in the timing of the onset of flowering. The other two35
model parameters had practically similar values for both halves of the data (Table 6).36

The model was able to reproduce the pollen release days with rather good accuracy, but did not do so37
well in reproducing the day-to-day variation of the pollen release. Fig. 3 shows an XY plot of the38



observed vs. predicted pollen release. The figure indicates a rather poor correlation between the two,1
and also shows how the magnitude of the observed pollen release is threefold to that of modeled.2
When we compare only the points where both observed and modeled pollen release are positive, there3
is very little correlation between the two. The model seems to perform better in binary prediction of4
timing the pollen release than predicting the intensity of the pollen release.5

The residuals of the model did not show correlation with environmental features such as temperature,6
air humidity, precipitation or wind speed (results not shown). However, a previous model for birch7
pollen release used air humidity and wind speed as controls of the release of ripe pollen from the8
catkins (Soviev et al. 2013). Therefore we also fitted another model version to the observed data, with9
humidity, expressed as water vapour pressure deficit (VPD), controlling the pollen release. Adding the10
VPD to the model did not increase the variance explained (results not shown).11

Model parameter values for the model are given in table 6. It should be noted that the temperature sum12
threshold for the start of the pollen season is quite low, only 2 to 10 degree days. Combined with the13
low threshold of effective temperature, -1.5 °C this means that our model predicts the Alder flowering14
to start after just a few warm days in the spring, following the onset of temperature sum accumulation15
on 10th of February.16

Discussion	17

In this paper we developed a pollen release period model for alder. The model follows the structure that18
Linkosalo et al. (2010) suggested for birch, where only the accumulating temperature sum controls the19
pollen release. Additional meteorological features such as air humidity have been used as control of the20
release of ripe pollen in other models, such as the current version of the birch pollen release model used21
in the SILAM atmospheric transport model (Sofiev et al. 2013), which proposes that the ripened pollen is22
stored in the catkins and then released when conditions are favorable. The model structure is also quite23
similar to the approach is described in Zink et al. (2013) for COSMO-ART model. The birch model in24
SILAM uses both humidity and wind speed as drivers of the pollen release. When we related the25
residuals of our temperature sum based model against meteorological features, we found that the26
correlations were minimal. However for a comparison with the birch pollen model used in SILAM, we27
still developed a model where air humidity impacts pollen release. This model did not fit observed data28
any better (as indicated by the model SSE values). We conclude that temperature sum is the main driver29
of Alder pollen release.30

The model proved quite accurate on predicting the onset of the pollen release period, the results were31
of similar precision as models aiming only to predict the start of the pollen season (e.g. Linkosalo 2000,32
Linkosalo et al. 2006). However, the predictions of the end of the pollen release period seemed less33
accurate, with typical prediction error of 30 days or even more. We assume that the error in the latter is34
actually caused by outlying observations of long-range transported pollen in the data, as the model-35
predicted results for the end of the pollen release and the length of pollen release period are consistent36
and in good agreement between years and observation sites. We do not know of any consistent and37



objective means of recognizing the outliers in the pollen trap data, and therefore did not use any outlier-1
cleaning.2

Fitting a model to a single data set always poses a risk that the model reflects some specific features of3
the data set, and cannot therefore be generalized. Thus the use of independent data is proposed.4
Lacking sufficient amounts of data to use part of it as independent test data, we did a Monte Carlo5
resampling of the observations to induce variation in the observation data, and studied how this6
variation impacts the optimal model parameter values. We also split the data to odd and even years to7
compare if we observe different model behavior on these halves. This test with splitting the data8
revealed an interesting observation that the Alder shows a biennial pattern in the onset of pollen9
development, presented in the model as the accumulation of temperature sum, as the value of the10
starting day parameter is one and half weeks earlier on odd years compared to even years. Our dataset11
is too short to give conclusive results on the phenomenon or to speculate what environmental features12
could be driving the difference. Yet when we repeated the calculation splitting the data to two13
consecutive sections, the feature of model parameters depending on data was totally dissipated,14
suggesting that indeed there is a difference in the timing of development of Alder pollen between odd15
and even years. We did not find similar results in earlier publications. Emberlin et al. (2007) found the16
Alder pollen release intensity to have a slight biennial pattern in the UK, but not the timing. Skjoth et al.17
(2015) claim the biennial variation in the pollen release timing only occurs in Birch, not in Alder. Biennial18
variation in pollen release intensity and hence acorn production has been observed e.g. in oak (Díaz-19
Fernández et al. 2004, Otárola et al. 2013) on more Northerly growing sites where annual seed20
production would be hard for the limited growth resources, but this does not explain why onset of21
pollen development should show a biennial pattern.22

Our pollen release model resulted with considerably smaller day-to-day variation of released pollen23
amounts than was observed in the data, the maximum daily values in observed pollen amounts were24
four times larger than the model predicted (fig 3). It remains unclear what is the cause for this larger25
variation in the data, whether it is some environmental feature that could not be captured in a model,26
or if it is some imminent random feature produced in a trap-collected pollen data. In some stations the27
main pollen source areas are not evenly located around the trap. In Turku and Vaasa for instance, there28
is only a short distance to the sea in the southern or western direction, whereas in other directions the29
forest cover is wider. In these conditions the wind direction may have a major impact on the trapped30
pollen counts even if the actual pollen release intensity does not change. Also, wind speed is known to31
affect trapping efficiency. A study on clubmoss spores (which are about the same size as alder pollen32
grains) showed that a change in wind speed from 1.5 to 9 m/s resulted in approximately 30 % increase in33
trapping efficiency (Lacey and Venette 1995).34

35
Even though our model was not able to promptly capture the variation in pollen amounts, it did a good36
work on capturing the timing of pollen release period. The model fitting emphasized the amount of daily37
pollen catch, and yet the prediction accuracy of the start of the pollen season was comparable to the38
results from models aiming only to predict the very start of the season. We conclude that the presented39
temperature-sum based model works well in predicting the onset of the pollen release period of Alder40



for Finland. Added features of the air humidity provide no improvement in the accuracy of pollen1
release. The end of the pollen period is most likely also predicted with similar accuracy, but outliers in2
the pollen data indicate larger deviation of the model prediction from measured data. The modeled3
figures of the day-to-day variation in the daily pollen counts are not very predictive, but for the4
aerobiological forecasting the binary data for presence or absence of airborne pollen is more important5
anyway. Thus the model can be used to predict the Alder flowering to give in advance a warning of the6
becoming pollen season. If the model is to be used to provide input for long range transport models,7
then the parameters probably need to be estimated against a dataset covering a larger geographical8
(more southerly) area. The biennial behavior of Alder flowering also needs to be further addressed.9

A number of previous studies of phenological modeling have shown that estimating the model10
parameters with SSE (or RMSE) minimization, using optimization algorithms, is computer time-11
consuming. Even worse, the results may vary depending on the data and starting point of the12
optimization. Our method of calculating the model SSE in a large matrix of parameter values, and using13
Monte Carlo sampling to produce distributions of the model parameters should provide more robust14
and reliable results for model parameters. For one thing, calculating the model in parameter matrix15
ensures that the whole parameter space is covered when looking for the optimum. Further, the16
parameter distributions give information on how sensitive the model parameters are. And finally17
calculating the model deviations for each observation into a matrix, and then doing the Monte Carlo18
simulations by sampling these model prediction deviations, turned out to be more computer-time19
efficient than the traditional method of using an optimization algorithm repeatedly for each Monte20
Carlo sample.21
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Table 1: The sites, coordinates and years, where alder pollen was collected with Burkard-type pollen1
traps.2

Site Years Latitude Longitude
Kangasala 2000-2007 61°30´N 24°05´E
Kuopio 2000-2014 62°54´N 27°38´E
Oulu 2000-2012 65°04´N 25°31´E
Rovaniemi 2002-2014 66°33´N 25°44´E
Tampere 2008-2014 61°30´N 23°49´E
Turku 2000-2014 60°32´N 22°28´E
Vaasa 2000-2014 63°06´N 21°37´E

3

4

5



Table 2. Deviations (days) in the start of the alder pollen season between the observation and prediction with  the temperature sum model. The
observed season is started with the first pollen captured, with long-range transport excluded (see text for details). Negative sign indicates first
observation before model predicted season starts

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Average
Kangasa

la -10.0 -4.0 -35.0 -5.0 -11.0 -2.0 -9.0 -2.0 -9.8
Kuopio -3.0 -17.0 -9.0 -5.0 -11.0 -1.0 -9.0 5.0 -20.0 -19.0 -9.0 -12.0 -9.0 -5.0 -2.0 -8.4
Oulu 0.0 -3.0 -1.0 0.0 0.0 -1.0 7.0 2.0 -9.0 -2.0 -9.0 10.0 -2.0 -0.6

Rovanie
mi -9.0 7.0 -5.0 -10.0 -5.0 17.0 0.0 17.0 5.0 3.0 -6.0 2.0 -3.0 1.0

Tamper
e -7.0 -12.0 -7.0 -13.0 4.0 0.0 4.0 -4.4

Turku -22.0 -65.0 -44.0 -12.0 -14.0 -1.0 -7.0 -7.0 -26.0 -37.0 -16.0 -24.0 -72.0 -64.0 -23.0 -28.9
Vaasa -1.0 -5.0 -9.0 0.0 5.0 -1.0 -8.0 0.0 -7.0 -17.0 -9.0 -2.0 5.0 0.0 -1.0 -3.3

Average -7.2 -18.8 -17.8 -2.5 -6.0 -2.7 -5.2 2.5 -11.5 -11.7 -7.5 -6.3 -13.3 -13.4 -5.0 -8.3



Table 3. Deviations (days) in the end of the alder pollen season between the observation and prediction with the temperature sum model.
Observed pollen season may contain long-range transported episodes (see text for details). Negative sign indicates model predictions after the
end of observed pollen season.

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Average
Kangasala 79 39 134 75 125 81 85 64 85.3
Kuopio 38 4 79 10 58 108 143 67 58 59 83 49 83 57 118 67.6
Oulu 25 6 131 99 56 43 104 54 79 26 39 30 16 54.5
Rovaniemi 7 -11 51 -4 17 52 4 0 64 43 14 5 12 19.5
Tampere 29 67 72 43 30 117 55 59.0
Turku 22 1 14 15 25 24 39 26 227 66 198 49 43 31 98 58.5
Vaasa 67 53 134 23 98 79 39 26 55 43 93 59 38 119 82 67.2
Average 46.2 20.6 83.2 35.2 68.8 55.2 71.2 48.2 75.3 43.5 91.5 45.5 37.3 65.8 73.0 57.6



Table 4. The length of the alder pollen season (days), modeled with the temperature sum model.

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Average
Kangasala 21 21 24 28 21 21 14 27 22.1
Kuopio 23 20 28 35 21 24 15 27 26 11 24 19 20 16 40 23.3
Oulu 21 24 28 40 21 29 16 31 29 15 27 24 24 25.3
Rovaniemi 19 31 21 32 14 35 14 14 30 18 20 21 42 23.9
Tampere 22 20 22 17 33 16 35 23.6
Turku 29 22 24 28 21 15 14 20 41 22 22 20 29 17 30 23.6
Vaasa 25 24 27 31 22 25 14 30 38 22 25 20 38 16 36 26.2

Average 23.8 22.2 25 32.2 21.2 24.3 14.5 28.3 28.3 17.3 25 19.7 27.3 17.2 36.6
24.16



Table 5a. Classification of the binary flowering data. The number of cases where both observation and
prediction are zero is not given, as the value is arbitrary, depending on the length of the observation
period before and after flowering season.

Observation > 0 Observation = 0
Model > 0 “hit”

1860
“false alarm”

1472
Model = 0 “miss”

724
“rest of the year”

Table 5b. Classification of the “false alarms” and “misses”

False alarm Miss
Total 1472 724

Before predicted flowering 553 59
During predicted flowering 872 100
After predicted flowering 47 565



Table 6. Model parameter values for the model without air humidity coefficient, and number of days of
different “events”.

all Odd even early Late
Starting date of

temperature
sum

accumulation

Day of
the year 46.4 43.93 55.24 46.6 45.5

Critical
temperature °C -1.30 -1.23 -1.47 -1.39 -1.30

Minimum
threshold for

pollen ripening

Degree-
day 2.32 2.04 10.0 9.7 2.11

Maximum
threshold for

pollen ripening

Degree-
day 187.3 187.8 185.7 185.4 188.2

Model SSE,
fitted to all

years
(relative) 11.72 17.3 7.01 7.75 15.2



Figure	captions	

Fig 1. The locations of the pollen measuring sites.

Fig 2. The distribution of the starting day parameter values in the Monte Carlo –resampling, for odd and
even years. Average starting date is 43.9 and 55.2 (day-of-year) for odd and even years.

Fig 3. XY-plot of the observed (X-axis) vs. predicted (Y-axis) pollen amounts for the pollen model. Red
dots show points where either observed or predicted pollen count is positive, and blue dots require the
both to be positive. The number on observations where either one is zero pulls the red regression line to
run next to the origin of the graph. For the points where both observed and predicted pollen count is
positive, the model poorly reproduces the day-to-day variation in pollen counts.


