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Abstract. In this paper we address an exploratory search challenge by presenting a 

new (structure-driven) collaborative filtering technique. The aim is to increase search effective-

ness by predicting implicit seeker’s intents at an early stage of the search process. This is 

achieved by uncovering behavioral patterns within large datasets of preserved collective search 

experience. We apply a specific tree-based data structure called a TB (There-and-Back) struc-

ture for compact storage of search history in the form of merged query trails – sequences of 

queries approaching iteratively a seeker’s goal. The organization of TB-structures allows infer-

ring new implicit trails for the prediction of a seeker’s intents. We used experiments to demon-

strate both: the storage compactness  and inference potential of the proposed structure. 

Keywords: keyword search, query trail, TB-structure, collective intelligence 

1 Introduction 

The collection of extremely large volumes of digital information having emerged 

during the last decades referred usually to as big data is highly promising: the ex-

pected impact of insights derived from large data sets is broadly recognized [1]. It has 

been shown that big data analytics gives deeper understanding of processes and helps 

recognizing hidden patterns exposing radically new knowledge which can be translat-

ed into significantly improved decisions and performance across industries. Thus big 

data is considered a new type of asset that brings a new culture of informed data-

driven decision making.  

Simultaneously, big data handling is exceptionally challenging due to its volume, 

velocity and variety [2, 3, 4]. This boosts the problem of big data accessibility imply-

ing therefore the need of new data models and techniques for big data storage and 

retrieval. Despite the fact that essential results have already been achieved to build 

search engines, there is still an obvious need for new approaches to large-scale search. 

Among others, Marz et al [5], Cambazoglu and Baeza-Yates [6] focus on the scalabil-

ity problem related to the high computational costs of storing and processing large 

volumes of distributed data, Lewandowski [7] deals with providing fast access to 
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large amounts of information and effectiveness providing relevant search results and 

optimizing the search process for a user. 

This paper represents a new collaborative filtering technique used for exploratory 

search in big data. It is based on the assumption that a search engine can recognize 

real intents and information needs of a new seeker faster or more accurately than can 

be done by the users themselves. Previous search experience of users in the form of 

users` queries organized in a special compact way will help to approach the intended 

search goal, with a minimal number of iterations. The main contribution of the re-

search reported in this paper is the development of a tree-based data structure which is 

used for both compact storage of collective search experience and prediction of seek-

ers’ real information needs at an early stage of their search activity. 

2 Related Work  

The shift of the monopoly of the classical information retrieval to the concept of itera-

tive and interactive search performed by search engines has been studied recently [8]. 

While information retrieval methods work well for closed world bases when the 

search output can be well predicted at the beginning of the search process, it is obvi-

ously insufficient when seekers have scarce knowledge of a topic, cannot specify a 

goal and a correct query to represent their information needs promptly. This is typical 

for search in open world systems, which are rapidly accumulating large-scale data and 

knowledge which is never complete. It was noticed that people’s conceptions of their 

information problems change through the interactions with the dynamically changing 

environment containing other humans, sensors, and computational tools [9]. The 

search becomes more an exploration than a retrieval.  

Traditional Information retrieval is best served by analytical strategies engaging in 

simple lookup activities: sending a carefully planned series of queries posed with 

precise syntax to a search engine and getting search results in the form of discrete and 

well-structured objects with minimal need for further examination and comparison. 

Effectiveness and efficiency of information retrieval is ensured by traditional tech-

niques of crawling, indexing and ranking [10] engaging various combinations of syn-

tactical, statistical and semantic analysis of either content itself or its structure and 

experimenting with various forms and models of page content and search query repre-

sentation.  

Exploratory search [11] aims at new information learning and investigation, i.e., 

new knowledge development. Such search involves multiple iterations and requires 

cognitive processing and interpretation of in-between search results before the search 

goal is achieved. A user iteratively applies a combination of querying and browsing 

strategies, makes on-the-fly selections and navigations, studies and assesses search 

results, compares and integrates the obtained information, and finally develops 

knowledge. In this view, search becomes a more user-dependent or user-driven pro-

cess called interactive information retrieval [12], which is far more complicated than 

the usual matching of queries and documents and their further ranking. To ensure a 

precise query formulation a series of user-engine interactions is done: query formula-



tion, query modification, and inspection of the list of results. The overall process is 

usually referred to as query expansion [13], [14]. 

In this research we propose a new exploratory search approach which takes ad-

vantage of a new query expansion technique working with a tree-based data structure 

for query log storage. Our idea is to go further than simple query reformulation and to 

use hidden patterns in users’ querying history for more effective organization of big 

data search (e.g., web pages). Recognition of hidden models or patterns in users’ be-

havior can not only provide a basis for multipurpose analytics, e.g., extracting the 

exact semantics intended by the user [15], but also contribute to essential optimization 

of data processing and more accurate and fast information provisioning to end users. 

3 Smart Data Structure for Search Trails Organization 

3.1 TB-structures and Their Application for Search Trails Storage 

Users’ collective behavior keeps hidden patterns that can be used by a search engine 

for prediction of new users search intents at early stages of search. In our research we 

focus on the sequential and interactive nature of exploratory search which allows 

approaching a search goal by mutual co-evolution of three components: a user’s 

knowledge and intents, queries and query answers. It is done by a series of iterations 

called seeking episodes – interactions of a seeker, a search engine and the content 

provided by the engine addressing a single search goal. A single seeking episode lasts 

from the first recorded time stamp to the last recorded time stamp on the search en-

gine server from a particular searcher during a particular search period [16]. A 30-

minutes inactivity timeout or the termination of the browser or the tab is usually used 

to demarcate seeking episodes in a web log.  

A seeking episode is a set of triples (S𝑖 , 𝑄𝑖,𝑅𝑖), where 𝑄𝑖  is a query sent by a seeker 

to a search engine; 𝑅𝑖 is a set of web pages generated by a search engine in response 

to the query; S𝑖 is a state of a user’s knowledge after the study of 𝑅𝑖 and processing of 

a subset 𝑅𝑖
`  containing the content considered relevant by a seeker. The search process 

is iteratively continued implying a change of seeker`s knowledge and thus further 

query expansion. Three types of search sequences or trails show comprehensively the 

search dynamics: a queries trail, a response trail, and a knowledge (mind). The last 

one trail shows how a user’s understanding of the problem has changed along with the 

query expansion. Analysis of all S, Q, R trails can be used for search optimization.  

This paper covers the first stage of the study: query trails processing and organiza-

tion for further search optimization. We assume that a seeker can benefit from collec-

tive search experience represented as organized query trails leading to satisfaction of 

users information needs. We call the field of computational learning dealing with 

algorithms of query trail organization, pattern recognition and a classifier induction 

“query trail learning” (QTL) and use a predictive model based on a data structure 

invented by Lovitskii and Terziyan [17] called a “there-and-back” structure or simply 

a TB-structure. In their paper a TB structure is defined as a merge of a tree forest and 

an inverted tree forest. A TB structure was initially applied to combinatorial pattern 

matching for indexing and generating string data and proved to be useful for fast full 



text searches. A words space modeled with TB-structures is constructed from trees 

merged by the common prefixes and suffixes containing nodes denoted with alphabet 

symbols. A TB-structure is promising due to the possibility of its self-growth as a 

result of automatic generation of new links and new subtrees constructions. 

We use a TB-structure for query trails storage and generation. It is a group of 

nodes where each node has a value in form of a keyword query: a word or a string of 

words sent by a seeker to a search engine, and a set of references to other nodes indi-

cating possible transfers to next queries during search. A root layer contains nodes 

denoted by a set of possible initial queries, the leaves layer keeps terminal queries – 

the ones leading to either satisfaction (the search goal achievement) or disappointment 

(the search termination because of inability to reach the goal), and internal nodes are 

organized as intersected subtrees. Roots and leaves layers are formed by sets of non-

repeating elements.  

A QTB-structure allows mapping observations about a user’s initiated query ex-

pansion to a target value, i.e., a query formulated in a way, so that an answer from a 

search engine would satisfy real information needs of a user. The structure has the 

power to generate new implicit relationships, thus new query trails can be automati-

cally inferred over the basic structure. Prefixes of QTB-structures help clustering 

people by their initial intents and similar knowledge while suffixes define seekers` 

real information needs.    

3.2 Algorithm of a QTB-Structure Feeding 

Construction of a QTB-structure also called QTB feeding is an iterative process of 

incorporation of new query trails into an existing structure. Query sets are stored in 

form of strings 𝑇𝑟𝑎𝑖𝑙𝑖: {𝑄𝑖1, 𝑄𝑖2, … , 𝑄𝑖𝑡} in batches 𝐵𝑎𝑡𝑐ℎ𝑘{Trail𝑖 : {𝑄𝑖1, 𝑄𝑖2 , … , 𝑄𝑖𝑡}}, 

where 𝑄i1 is the first query in the 𝑖-search session and 𝑄𝑖𝑡  is the terminal one. A batch 

contains a set of all non-repeating trails captured by a search engine. The order of 

query trails influences a resulting QTB-structure view and its compactness.  

The feeding procedure uses an incremental strategy which takes query trails out of 

a batch one by one and insert them into a QTB-structure 𝑄𝑇𝐵. 𝑄𝑇𝐵 is traversed first 

top-down and then bottom-up with the purpose of finding the longest common “top-

down” path 𝑇𝑟𝑎𝑖𝑙𝑖
𝑡𝑑 from the root node that matches a prefix of the trail:  

𝑇𝑟𝑎𝑖𝑙𝑖
𝑡𝑑: {𝑆𝑒𝑞[1, … 𝑚]}, where 𝑆𝑒𝑞[1, … 𝑚] ⊆ {𝑇𝑟𝑎𝑖𝑙𝑖} and 𝑆𝑒𝑞[1, … 𝑚] ⊆ 𝑄𝑇𝐵,  

and the longest common bottom-up path 𝑇𝑟𝑎𝑖𝑙𝑖
𝑏𝑢 from a leaf that matches a suffix of 

a trail for a query trail and a QTB-structure: 

𝑇𝑟𝑎𝑖𝑙𝑖
𝑏𝑢: {𝑆𝑒𝑞[l, … 𝑛]}, where 𝑆𝑒𝑞[l, … 𝑛] ⊆ {𝑇𝑟𝑎𝑖𝑙𝑖 − 𝑇𝑟𝑎𝑖𝑙𝑖

𝑡𝑑} and 𝑆𝑒𝑞[l, … 𝑛] ⊆

𝑄𝑇𝐵.  

𝑆𝑒𝑞𝑖𝑗[1] is always a root node while 𝑆𝑒𝑞𝑖𝑗[n] is a leaf. A node traversed at the 𝑗-

level in a QTB must also be at the 𝑗-position in the added trail. For example, see Fig-

ure 2, in case of the QTB-structure containing one trail 𝑇𝑟𝑎𝑖𝑙1: {𝑄1, 𝑄7, 𝑄9, 𝑄12, 𝑄18} 



and a new trail 𝑇𝑟𝑎𝑖𝑙2: {𝑄1, 𝑄7, 𝑄10, 𝑄13, 𝑄19} the longest common top-down path is 

𝑇𝑟𝑎𝑖𝑙2
𝑡𝑑: {𝑄1 , 𝑄7} and the longest common bottom-up path is 𝑇𝑟𝑎𝑖𝑙2

𝑏𝑢: {∅}. 

After 𝑇𝑟𝑎𝑖𝑙𝑖
𝑡𝑑and 𝑇𝑟𝑎𝑖𝑙𝑖

𝑏𝑢 are defined, new nodes 𝑇𝑟𝑎𝑖𝑙𝑖
𝑛𝑒𝑤  to be inserted into the 

QTB-structure can be obtained: 

𝑇𝑟𝑎𝑖𝑙𝑖
𝑛𝑒𝑤: 𝑇𝑟𝑎𝑖𝑙𝑖 − 𝑇𝑟𝑎𝑖𝑙𝑖

𝑡𝑑 − 𝑇𝑟𝑎𝑖𝑙𝑖
𝑏𝑢 or 𝑆𝑒𝑞𝑖𝑗[m + 1, … , 𝑙 − 1]. 

𝑇𝑟𝑎𝑖𝑙𝑖
𝑛𝑒𝑤  needs to be added to 𝑄𝑇𝐵. We insert 𝑇𝑟𝑎𝑖𝑙𝑖

𝑛𝑒𝑤 by linking the last node of 

𝑇𝑟𝑎𝑖𝑙𝑖
𝑡𝑑 to the first node of the sequence 𝑇𝑟𝑎𝑖𝑙𝑖

𝑛𝑒𝑤 and the last node of 𝑇𝑟𝑎𝑖𝑙𝑖
𝑛𝑒𝑤 to 

the first node of 𝑇𝑟𝑎𝑖𝑙𝑖
𝑏𝑢 (see figure 1).  

 

Fig. 1. An example of a QTB-structure feeding 

Imagine that a new trail 𝑇𝑟𝑎𝑖𝑙4: {𝑄10, 𝑄13, 𝑄19, 𝑄20, 𝑄2, 𝑄5} has to be incorporated 

into the structure from figure 1. The algorithm will reveal that 𝑇𝑟𝑎𝑖𝑙4
𝑡𝑑 and 𝑇𝑟𝑎𝑖𝑙4

𝑏𝑢 

are empty and will add a new independent trail into the structure. It makes a structure 

less compact and causes some duplication but eliminates the situation when cycles 
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appear. We are planning to solve the problem of the possible ambiguity of TB-

structures` traversal with swarm intelligence, ant-algorithms particularly, which allow 

choosing the best alternatives according to collective experience.   

4 Experiments 

The idea behind the first round of the experiments was (1) to reveal all possible cases 

causing controversial or ambiguous situations to ensure the applicability of the algo-

rithm to real keyword queries and (2) evaluate the generative power of TB-structures: 

an ability to infer new trails, implicit for initial trails collections. Therefore an artifi-

cial data set was created to ensure the reveal of all possible trails.  

Experiments revealed two types of specific cases which could have a stand-alone 

effect on TB-structures construction: a TB-structure with several equal nodes at the 

same level of the structure implying ambiguity in its traversal and a one node trail. 

There are several ways to deal with such cases: either eliminate trails violating the 

algorithm requirements or extend a basic TB-structure and generate a structure which 

we called a fail-over TB-structure representing a list of TB-structures. The algorithm 

of a fail-over TB-structure feeding uses all trails including those violating constraints: 

if a trail is not accepted by a structure, an attempt is made to add it to the second one, 

if that one does not accept it either, the algorithm continues to search until a structure 

accepting the trail is found. If all TB-structures are exhausted and none accepts the 

trail, one more (empty) structure is added to the list and the trail is inserted into it. The 

automatic generation of trails was performed in two different ways: 1. With a uni-

form generator, which generated trails by choosing symbols uniformly at random and 

constructing trails of the length chosen randomly between 𝑙𝑚𝑖𝑛  and 𝑙𝑚𝑎𝑥; 2. With a 

random traversal generator which created a graph of the symbols by placing each 

symbol in a node and adding a directed edge from each node to a fixed number of 

randomly chosen other nodes. A trail was generated by a random graph traversal from 

a randomly chosen starting node.  

We automatically generated 5390 restricted TB-structures and 5390 fail-over struc-

tures with permutations of the following settings. We varied the minimal trail length 

𝑙𝑚𝑖𝑛   from 5 to 55 nodes and the maximal length 𝑙𝑚𝑎𝑥  from 5 to 60 nodes; the step 

size for the length was 5 nodes. The number of symbols in the alphabet was varied 

from 20 to 1280 (step 10*2
n
) and the number of initial trails from 100 to 51200 (step 

100*2
n
).  

The experiments showed a non-linear, exponential-like dependency between the 

number of initial trails and newly generated ones. The maximum number of generated 

trails was achieved when two conditions were satisfied: a big difference between the 

values of the minimal and the maximal possible length of trails (𝑙𝑚𝑖𝑛 = 5;  𝑙𝑚𝑎𝑥 =
60) and the smallest possible alphabet (𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡 = 20). The biggest explosion of 

new trails was observed in a fail-over structure, which is not surprising given the fact 

that the fail-over structure contains at least all trails in a normal TB structure. In many 

cases the number of generated trails was so large that the number could not be count-

ed within reasonable time. 



The combinatorial explosion is not critical in our case because usually real search 

tasks imply shorter query trails than the ones we used in the experiments, and larger 

alphabets. 

5 Conclusions and future work 

A web seeker traditionally uses keywords to formulate search objectives to a search 

engine. Typical IR systems answer a query literally and return a set of results accord-

ingly. Quite often “human-machine misunderstanding” or “misinterpretation” leads to 

the need of multiple iterations approaching a query which is understood similarly by a 

user and the search engine. Current techniques of search optimization use so called 

automatic query expansion (AQE) are based on semantic or syntactic similarity of 

terms used in queries. However open-world systems operating with big data require 

new search techniques due to data volumes, variety and velocity. Engines searching in 

open world settings should be proactive and predict hidden information needs of a 

seeker; becoming rather a navigator towards a real information need, not only an IR 

system.  

We offer a technique for search optimization benefiting from collective search ex-

perience captured and processed by a search engine. Users’ collective behavior con-

tains hidden patterns that can be used by a search engine for the prediction of new 

users’ search intents at early stages of the search process. This paper demonstrates 

how new forms of tree-based structures’ organization can contribute to effective stor-

age and operation over big data sequences, e.g., query trails, describing the search 

experience of multiple users. We build our theory on top of the idea of the sequential 

nature of the search process implying that a search goal is approached by mutual co-

evolution of three components: person’s knowledge and intents, queries and query 

results. This research is the first step towards comprehensive optimization of explora-

tory search. A tree-based TB-structure described in the paper is chosen as a smart data 

model used for compact storage of explicit query trails and inference of implicit trails 

useful for new users’ intents prediction. Recognition of hidden patterns by analyzing 

explicit query trails and inferring new ones can be applied to the process of 

knowledge discovery, e.g., to support ontology learning process. And vice versa, se-

mantic conceptualization of keyword queries based on ontologies can enhance the 

described search algorithm and provide additional semantics to TB-structures. 

The structure itself is promising and gives wide possibilities of applications besides 

keyword search. It can be applied for various tasks implying sequential processes and 

configurations in biology, medicine, industry, academic field, for logistics and plan-

ning, etc.  Experiments show that generative power of the proposed data structures is 

very high, in some cases we experience explosion of new implicit knowledge emer-

gence. This is both an opportunity (due to learning capabilities of the systems built 

over TB-structures) and a challenge (because the bigger volumes of information cause 

processing complexity). In our ongoing research we are addressing this problem by 

application of swarm intelligence for TB-structures self-organization and prediction 

of a user’s real information needs. 
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