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Morrey-Sobolev Extension Domains

Pekka Koskela, Yi Ru-Ya Zhang and Yuan Zhou

Dedicated to Professor Vladimir G. Maz’ya on his 75th birthday.

Abstract We show that every uniform domain of Rn with n ≥ 2 is a Morrey-Sobolev
W 1, p-extension domain for all p ∈ [1, n), and moreover, that this result is essentially best
possible for each p ∈ [1, n) in the sense that, given a simply connected planar domain or
a domain of Rn with n ≥ 3 that is quasiconformal equivalent to a uniform domain, if it
is a W 1, p-extension domain, then it must be uniform.

1 Introduction

Let n ≥ 2 and Ω ⊂ Rn be a domain, that is, an open connected subset. The Sobolev space
W 1,p(Ω) with p ∈ [1, ∞) is the collection of all functions u ∈ L1

loc (Ω) with the seminorm

‖u‖W 1, p(Ω) = ‖∇u‖Lp(Ω) <∞,

where ∇u is the distributional derivative of u. Modulo constant functions, W 1, p(Ω) forms
a Banach space. We say that Ω is a W 1,p-extension domain if there exists a bounded
(linear) operator Λ : W 1,p(Ω) → W 1,p(Rn) such that Λu|Ω = u for all u ∈ W 1,p(Ω).
Regarding the issue of linearity in our definition we refer the reader to [4]. Notice that our
definition of W 1,p and the corresponding norm only deal with ∇u. The extension problem
for the usual norm is equivalent to our definition when Ω is bounded [5].

Jones showed in his seminal paper [6] that every uniform domain of Rn is a W 1, p-
extension domain for all p ∈ [1, ∞). Let us recall the definition.

Definition 1.1. A domain Ω is called uniform if there exists a positive constant ε0 such
that for all x, y ∈ Ω, there exists a rectifiable curve γ ⊂ Ω joining x, y and satisfying that

(1.1) `(γ) ≤ 1

ε0
|x− y| and d(z, Ω{) ≥ ε0

|x− z||z − y|
|x− y|

for all z ∈ γ.

Jones’ idea was to construct an extension operator via a reflection technique for Whitney
cubes, motivated by “quasiconformal reflections”; it was well-known that a simply con-
nected planar domain is uniform if and only if it is the image of the unit disk under some
quasiconformal mapping on R2, see [2].
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In the case p = n, Jones’ result is essentially best possible: a simply connected planar
domain is a W 1, 2-extension domain if and only if it is a uniform domain; see [13] and also
[2] for a higher dimensional analog.

In the case p > n, the correct geometric condition is p−n
p−1 -subhyperbolicity: each such

domain is a W 1, p-extension domain and a simply connected planar domain is a W 1, p-
extension domain if and only if it is a p−2

p−1 -subhyperbolic domain; see [11] and also [8].
This class of domains is strictly larger than the class of uniform domains.

In the case 1 ≤ p < n, it is also known that even a simply connected planar W 1, p-
extension domain is not necessarily uniform (see [10] and related examples in [7, 9]), and
it is still open to find a geometric characterization.

The geometric characterization for the planar case for p = n can be obtained via the
concept of linear local connectivity.

Definition 1.2. A domain Ω is linearly locally connected (for short, LLC) if there exists
a constant b ∈ (0, 1] such that for all z ∈ Rn and r > 0,
LLC(1) points in Ω ∩B(z, r) can be joined by a rectifiable curve in Ω ∩B(z, r/b);
LLC(2) points in Ω \B(z, r) can be joined by a rectifiable curve in Ω \B(z, br).

Linear local connectivity is intimately related to uniformity in the sense that each domain
that is quasiconformally equivalent to a uniform domain is uniform if and only if LLC,
see e.g. [2]. Hence a simply connected planar domain is LLC if and only if it is uniform.
Regarding Sobolev extensions, one knows that each W 1, n-extension domain is LLC, see
[2]. In fact, W 1, p-extension domains are known to be LLC(1) for p ≥ n (see [14]) and
LLC(2) for n− 1 < p ≤ n and also for p = 1 when n = 2; see [3, 7].

As a by-product of the proof of our main result Theorem 1.5, we are able to remove
the restriction that p > n− 1 for concluding LLC(2).

Proposition 1.3. For p ∈ [1, n] every W 1, p-extension domain satisfies LLC(2).

Let us move to the case of a Morrey-Sobolev space W 1, p, 1 ≤ p ≤ n, defined as follows.

Definition 1.4. Let p ∈ [1, n] and let Ω be a domain of Rn. Define the Morrey-Sobolev
space W 1, p(Ω) as the collection of all u ∈ L1

loc (Ω) with

‖u‖W 1, p(Ω) = sup
B

(
rp−nB

∫
B∩Ω
|∇u|p dx

)1/p

<∞,

where the supremum is taken over all balls B ⊂ Rn, rB is the radius of B and ∇u is
the distributional gradient of u. The above formula only gives a seminorm, but modulo
constant functions, W 1, p(Ω) is a Banach space.

Observe that W 1, n(Ω) = W 1, n(Ω), and that (via the Hölder inequality), for every p ∈
[1, n), we always have W 1, n(Ω) ⊂ W 1, p(Ω). Moreover, for every p ∈ [1, n), W 1, p(Ω) ⊂
W 1, p(Ω) when Ω is bounded, and W 1, p(Ω) ⊂ W 1, p(Ω ∩ B) for all balls B when Ω is
unbounded.

The main aim of this paper is to establish the following result for W 1,p-extension do-
mains. Below Ω is a (Morrey-Sobolev) W 1, p-extension domain if there exists a bounded
(linear) operator Λ : W 1,p(Ω)→ W 1,p(Rn) such that Λu|Ω = u for all u ∈ W 1,p(Ω).
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Theorem 1.5. (i) Every uniform domain of Rn is a W 1, p-extension domain for all p ∈
[1, n).

(ii) Let p ∈ [1, n). Then every W 1, p-extension domain is linearly locally connected. In
particular, a domain Ω in Rn that is quasiconformal equivalent to a uniform domain is a
W 1, p-extension domain if and only if it is uniform.

Theorem 1.5 shows that, from the point of view of extendability, the Morrey-Sobolev
spaces W 1, p, p ∈ [1, n), are similar to W 1, n instead of to W 1, p.

The proof of Theorem 1.5 (i) employs a slight modification to the extension operator
constructed by Jones and several properties of uniform domains. The proof of Theorem
1.5 (ii) relies on a lower bound on the Morrey-Sobolev capacity established in Lemma 5.2,
a measure density property obtained in Theorem 4.1, and some ideas from [2]. We stress
here that (ii) is not an obvious consequence of the ideas in [2]: for p ≤ n− 1 and n ≥ 3, it
may well happen that the Morrey-Sobolev capacity of a pair of continua is zero, see [15].
Up to now, this phenomenom for the usual variational capacity has been the obstacle for
establishing Proposition 1.3.

This paper is organized as follows. In Section 2, we recall several properties of uniform
domains. In Section 3, we prove Theorem 1.5(i). In Section 4, we obtain a strong measure
density property of Morrey-Sobolev and Sobolev extension domains. In Section 5, we
establish a simple lower bound on the Morrey-Sobolev capacity. In Section 6, we prove
Proposition 1.3 and Theorem 1.5 (ii).

The notation used in what follows is standard. We denote by C a positive constant
which is independent of the main parameters, but which may vary from line to line.
Constants with subscripts, such as ε0, do not change in different occurrences. The symbol
A . B or B & A means that A ≤ CB. If A . B and B . A, we then write A ∼ B. For
any locally integrable function u and measurable set X, we denote by –

∫
Xu the average

of f on X, namely, –
∫
Xf ≡

1
|X|
∫
X f dx. For a set Ω and x ∈ Rn, we use d(x, Ω) to denote

infz∈Ω |x − z|, the distance from x to Ω. Here λQ denotes the cube concentric with Q,
with sides parallel to the axes, and with edge length `(λQ) = λ`(Q).

2 Uniform domains

We recall several facts about uniform domains and establish some lemmas which will be
used to prove Theorem 1.5(i).

Let Ω be a uniform domain. It is well known that |∂Ω| = 0; see [6]. Since Ω is open
it admits a Whitney decomposition, that is, there exists a collection W1 = {Sj}j∈N of
countably many dyadic (closed) cubes such that

(i) Ω = ∪j∈NSj and (Sk)
◦ ∩ (Sj)

◦ = ∅ for all j, k ∈ N with j 6= k;

(ii) `(Sk) ≤ dist (Sk, ∂Ω) ≤ 4
√
n`(Sk);

(iii) 1
4`(Sk) ≤ `(Sj) ≤ 4`(Sk) whenever Sk ∩ Sj 6= ∅.

Whenever (Ω{)◦ 6= ∅, we let W2 = {Qj}j∈N be a Whitney decomposition of (Ω{)◦. If
diam Ω <∞, set

W3 = {Qj ∈W2 : `(Qj) ≤
ε0

16n
diam Ω};
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otherwise, W3 = W2. For each i = 1, 2, 3 andQ ∈Wi, setWi(Q) = {Qj ∈Wi, Qj∩Q 6= ∅},
which is the collection of all neighbor cubes of Q in Wi. It is easy to see that there exists
an integer N depending only on n such that

]Wi(Q) ≤ N

for all Q ∈Wi and i = 1, 2, 3.
Jones [6] derived from (1.1) that for each cube in W3, we can pick a “reflected” cube in

W1 in the following sense: for every Qj ∈W3, we can find at least one Sk ∈W1 satisfying
that

`(Qj) ≤ `(Sk) ≤ 4`(Qj)

and
dist(Qj , Sk) ≤ C1`(Qj),

where C1 is a constant depending on ε0 and n but not on Qj and Sk. Usually, for each
Qj ∈ W3, there may exist more than one such Sk, but if Sk′ ∈ W1 is another cube as
above, we have

(2.1) dist(Sk, Sk′) ≤ dist(Sk, Qj) + diamQj + dist(Qj , Sk′) ≤ (2C1 +
√
n)`(Qj).

Below we fix one of these cubes and denote it by Q∗j . Then there is an integer N1 depending
only on C1 and n such that for all Sk ∈ W1, there are at most N1 cubes Qj ∈ W3 such
that Q∗j = Sk, that is,

]{Qj ∈W3 : Qj∗ = Sk} ≤ N1.

For every pair of Qj , Qk ∈W3 with Qj ∩Qk 6= ∅, by (2.1), we have

dist(Q∗j , Q
∗
k) ≤ dist(Q∗j , Qj) + diamQj + diamQk + dist(Qk, Q

∗
k)(2.2)

≤ (5C1 + 5
√
n)`(Qj).

Moreover, based on (1.1), we have

Lemma 2.1. For every pair of Qj, Qk ∈ W3 with Qj ∩ Qk 6= ∅, we can find a family
Fj,k = {Si1 , · · · , Sim} ⊂ W1 such that Si1 = Q∗j , Sim = Q∗k, Sis ∩ Sis+1 consists of an
(n− 1)-dimensional (closed) cube for all s = 1, · · · , m− 1, and m ≤ N2, where N2 is an
integer depending only on n and ε0 but not on Qj and Qk.

We call such a family Fj,k a chain of length m joining Q∗j and Q∗k. Obviously, 1
4`(Sis+1) ≤

`(Sis) ≤ 4`(Sis+1) for all s = 1, · · · , m− 1. We should point out that our chain Fj, k is a
slightly different from that in [6, Lemma 2.8], where it is only required that Sis∩Sis+1 6= ∅.
Lemma 2.1 can be obtained by a slight modification of [6, Lemma 2.8]; we omit the details.

For each pair of Qj , Qk ∈ W3 with Qj ∩ Qk 6= ∅, we fix one family Fj,k as in Lemma
2.1 (notice that there may have more than one such family), and set

F (Qj) =
⋃

Qk∈W3(Qj)

Fj, k,

where and in the sequel, by abuse of notation, we also denote the union ∪mk=1Sik by Fj, k.
One can easily derive from Lemma 2.1, (2.1) and (2.2) that
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Lemma 2.2. There exists a positive constant N3 depending only on ε0 and n such that
for each Qj ∈W3, we have ∥∥∥ ∑

Qk∈W3(Qj)

χ∪Fj,k

∥∥∥
L∞
≤ N3,

∥∥∥ ∑
Qj∈W3

χ∪F (Qj)

∥∥∥
L∞
≤ N3,

and ∥∥∥ ∑
Qj∈W2\W3

∑
Qk∈W3(Qj)

χQ∗k

∥∥∥
L∞
≤ N3.

To prove Theorem 1.5 (i), we need further properties of uniform domains.

Lemma 2.3. There exists C3 depending only on n and ε0 such that for every ball B =
B(x0, r) and every Qj ∈W3, if Qj ∩B 6= ∅ and `(Qj) ≤ 32r, then⋃

Qk∈W3(Qj)

F (Qk) ⊂ B(x0, C3r) ∩ Ω.

Proof. Given Qk ∈ W3, we claim that diamF (Qk) . `(Q∗k). Indeed, for each Q` ∈
W3(Qk), let Fj, k = {Si1 , · · · , Sim} ⊂ W1 be a chain connecting Q∗k and Q∗` as in Lemma
2.3. Then by 1

4`(Sis) ≤ `(Sis+1) ≤ 4`(Sis), we have

(2.3) 4−s`(Q∗k) ≤ `(Sis) ≤ 4s`(Q∗k),

and hence

diamFk, ` ≤
m∑
s=1

diamSis ≤
m∑
s=1

4s
√
n`(Q∗k) . `(Q∗k).

Since there at most N1 cubes Q` ∈W3(Qk), we have

diamF (Qk) .
∑

Q`∈W3(Qk)

diamFk, ` . `(Q∗k).

If Qj ∈ W3 with B ∩ Qj 6= ∅ and `(Qj) ≤ 32r, we have d(x0, Qj) ≤ r and hence, by
`(Q∗j ) ∼ `(Qj), for all z ∈ Q∗j ,

|z − x0| ≤ diam (Q∗j ) + d(Q∗j , Qj) + diamQj + d(x0, Qj) . r.

For each Qk ∈ W3(Qj), we have `(Q∗j ) ∼ `(Qj) ∼ `(Qk) ∼ `(Q∗k) which together with the
above claim implies that diamF (Qk) . `(Q∗j ); hence by (2.3), for each z ∈ F (Qk)

|z − x0| ≤ diam (Fj, k) + dist (Q∗j , Qj) + diamQ∗j + diamQj + d(x0, Qj) . `(Q∗j ) . r

as desired. This finishes the proof of Lemma 2.3.
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Lemma 2.4. There exists a positive constant C2 depending only on ε0 and n such that
for all Qj ∈W3 and u ∈W 1,p(Ω), we have

(2.4)
∑

Qk∈W3(Qj)

∣∣∣uQ∗j − uQ∗k ∣∣∣p ≤ C2`(Qj)
p−n

∫
F (Qj)

|∇u(z)|p dz.

Proof. For Qj ∈ W3 and Qk ∈ W3(Qj), let Fj, k = {Si1 , · · · , Sim} ⊂ W1 be a chain
connecting Q∗j and Q∗k as in Lemma 2.3. Then

∣∣∣uQ∗j − uQ∗k ∣∣∣ ≤ m−1∑
s=1

∣∣∣uSis
− uSis+1

∣∣∣ .
It then suffices to show that

(2.5)
∣∣∣uSis

− uSis+1

∣∣∣ . `(Sis)

(
–

∫
Sis∪Sis+1

|∇u(z)|p dz

)1/p

.

Indeed, this, together with `(Sis+1)/4 ≤ `(Sis) ≤ 4`(Sis+1), `(Qj) ∼ `(Q∗j ) and m ≤ N2,
leads to that ∣∣∣uQ∗j − uQ∗k ∣∣∣ . m−1∑

s=1

`(Sis)

(
–

∫
Sis∪Sis+1

|∇u(z)|p dz

)1/p

.
m−1∑
s=1

`(Sis)
1−n/p

(∫
Fj,k

|∇u(z)|p dz

)1/p

.
m−1∑
s=1

4s(n/p−1)`(Q∗j )
1−n/p

(∫
Fj,k

|∇u(z)|p dz

)1/p

. `(Qj)
1−n/p

(∫
F (Qj)

|∇u(z)|pχFj,k
dz

)1/p

.

Hence applying Lemma 2.2, we have∑
Qk∈W3(Qj)

∣∣∣uQ∗j − uQ∗k ∣∣∣p . C2`(Qj)
p−n

∫
F (Qj)

|∇u(z)|p
∑

Qk∈W3(Qj)

χFj,k
dz

. C2`(Qj)
p−n

∫
F (Qj)

|∇u(z)|p dz

as desired.
Towards (2.5), let Rs be the cube with `(Rs) = 1

32`(Sis) and with the same center as
the (n − 1)-dimensional cube Si1 ∩ Sis+1 . Also let R+

s ⊂ Sis be the cube with same edge
length as Rs and |R+

s ∩Rs| = 1
2 |Rs|. Then R+

s ⊂ 2Rs ⊂ Sis ∪ Sis+1 .∣∣uSis
− uRs

∣∣ ≤ ∣∣∣uSis
− uR+

s

∣∣∣+
∣∣∣uR+

s
− u2Rs

∣∣∣+ |u2Rs − uRs |
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. –

∫
Sis

|u− uSis
|+ –

∫
2Rs

|u− u2Rs |

. `(Sis)

(
–

∫
Sis

|∇u|p
)1/p

+ `(Rs)

(
–

∫
2Rs

|∇u|p
)1/p

. `(Sis)

(
–

∫
Sis∪Sis+1

|∇u|p
)1/p

.

A similar estimate holds for
∣∣∣uSis+1

− uRs

∣∣∣. Combining these estimates gives the desired

results, and hence completes the proof of Lemma 2.4.

Jones further established the following density result.

Lemma 2.5. Suppose that Ω is a bounded uniform domain. Then C∞0 (Rn) is dense in
W 1, p(Ω) for all p ∈ [1, ∞).

Finally, we need a Sobolev-Poincaré inequality for suitable subdomains of uniform do-
mains. This result follows by combining the main result in [1] with a localization result,
see 1.9 in [12].

Lemma 2.6. Suppose that Ω is a uniform domain and 1 ≤ p < n. Set p∗ = pn/(n − p).
Then there exist positive constants C4, C5 depending only on n and Ω so that the following
holds. Given any x ∈ Ω and r > 0, there is a subdomain Ωr ⊂ Ω with

B(x, r/C4) ∩ Ω ⊂ Ωr ⊂ B(x,C4r) ∩ Ω

and such that for all u ∈W 1, p(Ωr), we have u ∈ L1(Ωr) and(
–

∫
Ωr

|u(z)− uΩ|p∗ dz
)1/p∗

≤ C5 diam (Ωr)

(
–

∫
Ωr

|∇u(z)|p dz
)1/p

.

3 Proof of Theorem 1.5 (i)

Let Ω be a uniform domain. We divide the proof into the following 4 steps.
Step 1. We employ Jones’s construction of extension operator on uniform domains

(with a slight modification when diam Ω < ∞). Let W1, W2 and W3 be as in Section
2. For each Qj ∈ W3, let φj ∈ C∞(Rn) such that φj is supported on 9

8Qj , 0 ≤ φj ≤ 1,∑
Qj∈W3

φj = 1 on ∪Qj∈W3Qj and

(3.1) |∇φj | ≤ C`(Qj)−1,

where C is a constant independent of Qj .
For u ∈ W 1, p(Ω), we define an extension Λu as:

Λu(x) =

{
uΩ +

∑
Qj∈W3

(uQ∗j − uΩ)φj , x ∈ Rn \ Ω

u(x), x ∈ Ω,
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where Q∗j ∈W1 corresponds to Qj as in Section 2, and uΩ = 1
|Ω|
∫

Ω u(z) dz if diam Ω <∞
and uΩ = 0 if diam Ω = ∞. Notice that Λ is linear and independent of p, and Λu is
defined on Rn \∂Ω. Now we have to show that Λu induces another function Λ̃u defined on
entire Rn such that Λ̃u = Λu on Rn \∂Ω, Λ̃u ∈ W 1, p(Rn) and ‖Λ̃u‖W 1, p(Rn) . ‖u‖W 1, p(Ω).

Step 2. We first show that Λu ∈ W 1, p(Rn \ Ω) and ‖Λu‖W 1, p(Rn\Ω) . ‖u‖W 1, p(Ω). It

suffices to show that Λu ∈W 1, p
loc (Ω

{
) and for every ball B = B(x0, r), we have

(3.2) H = rn−p
∫
B∩Ω

{
|∇Λu(z)|p dz . ‖u‖W 1, p(Ω).

Without loss of generality, we may assume that (Ω){ 6= ∅.
We first show that Λu ∈ W 1, p

loc (Ω
{
). Indeed, for every ball B with 2B ⊂ Ω

{
, there are

finitely many Qi ∈ W2 such that Qi ∩ B 6= ∅. For each Qi ∈ W2, notice that if φj 6= 0 on
Qi, then Qi ∈W3(Qj), that is, Qj ∈W3(Qi). So on B

Λu = uΩ +
∑

Qi∩B 6=∅
Qj∈W3(Qi)

(u∗Qj
− uΩ)φj

as a finite sum. Hence Λu is differentiable on B and

|∇Λu| .
∑

Qi∩B 6=∅
Qj∈W3(Qi)

|u∗Qj
− u∗Qi

|`(Qj)−1 <∞

on B, that is, Λu ∈W 1, p
loc (B). So we have Λu ∈W 1, p

loc (Ω
{
).

To see (3.2) for arbitrary B ⊂ Rn, write

H =
∑

Qi∈W2

rp−n
∫
B∩Qi

|∇Λu(z)|pdz

=
∑

Qi∈W3

rp−n
∫
B∩Qi

|∇Λu(z)|pdz +
∑

Qi∈W2\W3

rp−n
∫
B∩Qi

|∇Λu(z)|pdz

= H1 + H2.

Observe that if diam Ω = ∞, then W3 = W2 and hence H2 = 0. Recall that on each
Qi ∈W3, we have

∑
Qj∈W3

φj = 1. Thus, by (3.1), we have

H1 =
∑

Qi∈W3

rp−n
∫
B∩Qi

∣∣∣∣∣∣
∑

Qj∈W3

[
uQ∗j − uQ∗i

]
∇φj(z)

∣∣∣∣∣∣
p

dz

Observe that φj 6= 0 on Qi only happens when Qj ∈W3(Qi). Indeed, we have

suppφj ⊂
17

16
Qj ⊂

⋃
Qk∈W3(Qj)

Qk.
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So if φj 6= 0 on Qi, then Qi ∈ W3(Qj), that is, Qj ∈ W3(Qi). By ]W3(Qi) . 1, `(Qi) ∼
`(Qj) for all Qj ∈W3(Qi) and Lemma 2.4, we obtain

H1 .
∑

Qi∈W3

rp−n
∫
B∩Qi

∑
Qj∈W3(Qi)

∣∣∣uQ∗j − uQ∗i ∣∣∣p |∇φj(z)|pdz
.

∑
Qi∈W3

rp−n`(Qi)
−p|B ∩Qi|

∑
Qj∈W3(Qi)

∣∣∣uQ∗j − uQ∗i ∣∣∣p
.

∑
Qi∈W3

rp−n`(Qi)
−n|B ∩Qi|

∫
F (Qi)

|∇u(z)|p dz

.
∑

Qi∈W3, Qi∩B 6=∅
`(Qi)≤32r

rp−n
∫
F (Qi)

|∇u(z)|p dz

+
∑

Qi∈W3, Qi∩B 6=∅
`(Qi)>32r

rp`(Qi)
−n
∫
F (Qi)

|∇u(z)|p dz

= H1, 1 + H1, 2.

By Lemma 2.2 and Lemma 2.3, we obtain

H1, 1 . rp−n
∫
B(x0, Cr)∩Ω

|∇u(z)|p dz . ‖u‖W 1, p(Ω).

To estimate H1, 2, we may assume thatB∩Qi0 6= ∅ for someQi0 ∈W3 with 32r < `(Qi0).
Observe that 32r < `(Qi0) implies that B ⊂ 9

8Qi0 , and hence, applying Lemma 2.3 to the
ball B = B(xQi0

, `(Qi0)), we have

H1, 2 . `(Qi0)p−n
∑

Qi∈W3(Qi0
)

∫
F (Qi)

|∇u(z)|p dz

. `(Qi0)p−n
∫
B(xQi0

, C`(Qi0
))
|∇u(z)|p dz

. ‖u‖W 1, p(Ω).

If diam Ω = ∞, by H2 = 0, the proof of (3.2) is finished. Assume that diam Ω < ∞.
Suppose that u 6= 0 on Qi for some Qi ∈ W2 \W3. Observing that φj 6= 0 on Qi only
happens when Qj ∈W3(Qi), we have

u = uΩ +
∑

Qj∈W3(Qi)

(uQ∗j − uΩ)φj

on Qi. Notice that for each Qj ∈W3(Qi),

`(Qj) ≤
1

16nC0
diam (Ω) < `(Qi) ≤ 16`(Qj),
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and hence, by Lemma 2.6,

|uQ∗j − uΩ| . –

∫
Q∗j

|u(z)− uΩ| dz

. –

∫
Ω
|u(z)− uΩ| dz

. diam (Ω)

(
–

∫
Ω
|∇u(z)|p dz

)1/p

. diam (Ω)1−n/p
(∫

Ω
|∇u(z)|p dz

)1/p

.

So, by ]W3(Qi) . 1,

H2 ≤
∑

Qi∈W2\W3
B∩Qi 6=∅

rp−n
∫
B∩Qi

∑
Qj∈W3(Qi)

|uQ∗j − uΩ|p|∇φj |pdz

≤
∑

Qi∈W2\W3
B∩Qi 6=∅

rp−n|B ∩Qi|( diam Ω)−n
∫

Ω
|∇u(z)|p dz.

Notice that ]{Qi ∈W2 \W3 : B ∩Qi 6= ∅} . 1 due to `(Qi) ∼ diam Ω and dist (Qi, Ω) &
`(Qi). If r < 1

2nC0
diam Ω, then

H2 . rp( diam Ω)−n
∫

Ω
|∇u(z)|p dz . ( diam Ω)p−n

∫
Ω
|∇u(z)|p dz . ‖u‖W 1, p(Ω).

If r ≥ 1
2nC0

diam Ω, then

H2 . rp−n
∫

Ω
|∇u(z)|p dz . ( diam Ω)p−n

∫
Ω
|∇u(z)|p dz . ‖u‖W 1, p(Ω).

Combining the estimates of H1 and H2, we obtain the desired result.
Step 3. For u ∈ W 1, p(Ω) ∩ C1

0 (Rn), we define Λ̃u = Λu on Rn \ Ω and Λ̃u = u on ∂Ω.

We claim that Λ̃u ∈W 1, p
loc (Rn).

To see that Λ̃u ∈W 1, p(B) for every ball B ⊂ Rn, it suffices to show that Λ̃u is locally
Lipschitz on Rn, that is,

(3.3) |Λ̃u(x)− Λ̃u(y)| . |x− y|

whenever x, y ∈ A ⊂⊂ Rn.
Case x, y ∈ Ω. Obviously, u ∈ C1

0 (Rn) implies (3.3).
Case x ∈ Ω and y ∈ Rn \ Ω. Then y ∈ Qi for some Qi ∈ W2. Notice that if φj 6= 0 on

Qi, then Qi ∈W3(Qj), that is, Qj ∈W3(Qi). So

Λu(x)− Λu(y) = (u(x)− uΩ) +
∑

Qj∈W3(Qi)

(u∗Qj
− uΩ)φj .
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If Qi ∈W3, since
∑

Qj∈W3(Qi)
φj =

∑
Qj∈W3

φj = 1 on Qi, we have

|Λ̃u(x)− Λ̃u(y)| = |
∑

Qj∈W3(Qi)

(u(x)− u∗Qj
)φj |

≤ ‖∇u‖L∞(Rn)(]W3(Qi)) sup
Qj∈W3(Qi)

sup
z∈Q∗j

|x− z|.

For each z ∈ Q∗j with Qj ∈W3(Qi), since |x− y| ≥ d(y, ∂Ω) ≥ `(Qi) & `(Qj), we have

|x− z| ≤ |x− y|+ |y − z| ≤ |x− y|+
√
n`(Qj) + dist (Qj , Q

∗
j ) +

√
n`(Q∗j )

. |x− y|+ `(Qj) . |x− y|.

We conclude that |Λ̃u(x)− Λ̃u(y)| . |x− y|.
If Qi ∈W2\W3, we have |x−y| ≥ d(y, ∂Ω) ≥ `(Qi) & `(Qj) for all Qj ∈W3(Qi), which

together with
∑

Qj∈W2(Qi)
|φj | ≤ 1 and |u(x) − uΩ| + |u∗Qj

− uΩ| ≤ 2‖∇u‖L∞(Rn) diam Ω

gives (3.3).
Case x, y ∈ Rn \Ω. Notice that Λ̃u ∈ C1(Rn \Ω) and |∇Λ̃u| . ‖∇u‖L∞(Rn) on Rn \Ω.

Indeed, for z ∈ Qi with Qi ∈W3, by
∑

Qj∈W3(Qi)
φj = 1 on Qi, we have

|∇Λu(z)| = |
∑

Qj∈W3(Qi)

(uQ∗j − uQ∗i )∇φj |

.
∑

Qj∈W3(Qi)

‖∇u‖L∞(Rn)

√
n[`(Q∗i ) + `(Q∗j )]`(Qj)

−1

. 1;

for z ∈ Qi with Qi ∈W2 \W3, by `(Qj) ∼ `(Qi) ∼ diam Ω we have

|∇Λ̃u(z)| = |
∑

Qj∈W3(Qi)

(uQ∗j − uΩ)∇φj | .
∑

Qj∈W3(Qi)

‖u‖C1(Rn)( diam Ω)`(Qj)
−1 . 1.

Thus (3.3) follows.
Step 4. Finally, for arbitrary u ∈ W 1, p(Ω), we define Λ̃ with Λ̃u = Λu on Rn \ ∂Ω as

above.
Since |∂Ω| = 0, for every ball B ⊂ Rn, we have∫

B
|∇Λ̃u(z)|p dz =

∫
B∩Ω
|∇Λu(z)|p dz +

∫
B∩Ω

{
|∇Λu(z)|p dz.

By this and the estimate from Step 2, our claim would follow if we knew that Λ̃u ∈
W 1, p

loc (Rn).

We show that Λ̃u has this degree of regularity relying on Step 3. We separate our
argument into two cases.

Case of diam Ω < ∞. Then u ∈ W 1, p(Ω) implies that u ∈ W 1, p(Ω) and from Lemma
2.6 we further deduce that u ∈ Lp(Ω). From Lemma 2.5 we conclude that C1

0 (Rn) is dense
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in W 1, p(Ω) and since u ∈ Lp(Ω) it easily follows via the Poincaré inequality that there
exists a sequence {uk}k∈N ⊂ C1

0 (Rn) such that ‖u−uk‖W 1, p(Ω) + ‖u−uk‖Lp(Ω) . 2−k. By

Step 3, Λ̃uk is well-defined, and Λ̃uk − Λ̃u` = Λ̃(uk − u`) for all k, ` ∈ N. Moreover, by
Jones [6],

‖Λ̃uk − Λ̃u`‖W 1, p(Rn) = ‖Λ̃(uk − u`)‖W 1, p(Rn) . ‖Λ̃uk − Λ̃u`‖W 1, p(Ω) . 2−k.

By the Poincaré inequality, we know that there exists a function still denoted by Λ̃u such
that Λ̃uk converges to Λ̃u in Lploc (Rn) and in W 1, p(Rn). Obviously on Ω, we have Λu = u.

Hence for each Sj ∈W1, uSj = limk→∞(uk)Sj . Thus, Λ̃uk(z) = Λuk(z) converges to Λu(z)

for all z ∈ Ω
{
, that is, Λ̃u(z) = Λu(z) for all z ∈ Ω

{
.

Case of diam Ω =∞. Observe that u ∈W 1, p(Ω∩Bλ) for all balls Bλ = B(x0, λ) with
x0 ∈ ∂Ω and λ ∈ N. Fix λ and choose ηλ ∈ C1

0 (Bλ) so that ηλ = 1 on Bλ/2. Applying
Lemma 2.6 for the ball B(x0, C8λ) we see that uηλ ∈W 1, p(Ω) ∩ Lp(Ω).

Since uηλ has bounded support, we conclude as in our previous case that there exists a
sequence {uλ, k}k∈N ⊂ C1

0 (Rn) such that ‖uηλ − uλ, k‖W 1, p(Ω) + ‖uηλ − uλ, k‖Lp(Ω) . 2−k.

As above, we obtain an extension Λ̃(uηλ) ∈ W 1, p(Rn) such that Λ̃(uηλ) = Λ(uηλ) on
Rn \ ∂Ω.

Fix a ball B ⊂ Rn. Observe that whenever λ, τ ∈ N with λ < τ , we have Λ̃(uηλ) =

Λ̃(uητ ) on Bλ/2 ∩ Ω. Choose now λ so that B ⊂ Bλ/2. If Ω
{ 6= ∅, then B ∩ Ω

{ 6= ∅ can
be covered by cubes in Qi ∈W2 with diamQi ≤ 4

√
nλ. There exists a positive integer N

such that for all τ ≥ Nλ, F (Qi) ⊂ Bτ/2, and hence uQ∗j = (uητ )Q∗j = uQ∗j , which further

implies that Λ̃(uητ ) = Λu on Qi and hence on B ∩ Ω
{
. So Λ̃(uητ ) = Λ̃(uηNλ) = Λu on

B \ ∂Ω ⊂ Bτ \ ∂Ω. Since |∂Ω| = 0, we conclude that Λ̃u ∈W 1, p(B).
The claim follows by noticing from above that we may define Λ̃u via the extensions

Λ̃(uηNλ)

4 Measure density of W 1,p- and W 1,p-extension domains

We first show the following strong measure density property for W 1,p-extension domains,
which will be employed to prove Theorem 1.5(ii).

Theorem 4.1. Let p ∈ [1, n) and Ω be a W 1, p-extension domain of Rn. Then there exists
a constant C > 0 such that for every component Ω0 of Ω \ K, where K is an arbitrary
closed set of Rn, and for all x ∈ Ω0 and 0 < r ≤ min{ dist (x, ∂Ω0 \∂Ω), diam Ω} we have

|Ω0 ∩B(x, r)| ≥ Crn.

Theorem 4.1 means that the components of Ω \K for an arbitrary closed set K of Rn
are Ahlfors n-regular to some extent. To prove this, we use ideas from [4].

Lemma 4.2. Let p ∈ [1, n) and Ω be a W 1, p-extension domain of Rn. There exist positive
constants C6 and C7 such that for each B ⊂ Rn and for all u ∈ W 1, p(Ω),

inf
c∈R

∫
B∩Ω

exp

(
C6|u− c|
‖u‖W 1, p(Ω)

)
dx ≤ C7|B|.
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Proof. Since Ω is a W 1, p-extension domain of Rn, denoting the extension operator by Λ,
for every u ∈ W 1, p(Ω), we have that Λu ∈ W 1, p(Rn) with

‖Λu‖W 1, p(Rn) ≤ C0‖u‖W 1, p(Ω),

where C0 is a fixed constant. Applying Poincaré’s inequality, we have Λu ∈ BMO(Rn)
with

‖Λu‖BMO(Rn) = sup
B

–

∫
B
|Λu− (Λu)B| ≤ C̃0 sup

B
rB

(
–

∫
B
|∇Λu|p

)1/p

≤ C̃0‖Λu‖W 1, p(Rn),

where C̃0 is a fixed constant. Moreover, by the John-Nirenberg theorem for BMO-
functions, for each ball B,

–

∫
B

exp

˜̃C0|Λu− (Λu)B|
‖Λu‖BMO(Rn)

 dx . 1,

where
˜̃
C0 is a fixed constant. Thus, choosing C6 =

˜̃
C0/C0C̃0, we have

inf
c∈R

1

|B|

∫
B∩Ω

exp

(
C6|u− c|
‖u‖W 1, p(Ω)

)
dx ≤ –

∫
B

exp

(
C0|Λu− (Λu)B|
‖Λu‖BMO(Rn)

)
dx . 1

as desired.

Proof of Theorem 4.1. Without loss of generality, we may assume that r <∞. Let b0 = 1
and bj ∈ (0, 1) for j ∈ N be such that

(4.1) |B(x, bjr) ∩ Ω0| = 2−1|B(x, bj−1r) ∩ Ω0| = 2−j |B(x, r) ∩ Ω0|.

Define a function u on Ω by setting

u(y) ≡


1, y ∈ B(x, b2r) ∩ Ω0,
b1r − |y − x|
b1r − b2r

, y ∈ (B(x, b1r) \B(x, b2r)) ∩ Ω0,

0, otherwise.

Since B(x, r)∩Ω0 ∩K = ∅ and B(x, r) has empty intersection with other components of
Ω \K, we know that u is well defined. Then

‖u‖W 1, p(Ω) ≤ ‖u‖W 1,n(Ω) ≤
|(B(x, b1r) \B(x, b2r)) ∩ Ω0|1/n

b1r − b2r
.
|B(x, r) ∩ Ω0|1/n

b1r − b2r
.

By Lemma 4.2 and (4.1), we have

inf
c∈R

∫
B(x, r)∩Ω0

exp

(
C
|u(y)− c|(b1r − b2r)
|B(x, b1r) ∩ Ω0|1/n

)
dy ≤ C2r

n.
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Observe that, for each c ∈ R, |u − c| ≥ 1/2 either on (B(x, r) \ B(x, b1r)) ∩ Ω0 or on
B(x, b2r) ∩ Ω0. By (4.1), we conclude that

|B(x, b1r) ∩ Ω0| exp

(
C(b1r − b2r)

|B(x, b1r) ∩ Ω0|1/n

)
. rn,

which implies that

b1r − b2r ≤ |B(x, b1r) ∩ Ω0|1/n log

(
Crn

|B(x, b1r) ∩ Ω0|

)
.

Similar inequalities also hold for bjr − bj+1r with j ≥ 2. This leads to

b1r =
∑
j∈N

(bjr − bj+1r) .
∑
j∈N
|B(x, bjr) ∩ Ω0|1/n log

(
C(bj−1r)

n

|B(z, bjr) ∩ Ω0|

)

.
∑
j∈N

2−j/n|B(x, r) ∩ Ω0|1/n log

(
2j

Crn

|B(x, r) ∩ Ω0|

)

. |B(x, r) ∩ Ω0|1/n log

(
Crn

|B(x, r) ∩ Ω0|

)
.

If b1 ≥ 1/10, observing that t log 1
t ≥ 1 implies that t & 1, we have

|B(x, r) ∩ Ω0|1/n & r

as desired. If b1 ≤ 1/10, we choose R = 2r/5 and a point y ∈ B(x, r) ∩ Ω0 such that
|y − x| = b1r +R/2. Then

B(x, b1r) ⊂ B(y, R) ⊂ B(x, r)

but B(y, R/2) ∩B(x, b1r) = ∅. Therefore, if

|B(y, b̃1R) ∩ Ω0| =
1

2
|B(y, R) ∩ Ω0|,

then by

|B(x, b1r) ∩ Ω0| ≥
1

2
|B(y, R) ∩ Ω0|,

we have b̃1 ≥ 1/2. Applying the result when b1 ≥ 1/10, we conclude that

|B(y, R) ∩ Ω0| & Rn,

which implies |B(x, r) ∩ Ω0| & rn as desired.

Theorem 4.1 implies the following result.

Corollary 4.3. Let p ∈ [1, n) and Ω be a W 1, p-extension domain of Rn. Then Ω has the
measure density property, that is, there exists a constant C > 0 such that for all x ∈ Ω
and 0 < r < diam Ω, we have

|Ω ∩B(x, r)| ≥ Crn.
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For W 1,p-extension domains with p ∈ [1, n), a result similar to Corollary 4.3 was
established in [4]. But to show the LLC(2)-property of Sobolev W 1,p-extension domains
when p ∈ [1, n − 1], we need the following stronger version, which is similar to Theorem
4.1; see Section 6 below.

Theorem 4.4. Let p ∈ [1, n) and Ω be a W 1, p-extension domain of Rn. Then there exists
a constant C > 0 such that for every component Ω0 of Ω \ K, where K is an arbitrary
closed set of Rn, and for all x ∈ Ω0 and 0 < r ≤ min{ dist (x, ∂Ω0 \∂Ω), diam Ω} we have

|Ω0 ∩B(x, r)| ≥ Crn.

Proof of Theorem 4.4. Without loss of generality, we may assume that r <∞. The proof
is similar to that of Theorem 4.1; we sketch it. Let bj for j ∈ N ∪ {0} and the function u
be exactly as in Theorem 4.1. Then

‖u‖W 1, p(Ω) ≤
|(B(x, b1r) \B(x, b2r)) ∩ Ω0|1/p

b1r − b2r
.
|B(x, r) ∩ Ω0|1/p

b1r − b2r
.

Since Ω is a W 1, p-extension domain, we may extend u to ũ ∈ W 1, p(Rn) with a norm
bound. Applying the Sobolev-Poincaré inequality, we have(∫

B(x, r)
|ũ− ũB(x, r)|np/(n−p)

)(n−p)/np

.

(∫
B(x, r)

|∇ũ|p
)1/p

. ‖ũ‖W 1, p(Rn) . ‖ũ‖W 1, p(Ω).

Observe that, for each c ∈ R, |u − c| ≥ 1/2 either on (B(x, r) \ B(x, b1r)) ∩ Ω0 or on
B(x, b2r) ∩ Ω0. By (4.1), we have

|B(x, b1r) ∩ Ω0|(n−p)/np .
|B(x, r) ∩ Ω0|1/p

b1r − b2r
,

which implies that

b1r − b2r . |B(x, b1r) ∩ Ω0|1/n.

Similar inequalities also hold for bjr − bj+1r with j ≥ 2. This leads to

b1r =
∞∑
j=1

(bjr − bj+1r) .
∑
j∈N
|B(x, bj+1r) ∩ Ω0|1/n

≤
∑
j∈N

2−j/n|B(x, r) ∩ Ω0|1/n

. |B(x, r) ∩ Ω0|1/n.

Applying the same argument on b1 as Theorem 4.1, we have |B(x, r) ∩ Ω0|1/n & r as
desired.
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5 Morrey-Sobolev Capacity

We obtain a lower bound for the Morrey-Sobolev capacity, which will be used in the proof
of Theorem 1.5 (ii). Since we will only deal with estimates in terms of the usual Lebesgue
measure, the following definition will be sufficient for our purposes.

Given a pair of disjoint set E, F ⊂ Ω, define the W 1, p-capacity as

(5.1) CapW 1, p(E, F, Ω) = inf{‖u‖p
W 1, p(Ω)

: u ∈ ∆(E, F, Ω)},

where ∆(E, F, Ω) denotes the class of all functions u ∈ W 1, p(Ω) such that 0 ≤ u ≤ 1 on
Ω, u = 0 a.e. on E, and u = 1 a.e. on F . Obviously, if Ẽ, F̃ ⊂ Rn are disjoint sets, E ⊂ Ẽ
and F ⊂ F̃ , then

CapW 1, p(E, F, Ω) ≤ CapW 1, p(Ẽ, F̃ , Rn).

Moreover, we have the following trivial estimates.

Lemma 5.1. If Ω is a W 1, p-extension domain with p ∈ [1, n), then there exists a positive
constant C such that for every pair of disjoint sets E, F ⊂ Ω,

CapW 1, p(E, F, Ω) ≤ CapW 1, p(E, F, Rn) ≤ CCapW 1, p(E, F, Ω).

Lemma 5.2. Let Ω is a W 1, p-extension domain for p ∈ [1, n) and δ > 0. There exists a
positive constant C depending only on n, δ and p such that for every pair of disjoint sets
E, F ⊂ Ω ∩B(x0, r) for some r > 0, if min{|E|, |F |} ≥ δrn then

CapW 1, p(E, F, Ω) ≥ C.

Proof. By Lemma 5.1, we may assume that Ω = Rn. Let u ∈ ∆(E,F,Rn). Assume first
that uB(x0, r) ≥ 1/2. Then, by the Poincaré inequality,

|E|
2|B(x0, r)|

≤ –

∫
B(x0, r)

|u− uB(x0, r)| ≤ Cr

(
–

∫
B(x0, r)

|∇u|p
)1/p

,

and the desired estimate follows. If uB(x0, r) < 1/2, we obtain our estimate by replacing
E in the above string of inequalities by F.

Define the Sobolev W 1,p-capacity CapW 1,p(E,F,Ω) similarly to (5.1). We have the
following well-known consequence of the above proof.

Lemma 5.3. Let Ω is a W 1, p-extension domain for p ∈ [1, n) and δ > 0. There exists a
positive constant C depending only on n, δ and p such that for every pair of disjoint sets
E, F ⊂ Ω ∩B(x0, r) for some r > 0, if min{|E|, |F |} ≥ δrn then

CapW 1, p(E, F, Ω) ≥ Crn−p.
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6 Proofs of Proposition 1.3 and Theorem 1.5 (ii)

Proof of Theorem 1.5 (ii). Case LLC(2). Let x1, x2 ∈ Ω \ B(x0, r) for some x0 ∈ Ω and
r > 0. Without loss of generality, we may assume that x1, x2 ∈ ∂B(x0, r) ∩ Ω. Indeed,
the general case can easily be reduced to this one since Ω is a domain and hence pathwise
connected.

Assume that x1 and x2 are not in the same component of Ω \ B(x0, br) for some
b ∈ (0, 1). We may assume that b < 1/16. It then suffices to prove that b is bounded away
from zero, independent of x1, x2, x0, r. Denote by Ωi the component of Ω \ B(x0, br)
containing xi for i = 1, 2. Then Ω1 ∩ Ω2 = ∅.

Let Fi = Ωi ∩B(xi, r/2) for i = 1, 2. Obviously, F1, F2 ⊂ B(x0, 2r), F1 ∩ F2 = ∅,

dist (xi, ∂Ωi \ ∂Ω) ≥ r − br > r/2

and Fi ∩ B(x0, r/2) = ∅ for i = 1, 2. By Theorem 4.1, |Fi| & rn for i = 1, 2. Applying
Lemma 5.2, we obtain

(6.1) CapW 1, p(F1, F2, Ω) & 1.

The lower bounded on b then will follow from the upper bound

(6.2) CapW 1, p(F1, F2, Ω) .

(
log

1

2b

)(1−n)/n

.

Indeed, if this holds, then we have
(
log 1

b

) 1
n
−1

& 1, which gives b & 1.
To obtain (6.2), for all x ∈ Rn, define

(6.3) u(x) ≡


1, x ∈ Ω2 \B(x0, r/2);

1
log 1

2b

log |x−x0|br , x ∈ Ω2 ∩ (B(x0, r/2) \B(x0, br));

0, otherwise.

Obviously this function is well defined. Then

|∇u| =
(

log
1

2b

)−1

|x− x0|−1χΩ2∩(B(x0, r/2)\B(x0, br))

and hence u ∈ W 1, p(Ω) and

‖u‖W 1, p(Ω) ≤ ‖u‖W 1, n(Ω)

.

(
log

1

2b

)−1
{∫

B(x0, r/2)\B(x0, br)
|z − x0|−n dz

}1/n

.

(
log

1

2b

)1/n−1

.

Obviously, u ∈ ∆(F1, F2, Ω), and hence (6.2) holds as desired.



18 P. Koskela, Y.Zhang and Y. Zhou

Case LLC(1). Let x1, x2 be a pair of points in Ω and x1, x2 ∈ B(z, r) for some z ∈ Rn
and r > 0. We are going to show the existence of a rectifiable curve γ ⊂ Ω ∩ B(z, r/b)
joining x1 and x2 for some constant b < 1.

If |x1 − x2| ≤ max{d(x1,Ω
{), d(x2,Ω

{)}, then the line segment joining x1 and x2 gives
the desired curve. Below we assume that |x1 − x2| > max{d(x1,Ω

{), d(x2,Ω
{)}.

Let Ωi be the component of

Ω ∩B(xi, |x1 − x2|/8) = Ω \ {B(xi, |x1 − x2|/8)}{

containing xi for i = 1, 2. By Theorem 4.1,

|Ωi| & |x1 − x2|n

for i = 1, 2. Obviously, Ω1 ∩ Ω2 = ∅ and Ω1, Ω2 ⊂ B(x1, 2|x1 − x2|). Applying Lemma
5.2, we obtain

CapW 1, p(Ω1, Ω2, Ω) & 1.

Now we claim that there exists a positive constant N0 ≥ 2 independent of x1, x2, Ω1, Ω2

such that Ω1, Ω2 are in the same component of Ω∩B(x1, N0|x1−x2|). To see this, assume
that Ω1, Ω2 are not in the same component of Ω∩B(x1, N |x1−x2|) for some N > 2, say,
in components Ω̃1, Ω̃2 of Ω ∩B(x1, N |x1 − x2|) respectively. Define a function u on Ω by
setting

u(y) ≡


1, y ∈ B(x1, |x1 − x2|/8) ∩ Ω̃1,

1
log 8N log N |x1−x2|

|y−x1| , y ∈ (B(x1, N |x1 − x2|) \B(x1, |x1 − x2|/8)) ∩ Ω̃1,

0, otherwise.

Then
‖u‖W 1, p(Ω) ≤ ‖u‖W 1,n(Ω) . (logN)(1−n)/n .

Observing that u = 1 on Ω1 and = 0 on Ω2, we have

CapW 1, p(Ω1, Ω2, Ω) . (logN)(1−n)/n

which means N . 1 and hence shows the existence of N0 as claimed.
Therefore there exists a rectifiable curve γ0 ⊂ Ω ∩ B(x1, N0|x1 − x2|) joining Ω1 and

Ω2. Let x̃i ∈ Ωi ∩ γ0 for i = 1, 2. Since xi, x̃i ∈ Ωi and Ωi is connected, we can find
a rectifiable curve γi ⊂ Ωi ⊂ Ω ∩ B(x1, N0|x1 − x2|) joining xi and x̃i for i = 1, 2. Set
γ = γ0 ∪ γ1 ∪ γ2. Then γ joins x1 and x2 and γ ⊂ Ω∩B(x1, N1|x1− x2|). Observing that

B(x1, N0|x1−x2|) ⊂ B(z,N0|x1−x2|+|z−x1|) ⊂ B(z, (N0+1)|x1−x2|) ⊂ B(z, 2(N0+1)r),

we have γ ⊂ Ω ∩B(z, r/b) with b = 1/2(N0 + 1) as desired.

Proof of Proposition 1.3. The proof is similar to the Case LLC(2) in the proof of Theorem
1.5(ii). Indeed, assume that that x1 and x2 are not in the same component of Ω\B(x0, br)
for some 0 < b < 1/16. It then suffices to prove that b is bounded away from zero,
independently of x1, x2, x0, r.
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Let Ωi be the component of Ω \ B(x0, br) containing xi and let Fi = Ωi ∩ B(xi, r/2)
for i = 1, 2. Since Ω is pathwise connected, Theorem 4.4 easily implies that |Fi| & rn for
i = 1, 2. Applying Lemma 5.3, similarly to (6.1), we obtain

CapW 1, p(F1, F2, Ω) & rn−p.

The lower bounded of b then will follow from the upper bound

(6.4) CapW 1, p(F1, F2, Ω) . rn−pbn−p log
1

2b

Indeed, if this holds, then we have bn−p log 1
2b & 1, which gives b & 1.

To show (6.4), we set

u(x) ≡


1, x ∈ Ω2 \B(x0, r/2);
(br)−n/p+1−|x−x0|−n/p+1

(br)−n/p+1−(r/2)−n/p+1 , x ∈ Ω2 ∩ (B(x0, r/2) \B(x0, br));

0, otherwise.

Notice that here u is different from that in (6.3). Since p < n, we have u ∈W 1, p(Ω) with

‖u‖W 1, p(Ω) .
1

(br)−n/p+1 − (r/2)−n/p+1

{∫
B(x0, r/2)\B(x0, br)

|x− x0|−n dz

}1/p

. rn/p−1bn/p−1(log
1

2b
)1/p.

Obviously, u ∈ ∆(F1, F2, Ω), and hence (6.4) holds as desired.

Remark 6.1. Finally, if p ∈ [1, n), one can not prove the condition LLC(1) for W 1, p-
extension domains by using the argument in the proof of the case LLC(1), Theorem 1.5
(ii). The point is that if p ∈ [1, n), the seminorm of W 1, p is not scaling invariant, while
the seminorms for W 1, n and W 1, p are. With the aid of scaling property, W 1, p is imbedded
into the Sobolev space W 1,n and one has the estimate

CapW 1, p(Ω1, Ω2, Ω) & 1.

whenever Ω1,Ω2 ⊂ Ω satisfy |Ω1| ∼ |Ω2| ∼ rn and dist (Ω1,Ω2) & rn. In fact, for
p ∈ [1, n), a W 1, p-extension domain may fail to satisfy LLC(1), see e.g. [7, 9, 10].
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