



# This is an electronic reprint of the original article. This reprint *may differ* from the original in pagination and typographic detail.

Author(s): Annala, Riia; Suhonen, Aku; Laakkonen, Heikki; Permi, Perttu; Nissinen, Maija

Title: Structural Tuning and Conformational Stability of Aromatic Oligoamide Foldamers

Year: 2017

Version:

# Please cite the original version:

Annala, R., Suhonen, A., Laakkonen, H., Permi, P., & Nissinen, M. (2017). Structural Tuning and Conformational Stability of Aromatic Oligoamide Foldamers. Chemistry: A European Journal, 23(65), 16671-16680. https://doi.org/10.1002/chem.201703985

All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.

# Structural tuning and conformational stability of aromatic oligoamide foldamers

Riia Annala,<sup>[a]</sup> Aku Suhonen,<sup>[a]</sup> Heikki Laakkonen,<sup>[a]</sup> Perttu Permi<sup>[a,b]</sup> and Maija Nissinen<sup>\*[a]</sup>

**Abstract:** A series of aromatic oligoamide foldamers with two or three pyridine-2,6-dicarboxamide units as their main folding motifs and varying aromatic building blocks as linkers have been synthetized to study the effects of the structural variation on the folding properties and conformational stability. Crystallographic studies showed that in the solid state the central linker unit either elongates the helices and more open S-shaped conformations, compresses the helices to more compact conformations or acts as a rigid spacer separating the pyridine-2,6-dicarboxamide units, which for their part add the predictability of the conformational properties. Multidimensional NMR studies showed that, even in solution, foldamers show conformational stability and folded conformations comparable to the solid state structures.

## Introduction

During the last decades our understanding about biological processes, such as the catalytic activity and selectivity of enzymes, has greatly increased. This understanding has brought numerous new opportunities for chemists to learn from and adapt towards chemical applications. Synthetic biomimetic oligomers known as foldamers aim to combine the advantages of biological polymers to the favourable properties of synthetic oligomers, such as endurance of varying temperatures, pH and salt concentrations, and possibility to function in organic solvents.<sup>[1,2]</sup> Their structural rigidity obtained by, for example, repeating aromatic moieties connected by amide or urea bonds allows smaller size and a simpler design of the molecules and adds predictability and stability to their folding and secondary structures, which is the basis for potential applications of foldamers.<sup>[3]</sup>

A number of different types of aromatic oligoamides have been studied both in solution and in the solid state giving indication on how structural features and interactions affect the folding and conformational properties.<sup>[4]</sup> In solution the folding properties are greatly affected by competitive interactions with solvent, thus diminishing the predictability of the folding in solution.<sup>[5]</sup> In the

| [a] | R. Annala, Dr. Aku Suhonen, H. Laakkonen, Prof. Dr. M. Nissinen<br>Department of Chemistry, Nanoscience Center |
|-----|----------------------------------------------------------------------------------------------------------------|
|     | University of Jyvaskyla                                                                                        |
|     | P.O. Box 35                                                                                                    |
|     | 40014 University of Jyvaskyla (Finland)                                                                        |
|     | E-mail: maija.nissinen@jyu.fi                                                                                  |
| [b] | Prof. Dr. P. Permi                                                                                             |
|     | Department of Chemistry and Department of Biological and                                                       |
|     | Environmental Sciences, Nanoscience Center                                                                     |
|     | University of Jyvaskyla                                                                                        |
|     | P.O. Box 35                                                                                                    |
|     | 40014 University of Jyvaskyla (Finland)                                                                        |
|     |                                                                                                                |

Supporting information for this article is available on the WWW under  $\ensuremath{\mathsf{http://}}$ 

solid state, on the other hand, the requirement of the closest packing and possibility of small molecule inclusion either in the interstice between the foldamers or inside the fold, may alter the folding and conformational properties.<sup>[6,7]</sup> The properties of aromatic foldamers, such as the flexibility<sup>[8]</sup>, water solubility<sup>[9]</sup> and overall conformation<sup>[10]</sup> as well as diameter<sup>[11]</sup> and chirality<sup>[12]</sup> of the helix, have been tuned by the addition of different types of monomers. The most common trend has been the addition of aliphatic monomers to make heterogeneous foldamers<sup>[13,14]</sup> but also foldamers with different aromatic sequences have been made to create, for example, foldamer capsules<sup>[15]</sup> and selective receptors<sup>[16]</sup>.

The pyridine-2,6-dicarboxamide unit is one of the structural motifs used as a turn unit to impose helical conformations on oligomers.<sup>[17]</sup> Our previous studies with a series of aromatic oligoamides (4-5 aromatic rings) with a pyridine-2,6dicarboxamide center have shown that this type of short foldamers reliably adopt two, almost equally stabile folded conformers with only small variances in their hydrogen bonding and structural features.<sup>[18-20]</sup> Which conformer, denoted as @ or S according to their overall shape (Scheme 1),<sup>[21]</sup> prevails depends on the chemical structure of the foldamer as well as environment, such as crystallization conditions and solvent. The conformers and folding of these molecules are based on intramolecular hydrogen bonding between the amide groups and the pyridine-2,6-dicarboxamide unit, which forms a suitable niche for multiple interactions, whereas aromatic interactions seem to play a minor role in the folding preferences of the oligoamides. Interestingly, the @ conformer with three intramolecular hydrogen bonds forming to a single carbonyl oxygen, resembles closely an oxyanion hole motif found in the active sites of certain enzymes.<sup>[22]</sup> Artificial, non-peptidic models for oxyanion hole are not common, as only a few examples of amide and ester carbonyls motifs as acceptors for multiple hydrogen bonds have been described.[23] Thus, aromatic oligoamide foldamers possess great potential as structural and functional mimics of enzyme catalysts.

In our current study, we show that the oxyanion hole motif and the folding patterns are preserved, when the size of the foldamer increases and the number of pyridine-2,6-dicarboxamide units is doubled or tripled (Scheme 1). The spacer unit separating the pyridine-2,6-dicarboxamide units affects the overall folding of the foldamer by preventing certain geometries and/or inducing helicity or compact conformations by participating in intramolecular hydrogen bonding. This indicates that conformational adaptability of foldamers can be controlled with suitable spacers without losing the essential folding motifs and potential binding sites, such as oxyanion hole motif.

### **Results and Discussion**

A series of five oligoamide foldamers (7-9 aromatic rings) were synthetized applying the procedures described in our previous

papers<sup>18-20</sup> (see SI for details). The conformational features and the stability of the fold and oxyanion hole motif were studied in the solid state by X-ray crystallography and compared with the solution state information obtained by multidimensional NMR spectroscopy. In foldamers **1-3** two pyridine-2,6-dicarboxamide units are separated by 1-3 ortho-substituted phenyl rings and 0-2 amide bonds, whereas in foldamers **4** and **5** either a third pyridine-2,6-dicarboxamide center or its phenyl analogue are used as a spacer. The ortho substituted phenyl rings of foldamers **1-3**, especially three consequent rings, act as a linear type of spacer, whereas meta substituted centers of **4** and **5** automatically cause a different type of overall fold, which in the case of the pyridine-2,6-dicarboxamide center of **5** leads to a helical fold stabilized by intramolecular hydrogen bonding to pyridine.

FULL PAPER



**Scheme 1.** Chemical structures of the foldamers **1-5** including notifications of benzene and pyridine rings and numbering of C=O and NH groups. The spacer groups are circled with dotted lines. A schematic presentation of two observed folding patterns around pyridine-2,6-dicarboxamide center (bottom row).

## Solid state conformations

The crystallization studies of the foldamers resulted in 17 different crystal structures. All of the crystal structures obtained for **1-5** were solvates, which indicates that folded molecules cannot pack very efficiently due to their complex and awkward shape. In the structures of foldamers **1-3** and **5** at least one of the pyridine-2,6-carboxamide units adopts the predicted folded @ conformation (Scheme 1; Table 1; Table S-3 in SI) by 2-3 hydrogen bonds from adjacent C=O group to NH groups next to pyridine ring, thus retaining the desired oxyanion hole motif. Foldamer **4** is the only exception to this as both pyridine-2,6-dicarboxamide centers are in a more open S conformation.

 Table 1. 17 solvate structures of the foldamers 1-5 and the conformations of the pyridine centers

| eennermatienie (                                    |                            |                   |              |
|-----------------------------------------------------|----------------------------|-------------------|--------------|
| Structure                                           | Center P1                  | Center P2         | Notes        |
| 1-DMA-H <sub>2</sub> O<br>1-MeCN-H <sub>2</sub> O   | @                          | @                 | isomorphous  |
| 1-DMF-H <sub>2</sub> O<br>1-MeOH<br>1-DMSO<br>1-DCM | @<br>@<br>@<br>S           | 000               |              |
| 2-MeCN<br>2-EtOAc                                   | @                          | S                 | isomorphous  |
| 2-DCM<br>2-DMSO<br>3-DMA<br>3-DMSO<br>4-EtOAc       | @<br>@<br>@<br>@<br>&<br>s | s<br>s<br>@@<br>s | trans<br>cis |
| 5-Ac<br>5-DCM<br>5-DMF                              | @                          | @                 | isomorphous  |
| 5-CHCl <sub>3</sub>                                 | S                          | @                 |              |

### Foldamer 1

Altogether six single crystal structures of the foldamer 1 were obtained (see SI for crystallization details), but only two variations of overall conformation were observed. The isomorphous structures of 1-DMA-H<sub>2</sub>O and 1-MeCN-H<sub>2</sub>O adopt an overall tight helical conformation with both pyridine centers in an @ fold (@/@; Figure 1). The conformations of 1-DMSO, 1-MeOH and 1-DMF-H<sub>2</sub>O solvates are also similar with both pyridine centers in @ fold (see ESI Figure S-1 for an overlay of all @/@ structures). In these structures either one (1-MeOH) or both (1-DMA-H<sub>2</sub>O, 1-MeCN-H<sub>2</sub>O, 1-DMF-H<sub>2</sub>O and 1-DMSO) of the outmost phenyl rings have a CH-π interaction with the spacer phenyl ring. 1-DCM solvate has a less folded structure, as one of the pyridine-2,6-dicarboxamide centers adopts an open S fold whereas the other one is in an @ fold (@/S; Figure 1). The outmost phenyl ring of the @ folded part of the molecule interacts with the spacer phenyl ring via CH-π interaction (3.041 Å) like in the other structures.

The crystal packing in all structures of foldamer **1** is based on intermolecular hydrogen bonding. In isomorphous @/@-

structures (1-DMA-H<sub>2</sub>O and 1-MeCN-H<sub>2</sub>O) and in 1-DMF-H<sub>2</sub>O structure two water molecules connect two foldamers into pairs via bifurcated hydrogen bonds (OH<sub>w</sub>...O=C; graph set  $R_4^4(20)$ ) and further to chains formed by these pairs (NH1...Ow, graph sets  $C_2^2(13)$  and  $R_4^4(20)$ ; Figure 1). The pairing is enhanced by  $\pi$ - $\pi$  stacking between the pyridine centers P1 of the adjacent molecules. The solvent (DMA, MeCN or DMF) is hydrogen bonded to the outer groove of the fold (NH6...Solvent; D(2) motif). The difference of the crystal structures of isomorphous structures and 1-DMF-H<sub>2</sub>O comes from the efficiency of packing. In 1-DMA-H<sub>2</sub>O and 1-MeCN-H<sub>2</sub>O there is  $\pi$ - $\pi$  stacking between the end phenyl rings (D), which is prevented in 1-DMF-H<sub>2</sub>O structure by the inclusion of one extra solvent molecule between the rings (See SI Figure S-2). In 1-DMSO solvate the intermolecular hydrogen bonds orient to two DMSOs, which fill the interstice between the foldamers. The foldamers still pack into layers: the grooves of the folds assemble parallel to each other and interact via  $\pi$ - $\pi$  interactions (See SI; Figure S-2).



In 1-DCM and 1-MeOH solvates there are direct hydrogen bonds between the foldamers as two intermolecular hydrogen bonds between NH1 and C=O2 groups ( $R_4^+(14)$  motif) connect the foldamers into pairs. In case of the more open @/S conformation of 1-DCM structure, this leads to a niche for a disordered solvent molecule inside the pair of the awkwardly shaped molecules (Figure 1). In 1-MeOH solvate the pairs are further connected to chains via solvent mediated hydrogen bonds from MeOH to NH6 of one foldamer and C=O4 of the next pair (see SI Figure S-2).



**Figure 2** The conformations of 2-MeCN (top left) and an overlay presentation of the structures of 2-DMSO (orange) and 2-DCM (green; top right). The crystal packing of 2-DCM (middle) and 2-DMSO (below). Solvents are shown with space filling model and hydrogen bonds with turquoise bonds. Nonbonding hydrogens and disorder have been omitted for clarity.

#### Foldamer 2

Four different single crystal structures of foldamer **2** were obtained from acetonitrile, ethyl acetate, dichloromethane and DMSO solutions. Two of these structures, the MeCN and the EtOAc solvates (**2**-MeCN and **2**-EtOAc), are isomorphous and the differences between all four structures are minor. In all four structures the P2 pyridine-2,6-dicarboxamide center adopts an @-fold, whereas the P1 center is in S-fold (Figure 3). The overall

**Figure 1** The conformations and schematic presentations of folding of 1-DMA- $H_2O$  (top left) and 1-DCM (top right). Crystal packing of 1-DMA- $H_2O$  (middle) and 1-DCM structures (below) showing the inclusion of solvents and intermolecular hydrogen bonding motifs (turquoise lines and graph set notifications). Nonbonding hydrogens and disorder have been omitted for clarity and solvents are shown with space fill model.

conformation is compact, almost helical structure where two pyridines have parallel displaced π-interactions with each other and the end of the S-fold surrounds the helical part. The similarities are facilitated by the unsymmetrical linker unit, where the C=O4 group prefers to form the S-fold by hydrogen bonds to the NH groups of the pyridine-2,6-dicarboxamide unit P1 (graph set motifs S(6) and S(12)). The outmost NH1 finishes the S-fold by a hydrogen bond to O2 (S(7) motif; 2-DCM) or to O5 of the pyridine-2,6-dicarboxamide center P2 (S(20) motif; other solvates), which leads to slight difference in the orientation of the outmost phenyl ring. The @ folds around pyridine center P2 in isomorphous 2-MeCN and 2-EtOAc structures and in 2-DCM solvate are based on typical three hydrogen bonds between the outmost C=O group (O7) and NH groups of the P2 unit (S(7) and S(13) motifs) and to the next NH group (NH4) in the linker (S(16) motif). In 2-DMSO, however, the third hydrogen bond is missing as the amide NH4 is hydrogen bonded to solvent (D(2) motif).

Also in the case of foldamer **2** the crystal packing is based on the pairing of molecules via direct intermolecular hydrogen bonding (NH7...O6;  $R_2^2$ (14) motif; Figure 2). The solvents are located inside the cleft formed by two hydrogen bonded pairs of foldamers (DCM) or interstice in the crystal lattice (EtOAc and MeCN) (See SI Figure S-4). The exception to pairwise hydrogen bonding is the DMSO solvate, as DMSO disrupts this pattern and the intermolecular hydrogen bonds to two DMSO molecules (from NH7 and NH4 to O10A and O30A; D(2) motifs).



Figure 3 The solid state conformations and crystal packing of 3-DMA (top left and middle) and 3-DMSO (top right and below) showing the *trans* and *cis* orientations of pyridine-2,6-dicarboxamide centers in respect to spacer unit. Non-bonding hydrogens and disorder have been omitted for clarity and the solvents are shown with space fill model.

### Foldamer 3

Two single crystal structures of the foldamer 3 were obtained from crystallizations in DMA and DMSO solution. Both structures have two @-folded pyridine-2,6-dicarboxamide units with typical hydrogen bonding patterns (S(7) and S(13) motifs), but the foldamer 3 does not have an overall helical conformation because the linker group constituting of three ortho-substituted phenyl rings is fairly rigid, thus separating the ends of the foldamer as independent folds, which can orient differently in respect to the spacer unit. The two conformers observed in the crystal structures are indeed distinctly different (Figure 3). In 3-DMSO solvate the pyridine-2,6-dicarboxamide units of the molecule turn on the same side of the spacer (cis) giving a foldamer a bowl-like overall conformation with a solvent accessible cavity occupied by a disordered DMSO which is hydrogen bonded to NH4. The foldamer molecules are connected head-to-tail manner into continuous chains (NH8...O6; C(11) motif and NH1...O4; C(16) motif; Figure 3). In 3-DMA solvate the pyridine-2,6-dicarboxamide units are oriented on the different sides of the linker group (trans), which leaves the center of the foldamer open for interaction with solvents and enables the packing into ladder-like chains via direct intermolecular hydrogen bonding (O3...HN8) on one side and via solvent mediated hydrogen bonds on the other side (NH1...O<sub>s</sub>...HN5; Figure 5). Two DMA molecules are nested in between the directly hydrogen bonded foldamer pair and have intermolecular hydrogen bonds to the NH4 of the foldamers (NH4...O<sub>s</sub>). The conformational difference between the two solvates may be caused by the efficiency of packing, as nearly planar DMA enables denser packing than DMSO, as well as the hydrogen bonding preferences in each case.

#### Foldamer 4

The only crystal structure of foldamer **4** was obtained from ethyl acetate. The conformation is symmetrical with two S folds oriented on the opposite sides of the central phenyl ring. The meta-substituted spacer of foldamer **4** is not as planar and rigid as the ortho-substituted analogue of the foldamer **3**, which might be a reason for the preference of S folds. The conformation is stabilized to a compact entity by an additional intramolecular hydrogen bond from outmost carbonyl C=O (O1 and O8) to central NH groups (NH5 and NH4, respectively). The packing of **4**-EtOAc is based on continuous chains formed by intermolecular hydrogen bond from O3 and O6 to NH4 and NH5 of the neighboring foldamers. Two disordered EtOAc molecules fill the interstice between the chains.

### Foldamer 5

Four single crystal structures of the foldamer **5** were obtained, three of which (**5**-Ac, **5**-DCM and **5**-DMF) are isomorphous and nearly helical structures with the outmost pyridine-2,6-dicarboxamide units adopting an @ fold. In this case, the fold is stabilized by only two hydrogen bonds (S(7) and S(13) motifs) as additional hydrogen bonds are prevented because of hydrogen bonds to the pyridine-2,6-dicarboxamide center P3 at the spacer unit. This center facilitates significantly helical-type of folding by forming a third center for intramolecular hydrogen

# **FULL PAPER**

bonds. The helical folding of the foldamer leaves several hydrogen bonding groups exposed at the outer surface of the fold, which enables the formation of a complex intermolecular hydrogen bond network. The foldamers form pairs with two hydrogen bonds (NH8...O7) and these pairs are further connected to the chains of pairs via hydrogen bonds (NH1...O6) which connects each foldamer to three other foldamers; to one with two hydrogen bonds, to two with one hydrogen bond.



**Figure 4** Conformation and crystal packing of **4**-EtOAc. The conformation of the foldamer **4** is very compactly folded and the solvents fill the interstice between the chains of foldamers. Non-bonding hydrogens and solvent disorder have been omitted for clarity. Solvents are shown with space fill model and hydrogen bonds with turquoise.

In **5**-CHCl<sub>3</sub> solvate, however, the overall conformation is less folded and bowl-like, as pyridine-2,6-dicarboxamide center P1 adopts an S fold. The bowl-shaped molecule is occupied by the ends of the neighboring foldamers and solvents. The mutually included assembly is further strengthened by intermolecular hydrogen bonds between a pair of foldamers occupying each other's cavities (H8N...O7;  $R_2^2(14)$  motif). The hydrogen bonded pairs pack together in a 2D plane by  $\pi$ -stacking from the sides of the bowls. The gaps between the 2D planes are filled with disordered solvents.

#### Structural comparison of the compounds

The solid state structures of a series of foldamers **1-5** show that the hydrogen bonding and the folding patterns of the pyridine-2,6-dicarboxamide units are reliably the same as observed with shorter oligoamide foldamers with only one pyridine-2,6dicarboxamide unit.<sup>18-20</sup> The role of the spacer unit for the overall conformation becomes evident, when comparing foldamers **1-3**. In foldamer **3** the rigidity of the spacer separates the pyridine centers to act like individual folding centers and hinder the formation of S folds in the solid state. The position of individual centers in respect to relatively long, linear and rigid spacer may be either *cis* or *trans*, which induces either Z-shaped or bowlshaped overall conformation, respectively. Both these conformations have an intrinsic niche or cavity for binding small guests, which is seen as solvent inclusion. In foldamers **1** and **2** the spacer is shorter and such individual behaviour of pyridine-2,6-dicarboxamide units is not possible. In foldamer **1** the short phenyl spacer plays only a minor role in conformational preferences and four different crystal forms with two distinctly different overall conformers are hence likely caused by packing effects. The foldamer **2**, on the other hand, has unsymmetrical spacer which exclusively favors @/S conformation in the solid state and the differences in overall conformations of different crystal structures are only minor.



Figure 5 The conformations and packing of 5-Ac (top left and middle) and 5-CHCl<sub>3</sub> (top right and below). Aromatic hydrogens have been removed for clarity.

Changing the substitution positions of the central phenyl ring from ortho to meta in foldamer **4** increases the flexibility of the molecule which changes both the overall conformation and behaviour of pyridine-2,6-dicarboxamide units. More flexible linker part enables the formation and stabilization of S folds by additional intramolecular hydrogen bonds. The overall conformation, however, is relatively compact. It is not possible to make any definite conclusions about the conformational stability and prevalence as only one crystal structure of foldamer  ${\bf 4}$  was obtained.

Introducing a third pyridine-2,6-dicarboxamide unit as a spacer in foldamer **5** changes the intramolecular hydrogen bonding significantly, which is seen as a reduction of number of hydrogen bonds from three to two in @ folded conformations of pyridine centers P1 and P2. The foldamer **5** can be seen as an extended version of foldamer **1** and they indeed share similar types of conformations (Figure 6). The foldamer **1** and **5** both have helical solvate structures and one more open structure. The difference between the two conformations observed is probably due to solvent interactions and packing.



Figure 6 Comparison of the different conformations of foldamer 1 (green) and foldamer 5 (orange): a) comparison between the helical structures of 1-DMA- $H_2O$  and 5-Ac. b) Comparison between the open structures of 1-DCM and 5-CHCl<sub>3</sub>.

## Solution state studies

Solution state studies were performed for foldamers **1-5** to compare their solution state conformations with their solid state structures and to see, if the solid state motifs are observed in solution. To this end, a suite of 2D of homo- and heteronuclear correlation experiments was employed in addition to 1D <sup>1</sup>H NMR and <sup>13</sup>C NMR experiments to yield a complete resonance assignment to all foldamers (see SI for details). 2D NOESY spectra were measured to obtain through space internuclear connectivities for conformational analysis. DMSO-d<sub>6</sub> was used as solvent in all samples. The 2D NOESY spectra show that the foldamers adopt folded conformations in the solution and in the case of foldamers **3-5** the data is fairly consistent with conformations seen in the crystal structures.

In the case of foldamer **1** the correlations show that the compound has a folded structure, but the correlations fit both solid state conformations equally well (see ESI Table S-3 for a detailed list of correlations). Two of the correlations, however, support the conclusion that the foldamer is folded also in solution (Figure 7a). The correlation *a* shows an interaction between the hydrogens of aromatic ring A or D and the amide NH3 or 4. This correlation is possible in both @/@- and S/@-conformations although based on the crystal structures **1**-DMSO

and 1-DCM the correlation is stronger in the @/@-conformation. Another observation supporting the conclusion about a folded conformation is the correlation *b*, which is an interaction between the hydrogens of aromatic ring B or C and pyridine ring P2 or P1. This correlation is also possible in both @/@- and S/@-conformations.



Figure 7 Selected NOE correlations of foldamers 1-5 shown in relation to relevant crystal structures. In symmetric foldamers only one set of correlations is shown. Correlations are marked with green if they are seen in the crystal structure and with red if they are not seen in the crystal structure

The solution state conformation of foldamer **2** is likely to deviate from the one observed in the solid state. The correlations of the one half of the foldamer match the solid state conformation, while the other end does not correspond to any of the interactions seen in the crystal structures. The deviating correlations *a*-*e* are all located at the pyridine center adopting the S-conformation in the crystal structure (Figure 7b; left side of the molecule, red lines). If the solution state conformation corresponded to the crystal structures, the correlation *a* should be found between NH1 and hydrogens on the opposite side of

the aromatic ring S2 (para position to NH4 and NH5). Instead, the correlation is seen between NH1 and S2 hydrogens next to the amide groups. The same difference is observed with the correlation c (NH2) with respect to the orientation of ring S2. Correlation b between NH2 and aromatic ring A hydrogens is not possible in the crystalline state conformation, which indicates different orientation towards the end of the molecule compared with the crystal structures. Correlation d between NH2 and aromatic ring D hydrogens and correlation e between NH3 and aromatic ring A hydrogens further confirm the tighter and more folded orientation of the molecule end in solution. Correlations f-i (f = NH4 - D; g = NH5 - S1; h = NH5 - D; i = NH6 - S1)correspond well to the @-folded pyridine-2,6-dicarboxamide center of the crystal structures (Figure 7b; the right side of the molecule, green lines). These results indicate that the conformation of foldamer 2 in solution is probably @/@ instead of @/S that is exclusively seen in all crystal structures.

The NOE correlations a-f of foldamer 3 agree well with the @ folds of the crystal structures (Figure 7c, Table 2). Additionally, a strong correlation (g) between the aromatic hydrogens of rings B and S2 suggests that the structure resembles the crystal structure 3-DMSO where the pyridine centers are in cis orientation with respect to the spacer. Given that DMSO was used as a solvent both in the solution and solid state studies, the observed similarities between the crystal structure and the NMR data are somewhat expected. Based on the roughly similar correlations of symmetrically equivalent bonds (see ESI Table S-3), the conformation is nearly symmetrical in solution like in the solid state structure of 3-DMSO. The correlation f, however, differs from the distances of the crystal structures. This can be explained by permanent hydrogen bonding to solvent DMSO in the crystal structure. Another minor difference between the solution and solid state structures is the stronger correlation a between NH1 and NH3 in solution. The NMR spectra also show some peaks, which could be identified as an additional solution state conformation. No clear NOE correlations, however, that could be used to determine the features of this conformation were identified.

The characterization of the solution state conformation of foldamer **4** was difficult because of many overlapping interactions and the presence of a second minor conformation in solution. Correlations *a*-*d* from NH2/7 and NH3/6 protons to aromatic hydrogens still indicate a folded conformation (Figure 7d, Table S-3 in SI). Due to overlapping peaks of S2 and P1/P2 hydrogens and S2 and A/D hydrogens, however, it is not possible to unambiguously determine the conformations or how well they correspond to the solid state structure.

NOESY spectra of foldamer **5** show several correlations that confirm a folded solution state conformation (Figure 7e, Table S-3 in ESI). Most of these correlations (*b-f*) are in agreement with both conformations observed in the crystal structures, while two correlations (g = P1-S2 and h = P3-D) narrow the conformation to resemble the @/@ structure, which is also more prevalent in the solid state. Correlation *a*, however, does not correspond to any of the interactions seen in the crystal structures. This suggests that although the solution state conformation resembles the helical @/@ conformation, it is still slightly

different with respect to the orientation of the end of the molecule in the solid state. Alternatively, fast conformational exchange on the NMR timescale may take place between different structures.

# Conclusions

Foldamers 1-5 with two or three pyridine-2,6-dicarboxamide centers and varying linker groups as their structural components show reliable folding patterns and stability of the desired oxyanion hole motif in respect to pyridine-2,6-dicarboxamide centers both in solution and in the solid state. Additionally, the number of pyridine-2,6-dicarboxamide centers can be multiplied without losing the essential structural features. The overall conformation of the foldamer varies depending on the linker unit. Foldamer 1 and foldamer 5, which is an extended version of 1, have similar ubiquitous helical conformations (@/@), but also alternative, more open structure in the solid state (@/S), probably caused by solvent effects during the crystallization. In the case of foldamer 1, no conclusive information about the solution conformation could be obtained, whereas in case foldamer 5 the prevalent conformation in solution appears to be @/@. The unsymmetrical linker unit of foldamer 2 directs the foldamers to have similar compact helical conformations in the solid state, whereas NOESY spectra indicate more folded @/@ type of conformer in solution. The flexibility of the metasubstituted linker group in foldamer 4 enables compact Sshaped folded conformation with additional intramolecular hydrogen bonds in contrast to the rigid ortho substituted spacer of foldamer 3 which enables the @-folded pyridine-2,6dicarboxamide units to orient in either trans or cis in relation to the center. The flexibility of foldamer 4 was also seen in solution, as no conclusive conformational information could be obtained and a possibility of alternative conformers was observed in NMR spectra.

Our future studies will orient toward utilizing extended foldamers as anion hosts utilizing their conformational predictability, and on the other hand, conformational adaptability without losing the binding site structure, which creates a suitable binding site for, for example, halogen anions.<sup>[24]</sup> Additionally, anion binding capacity together with the resemblance to oxyanion hole motifs of enzymes provides excellent basis for future studies as enzyme-mimicking organocatalysts.

# **Experimental Section**

### Materials and methods

The synthesis and characterization details of foldamers **1-5** are presented in ESI. All starting materials were commercially available and used as such unless otherwise noted. Analytical grade solvents and Millipore water were used for crystallizations and slurries. NMR spectra were measured with Bruker Avance DPX250 MHz, Bruker Avance DRX 500 MHz or with Bruker Avance III HD 800 MHz spectrometer and the chemical shifts were calibrated to the residual proton and carbon resonance of the deuterated solvent. Melting points were measured in an

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-DMA-H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1-DMSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1-DCM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-MeCN                                                                                                                                                                                                         | 2-DCM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ormula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C. H. N.O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C. H. N.O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C. H. N.O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C. H. N.O.                                                                                                                                                                                                     | C. H. N.O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ormula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C = W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2(CHOS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 5(C H N)                                                                                                                                                                                                     | CH Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (/am al-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 800.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2(C2116O3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 870 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.3(C_{2}\Pi_{3}\Pi_{3})$                                                                                                                                                                                     | 008.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| /l/gmol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 899.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 951.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8/9./4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9/5.51                                                                                                                                                                                                         | 998.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Crystal system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Triclinic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monoclinic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Monoclinic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Triclinic                                                                                                                                                                                                      | Triclinic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| pace group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $P2_1/c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $P2_1/c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P-1                                                                                                                                                                                                            | P-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| /Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.7500(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16.1850(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.4224(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.6033(3)                                                                                                                                                                                                      | 11.7016(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| /Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.2120(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.8963(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.59628(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.7566(6)                                                                                                                                                                                                     | 12.8693(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| /Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.0988(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.4316(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23.4432(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18.3628(10)                                                                                                                                                                                                    | 17.0721(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| /0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 105 575(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 66 954(4)                                                                                                                                                                                                      | 70.042(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| /0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00 / 30(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 117 081(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 98 435(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83 106(4)                                                                                                                                                                                                      | 86 966(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100524(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90.455(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 82 514(2)                                                                                                                                                                                                      | 76.8250(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100.534(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 82.514(5)                                                                                                                                                                                                      | 76.8250(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| /A <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2263.99(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4609.0(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4270.44(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2367.33(19)                                                                                                                                                                                                    | 2352.04(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <sub>alc</sub> /g cm <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.369                                                                                                                                                                                                          | 1.410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 'mm <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.761                                                                                                                                                                                                          | 0.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1018                                                                                                                                                                                                           | 1036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| austal sizo/mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.18×0.10×0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.22 \times 0.10 \times 0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.26×0.08×0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.28×0.12×0.02                                                                                                                                                                                                 | $0.22 \times 0.14 \times 0.14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.18x0.10x0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.22x0.10x0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2000.0800.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.28X0.12X0.02                                                                                                                                                                                                 | 0.32x0.14x0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| max/°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58.412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 148.778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 153.886                                                                                                                                                                                                        | 57.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 123                                                                                                                                                                                                            | 173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| adiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Μο-Κα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cu-Ka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Μο-Κα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cu-Ka                                                                                                                                                                                                          | Μο-Κα                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5418                                                                                                                                                                                                         | 0.71073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| onochromation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mirror                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mirror                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mirror                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mirror                                                                                                                                                                                                         | granhite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| bearntian correction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Multi soon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Multi soon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Multi soon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Multi soon                                                                                                                                                                                                     | Multi coor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Create All D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                | David Chort 1007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| bs. cor. program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CrysAlisPro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CrysAlisPro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CrysAlisPro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CrysAlisPro                                                                                                                                                                                                    | Denzo-SMN 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| etinement programs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ShelXle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ShelXle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ShelXle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ShelXle                                                                                                                                                                                                        | SHELXL-97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| leas. reflns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15013                                                                                                                                                                                                          | 23446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| dep. reflns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9464                                                                                                                                                                                                           | 12030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| arameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 683                                                                                                                                                                                                            | 670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| anameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0265                                                                                                                                                                                                         | 0.0449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| nt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0203                                                                                                                                                                                                         | 0.0449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $1 [1 > 2\sigma(1)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0430                                                                                                                                                                                                         | 0.0648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $R_2 [I > 2\sigma(I)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1065                                                                                                                                                                                                         | 0.1454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ooF on F <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.037                                                                                                                                                                                                          | 1.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| peak/ hole/eÅ-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.217 and -0.242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.499 and -0.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.487 and -0.468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.255 and -0.407                                                                                                                                                                                               | 0.463 and -0.732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| peak/ hole/eÅ <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.217 and -0.242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.499 and -0.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.487 and -0.468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.255 and -0.407                                                                                                                                                                                               | 0.463 and -0.732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| peak/ hole/eÅ <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.217 and -0.242<br>3-DMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.499 and -0.375<br>3-DMSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.487 and -0.468<br>4-EtOAc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.255 and -0.407<br>5-Ac                                                                                                                                                                                       | 0.463 and -0.732<br>5-CHCl <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| . peak/ hole/eÅ <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.217 and -0.242<br>3-DMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.499 and -0.375<br>3-DMSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.487 and -0.468<br>4-EtOAc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.255 and -0.407<br>5-Ac                                                                                                                                                                                       | 0.463 and -0.732<br>5-CHCl <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| peak/ hole/eÅ <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.217 and -0.242<br>3-DMA<br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.499 and -0.375<br><b>3-DMSO</b><br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.487 and -0.468<br>4-EtOAc<br>0.5 C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.255 and -0.407<br>5-Ac                                                                                                                                                                                       | 0.463 and -0.732<br>5-CHCl <sub>3</sub><br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| peak/ hole/eÅ <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.217 and -0.242<br><b>3-DMA</b><br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>2(C <sub>4</sub> H <sub>9</sub> NO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.499 and -0.375<br><b>3-DMSO</b><br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>C <sub>2</sub> H <sub>6</sub> OS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.487 and -0.468<br>4-EtOAc<br>0.5 C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>0.5(C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.255 and -0.407<br>5-Ac<br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>0.16(C <sub>3</sub> H <sub>6</sub> O)                                                                          | 0.463 and -0.732<br>5-CHCl <sub>3</sub><br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>CHCl <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| peak/ hole/eÅ <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.217 and -0.242<br>3-DMA<br>C <sub>60</sub> H <sub>4</sub> N <sub>10</sub> O <sub>8</sub> •<br>2(C <sub>4</sub> H <sub>9</sub> NO)<br>1207.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.499 and -0.375<br><b>3-DMSO</b><br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>C <sub>2</sub> H <sub>6</sub> OS<br>1111.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.487 and -0.468<br>4-EtOAc<br>0.5 C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>0.5(C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> )<br>1121.15                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.255 and -0.407<br>5-Ac<br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>0.16(C <sub>3</sub> H <sub>6</sub> O)<br>1043.57                                                               | 0.463 and -0.732<br>5-CHCl <sub>3</sub><br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>CHCl <sub>3</sub><br>1153.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| peak/ hole/eÅ <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.217 and -0.242<br>3-DMA<br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>2(C <sub>4</sub> H <sub>9</sub> NO)<br>1207.29<br>Triclinic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.499 and -0.375<br><b>3-DMSO</b><br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>C <sub>2</sub> H <sub>6</sub> OS<br>1111.18<br>Triclinic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.487 and -0.468<br>4-EtOAc<br>0.5 C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>0.5(C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> )<br>1121.15<br>Monoclinic                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.255 and -0.407<br>5-Ac<br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>0.16(C <sub>3</sub> H <sub>6</sub> O)<br>1043.57<br>Triclinic                                                  | 0.463 and -0.732<br>5-CHCl <sub>3</sub><br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>CHCl <sub>3</sub><br>1153.41<br>Triclinic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| peak/ hole/eÅ <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.217 and -0.242<br>3-DMA<br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>2(C <sub>4</sub> H <sub>9</sub> NO)<br>1207.29<br>Triclinic<br>P-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.499 and -0.375<br><b>3-DMSO</b><br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>C <sub>2</sub> H <sub>6</sub> OS<br>1111.18<br>Triclinic<br>P-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.487 and -0.468<br>4-EtOAc<br>0.5 C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>0.5(C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> )<br>1121.15<br>Monoclinic<br>C2/c                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.255 and -0.407<br>5-Ac<br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>0.16(C <sub>3</sub> H <sub>6</sub> O)<br>1043.57<br>Triclinic<br>P-1                                           | 0.463 and -0.732<br>5-CHCl <sub>3</sub><br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>CHCl <sub>3</sub><br>1153.41<br>Triclinic<br>P-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| peak/ hole/eÅ <sup>-3</sup><br>prmula<br>/gmol <sup>-1</sup><br>rystal system<br>pace group<br>Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.217 and -0.242<br>3-DMA<br>C <sub>60</sub> H <sub>4</sub> N <sub>10</sub> O <sub>8</sub> •<br>2(C <sub>4</sub> H <sub>9</sub> NO)<br>1207.29<br>Triclinic<br>P-1<br>13 4719(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.499 and -0.375<br><b>3-DMSO</b><br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>C <sub>2</sub> H <sub>6</sub> OS<br>1111.18<br>Triclinic<br>P-1<br>9.4954(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.487 and -0.468<br>4-EtOAc<br>0.5 C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>0.5(C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> )<br>1121.15<br>Monoclinic<br>C2/c<br>30 8937(6)                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.255 and -0.407<br>5-Ac<br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>0.16(C <sub>3</sub> H <sub>6</sub> O)<br>1043.57<br>Triclinic<br>P-1<br>11 8122(4)                             | 0.463 and -0.732<br>5-CHCl <sub>3</sub><br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>CHCl <sub>3</sub><br>1153.41<br>Triclinic<br>P-1<br>13.0605(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| peak/ hole/eÅ <sup>-3</sup><br>prmula<br>/gmol <sup>-1</sup><br>rystal system<br>pace group<br>Å<br>Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.217 and -0.242<br>3-DMA<br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>2(C <sub>4</sub> H <sub>9</sub> NO)<br>1207.29<br>Triclinic<br>P-1<br>13.4719(11)<br>16.0247(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.499 and -0.375<br><b>3-DMSO</b><br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>C <sub>2</sub> H <sub>6</sub> OS<br>1111.18<br>Triclinic<br>P-1<br>9.4954(3)<br>14 7041(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.487 and -0.468<br>4-EtOAc<br>0.5 C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>0.5(C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> )<br>1121.15<br>Monoclinic<br>C2/c<br>30.8937(6)<br>8.26(12(2))                                                                                                                                                                                                                                                                                                                                                                                                          | 0.255 and -0.407<br>5-Ac<br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>0.16(C <sub>3</sub> H <sub>6</sub> O)<br>1043.57<br>Triclinic<br>P-1<br>11.8122(4)<br>12.4012(4)               | 0.463 and -0.732<br>5-CHCl <sub>3</sub><br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>CHCl <sub>3</sub><br>1153.41<br>Triclinic<br>P-1<br>13.0605(2)<br>12.21636(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| peak/ hole/eÅ <sup>-3</sup><br>prmula<br>/gmol <sup>-1</sup><br>ystal system<br>vace group<br>Å<br>Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.217 and -0.242<br>3-DMA<br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>2(C <sub>4</sub> H <sub>9</sub> NO)<br>1207.29<br>Triclinic<br>P-1<br>13.4719(11)<br>16.0247(8)<br>16.0247(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.499 and -0.375<br><b>3-DMSO</b><br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>C <sub>3</sub> H <sub>6</sub> OS<br>1111.18<br>Triclinic<br>P-1<br>9.4954(3)<br>14.7041(5)<br>20.6524(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.487 and -0.468<br>4-EtOAc<br>0.5 C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>0.5(C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> )<br>1121.15<br>Monoclinic<br>C2/c<br>30.8937(6)<br>8.3612(2)<br>20 (2072)(4)                                                                                                                                                                                                                                                                                                                                                                                            | 0.255 and -0.407<br>5-Ac<br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>0.16(C <sub>3</sub> H <sub>6</sub> O)<br>1043.57<br>Trielinic<br>P-1<br>11.8122(4)<br>12.4913(4)<br>18.9041(C) | 0.463 and -0.732<br>5-CHCl <sub>3</sub><br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>CHCl <sub>3</sub><br>1153.41<br>Triclinic<br>P-1<br>13.0605(2)<br>13.21636(19)<br>22.8922(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| peak/ hole/eÅ <sup>-3</sup><br>prmula<br>/gmol <sup>-1</sup><br>ystal system<br>ace group<br>Å<br>Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.217 and -0.242<br>3-DMA<br>C <sub>60</sub> H <sub>4</sub> N <sub>10</sub> O <sub>8</sub> •<br>2(C <sub>4</sub> H <sub>9</sub> NO)<br>1207.29<br>Triclinic<br>P-1<br>13.4719(11)<br>16.0247(8)<br>16.1687(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.499 and -0.375<br><b>3-DMSO</b><br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>C <sub>2</sub> H <sub>6</sub> OS<br>1111.18<br>Triclinic<br>P-1<br>9.4954(3)<br>14.7041(5)<br>20.5624(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.487 and -0.468<br>4-EtOAc<br>0.5 C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>0.5(C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> )<br>1121.15<br>Monoclinic<br>C2/c<br>30.8937(6)<br>8.3612(2)<br>22.6973(4)                                                                                                                                                                                                                                                                                                                                                                                              | 0.255 and -0.407<br>5-Ac<br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>0.16(C <sub>3</sub> H <sub>6</sub> O)<br>1043.57<br>Triclinic<br>P-1<br>11.8122(4)<br>12.4913(4)<br>18.8041(6) | 0.463 and -0.732<br>5-CHCl <sub>3</sub><br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>CHCl <sub>3</sub><br>1153.41<br>Triclinic<br>P-1<br>13.0605(2)<br>13.21636(19)<br>22.8823(3)<br>22.8823(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| peak/ hole/eÅ <sup>-3</sup><br>prmula<br>/gmol <sup>-1</sup><br>rystal system<br>pace group<br>Å<br>Å<br>Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.217 and -0.242<br>3-DMA<br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>2(C <sub>4</sub> H <sub>9</sub> NO)<br>1207.29<br>Triclinic<br>P-1<br>13.4719(11)<br>16.0247(8)<br>16.1687(13)<br>115.068(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.499 and -0.375<br>3-DMSO<br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>C <sub>2</sub> H <sub>6</sub> OS<br>1111.18<br>Triclinic<br>P-1<br>9.4954(3)<br>14.7041(5)<br>20.5624(5)<br>80.211(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.487 and -0.468<br>4-EtOAc<br>0.5 C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>0.5(C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> )<br>1121.15<br>Monoclinic<br>C2/c<br>30.8937(6)<br>8.3612(2)<br>22.6973(4)<br>90                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | 0.463 and -0.732<br>5-CHCl <sub>3</sub><br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>CHCl <sub>3</sub><br>1153.41<br>Triclinic<br>P-1<br>13.0605(2)<br>13.21636(19)<br>22.8823(3)<br>79.6980(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| peak/ hole/eÅ <sup>-3</sup><br>prmula<br>//gmol <sup>-1</sup><br>rystal system<br>pace group<br>Å<br>Å<br>Å<br>s<br>s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.217 and -0.242<br>3-DMA<br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>2(C <sub>4</sub> H <sub>9</sub> NO)<br>1207.29<br>Triclinic<br>P-1<br>13.4719(11)<br>16.0247(8)<br>16.1687(13)<br>115.068(6)<br>104.451(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.499 and -0.375<br><b>3-DMSO</b><br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>C <sub>2</sub> H <sub>6</sub> OS<br>1111.18<br>Triclinic<br>P-1<br>9.4954(3)<br>14.7041(5)<br>20.5624(5)<br>80.211(2)<br>77.542(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} \hline 0.487 \text{ and } -0.468 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | 0.463 and -0.732<br>5-CHCl <sub>3</sub><br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>CHCl <sub>3</sub><br>1153.41<br>Triclinic<br>P-1<br>13.0605(2)<br>13.21636(19)<br>22.8823(3)<br>79.6980(12)<br>82.4084(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| peak/ hole/eÅ <sup>-3</sup><br>prmula<br>/gmol <sup>-1</sup><br>rystal system<br>pace group<br>Å<br>Å<br>Å<br>Å<br>Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.217 and -0.242<br>3-DMA<br>C <sub>60</sub> H <sub>4</sub> N <sub>10</sub> O <sub>8</sub> •<br>2(C <sub>4</sub> H <sub>9</sub> NO)<br>1207.29<br>Triclinic<br>P-1<br>13.4719(11)<br>16.0247(8)<br>16.1687(13)<br>115.068(6)<br>104.451(7)<br>93.334(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 0.499 \text{ and } -0.375 \\ \hline \\ \textbf{3-DMSO} \\ \hline \\ \textbf{C}_{60}\textbf{H}_{44}\textbf{N}_{10}\textbf{O}_8 \bullet \\ \textbf{C}_{1}\textbf{H}_6\textbf{OS} \\ 1111.18 \\ \textbf{Triclinic} \\ \textbf{P-1} \\ 9.4954(3) \\ 14.7041(5) \\ 20.5624(5) \\ 80.211(2) \\ 77.542(2) \\ 75.175(3) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{r} \hline 0.487 \text{ and } -0.468 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{r} \hline 0.255 \text{ and } -0.407 \\ \hline \\ $                                                              | 0.463 and -0.732<br>5-CHCl <sub>3</sub><br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>CHCl <sub>3</sub><br>1153.41<br>Triclinic<br>P-1<br>13.0605(2)<br>13.21636(19)<br>22.8823(3)<br>79.6980(12)<br>82.4084(12)<br>63.0169(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| peak/ hole/eÅ <sup>-3</sup><br>prmula<br>/gmol <sup>-1</sup><br>rystal system<br>pace group<br>Å<br>Å<br>Å<br>Å<br>Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.217 and -0.242<br>3-DMA<br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>2(C <sub>4</sub> H <sub>9</sub> NO)<br>1207.29<br>Triclinic<br>P-1<br>13.4719(11)<br>16.0247(8)<br>16.1687(13)<br>115.068(6)<br>104.451(7)<br>93.334(5)<br>3007.8(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.499 and -0.375<br>3-DMSO<br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>C <sub>2</sub> H <sub>6</sub> OS<br>1111.18<br>Triclinic<br>P-1<br>9.4954(3)<br>14.7041(5)<br>20.5624(5)<br>80.211(2)<br>77.542(2)<br>75.175(3)<br>2689.91(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.487 and -0.468<br>4-EtOAc<br>0.5 C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>0.5(C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> )<br>1121.15<br>Monoclinic<br>C2/c<br>30.8937(6)<br>8.3612(2)<br>22.6973(4)<br>90<br>108.423(2)<br>90<br>5562.4(2)                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | 0.463 and -0.732<br>5-CHCl <sub>3</sub><br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>CHCl <sub>3</sub><br>1153.41<br>Triclinic<br>P-1<br>13.0605(2)<br>13.21636(19)<br>22.8823(3)<br>79.6980(12)<br>82.4084(12)<br>63.0169(16)<br>3357.19(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| peak/ hole/eÅ <sup>-3</sup><br>prmula<br>/gmol <sup>-1</sup><br>ystal system<br>pace group<br>Å<br>Å<br>Å<br>Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 0.217 \text{ and } -0.242 \\ \hline & \textbf{3-DMA} \\ \hline \\ C_{60}H_{44}N_{10}O_8 \bullet \\ 2(C_4H_9NO) \\ 1207.29 \\ Triclinic \\ P-1 \\ 13.4719(11) \\ 16.0247(8) \\ 16.1687(13) \\ 115.068(6) \\ 104.451(7) \\ 93.334(5) \\ 3007.8(4) \\ 2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 0.499 \text{ and } -0.375 \\ \hline \\ \textbf{3-DMSO} \\ \hline \\ C_{2}H_{6}OS \\ 1111.18 \\ Triclinic \\ P-1 \\ 9.4954(3) \\ 14.7041(5) \\ 20.5624(5) \\ 80.211(2) \\ 77.542(2) \\ 75.175(3) \\ 2689.91(15) \\ 2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 0.487 \text{ and } -0.468 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | $\begin{array}{r} 0.463 \text{ and } -0.732 \\ \hline \\ & C_{59}H_{43}N_{11}O_8^{\bullet} \\ & CHCI_3 \\ & 1153.41 \\ & Triclinic \\ P-1 \\ & 13.0605(2) \\ & 13.21636(19) \\ & 22.8823(3) \\ & 79.6980(12) \\ & 82.4084(12) \\ & 63.0169(16) \\ & 3357.19(10) \\ & \hline \\ & 7 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| peak/ hole/eÅ <sup>-3</sup><br>prmula<br>/gmol <sup>-1</sup><br>ystal system<br>vace group<br>Å<br>Å<br>Å<br>Å<br>Å<br>Å<br>Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.217 and -0.242<br>3-DMA<br>C <sub>60</sub> H <sub>4</sub> N <sub>10</sub> O <sub>8</sub> •<br>2(C <sub>4</sub> H <sub>9</sub> NO)<br>1207.29<br>Triclinic<br>P-1<br>13.4719(11)<br>16.0247(8)<br>16.1687(13)<br>115.068(6)<br>104.451(7)<br>93.334(5)<br>3007.8(4)<br>2<br>1222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.499 and -0.375<br><b>3-DMSO</b><br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>6</sub> •<br>C <sub>7</sub> H <sub>6</sub> OS<br>1111.18<br>Triclinic<br>P-1<br>9.4954(3)<br>14.7041(5)<br>20.5624(5)<br>80.211(2)<br>77.542(2)<br>75.175(3)<br>2689.91(15)<br>2<br>1.272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{r} 0.487 \text{ and } -0.468 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | 0.463 and -0.732<br>5-CHCl <sub>3</sub><br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>CHCl <sub>3</sub><br>1153.41<br>Triclinic<br>P-1<br>13.0605(2)<br>13.21636(19)<br>22.8823(3)<br>79.6980(12)<br>82.4084(12)<br>63.0169(16)<br>3357.19(10)<br>2<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| peak/ hole/eÅ <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.217 and -0.242<br>3-DMA<br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>2(C <sub>4</sub> H <sub>9</sub> NO)<br>1207.29<br>Triclinic<br>P-1<br>13.4719(11)<br>16.0247(8)<br>16.1687(13)<br>115.068(6)<br>104.451(7)<br>93.334(5)<br>3007.8(4)<br>2<br>1.333<br>0.720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.499 and -0.375<br>3-DMSO<br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>C <sub>2</sub> H <sub>6</sub> OS<br>1111.18<br>Triclinic<br>P-1<br>9.4954(3)<br>14.7041(5)<br>20.5624(5)<br>80.211(2)<br>77.542(2)<br>75.175(3)<br>2689.91(15)<br>2<br>1.372<br>1.172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.487 and -0.468<br>4-EtOAc<br>0.5 C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>0.5(C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> )<br>1121.15<br>Monoclinic<br>C2/c<br>30.8937(6)<br>8.3612(2)<br>22.6973(4)<br>90<br>108.423(2)<br>90<br>5562.4(2)<br>4<br>1.339<br>0.002                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | 0.463 and -0.732<br>5-CHCl <sub>3</sub><br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>CHCl <sub>3</sub><br>1153.41<br>Triclinic<br>P-1<br>13.0605(2)<br>13.21636(19)<br>22.8823(3)<br>79.6980(12)<br>82.4084(12)<br>63.0169(16)<br>3357.19(10)<br>2<br>1.108<br>1.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| peak/ hole/eÅ <sup>-3</sup><br>prmula<br>/gmol <sup>-1</sup><br>rystal system<br>pace group<br>Å<br>Å<br>Å<br>b<br>b<br>c<br>kÅ <sup>3</sup><br>au/g cm <sup>-3</sup><br>mm <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.217 and -0.242<br>3-DMA<br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>2(C <sub>4</sub> H <sub>9</sub> NO)<br>1207.29<br>Triclinic<br>P-1<br>13.4719(11)<br>16.0247(8)<br>16.1687(13)<br>115.068(6)<br>104.451(7)<br>93.334(5)<br>3007.8(4)<br>2<br>1.333<br>0.749                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 0.499 \text{ and } -0.375 \\ \hline \\ \textbf{3-DMSO} \\ \hline \\ C_{60}H_{44}N_{10}O_8 \bullet \\ C_2H_6OS \\ 1111.18 \\ \text{Triclinic} \\ P-1 \\ 9.4954(3) \\ 14.7041(5) \\ 20.5624(5) \\ 80.211(2) \\ 77.542(2) \\ 75.175(3) \\ 2689.91(15) \\ 2 \\ 1.372 \\ 1.119 \\ 1.119 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.15 $ | 0.487 and -0.468<br>4-EtOAc<br>0.5 C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>0.5(C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> )<br>1121.15<br>Monoclinic<br>C2/c<br>30.8937(6)<br>8.3612(2)<br>22.6973(4)<br>90<br>108.423(2)<br>90<br>5562.4(2)<br>4<br>1.339<br>0.093<br>001                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | $\begin{array}{r} 0.463 \text{ and } -0.732 \\ \hline \\ & \\ \hline \\ \\ & \\ \hline \\ & \\ \hline \\ \\ & \\ \hline \\ \\ \hline \\ & \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline$ |
| peak/ hole/eÅ <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.217 and -0.242<br>3-DMA<br>C <sub>60</sub> H <sub>4</sub> N <sub>10</sub> O <sub>8</sub> •<br>2(C <sub>4</sub> H <sub>9</sub> NO)<br>1207.29<br>Triclinic<br>P-1<br>13.4719(11)<br>16.0247(8)<br>16.1687(13)<br>115.068(6)<br>104.451(7)<br>93.334(5)<br>3007.8(4)<br>2<br>1.333<br>0.749<br>1268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{r} \hline 0.499 \text{ and } -0.375 \\ \hline \\ \hline \textbf{3-DMSO} \\ \hline \\ \hline \\ C_{60}H_{44}N_{10}O_{8}\bullet \\ \hline \\ C_{7}H_{6}OS \\ 1111.18 \\ \hline \\ Triclinic \\ P-1 \\ 9.4954(3) \\ 14.7041(5) \\ 20.5624(5) \\ 80.211(2) \\ 77.542(2) \\ 75.175(3) \\ 2689.91(15) \\ 2 \\ 1.372 \\ 1.119 \\ 1160 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{r} 0.487 \text{ and } -0.468 \\ \hline \\ \hline \\ \textbf{4-EtOAc} \\ \hline \\ 0.5 \ C_{60}H_{44}N_{10}O_8 \bullet \\ 0.5(C_4H_8O_2) \\ 1121.15 \\ Monoclinic \\ C2/c \\ 30.8937(6) \\ 8.3612(2) \\ 22.6973(4) \\ 90 \\ 108.423(2) \\ 90 \\ 5562.4(2) \\ 4 \\ 1.339 \\ 0.093 \\ 2344 \\ \end{array}$                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | $\begin{array}{r} \hline 0.463 \text{ and } -0.732 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| peak/ hole/eÅ <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 0.217 \text{ and } -0.242 \\ \hline \\ \textbf{3-DMA} \\ \hline \\ C_{60}H_{44}N_{10}O_8 \bullet \\ 2(C_4H_9NO) \\ 1207.29 \\ \text{Triclinic} \\ P-1 \\ 13.4719(11) \\ 16.0247(8) \\ 16.1687(13) \\ 115.068(6) \\ 104.451(7) \\ 93.334(5) \\ 3007.8(4) \\ 2 \\ 1.333 \\ 0.749 \\ 1268 \\ 0.227x0.145x0.44 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.499 and -0.375<br><b>3-DMSO</b><br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>C <sub>2</sub> H <sub>6</sub> OS<br>1111.18<br>Triclinic<br>P-1<br>9.4954(3)<br>14.7041(5)<br>20.5624(5)<br>80.211(2)<br>77.542(2)<br>75.175(3)<br>2689.91(15)<br>2<br>1.372<br>1.119<br>1160<br>0.216x0.176x0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} 0.487 \text{ and } -0.468 \\ \hline \\ \hline \\ \textbf{4-EtOAc} \\ \hline \\ 0.5 \ C_{60} H_{44} N_{10} O_8^{\bullet} \\ 0.5 \ (C_4 H_8 O_2) \\ 1121.15 \\ Monoclinic \\ C2/c \\ 30.897 \ (6) \\ 8.3612 \ (2) \\ 22.6973 \ (4) \\ 90 \\ 108.423 \ (2) \\ 90 \\ 5562.4 \ (2) \\ 4 \\ 1.339 \\ 0.093 \\ 2344 \\ 0.360 \ (x).222 \ (x).134 \end{array}$                                                                                                                                                                                                                                                         | $\begin{array}{c} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | 0.463 and -0.732<br>5-CHCl <sub>3</sub><br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>CHCl <sub>3</sub><br>1153.41<br>Triclinic<br>P-1<br>13.0605(2)<br>13.21636(19)<br>22.8823(3)<br>79.6980(12)<br>82.4084(12)<br>63.0169(16)<br>3357.19(10)<br>2<br>1.108<br>1.647<br>1192<br>0.343x0.168x0.138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| peak/ hole/eÅ <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 0.217 \text{ and } -0.242 \\ \hline \\ \textbf{3-DMA} \\ \hline \\ C_{60}H_{44}N_{10}O_8^{\bullet} \\ 2(C_4H_9NO) \\ 1207.29 \\ Triclinic \\ P-1 \\ 13.4719(11) \\ 16.0247(8) \\ 16.1687(13) \\ 115.068(6) \\ 104.451(7) \\ 93.334(5) \\ 3007.8(4) \\ 2 \\ 1.333 \\ 0.749 \\ 1268 \\ 0.227x0.145x0.44 \\ 152.686 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 0.499 \text{ and } -0.375 \\ \hline \\ \textbf{3-DMSO} \\ \hline \\ C_{60}H_{44}N_{10}O_8 \bullet \\ C_2H_6OS \\ 1111.18 \\ \text{Triclinic} \\ P-1 \\ 9.4954(3) \\ 14.7041(5) \\ 20.5624(5) \\ 80.211(2) \\ 77.542(2) \\ 75.175(3) \\ 2689.91(15) \\ 2 \\ 1.372 \\ 1.119 \\ 1160 \\ 0.216x0.176x0.100 \\ 154.112 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{r} 0.487 \text{ and } -0.468 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | $\begin{array}{r} 0.463 \text{ and } -0.732 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| peak/ hole/eÅ <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.217 and -0.242<br>3-DMA<br>C <sub>60</sub> H <sub>4</sub> N <sub>10</sub> O <sub>8</sub> •<br>2(C <sub>4</sub> H <sub>9</sub> NO)<br>1207.29<br>Triclinic<br>P-1<br>13.4719(11)<br>16.0247(8)<br>16.1687(13)<br>115.068(6)<br>104.451(7)<br>93.334(5)<br>3007.8(4)<br>2<br>1.333<br>0.749<br>1268<br>0.227x0.145x0.44<br>152.686<br>123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.499 and -0.375<br><b>3-DMSO</b><br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>C <sub>2</sub> H <sub>6</sub> OS<br>1111.18<br>Triclinic<br>P-1<br>9.4954(3)<br>14.7041(5)<br>20.5624(5)<br>80.211(2)<br>75.5(2)<br>2689.91(15)<br>2<br>1.372<br>1.119<br>1160<br>0.216x0.176x0.100<br>154.112<br>123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{r} 0.487 \text{ and } -0.468 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | 0.463 and -0.732<br>5-CHCl <sub>3</sub><br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>CHCl <sub>3</sub><br>1153.41<br>Triclinic<br>P-1<br>13.0605(2)<br>13.21636(19)<br>22.8823(3)<br>79.6980(12)<br>82.4084(12)<br>63.0169(16)<br>3357.19(10)<br>2<br>1.108<br>1.647<br>1192<br>0.343x0.168x0.138<br>153.984<br>123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| peak/ hole/eÅ <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.217 and -0.242<br>3-DMA<br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>2(C <sub>4</sub> H <sub>9</sub> NO)<br>1207.29<br>Triclinic<br>P-1<br>13.4719(11)<br>16.0247(8)<br>16.1687(13)<br>115.068(6)<br>104.451(7)<br>93.334(5)<br>3007.8(4)<br>2<br>1.333<br>0.749<br>1268<br>0.227x0.145x0.44<br>152.686<br>123<br>Cv. K a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.499 and -0.375<br>3-DMSO<br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>C <sub>2</sub> H <sub>6</sub> OS<br>1111.18<br>Triclinic<br>P-1<br>9.4954(3)<br>14.7041(5)<br>20.5624(5)<br>80.211(2)<br>77.542(2)<br>75.175(3)<br>2689.91(15)<br>2<br>1.372<br>1.119<br>1160<br>0.216x0.176x0.100<br>154.112<br>123<br>Cb. K c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{r} 0.487 \text{ and } -0.468 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | 0.463 and -0.732<br>5-CHCl <sub>3</sub><br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>CHCl <sub>3</sub><br>1153.41<br>Triclinic<br>P-1<br>13.0605(2)<br>13.21636(19)<br>22.8823(3)<br>79.6980(12)<br>82.4084(12)<br>63.0169(16)<br>3357.19(10)<br>2<br>1.108<br>1.647<br>1192<br>0.343x0.168x0.138<br>153.984<br>123<br>C:: V.c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| peak/ hole/eÅ <sup>-3</sup><br>rmula<br>/gmol <sup>-1</sup><br>ystal system<br>ace group<br>Å<br>Å<br>Å<br>,<br>,<br>Å <sup>3</sup><br>is/g cm <sup>-3</sup><br>mm <sup>-1</sup><br>000)<br>ystal size/mm<br>max/ <sup>o</sup><br>K<br>diation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{r} 0.217 \text{ and } -0.242 \\ \hline \\ \textbf{3-DMA} \\ \hline \\ C_{60}H_{44}N_{10}O_8^{\bullet} \\ 2(C_4H_9NO) \\ 1207.29 \\ Triclinic \\ P-1 \\ 13.4719(11) \\ 16.0247(8) \\ 16.1687(13) \\ 115.068(6) \\ 104.451(7) \\ 93.334(5) \\ 3007.8(4) \\ 2 \\ 1.333 \\ 0.749 \\ 1268 \\ 0.227x0.145x0.44 \\ 152.686 \\ 123 \\ Cu-K\alpha \\ 152.100 \\ Cu-K\alpha \\ 154.100 \\ Cu-K\alpha \\ 1$ | $\begin{array}{r} 0.499 \text{ and } -0.375 \\ \hline \\ \hline \\ \textbf{3-DMSO} \\ \hline \\ \hline \\ C_{60}H_{44}N_{10}O_8 \bullet \\ \hline \\ C_2H_6OS \\ 1111.18 \\ Triclinic \\ P-1 \\ 9.4954(3) \\ 14.7041(5) \\ 20.5624(5) \\ 80.211(2) \\ 77.542(2) \\ 75.175(3) \\ 2689.91(15) \\ 2 \\ 1.372 \\ 1.119 \\ 1160 \\ 0.216x0.176x0.100 \\ 154.112 \\ 123 \\ Cu-K\alpha \\ 1.5110 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{r} 0.487 \text{ and } -0.468 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{r} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | $\begin{array}{c} 0.463 \text{ and } -0.732 \\ \hline \\ & C_{59}H_{43}N_{11}O_8^* \\ & CHCl_3 \\ & 1153.41 \\ & Triclinic \\ P-1 \\ & 13.0605(2) \\ 13.21636(19) \\ 22.8823(3) \\ & 79.6980(12) \\ 82.4084(12) \\ 63.0169(16) \\ 3357.19(10) \\ & 2 \\ & 1.108 \\ & 1.647 \\ & 1192 \\ 0.343x0.168x0.138 \\ & 153.984 \\ & 123 \\ & Cu-K\alpha \\ & 150.084 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{r} 0.217 \text{ and } -0.242 \\ \hline \\ \textbf{3-DMA} \\ \hline \\ C_{60}H_{4}N_{10}O_8 \bullet \\ 2(C_4H_5NO) \\ 1207.29 \\ Triclinic \\ P-1 \\ 13.4719(11) \\ 16.0247(8) \\ 16.1687(13) \\ 115.068(6) \\ 104.451(7) \\ 93.334(5) \\ 3007.8(4) \\ 2 \\ 1.333 \\ 0.749 \\ 1268 \\ 0.227x0.145x0.44 \\ 152.686 \\ 123 \\ Cu-K\alpha \\ 1.5418 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{r} 0.499 \text{ and } -0.375 \\ \hline \\ \textbf{3-DMSO} \\ \hline \\ C_{60}H_{44}N_{10}O_8 \\ \hline \\ C_2H_6OS \\ 1111.18 \\ \text{Triclinic} \\ P-1 \\ 9.4954(3) \\ 14.7041(5) \\ 20.5624(5) \\ 80.211(2) \\ 77.542(2) \\ 75.175(3) \\ 2689.91(15) \\ 2 \\ 1.372 \\ 1.119 \\ 1160 \\ 0.216x0.176x0.100 \\ 154.112 \\ 123 \\ \text{Cu-Ka} \\ 1.5418 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{r} 0.487 \text{ and } -0.468 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{r} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | $\begin{array}{r} 0.463 \text{ and } -0.732 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| peak/ hole/eÅ <sup>-3</sup><br>rmula<br>/gmol <sup>-1</sup><br>ystal system<br>ace group<br>Å<br>Å<br>Å<br>Å<br>b<br>p<br>d<br>Å<br>acg cm <sup>-3</sup><br>mm <sup>-1</sup><br>000)<br>ystal size/mm<br>max/°<br>K<br>diation<br>Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 0.217 \text{ and } -0.242 \\ \hline \\ \textbf{3-DMA} \\ \hline \\ C_{60}H_{44}N_{10}O_8 \bullet \\ 2(C_4H_9NO) \\ 1207.29 \\ Triclinic \\ P-1 \\ 13.4719(11) \\ 16.0247(8) \\ 16.1687(13) \\ 115.068(6) \\ 104.451(7) \\ 93.334(5) \\ 3007.8(4) \\ 2 \\ 1.333 \\ 0.749 \\ 1268 \\ 0.227x0.145x0.44 \\ 152.686 \\ 123 \\ Cu-K\alpha \\ 1.5418 \\ mirror \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.499 and -0.375<br><b>3-DMSO</b><br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>C <sub>2</sub> H <sub>6</sub> OS<br>1111.18<br>Triclinic<br>P-1<br>9.4954(3)<br>14.7041(5)<br>20.5624(5)<br>80.211(2)<br>77.542(2)<br>75.175(3)<br>2689.91(15)<br>2<br>1.372<br>1.119<br>1160<br>0.216x0.176x0.100<br>154.112<br>123<br>Cu-Kα<br>1.5418<br>mirror                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{r} 0.487 \text{ and } -0.468 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ 0.5 \ C_{60} H_{44} N_{10} O_8^{\bullet} \\ 0.5 (C_4 H_8 O_2) \\ 1121.15 \\ Monoclinic \\ C2/c \\ 30.8937(6) \\ 8.3612(2) \\ 22.6973(4) \\ 90 \\ 108.423(2) \\ 90 \\ 5562.4(2) \\ 4 \\ 1.339 \\ 0.093 \\ 2344 \\ 0.360 x 0.222 x 0.134 \\ 28.950 \\ 123 \\ Mo-K_{\alpha} \\ 0.71073 \\ mirror \\ \end{array}$                                                                                                                                                                                                                   | $\begin{array}{c} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | 0.463 and -0.732<br>5-CHCl <sub>3</sub><br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>CHCl <sub>3</sub><br>1153.41<br>Triclinic<br>P-1<br>13.0605(2)<br>13.21636(19)<br>22.8823(3)<br>79.6980(12)<br>82.4084(12)<br>63.0169(16)<br>3357.19(10)<br>2<br>1.108<br>1.647<br>1192<br>0.343x0.168x0.135<br>153.984<br>123<br>Cu-Kα<br>1.5418<br>mirror                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| peak/ hole/eÅ <sup>-3</sup><br>rmula<br>/gmol <sup>-1</sup><br>ystal system<br>ace group<br>Å<br>Å<br>Å<br>/g cm <sup>-3</sup><br>mm <sup>-1</sup><br>000)<br>ystal size/mm<br>max/ <sup>o</sup><br>K<br>diation<br>Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.217 \text{ and } -0.242 \\ \hline \\ \textbf{3-DMA} \\ \hline \\ C_{60}H_{44}N_{10}O_8 \bullet \\ 2(C_4H_9NO) \\ 1207.29 \\ Triclinic \\ P-1 \\ 13.4719(11) \\ 16.0247(8) \\ 16.1687(13) \\ 115.068(6) \\ 104.451(7) \\ 93.334(5) \\ 3007.8(4) \\ 2 \\ 1.333 \\ 0.749 \\ 1268 \\ 0.227x0.145x0.44 \\ 152.686 \\ 123 \\ Cu-K\alpha \\ 1.5418 \\ mirror \\ Analytical \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 0.499 \text{ and } -0.375 \\ \hline \\ \hline \\ \textbf{3-DMSO} \\ \hline \\ \hline \\ C_{2}H_{6}OS \\ 1111.18 \\ Triclinic \\ P-1 \\ 9.4954(3) \\ 14.7041(5) \\ 20.5624(5) \\ 80.211(2) \\ 77.542(2) \\ 75.175(3) \\ 2689.91(15) \\ 2 \\ 1.372 \\ 1.119 \\ 1160 \\ 0.216x0.176x0.100 \\ 154.112 \\ 123 \\ Cu-K\alpha \\ 1.5418 \\ mirror \\ Analytical \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{r} 0.487 \text{ and } -0.468 \\ \hline \\ \hline 0.5 \ C_{60} H_{44} N_{10} O_8^{\star} \\ 0.5 \ (C_4 H_8 O_2) \\ 1121.15 \\ Monoclinic \\ C2/c \\ 30.8937 (6) \\ 8.3612 (2) \\ 22.6973 (4) \\ 90 \\ 108.423 (2) \\ 90 \\ 108.423 (2) \\ 90 \\ 5562.4 (2) \\ 4 \\ 1.339 \\ 0.093 \\ 2344 \\ 0.360 x 0.222 x 0.134 \\ 28.950 \\ 123 \\ Mo-K_a \\ 0.71073 \\ mirror \\ Multi-scan \\ \end{array}$                                                                                                                                                                                                                   | $\begin{array}{c} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | $\begin{array}{r} 0.463 \text{ and } -0.732 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| peak/ hole/eÅ <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.217 and -0.242<br>3-DMA<br>C <sub>60</sub> H <sub>4</sub> N <sub>10</sub> O <sub>8</sub> •<br>2(C <sub>4</sub> H <sub>9</sub> NO)<br>1207.29<br>Triclinic<br>P-1<br>13.4719(11)<br>16.0247(8)<br>16.1687(13)<br>115.068(6)<br>104.451(7)<br>93.334(5)<br>3007.8(4)<br>2<br>1.333<br>0.749<br>1268<br>0.227x0.145x0.44<br>152.686<br>123<br>Cu-Ka<br>1.5418<br>mirror<br>Analytical<br>CrysAlisPro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.499 and -0.375<br>3-DMSO<br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>C <sub>2</sub> H <sub>6</sub> OS<br>1111.18<br>Triclinic<br>P-1<br>9.4954(3)<br>14.7041(5)<br>20.5624(5)<br>80.211(2)<br>77.542(2)<br>75.175(3)<br>2689.91(15)<br>2<br>1.372<br>1.119<br>1160<br>0.216x0.176x0.100<br>154.112<br>123<br>Cu-Ka<br>1.5418<br>mirror<br>Analytical<br>CrysAlisPro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 0.487 \text{ and } -0.468 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | $\begin{array}{r} 0.463 \text{ and } -0.732 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| peak/ hole/eÅ <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 0.217 \text{ and } -0.242 \\ \hline \\ \textbf{3-DMA} \\ \hline \\ C_{60}H_{44}N_{10}O_8 \bullet \\ 2(C_4H_9NO) \\ 1207.29 \\ Triclinic \\ P-1 \\ 13.4719(11) \\ 16.0247(8) \\ 16.1687(13) \\ 115.068(6) \\ 104.451(7) \\ 93.334(5) \\ 3007.8(4) \\ 2 \\ 1.333 \\ 0.749 \\ 1268 \\ 0.227x0.145x0.44 \\ 152.686 \\ 123 \\ Cu-K\alpha \\ 1.5418 \\ mirror \\ Analytical \\ CrysAlisPro \\ ShelYLe \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.499 and -0.375<br>3-DMSO<br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>C <sub>2</sub> H <sub>6</sub> OS<br>1111.18<br>Triclinic<br>P-1<br>9.4954(3)<br>14.7041(5)<br>20.5624(5)<br>80.211(2)<br>77.542(2)<br>75.175(3)<br>2689.91(15)<br>2<br>1.372<br>1.119<br>1160<br>0.216x0.176x0.100<br>154.112<br>123<br>Cu-Kα<br>1.5418<br>mirror<br>Analytical<br>CrysAlisPro<br>ShelYle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 0.487 \text{ and } -0.468 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | 0.463 and -0.732<br>5-CHCl <sub>3</sub><br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>CHCl <sub>3</sub><br>1153.41<br>Triclinic<br>P-1<br>13.0605(2)<br>13.21636(19)<br>22.8823(3)<br>79.6980(12)<br>82.4084(12)<br>63.0169(16)<br>3357.19(10)<br>2<br>1.108<br>1.647<br>1192<br>0.343x0.168x0.135<br>153.984<br>123<br>Cu-Kα<br>1.5418<br>mirror<br>Analytical<br>CrysAlisPro<br>SbelYle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| peak/ hole/eÅ <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 0.217 \text{ and } -0.242 \\ \hline \\ \textbf{3-DMA} \\ \hline \\ C_{60}H_{44}N_{10}O_8 \bullet \\ 2(C_4H_9NO) \\ 1207.29 \\ Triclinic \\ P-1 \\ 13.4719(11) \\ 16.0247(8) \\ 16.1687(13) \\ 115.068(6) \\ 104.451(7) \\ 93.334(5) \\ 3007.8(4) \\ 2 \\ 1.333 \\ 0.749 \\ 1268 \\ 0.227x0.145x0.44 \\ 152.686 \\ 123 \\ Cu-K\alpha \\ 1.5418 \\ mirror \\ Analytical \\ CrysAlisPro \\ ShelXle \\ 17700 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.499 and -0.375<br>3-DMSO<br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>C <sub>2</sub> H <sub>6</sub> OS<br>1111.18<br>Triclinic<br>P-1<br>9.4954(3)<br>14.7041(5)<br>20.5624(5)<br>80.211(2)<br>77.542(2)<br>75.175(3)<br>2689.91(15)<br>2<br>1.372<br>1.119<br>1160<br>0.216x0.176x0.100<br>154.112<br>123<br>Cu-Kα<br>1.5418<br>mirror<br>Analytical<br>CrysAlisPro<br>ShelXle<br>20221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{r} 0.487 \text{ and } -0.468 \\ \hline \\ \hline 0.5 \ C_{60} H_{44} N_{10} O_8^{\star} \\ 0.5 \ (C_4 H_8 O_2) \\ 1121.15 \\ Monoclinic \\ C2/c \\ 30.8937 (6) \\ 8.3612 (2) \\ 22.6973 (4) \\ 90 \\ 108.423 (2) \\ 90 \\ 108.423 (2) \\ 90 \\ 5562.4 (2) \\ 4 \\ 1.339 \\ 0.093 \\ 2344 \\ 0.360 x 0.222 x 0.134 \\ 28.950 \\ 123 \\ Mo-K_a \\ 0.71073 \\ mirror \\ Multi-scan \\ CrysAlisPro \\ ShelXle \\ 10002 \\ \end{array}$                                                                                                                                                                                | $\begin{array}{c} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | $\begin{array}{c} 0.463 \text{ and } -0.732 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| peak/ hole/eÅ <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.217 and -0.242<br>3-DMA<br>C <sub>60</sub> H <sub>4</sub> N <sub>10</sub> O <sub>8</sub> •<br>2(C <sub>4</sub> H <sub>5</sub> NO)<br>1207.29<br>Triclinic<br>P-1<br>13.4719(11)<br>16.0247(8)<br>16.1687(13)<br>115.068(6)<br>104.451(7)<br>93.334(5)<br>3007.8(4)<br>2<br>1.333<br>0.749<br>1268<br>0.227x0.145x0.44<br>152.686<br>123<br>Cu-Ka<br>1.5418<br>mirror<br>Analytical<br>CrysAlisPro<br>ShelXle<br>17709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.499 and -0.375<br>3-DMSO<br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>C <sub>2</sub> H <sub>6</sub> OS<br>1111.18<br>Triclinic<br>P-1<br>9.4954(3)<br>14.7041(5)<br>20.5624(5)<br>80.211(2)<br>77.542(2)<br>75.175(3)<br>2689.91(15)<br>2<br>1.372<br>1.119<br>1160<br>0.216x0.176x0.100<br>154.112<br>123<br>Cu-Ka<br>1.5418<br>mirror<br>Analytical<br>CrysAlisPro<br>ShelXle<br>20331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.487 and -0.468<br>4-EtOAc<br>0.5 C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>0.5(C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> )<br>1121.15<br>Monoclinic<br>C2/c<br>30.8937(6)<br>8.3612(2)<br>22.6973(4)<br>90<br>108.423(2)<br>90<br>5562.4(2)<br>4<br>1.339<br>0.093<br>2344<br>0.360x0.222x0.134<br>28.950<br>123<br>Mo-K <sub>a</sub><br>0.71073<br>mirror<br>Multi-scan<br>CrysAlisPro<br>ShelXle<br>18883                                                                                                                                                                                       | $\begin{array}{c} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | 0.463 and -0.732<br>5-CHCl <sub>3</sub><br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>CHCl <sub>3</sub><br>1153.41<br>Triclinic<br>P-1<br>13.0605(2)<br>13.21636(19)<br>22.8823(3)<br>79.6980(12)<br>82.4084(12)<br>63.0169(16)<br>3357.19(10)<br>2<br>1.108<br>1.647<br>1192<br>0.343x0.168x0.133<br>153.984<br>123<br>Cu-Kα<br>1.5418<br>mirror<br>Analytical<br>CrysAlisPro<br>ShelXle<br>69781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| peak/ hole/eÅ <sup>-3</sup><br>prmula<br>/gmol <sup>-1</sup><br>ystal system<br>vace group<br>Å<br>Å<br>Å<br>b<br>b<br>c<br>A<br>Å<br>b<br>c<br>b<br>c<br>A<br>Å<br>Å<br>b<br>c<br>b<br>c<br>A<br>Å<br>Å<br>b<br>c<br>c<br>A<br>Å<br>Å<br>b<br>c<br>c<br>A<br>Å<br>Å<br>b<br>c<br>c<br>A<br>Å<br>Å<br>Å<br>b<br>c<br>c<br>A<br>Å<br>Å<br>Å<br>Å<br>Å<br>b<br>c<br>c<br>A<br>Å<br>Å<br>Å<br>Å<br>Å<br>Å<br>Å<br>Å<br>Å<br>Å<br>Å<br>Å<br>Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.217 and -0.242<br>3-DMA<br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>2(C <sub>4</sub> H <sub>9</sub> NO)<br>1207.29<br>Triclinic<br>P-1<br>13.4719(11)<br>16.0247(8)<br>16.1687(13)<br>115.068(6)<br>104.451(7)<br>93.334(5)<br>3007.8(4)<br>2<br>1.333<br>0.749<br>1268<br>0.227x0.145x0.44<br>152.686<br>123<br>Cu-Kα<br>1.5418<br>mirror<br>Analytical<br>CrysAlisPro<br>ShelXle<br>17709<br>11797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.499 and -0.375<br>3-DMSO<br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>C <sub>2</sub> H <sub>6</sub> OS<br>1111.18<br>Triclinic<br>P-1<br>9.4954(3)<br>14.7041(5)<br>20.5624(5)<br>80.211(2)<br>77.542(2)<br>75.175(3)<br>2689.91(15)<br>2<br>1.372<br>1.119<br>1160<br>0.216x0.176x0.100<br>154.112<br>123<br>Cu-Kα<br>1.5418<br>mirror<br>Analytical<br>CrysAlisPro<br>ShelXle<br>20331<br>11025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{r} 0.487 \text{ and } -0.468 \\ \hline \\ \hline \\ \hline \\ 0.5 \ C_{60} H_{44} N_{10} O_8^{\star} \\ 0.5 \ (C_{4} H_8 O_2) \\ 1121.15 \\ Monoclinic \\ C2/c \\ 30.8937 (6) \\ 8.3612 (2) \\ 22.6973 (4) \\ 90 \\ 108.423 (2) \\ 90 \\ 5562.4 (2) \\ 4 \\ 1.339 \\ 0.093 \\ 2344 \\ 0.360 x 0.222 x 0.134 \\ 28.950 \\ 123 \\ Mo-K_{\alpha} \\ 0.71073 \\ mirror \\ Multi-scan \\ CrysAlisPro \\ ShelXle \\ 18883 \\ 6458 \\ \end{array}$                                                                                                                                                                       | $\begin{array}{c} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | $\begin{array}{r} 0.463 \text{ and } -0.732 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| peak/ hole/eÅ <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} 0.217 \text{ and } -0.242 \\ \hline \\ \textbf{3-DMA} \\ \hline \\ C_{60}H_{44}N_{10}O_8^{\bullet} \\ 2(C_4H_9NO) \\ 1207.29 \\ Triclinic \\ P-1 \\ 13.4719(11) \\ 16.0247(8) \\ 16.1687(13) \\ 115.068(6) \\ 104.451(7) \\ 93.334(5) \\ 3007.8(4) \\ 2 \\ 1.333 \\ 0.749 \\ 1268 \\ 0.227x0.145x0.44 \\ 152.686 \\ 123 \\ Cu-K\alpha \\ 1.5418 \\ mirror \\ Analytical \\ CrysAlisPro \\ ShelXle \\ 17709 \\ 11797 \\ 877 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.499 and -0.375<br>3-DMSO<br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>C <sub>2</sub> H <sub>6</sub> OS<br>1111.18<br>Triclinic<br>P-1<br>9.4954(3)<br>14.7041(5)<br>20.5624(5)<br>80.211(2)<br>77.542(2)<br>75.175(3)<br>2689.91(15)<br>2<br>1.372<br>1.119<br>1160<br>0.216x0.176x0.100<br>154.112<br>123<br>Cu-Kα<br>1.5418<br>mirror<br>Analytical<br>CrysAlisPro<br>ShelXle<br>20331<br>11025<br>810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{r} 0.487 \text{ and } -0.468 \\ \hline \\ \hline \\ \hline \\ 0.5 \ C_{60} H_{44} N_{10} O_8^{\star} \\ 0.5 (C_4 H_8 O_2) \\ 1121.15 \\ Monoclinic \\ C2/c \\ 30.8937 (6) \\ 8.3612 (2) \\ 22.6973 (4) \\ 90 \\ 108.423 (2) \\ 90 \\ 108.423 (2) \\ 90 \\ 5562.4 (2) \\ 4 \\ 1.339 \\ 0.093 \\ 2344 \\ 0.360 x 0.222 x 0.134 \\ 28.950 \\ 123 \\ Mo-K_a \\ 0.71073 \\ mirror \\ Multi-scan \\ CrysAlisPro \\ ShelXle \\ 18883 \\ 6458 \\ 477 \\ \end{array}$                                                                                                                                                      | $\begin{array}{c} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | 0.463 and -0.732<br>5-CHCl <sub>3</sub><br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>CHCl <sub>3</sub><br>1153.41<br>Triclinic<br>P-1<br>13.0605(2)<br>13.21636(19)<br>22.8823(3)<br>79.6980(12)<br>82.4084(12)<br>63.0169(16)<br>3357.19(10)<br>2<br>1.108<br>1.647<br>1192<br>0.343x0.168x0.138<br>153.984<br>123<br>Cu-Kα<br>1.5418<br>mirror<br>Analytical<br>CrysAlisPro<br>ShelXle<br>69781<br>14337<br>791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| peak/ hole/eÅ <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.217 and -0.242<br>3-DMA<br>C <sub>60</sub> H <sub>4</sub> N <sub>10</sub> O <sub>8</sub> •<br>2(C <sub>4</sub> H <sub>5</sub> NO)<br>1207.29<br>Triclinic<br>P-1<br>13.4719(11)<br>16.0247(8)<br>16.1687(13)<br>115.068(6)<br>104.451(7)<br>93.334(5)<br>3007.8(4)<br>2<br>1.333<br>0.749<br>1268<br>0.227x0.145x0.44<br>152.686<br>123<br>Cu-Ka<br>1.5418<br>mirror<br>Analytical<br>CrysAlisPro<br>ShelXle<br>17709<br>11797<br>877<br>0.0306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.499 and -0.375<br>3-DMSO<br>C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>C <sub>2</sub> H <sub>6</sub> OS<br>1111.18<br>Triclinic<br>P-1<br>9.4954(3)<br>14.7041(5)<br>20.5624(5)<br>80.211(2)<br>77.542(2)<br>75.175(3)<br>2689.91(15)<br>2<br>1.372<br>1.119<br>1160<br>0.216x0.176x0.100<br>154.112<br>123<br>Cu-Ka<br>1.5418<br>mirror<br>Analytical<br>CrysAlisPro<br>ShelXle<br>20331<br>11025<br>810<br>0.0249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.487 and -0.468<br>4-EtOAc<br>0.5 C <sub>60</sub> H <sub>44</sub> N <sub>10</sub> O <sub>8</sub> •<br>0.5(C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> )<br>1121.15<br>Monoclinic<br>C2/c<br>30.8937(6)<br>8.3612(2)<br>22.6973(4)<br>90<br>108.423(2)<br>90<br>5562.4(2)<br>4<br>1.339<br>0.093<br>2344<br>0.360x0.222x0.134<br>28.950<br>123<br>Mo-K <sub>a</sub><br>0.71073<br>mirror<br>Multi-scan<br>CrysAlisPro<br>ShelXle<br>18883<br>6458<br>477<br>0.0138                                                                                                                                                              | $\begin{array}{c} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | 0.463 and -0.732<br>5-CHCl <sub>3</sub><br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>CHCl <sub>3</sub><br>1153.41<br>Triclinic<br>P-1<br>13.0605(2)<br>13.21636(19)<br>22.8823(3)<br>79.6980(12)<br>82.4084(12)<br>63.0169(16)<br>3357.19(10)<br>2<br>1.108<br>1.647<br>1192<br>0.343x0.168x0.138<br>153.984<br>123<br>Cu-Kα<br>1.5418<br>mirror<br>Analytical<br>CrysAlisPro<br>ShelXle<br>69781<br>14337<br>791<br>0.0305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| peak/ hole/eÅ <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 0.217 \text{ and } -0.242 \\ \hline \\ \textbf{3-DMA} \\ \hline \\ C_{60}H_{44}N_{10}O_8 \bullet \\ 2(C_4H_9NO) \\ 1207.29 \\ Triclinic \\ P-1 \\ 13.4719(11) \\ 16.0247(8) \\ 16.1687(13) \\ 115.068(6) \\ 104.451(7) \\ 93.334(5) \\ 3007.8(4) \\ 2 \\ 1.333 \\ 0.749 \\ 1268 \\ 0.227x0.145x0.44 \\ 152.686 \\ 123 \\ Cu-K\alpha \\ 1.5418 \\ mirror \\ Analytical \\ CrysAlisPro \\ ShelXle \\ 17709 \\ 11797 \\ 877 \\ 0.0306 \\ 0.0513 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 0.499 \text{ and } -0.375 \\ \hline \\ \hline \\ \textbf{3-DMSO} \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{r} 0.487 \text{ and } -0.468 \\ \hline \\ \hline 0.5 \ C_{60} H_{44} N_{10} O_8^{\star} \\ 0.5 \ (C_{4} H_8 O_2) \\ 1121.15 \\ Monoclinic \\ C2/c \\ 30.8937 (6) \\ 8.3612 (2) \\ 22.6973 (4) \\ 90 \\ 108.423 (2) \\ 90 \\ 5562.4 (2) \\ 4 \\ 1.339 \\ 0.093 \\ 2344 \\ 0.360 x 0.222 x 0.134 \\ 28.950 \\ 123 \\ Mo-K_{\alpha} \\ 0.71073 \\ mirror \\ Multi-scan \\ CrysAlisPro \\ ShelXle \\ 18883 \\ 6458 \\ 477 \\ 0.0138 \\ 0.0425 \\ \end{array}$                                                                                                                                                         | $\begin{array}{c} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | $\begin{array}{r} 0.463 \text{ and } -0.732 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| peak/ hole/eÅ <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.217 and -0.242<br>3-DMA<br>C <sub>60</sub> H <sub>4</sub> N <sub>10</sub> O <sub>8</sub> •<br>2(C <sub>4</sub> H <sub>5</sub> NO)<br>1207.29<br>Triclinic<br>P-1<br>13.4719(11)<br>16.0247(8)<br>16.1687(13)<br>115.068(6)<br>104.451(7)<br>93.334(5)<br>3007.8(4)<br>2<br>1.333<br>0.749<br>1268<br>0.227x0.145x0.44<br>152.686<br>123<br>Cu-Kα<br>1.5418<br>mirror<br>Analytical<br>CrysAlisPro<br>ShelXle<br>17709<br>11797<br>877<br>0.0306<br>0.0513<br>0.1222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.499 \text{ and } -0.375 \\ \hline \\ \hline \\ \textbf{3-DMSO} \\ \hline \\ \hline \\ C_{2}H_{6}OS \\ 1111.18 \\ Triclinic \\ P-1 \\ 9.4954(3) \\ 14.7041(5) \\ 20.5624(5) \\ 80.211(2) \\ 77.542(2) \\ 75.175(3) \\ 2689.91(15) \\ 2 \\ 1.372 \\ 1.119 \\ 1160 \\ 0.216x0.176x0.100 \\ 154.112 \\ 123 \\ Cu-K\alpha \\ 1.5418 \\ mirror \\ Analytical \\ CrysAlisPro \\ ShelXle \\ 20331 \\ 11025 \\ 810 \\ 0.0249 \\ 0.0491 \\ 0.1311 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} 0.487 \text{ and } -0.468 \\ \hline \\ \hline \\ \hline \\ \hline \\ 0.5 \ C_{60}H_{44}N_{10}O_8^{\bullet} \\ \hline \\ 0.5(C_4H_8O_2) \\ 1121.15 \\ \hline \\ Monoclinic \\ C2/c \\ 30.8937(6) \\ \hline \\ 8.3612(2) \\ 22.6973(4) \\ 90 \\ 108.423(2) \\ 90 \\ 108.423(2) \\ 90 \\ 5562.4(2) \\ 4 \\ 1.339 \\ 0.093 \\ 2344 \\ 0.360x0.222x0.134 \\ 28.950 \\ 123 \\ \hline \\ Mo-K_a \\ 0.71073 \\ mirror \\ Multi-scan \\ CrysAlisPro \\ ShelXle \\ 18883 \\ 6458 \\ 477 \\ 0.0138 \\ 0.0435 \\ 0.1140 \\ \hline \end{array}$                                                                             | $\begin{array}{c} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | $\begin{array}{r} \hline 0.463 \text{ and } -0.732 \\ \hline \hline \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| peak/ hole/eÅ <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} 0.217 \text{ and } -0.242 \\ \hline \\ \textbf{3-DMA} \\ \hline \\ C_{60}H_{4}N_{10}O_8 \bullet \\ 2(C_4H_5NO) \\ 1207.29 \\ Triclinic \\ P-1 \\ 13.4719(11) \\ 16.0247(8) \\ 16.1687(13) \\ 115.068(6) \\ 104.451(7) \\ 93.334(5) \\ 3007.8(4) \\ 2 \\ 1.333 \\ 0.749 \\ 1268 \\ 0.227x0.145x0.44 \\ 152.686 \\ 123 \\ Cu-K\alpha \\ 1.5418 \\ mirror \\ Analytical \\ CrysAlisPro \\ ShelXle \\ 17709 \\ 11797 \\ 877 \\ 0.0306 \\ 0.0513 \\ 0.1323 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 0.499 \text{ and } -0.375 \\ \hline \\ \textbf{3-DMSO} \\ \hline \\ \textbf{C}_{60}\textbf{H}_{44}\textbf{N}_{10}\textbf{O}_{8}^{\bullet} \\ \textbf{C}_{2}\textbf{H}_{6}\textbf{OS} \\ 1111.18 \\ \text{Triclinic} \\ \textbf{P-1} \\ 9.4954(3) \\ 14.7041(5) \\ 20.5624(5) \\ 80.211(2) \\ 77.542(2) \\ 75.175(3) \\ 2689.91(15) \\ 2 \\ 1.372 \\ 1.119 \\ 1160 \\ \textbf{0.216x0.176x0.100} \\ 154.112 \\ 123 \\ \textbf{Cu-Ka} \\ 1.5418 \\ \textbf{mirror} \\ \textbf{Analytical} \\ \textbf{CrysAlisPro} \\ \textbf{ShelXle} \\ 20331 \\ 11025 \\ 810 \\ \textbf{0.0249} \\ \textbf{0.0491} \\ \textbf{0.1311} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{r} 0.487 \ \text{and} \ -0.468 \\ \hline \\ \hline \\ \hline \\ \hline \\ 0.5 \ C_{60} H_{44} N_{10} O_8^{\star} \\ 0.5 \ (C_{4} H_8 O_2) \\ 1121.15 \\ \hline \\ \text{Monoclinic} \\ C2/c \\ 30.8937 \ (6) \\ 8.3612 \ (2) \\ 22.6973 \ (4) \\ 90 \\ 108.423 \ (2) \\ 90 \\ 108.423 \ (2) \\ 90 \\ 5562.4 \ (2) \\ 4 \\ 1.339 \\ 0.093 \\ 2344 \\ 0.360 \ xo 222 \ xo 134 \\ 28.950 \\ 123 \\ \hline \\ \text{Mo-K}_a \\ 0.71073 \\ \hline \\ \text{mirror} \\ \text{Multi-scan} \\ \hline \\ \text{CrysAlisPro} \\ \text{ShelXle} \\ 18883 \\ 6458 \\ 477 \\ 0.0138 \\ 0.0435 \\ 0.1149 \\ \hline \end{array}$ | $\begin{array}{c} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | 0.463 and -0.732<br>5-CHCl <sub>3</sub><br>C <sub>59</sub> H <sub>43</sub> N <sub>11</sub> O <sub>8</sub> •<br>CHCl <sub>3</sub><br>1153.41<br>Triclinic<br>P-1<br>13.0605(2)<br>13.21636(19)<br>22.8823(3)<br>79.6980(12)<br>82.4084(12)<br>63.0169(16)<br>3357.19(10)<br>2<br>1.108<br>1.647<br>1192<br>0.343x0.168x0.138<br>153.984<br>123<br>Cu-Kα<br>1.5418<br>mirror<br>Analytical<br>CrysAlisPro<br>ShelXle<br>69781<br>14337<br>791<br>0.0305<br>0.0751<br>21.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| peak/ hole/eÅ <sup>-3</sup><br>prmula<br>/gmol <sup>-1</sup><br>rystal system<br>pace group<br>Å<br>Å<br>Å<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{A}$<br>$^{$ | $\begin{array}{r} 0.217 \text{ and } -0.242 \\ \hline \\ \textbf{3-DMA} \\ \hline \\ C_{60}H_{44}N_{10}O_8 \bullet \\ 2(C_4H_9NO) \\ 1207.29 \\ Triclinic \\ P-1 \\ 13.4719(11) \\ 16.0247(8) \\ 16.1687(13) \\ 115.068(6) \\ 104.451(7) \\ 93.334(5) \\ 3007.8(4) \\ 2 \\ 1.333 \\ 0.749 \\ 1268 \\ 0.227x0.145x0.44 \\ 152.686 \\ 123 \\ Cu-K\alpha \\ 1.5418 \\ mirror \\ Analytical \\ CrysAlisPro \\ ShelXle \\ 17709 \\ 11797 \\ 877 \\ 0.0306 \\ 0.0513 \\ 0.1323 \\ 1.047 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 0.499 \text{ and } -0.375 \\ \hline \\ \hline \\ \textbf{3-DMSO} \\ \hline \\ \hline \\ C_{60}H_{44}N_{10}O_8 \bullet \\ \hline \\ C_2H_6OS \\ 1111.18 \\ Triclinic \\ P-1 \\ 9.4954(3) \\ 14.7041(5) \\ 20.5624(5) \\ 80.211(2) \\ 77.542(2) \\ 75.175(3) \\ 2689.91(15) \\ 2 \\ 1.372 \\ 1.119 \\ 1160 \\ 0.216x0.176x0.100 \\ 154.112 \\ 123 \\ Cu-K\alpha \\ 1.5418 \\ mirror \\ Analytical \\ CrysAlisPro \\ ShelXle \\ 20331 \\ 11025 \\ 810 \\ 0.0249 \\ 0.0491 \\ 0.1311 \\ 1.019 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} 0.487 \text{ and } -0.468 \\ \hline \\ \hline 0.5 \ C_{60} H_{44} N_{10} O_8^{\bullet} \\ 0.5 \ (C_4 H_8 O_2) \\ 1121.15 \\ Monoclinic \\ C2/c \\ 30.8937 (6) \\ 8.3612 (2) \\ 22.6973 (4) \\ 90 \\ 108.423 (2) \\ 90 \\ 108.423 (2) \\ 90 \\ 5562.4 (2) \\ 4 \\ 1.339 \\ 0.093 \\ 2344 \\ 0.360 x 0.222 x 0.134 \\ 28.950 \\ 123 \\ Mo-K_{\alpha} \\ 0.71073 \\ mirror \\ Multi-scan \\ CrysAlisPro \\ ShelXle \\ 18883 \\ 6458 \\ 477 \\ 0.0138 \\ 0.0435 \\ 0.1149 \\ 1.062 \\ \end{array}$                                                                                                                 | $\begin{array}{c} 0.255 \text{ and } -0.407 \\ \hline \\ $                                                                     | $\begin{array}{r} 0.463 \text{ and } -0.732\\ \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Table 3. Crystal data and data collection parameters. The data of the isomorphous structures and the data of the structures 1-DMF-H<sub>2</sub>O and 1-MeOH are presented in ESI.

open capillary using a Stuart SMP30 melting point apparatus and are uncorrected. ESI-TOF mass spectra were measured with a LCT Micromass spectrometer.

#### X-Ray Crystallography

The crystal data and data collection parameters are presented in Table 3 and in ESI (isomorphous structures and the structures 1-DMF-H<sub>2</sub>O and 1-MeOH). General procedure for crystallization: 5-50 mg of foldamers were dissolved in 0.1-6 ml of solvent. Heating and stirring were used to help the dissolving process. After the compounds had dissolved the solutions were allowed to evaporate at room temperature until the crystals formed. The details of crystallization and refinement are presented in ESI. Single crystal X-ray diffraction data of structures 1-MeCN-H<sub>2</sub>O and 2-DCM were measured with a Bruker Nonius KappaCCD diffractometer using a Bruker AXS APEX II CCD detector. Single crystal structures 1-MeOH, 1-DMSO, 2-MeCN, 2-EtOAc, 2-DMSO, 3-DMA, 3-DMSO, 5-DCM, 5-Ac, 5-DMF and 5-CHCl3 were measured with an Agilent Supernova Dualsource diffractometer and an Agilent Atlas CCD detector. Single crystal structures 1-DMF-H<sub>2</sub>O, 1-DMA-H<sub>2</sub>O, 1-DCM and 4-EtOAc were measured with an Agilent Supernova diffractometer using an Agilent Eos CCD detector. All structures were solved with direct methods and refined using Fourier techniques. All non-hydrogen atoms were refined unisotropically, except for one acetonitrile in the structure 2-MeCN, which was refined isotropically due to disorder. The hydrogen atoms were placed in idealized positions except for the N-H and H<sub>2</sub>O hydrogen atoms which were found from the electron density map. N-H hydrogen H5NB of structure 3-DMSO was placed in an ideal position, and included in the structure factor calculations. SQUEEZE was used on structure 5-CHCl<sub>3</sub> to remove severely disordered CHCl<sub>3</sub> molecules that could not be modelled. Details of the crystal data and the refinement are presented Supporting information. Graph set symbols<sup>[25]</sup> for hydrogen bonding were assigned and used to compare the hydrogen bonding between the different crystal structures. CCDC 1555244-1555260 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre through www.ccdc.cam.ac.uk/data\_request/cif.

### Acknowledgements

The financial support of Academy of Finland (proj. no. 257246 and 288235) is gratefully acknowledged. We thank B.Sc. Anniina Aho, M.Sc. Minna Kortelainen and M.Sc. Jussi Ollikka for the help in the synthesis, Spec. Lab. Technician Elina Hautakangas for the elemental analysis and Spec. Lab. Technician Esa Haapaniemi for the part of the NMR measurements.

Keywords: foldamers • hydrogen bonding • X-ray

crystallography • NMR spectroscopy • molecular folding • supramolecular chemistry

- [1] S. H. Gellman, Acc. Chem. Res. 1998, 31, 173-180.
- [2] D. J. Hill, M. J. Mio, R. B. Prince, T. S. Hughes, J. S. Moore, *Chem. Rev.* 2001, 101, 3893-4012.
- [3] I. Huc, Eur. J. Org. Chem. 2004, 2004, 17-29.
- See for example: a) J. F. Galan, C. N. Tang, S. Chakrabarty, Z. Liu, G. Moyna, V. Pophristic, *Phys. Chem. Chem. Phys.* **2013**, 15, 11883-11892; b) Y. Yan, B. Qin, C. Ren, X. Chen, Y. K. Yip, R. Ye, D. Zhang, H. Su, H. Zeng, *J. Am. Chem. Soc.* **2010**, 132, 5869-5879; c) H. Jiang,

J. Léger, C. Dolain, P. Guionneau, I. Huc, *Tetrahedron* **2003**, 59, 8365-8374; d) X. Hu, S. J. Dawson, Y. Nagaoka, A. Tanatani, I. Huc, *J. Org. Chem.* **2016**, 81, 1137-1150.

- a) N. Delsuc, L. Poniman, J. Léger, I. Huc, *Tetrahedron* 2012, *68*, 4464-4469; b) Z. Hu, H. Hu, C. Chen, *J. Org. Chem.* 2006, *71*, 1131-1138; b)
   C. Dolain, J. Léger, N. Delsuc, H. Gornitzka, I. Huc, *Proc. Nat. Acad. Sci.* 2005, *102*, 16146-16151.
- [6] A. Suhonen, I. Morgan, E. Nauha, K. Helttunen, H. Tuononen and M. Nissinen, *Cryst. Growth & Des.* 2015, *15*, 2602-2608.
- [7] H. Goto, H. Katagiri, Y. Furusho, E. Yashima, J. Am. Chem. Soc. 2006, 128, 7176-7178.
- [8] D. Sánchez-García, B. Kauffmann, T. Kawanami, H. Ihara, M. Takafuji, M. Delville, I. Huc, J. Am. Chem. Soc. 2009, 131, 8642-8648.
- [9] E. Gillies, F. Deiss, C. Staedel, J. Schmitter, I. Huc, Angew. Chem. Int. Ed. 2007, 46, 4081-4084.
- [10] a) M. Kudo, D. Carbajo López, V. Maurizot, H. Masu, A. Tanatani, I. Huc, *Eur. J. Org. Chem.* **2016**, *2016*, 2457-2466; b) N. Delsuc, F. Godde, B. Kauffmann, J. Léger, I. Huc, *J. Am. Chem. Soc.* **2007**, *129*, 11348-11349; c) J. Brüggemann, S. Bitter, S. Müller, W. Müller, U. Müller, N. Maier, W. Lindner, F. Vögtle, *Angew. Chem. Int. Ed.* **2007**, *46*, 254-259; d) C. A. Hunter, A. Spitaleri, S. Tomas, *Chem. Commun.* **2005**, 3691-3693.
- [11] B. Gong, Acc. Chem. Res. 2008, 41, 1376-1386.
- [12] a) E. Kolomiets, V. Berl, J. Lehn, *Chem. Eur. J.* 2007, *13*, 5466-5479;
  b) M. Kudo, V. Maurizot, B. Kauffmann, A. Tanatani, I. Huc, *J. Am. Chem. Soc.* 2013, *135*, 9628-9631.
- [13] R. V. Nair, K. N. Vijayadas, A. Roy, G. J. Sanjayan, *Eur. J. Org. Chem.* 2014, 2014, 7763-7780.
- [14] A. Roy, P. Prabhakaran, P. K. Baruah, G. J. Sanjayan, *Chem. Commun.* 2011, 47, 11593-11611.
- [15] C. Bao, Q. Gan, B. Kauffmann, H. Jiang, I. Huc, Chem. Eur. J. 2009, 15, 11530-11536.
- [16] G. Lautrette, B. Wicher, B. Kauffmann, Y. Ferrand, I. Huc, J. Am. Chem. Soc. 2016, 138, 10314-10322.
- [17] a) Y. Hamuro, S. J. Geib, A. D. Hamilton, *Angew. Chem. Int. Ed.* **1994**, 33, 446-448; b) Y. Hamuro, S. J. Geib, A. D. Hamilton, *J. Am. Chem. Soc.* **1996**, *118*, 7529-7541; c) Y. Hamuro, S. J. Geib, A. D. Hamilton, *J. Am. Chem. Soc.* **1997**, 119, 10587-10593; d) V. Berl, I. Huc, R. G. Khoury, J. Lehn, *Chem. –Eur. J.* **2001**, *7*, 2798-2809; e) V. Berl, I. Huc, R. G. Khoury, J. Lehn, *Chem. –Eur. J.* **2001**, *7*, 2810-2820.
- [18] A. Suhonen, E. Nauha, K. Salorinne, K. Helttunen, M. Nissinen, CrystEngComm 2012, 14, 7398–7407.
- [19] M. Kortelainen, A. Suhonen, A. Hamza, I. Pápai, E. Nauha, S. Yliniemelä-Sipari, M. Nissinen, P. M. Pihko, *Chem. Eur. J.* 2015, *21*, 9493–9504.
- [20] A. Suhonen, M. Kortelainen, E. Nauha, S. Yliniemelä-Sipari, P. M. Pihko, M. Nissinen, *CrystEngComm* **2016**, *18*, 2005–2013.
- [21] S-conformation is based on the hydrogen bonds between C=O and pyridine-2,6-dicarboxamide NHs similarly to @ conformer, but the outmost NH group forms a hydrogen bond to a pyridine-2,6dicarboxamide C=O (Scheme 1) or to another C=O group of the foldamer or adjacent molecule, which turns the end of the molecule away from the pyridine core. Tighter and more folded @ conformation has the outer N-H also turned towards the pyridine-2,6-dicarboxamide center with a hydrogen bond to carbonyl C=O (S7 motif).
- [22] P. M. Pihko, S. Rapakko, R. K. Wierenga in *Hydrogen Bonding in Organic Synthesis* (Ed.: P. M. Pihko), Wiley-VCH, Weinheim, **2009**, pp. 43-71.
- [23] a) K. Mitsui, S. A. Hyatt, D. A. Turner, C. M. Hadad, J. R. Parquette, *Chem. Commun.* **2009**, 3261-3263; b) N. T. Salzameda, D. A. Lightner, *Monatsh. Chem.* **2007**, 138, 237–244.
- [24] For anion binding properties of small analogues see: K. Helttunen, R. Annala, A. Suhonen, E. Nauha, J. Linnanto, M. Nissinen, *CrystEngComm*, **2017**, DOI: 10.1039/C7CE01109A.

[25] a) M.C. Etter, J. C. MacDonald, Acta Crystallogr., Sect. B: Struct. Sci., 1990, 46, 256-262; b) J. Bernstein, R. E. Davis, L. Shimoni, N.-L. Chung, Angew. Chem. Int. Ed., 1995, 34, 1555-1573.

# Entry for the Table of Contents

Layout 1:

# FULL PAPER

Predictability and persistence of folding: Aromatic oligoamide foldamers fold into helices and more open, folded conformations depending on the identity of central linker and solvent conditions. Pyridine-2,6-dicarboxamide units add the predictability of the conformation and lead to good persistence and comparability of conformation in solution and in the solid state.



Riia Annala, Aku Suhonen, Heikki Laakkonen, Perttu Permi, Maija Nissinen\*

Page No. – Page No.

Structural tuning and

conformational predictability of

aromatic oligoamide foldamers