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Tämän työn päämääränä on määritellä Riemannin pintojen Teichmüller-avaruu-
det sekä tutkia niiden geometrisia ominaisuuksia. Ensin työssä kehitetään peite-
avaruuksien ja toimintojen teoriaa, jota sovelletaan Möbius-kuvauksista koos-
tuviin ryhmiin. Tämän jälkeen kvasikonformaalikuvaukset määritellään Rieman-
nin pinnoille ja niiden yhteyttä yhdesti yhtenäisten Riemannin avaruuksien kvasi-
konformikuvauksiin tutkitaan. Näitä tietoja sekä yhdesti yhtenäisten Riemannin
pintojen uniformisaatiolausetta hyödyntämällä todistetaan yleisten Riemannin
pintojen uniformisaatiolause. Tämä tulos liittää pinnat Möbius-kuvauksien toi-
mintoihin yhdesti yhtenäisillä Riemannin pinnoilla.

Yleisten Riemannin pintojen uniformaatioteoreema mahdollistaa työssä käytetyt
Teichmüllerin avaruuksien määritelmät. Näille avaruuksille annetaan useampi
ekvivalentti määritelmä. Tämän jälkeen Teichmüllerin avaruuksiin määritellään
teorian kannalta luonnollinen etäisyysfunktio, joka tekee avaruuksista geodeet-
tisen ja täydellisen. Lisäksi osoitetaan että Riemannin pintojen väliset kvasikon-
formaalikuvaukset indusoivat surjektiivisen isometrian pintojen Teichmüllerin
avaruuksien välille. Lopuksi yhdesti yhtenäisten Riemannin pintojen, punktee-
rattujen kompaktien Riemannin pintojen sekä topologisten sylintereiden Teich-
müller -avaruudet karakterisoidaan. Yhdesti yhtenäisistä pinnoista vain hy-
perbolisella tasolla osoittautuu olevan epätriviaali Teichmüllerin avaruus. To-
pologisten sylintereiden tapauksessa havaitaan kolme erilaista Teichmüllerin a-
varuutta, jotka vastaavat punkteerattua tasoa, punkteerattua kiekkoa ja rengasta.

Avainsanat: toiminto, peiteavaruus, peitekuvaus, nosto, Möbius-kuvaus, Rieman-
nin pinta, kvasikonformikuvaus, Teichmüllerin avaruus, Teichmüllerin metriikka
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Abstract

Ikonen, Toni
Riemann surfaces and Teichmüller theory
Master’s thesis
Department of Mathematics, University of Jyväskylä, 2017, 78 pages.

The main objective of this work is to develop the necessary tools to define the
Teichmüller spaces of Riemann surfaces and study their geometric properties.
Firstly, some theory of covering spaces and topological actions will be studied
and the results applied to Möbius transformations. Secondly, quasiconformal
maps between Riemann surfaces will be defined and they will be characterized
using quasiconformal maps between simply-connected Riemann surfaces. These
results and the Uniformization Theorem of simply-connected Riemann surfaces
will be used to prove a Uniformization Theorem for general Riemann surfaces.
Such surfaces will be linked to actions of Möbius transformations on simply-
connected Riemann surfaces.

The Uniformization Theorem of Riemann surfaces will be used to define Teich-
müller spaces. A couple of equivalent definitions will be introduced. After that
a natural distance function is defined on Teichmüller spaces which makes them
geodesic and complete. It will be shown that quasiconformal maps between
Riemann surfaces induce isometries between their Teichmüller spaces. Finally,
the Teichmüller spaces of Riemann surfaces that are either simply-connected,
punctured compact Riemann surfaces, or topological cylinders will be charac-
terized. In the simply-connected case, only the hyperbolic plane has a non-
trivial Teichmüller space. The topological cylinders have three distinct Teich-
müller spaces each of which correspond to exactly one of the following: the
once-punctured plane, the once-punctured disk, or annuli.

Keywords: Action, covering space, covering map, lift, Möbius transformation,
Riemann surface, quasiconformal map, Teichmüller space, Teichmüller metric
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Introduction

Riemann surface is a topological surface together with a maximal atlas where
the coordinate transformations consist of conformal maps between open subsets
of the complex plane – such an atlas is called a conformal structure. This is more
restrictive compared to smooth manifolds, where the coordinate transformations
are only required to be diffeomorphisms. This can be seen from the fact that
every Riemann surface is orientable since the Jacobians of conformal maps are
strictly positive. A Möbius band is an example of a smooth surface that is non-
orientable [15, Chapter 15].

Consider the Uniformization Theorem: Every simply-connected Riemann sur-
face is conformally equivalent to exactly one of the following: the Riemann
sphere Ĉ, the Euclidean plane C, or the hyperbolic plane H. This means that
there are three types of simply-connected Riemann surfaces. The following spe-
cial case of the theorem is known as the Riemann Mapping Theorem: every
simply-connected open proper subset of the Euclidean plane is conformally
equivalent to H. In particular, the unit disk D and H are conformally equivalent.
Consider the map (r, exp (it)) 7→ tan

(
π
2 r
)

exp (it). It provides an orientation-
preserving diffeomorphism from the unit disk D onto the Euclidean plane C.
This means that every simply-connected Riemann surface is diffeomorphic to
the Riemann sphere Ĉ or the Euclidean plane C. This is an example why being
conformally equivalent is not the same as being diffeomorphic.

For this introduction X refers to the simply-connected Riemann surfaces Ĉ, C, or
H, and G refers to a subgroup of conformal automorphisms of X. As a reminder,
the conformal automorphisms of X are Möbius transformations mapping X onto
itself.

Riemann surfaces that are not simply-connected can be studied by developing
a theory of topological actions, covering spaces, and actions of certain types
of groups G acting on X. This is the topic of the first two chapters. On the
first half of the third chapter, the following characterization is shown: given a
Riemann surface M, there exists a unique simply-connected Riemann surface X
and a subgroup G of conformal automorphisms of X acting on X such that M
is conformally equivalent to the Riemann surface X/G. This follows from basic
results of covering spaces of surfaces and the Uniformization Theorem.
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The latter half of the third chapter is spent on studying quasiconformal maps
and the basic definition is as follows: Given open sets Ω and Ω′ in C, a quasicon-
formal map from Ω onto Ω′ is an orientation-preserving homeomorphism satis-
fying the equation

∂zφ = µ∂zφ

almost everywhere for some measurable function µ with essential supremum
strictly less than one. The partial differential equation is called the Beltrami PDE
and the coefficient µ is called the Beltrami differential. Quasiconformal maps
with µ = 0 are conformal maps and conformal maps are quasiconformal maps
with µ = 0. The definition above generalizes naturally to Riemann surfaces
using coordinate charts.

It will be shown in the third chapter that if φ is a quasiconformal map between
Riemann surfaces M and N and if M is conformally equivalent to X/G, then
N is conformally equivalent to X/H for some subgroup H of conformal auto-
morphisms of X and φ induces a group isomorphism between G and H. This
shows that Riemann surfaces come in three distinct families: the ones conform-
ally equivalent to Ĉ/G, to C/G, or to H/G. These families can be characterized
and it is one of the main results of the first three chapters. The first family con-
sists of Riemann surfaces that are conformally equivalent to the Riemann sphere
Ĉ and the second family consists of those Riemann surfaces conformally equi-
valent to the Euclidean plane, the (once-)punctured Euclidean plane, or a torus
of genus one. The third family, called the hyperbolic Riemann surfaces, has by
far the richest structure and most Riemann surfaces are of the form H/G. As an
example, the compact hyperbolic Riemann surfaces are orientable compact sur-
faces, hence they are homeomorphic to a finite connected sum of tori of genus
one (Proposition 6.20 of [14] – the classification of orientable compact surfaces).

Consider the relationship between homeomorphic, quasiconformally equivalent,
and conformally equivalent Riemann surfaces. Even though the punctured disk,
an annulus, and the punctured plane are homeomorphic, the first pair cannot
be quasiconformally equivalent to the punctured plane as the first two are hy-
perbolic and the punctured plane is conformally equivalent to C/G for some
G. This means that two homeomorphic Riemann surfaces are not necessarily
quasiconformally equivalent. Furthermore, it turns out that any two annuli are
quasiconformally equivalent but they are conformally equivalent if and only if
the quotient of their inner and outer radii coincide.

A question arises whether an annulus and a punctured disk can be quasicon-
formally equivalent. This can be answered using the notion of ideal boundaries
of Riemann surfaces. The ideal boundary ∂M of a Riemann surface M is re-
lated to the fact that M is conformally equivalent to a quotient X/G, and the
boundary provides an extension of the Riemann surface in some sense. This is
made rigorous in the latter half of the third chapter. The boundary is compatible
with quasiconformal maps in the following sense: a quasiconformal map from
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a Riemann surface M onto N admits a continuous extension to M ∪ ∂M, where
∂M is the ideal boundary of M, such that ∂M is mapped homeomorphically onto
∂N. For an annulus the ideal boundary is the topological boundary, i.e. the dis-
joint union of two circles whereas the ideal boundary of the punctured disk is a
circle. This implies that annuli and punctured disk cannot be quasiconformally
equivalent even though they are homeomorphic hyperbolic Riemann surfaces.

As a conclusion, if M and N are homeomorphic they are not necessarily quasicon-
formally equivalent even if they are of the form X/G and X/H. Furthermore,
two quasiconformally equivalent Riemann surfaces are not necessarily conform-
ally equivalent. The other direction of these implications does hold in general.

The notions of homeomorphic Riemann surfaces and quasiconformally equival-
ent Riemann surfaces agree, in a sense, for the following type of surfaces: A
Riemann surface M is of type (g, n) if there exist a compact Riemann surface M′

of genus g such that M can be conformally embedded into M′ such that M′ \M
has cardinality n – basically M is a compact Riemann surface of genus g with n
points removed. The cardinality is allowed to be zero but always finite. Given
two Riemann surfaces M and N of types (g, n) and (g′, n′), respectively, there
exists an orientation-preserving homeomorphism φ from M to N if and only if
(g, n) = (g′, n′) and there exists a quasiconformal map φ′ from M′ to N′ that
restricts to a quasiconformal map between M and N that is homotopic to φ. This
is discussed in some detail in the last chapter.

The first half of the fourth chapter is spent on studying the deformation space of
Riemann surfaces: Given a Riemann surface M, the elements of the deformation
space of M are pairs (N, φ), where N is a Riemann surface and φ : M → N
is a quasiconformal map. The latter half is spent on studying the Teichmüller
space of Riemann surfaces. It is the deformation space modulo a certain type of
equivalence relation related to the notion of ideal boundaries. There is a natural
distance on Teichmüller spaces, called the Teichmüller distance, that makes it a
complete and geodesic metric space. Furthermore, quasiconformally equivalent
Riemann surfaces have isometric Teichmüller spaces. This means that the Teich-
müller space captures something quasiconformally invariant about a Riemann
surface.

If a Riemann surface M is conformally equivalent to Ĉ/G or C/G, its Teichmüller
space can be interpreted as the space of all possible conformal structures on M.
Given a Riemann surface M of type (g, n), every orientation-preserving homeo-
morphism to another Riemann surface of type (g, n) can be interpreted to be an
element of the deformation space of M. Furthermore, it induces an equivalence
class to the Teichmüller space. For such Riemann surfaces, the Teichmüller space
can be used to characterize all possible homeomorphisms of this type.

The last section of the last chapter is spent on a characterization of the Teich-
müller space of Riemann surfaces for a few special cases. A characterization
is given for simply-connected Riemann surfaces, the Riemann surfaces homeo-
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morphic to a topological cylinder, and Riemann surfaces of type (g, n).
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Chapter 1

Topology

1.1 Group action

Remark 1.1.1:
The goal of this section is to give the algebraic definition of group actions, intro-
duce some related terminology and to give the definition of a topological action.
The essential result of this section is Proposition 1.1.7.

Definition 1.1.2 (Action):
Let X be a non-empty set and G a group. A (left) action of G on X is a map
X × G → X, denoted by (x, g) 7→ g · x, satisfying e · x = x for the identity
element e and h · (g · x) = (hg) · x for every g, h ∈ G and every x ∈ X. If such an
action exists, and the action is not the trivial action (x, g) 7→ x, it is said that the
group G acts on X.

The subset Gx = {g ∈ G | g · x = x} of G is the stabilizer of x ∈ X. The orbit of
x ∈ X is the subset G · x = {g · x | g ∈ G} of X. The set X/G denotes the union⋃

x∈X G · x and it is called the orbit space of G.

Remark 1.1.3 (Basic properties of actions):
Suppose that G acts on X. The following properties are readily verified:

(a) The stabilizer Gx of x ∈ X is a subgroup of G.

(b) Let x, y ∈ X. Then the orbits G · x and G · y are equal if and only if there
exists h ∈ G such that h · x = y.

(c) Furthermore, the orbits G · x and G · y are either equal or disjoint.

(d) If H is a subgroup of G, then H acts on X.
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Definition 1.1.4 (Free action):
Let G act on X. Then G acts on X freely if for any x ∈ X, the stabilizer of x is
the trivial subgroup.

A topological group G = (G, τ) is a group G with a topology τ such that
the group product of G is continuous. Formally, the map G × G → G, where
(g, h) 7→ g ◦ h is a continuous map in the product topology of G× G.

Definition 1.1.5 (Action of a topological group):
Let X be a topological space and G a topological group. An action of G on X is a
continuous action, if the action is continuous in the product topology of X× G.

An action of G on X is a covering space action (or covering action) if it is a con-
tinuous action, it acts freely on X, and given x ∈ X, there exists a neighbourhood
Ux of X such that (g ·Ux) ∩Ux 6= ∅ only for finitely many g ∈ G.

Remark 1.1.6:
It is a straightforward consequence of Remark 1.1.3 that given x ∈ X and its
stabilizer group H, that for any x ∈ X, the map gH 7→ g · x is a bijective map
from the cosets G/H to the orbit G · x of x. In particular, if G acts freely, then G
and the orbit of x are bijective.

It is readily seen from this that an action G on X is free if and only if for every
x ∈ X, the map g 7→ g · x is bijective. Note that given g ∈ G, the map x 7→ g · x
is always bijective as its inverse is given by x 7→ g−1 · x.

An action is continuous if and only if the maps x 7→ g · x and g 7→ g · x are
continuous. This means that given a covering space action of G on X, the map
x 7→ g · x is a homeomorphism from X to X for any g ∈ G. In this case, the
group G can be identified with a subgroup of homeomorphisms of X onto itself.

Proposition 1.1.7 (Characterization of covering actions):
Let X be a Hausdorff space and suppose that G acts on X continuously.

(a) The action of G on X is a covering space action if and only if for every
x ∈ X there exists a neighbourhood Ux such that (g · Ux) ∩ Ux 6= ∅ is
equivalent to g = e.

(b) Let F : X/G → X be a right inverse of π(x) := G · x and for every z ∈ X/G
let VF(z) be a neighbourhood of F(z) contained in UF(z). Then the sets
Vg·F(z) = g · VF(z), for the index set G × (X/G), form an open cover of X
with the property

Vg·F(z) = Vh·F(z)

if and only if g = h. Furthermore, for every x ∈ X there exists g ∈ G such
that x = g · F(G · x).
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Proof:
Part (a): The "if" direction is just a stronger version of the definition. The "only
if" direction is a simple construction, which uses the facts that X is Hausdorff,
every map of the form x 7→ h · x is a homeomorphism, and intersection of finite
number of open neighbourhoods is still an open neighbourhood.

Part (b): Let x ∈ X and Vx be an open neighbourhood of x contained in the
neighbourhood Ux given by the assumptions. Let F : X/G → X be a right-
inverse of x 7→ G · x. For every z ∈ X/G, define Vg·F(z) as g · VF(z); since g is a
homeomorphism, the set Vg·F(z) is an open neighbourhood of g · F(z). Observe
that for every e 6= g ∈ G it follows that

Vg·F(z) ∩VF(z) = (g ·VF(z)) ∩VF(z) ⊂ (g ·UF(z)) ∩UF(z) = ∅.

Suppose that h ∈ G such that (h · (g · VF(z))) ∩ (g · VF(z)) 6= ∅. This can be
restated equivalently as

((g−1hg)VF(z)) ∩VF(z) 6= ∅.

Since VF(z) ⊂ UF(z), the definition of UF(z) implies that g−1hg = e, therefore
h = e.

Remark 1.1.3 Part (c) shows that every element x ∈ X is contained in some
neighbourhood Vg·F(z), where (g, z) ∈ G× (X/G). It follows that they form the
desired cover.

1.2 Covering spaces

Remark 1.2.1:
The goal of this section is to construct necessary topological tools to find a link
between certain types of conformal automorphism subgroups of Ĉ, C and H

with Riemann surfaces – more on this in Chapters 2 and 3. This link can be
established by studying the connections of covering spaces and covering space
actions.

As a reminder, given a topological space X and a point x ∈ X, the fundamental
group π(X, x) is the group of homotopy classes of paths [φ] defined on the
interval [0, 1] that start and end at x, where the homotopy classes are defined rel
{0, 1}. The group structure of the fundamental group is introduced in [11] and
[14].

This means that two closed paths starting and ending at x are in the same homo-
topy class, if there exists a homotopy ht : [0, 1]→ X such that x = h0(0) = ht(0)
and x = h0(1) = ht(1) for any t ∈ [0, 1]. A topological space is said to be
simply-connected if it is path-connected and its fundamental group is trivial at
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some point (equivalently, at any point [11, Proposition 1.5]). For any x ∈ X, any
continuous map φ : X → Y induces a homomorphism φ∗, where [γ] 7→ [φ ◦ γ],
between the fundamental groups π(X, x) and π(Y, φ(x)).

Definition 1.2.2 (Covering space):
Let X and X′ be topological spaces, where X′ is a path-connected and locally
path-connected Hausdorff space. Let π : X′ → X be a surjective map such that
for every x ∈ X there exists a neighbourhood Ux of x for which

π−1(Ux) = ä
y∈π−1(x)

Wy

is a disjoint union of open neighbourhoods Wy of y each of which is mapped
homeomorphically to Ux by π.

The map π is called a covering map and the pair (X′, π) is called a cover-
ing space of X. A covering space (X′, π) is a universal cover if X′ is simply-
connected.

Remark 1.2.3:
It is not always required that X′ is connected nor Hausdorff; the Hausdorff
assumption is not required in [14] nor in [11], and the connectivity of X′ is not
required in [11]. For the purposes of this work, the added connectivity and
Hausdorff assumptions make many of the statements more clear. It should be
noted that the path-connectedness assumption on X′ is equivalent to assuming
that it is connected.

The covering map π is continuous and a local homeomorphism, in particular, it
is an open and closed map. Furthermore, a homeomorphism is a special case
of a covering map. It is also clear that a composition of a covering map and a
homeomorphism is a covering map, but this may not be true for a composition
of two covering maps [11, Section 1.3, Exercise 6].

Since X′ is connected and locally path-connected, it follows that X is always
Hausdorff and path-connected. In fact, if every point of X (or X′) has a neigh-
bourhood basis with a topological property that is preserved by homeomorph-
isms, then every point of X′ (or X, respectively) has a neighbourhood basis of
the same type. In particular, X is always locally path-connected.

As a reminder, it is said that a topological space X is locally a Banach space E, if
for every x ∈ X there exists a chart (U, φ), i.e. an open neighbourhood U of x, an
open set V of E, and a homeomorphism onto its image φ : U → V. A topological
Banach manifold refers to a topological space X that is locally a Banach space
E and Hausdorff. The dimension of a manifold refers to the cardinality of the
vector basis of E. If E = Rn or E = Cn, it is required that M is second countable.

Now it is also clear that a simply-connected covering space X′ has a topological
Banach manifold structure if and only if X has a topological manifold structure
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of the same dimension. Notice that if X′ is second countable, then X is second
countable. However, it is not clear that X′ is second countable if X is second
countable. If X′ is locally Rn or Cn and Hausdorff, this follows from a general
result known as Poincaré-Volterra theorem [6, p.186].

Every connected and locally simply-connected topological space has a universal
cover [14, Theorem 11.43]. This includes connected Banach manifolds, since
coordinate balls are contractible. The discussion above shows that any universal
cover of a Banach manifold has the structure of a Banach manifold of the same
dimension. This relationship will be studied more deeply in the category of
Riemann surfaces in Chapter 3.

Lemma 1.2.4 (Covering space from an action):
Suppose that X is a connected and locally connected Hausdorff space with a
covering space action by a group G. Then the quotient map µG : X → X/G,
x 7→ G · x is a covering map making X a covering space of X/G.

Proof:
Note that by defining x ∼ y if y ∈ G · x gives an equivalence relation; see
Remark 1.1.3. Endow X/G with the quotient topology, i.e. the finest topology
that makes µG continuous. The claim follows readily from Proposition 1.1.7.

Remark 1.2.5:
From now on, the notation µG will refer to the canonical covering map x 7→ G · x
introduced in Lemma 1.2.4.

Definition 1.2.6:
Let (X′, π) be a covering space of X and f : Y → X a continuous map. If there
exists a continuous map g : Y → X′ such that π ◦ g = f , the map g is said to be
a lift of f along π. The map f is said to be a descension of g along π.

If (Y′, µ) is a covering space of Y and g : Y′ → X′ is a continuous map such that
π ◦ g = f ◦ µ, the map g is said to be a lift of f along π and µ. Conversely, the
map f is said to be a descension of g along π and µ.

Theorem 1.2.7 (Unique lifting of homotopies):
Let (X′, π) be a covering space of X and let Y be a locally connected space.
Suppose that ft : Y → X is a homotopy and g : Y → X′ is a lift of f0. Then there
exists a unique lift Ft : Y → X′ of ft such that g = F0.
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Proof:
The proof can be found in [14], more specifically Theorem 11.13. It is also proven
in [11].

Theorem 1.2.8 (Unique lifting theorem):
Let (X′, π) be a covering space of X and let Y be a connected and locally path-
connected space, and φ : Y → X a continuous map. Given any x′ ∈ X′ and
y ∈ Y such that φ(y) = π(x′) =: x, the map φ has a lift φ′ : Y → X′ satisfying
φ′(y) = x′ if and only if φ∗π1(Y, y) ⊂ π∗π1(X, x′). Furthermore, if two lifts of
φ along π agree at a single point of Y, they agree on all of Y.

Proof:
The statements are combined from Propositions 1.33 and 1.34 of [11]. The proofs
can also be found there. They are also proven in [14]; see Theorems 11.18 and
11.12.

Definition 1.2.9 (Covering group):
Let X′ = (X′, π) be a covering space of X. A homeomorphism f : X′ → X′ is a
covering transformation of π if π = π ◦ f . The set G of all covering transforma-
tions – also called deck transformations or covering automorphisms [14, p.308]
– of π is a subgroup of the automorphism group of X′. It is called the covering
group of π.

Remark 1.2.10:
Let G′ be a covering group of the covering map µG : X → X/G. Then the map
f : G → G′, where f (g)(x) = g · x, is well-defined and an isomorphism: It is
readily seen that f is a homomorphism as the action is well-defined. The map
f is injective since the action is free. Surjectivity of f follows from the fact that
µ−1

G (x) = G · x and the uniqueness part of Theorem 1.2.8.

Proposition 1.2.11:
Let (X′, π) be a covering space of X. Then every point x ∈ X has a path-
connected neighbourhood Ux and a collection of path-connected neighbour-
hoods Wy of y ∈ π−1(x) satisfying

π−1 (Ux) = ä
y∈π−1(x)

Wy.

Let g be an element of the covering group of π and y ∈ π−1 (x). Then g(y) ∈
π−1(x) and g is an homeomorphism from Wy onto Wg(y) satisfying

g
∣∣
Wy

=

(
π
∣∣
Wg(y)

)−1

◦ π
∣∣
Wy

.

If h is an element of the covering group of π, then Wg(y) ∩Wh(y) 6= ∅ if and only
if g = h.
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Proof:
Let x ∈ X and U′x be a neighbourhood of x given by the definition of a covering
map. Since X is locally path-connected, there exists a path-connected neighbour-
hood x ∈ Ux ⊂ U′x. The preimage of Ux consists of disjoint path-connected sets
Wy, y ∈ π−1(x) for which

π−1 (Ux) = ä
y∈π−1(x)

Wy

and every Wy is mapped homeomorphically to Ux by π. Let y ∈ π−1(x) and
g ∈ G. Since π ◦ g = π, it follows that g(Wy) ⊂ π−1 (Ux) and g(y) ∈ π−1(x).
Consequently, the set g(Wy) is contained in Wg(y) and it is open, because g is a
homeomorphism.

The same composition identity shows that π
∣∣
g·Wy

: g(Wy) → Ux is a surjective

map. Since π
∣∣
Wg(y)

: Wg(y) → Ux is a bijective map, it follows that Wg(y) = g(Wy).

If Wg(y) ∩Wh(y) 6= ∅ for some h ∈ G, the uniqueness part of Theorem 1.2.8
implies that g = h.

Theorem 1.2.12 (Covering action):
Let (X′, π) be a covering space of X. If the covering group G of π is given the
discrete topology, it acts as a covering space action on X.

Proof:
Let G be the covering group of π. Consider the map X′ × G → X′, where
(x, g) 7→ g(x) =: g · x. If G is given the discrete topology, the action is continu-
ous. Proposition 1.2.11 and Proposition 1.1.7 show that the action is a covering
space action.

Definition 1.2.13 (Normal covering spaces and transitivity):
Let (X′, π) be a covering space of X. The corresponding covering action is said
to be transitive, if for any x′ ∈ X′ and every y ∈ π−1(π(x′)), there exists g in the
covering group of π such that g(x′) = y.

Equivalently, for any x ∈ X and every y ∈ π−1(x), the orbit of y under the
covering action is equal to π−1(x). If the covering action of π is transitive, the
covering space (X′, π) of X is said to be normal covering (space) of X.
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Remark 1.2.14:
Proposition 1.39 of [11] states that given a universal cover (X′, π) of X, the
covering group of π and the fundamental group of X are isomorphic. This
isomorphism will later be used to characterize all the possible Riemann surface
structures of a surface that is topologically a torus of genus one.

Remark 1.2.10 implies that every covering space action is transitive. The next
result shows the link between normal covering spaces and covering space ac-
tions.

Theorem 1.2.15 (Normal covering action):
Let (X′, π) be a normal covering space of X with a covering group G. Then the
map f : X′/G → X satisfying π = f ◦ µG is well-defined and a homeomorphism.

Proof:
Transitivity of the covering action combined with Remark 1.2.10 shows that the
covering group of µG is exactly G. Then it is readily checked that µG(x′) =
µG(y′) if and only if π(x′) = π(y′); this requires the transitivity assumption.
This shows that f is well-defined and injective.

Surjectivity of f follows as π = f ◦ µG and π is surjective. Since π and µG are
local homeomorphisms, it is clear that f is a local homeomorphism. A bijective
local homeomorphism is a homeomorphism, hence the claim follows.

Corollary 1.2.16:
Let (X′, π) be a normal covering space of X, G the covering group of π and
F : X → X′ a right-inverse of π.

Suppose that for every w ∈ X, the point F(w) has a local basis with some prop-
erty X preserved by the homeomorphisms g ∈ G. Then there exists an open
cover {

g ·VF(w)

}
(g, w)∈G×X

of X′ with property X satisfying Vg·F(w) = g ·VF(w). Moreover, if g, h ∈ G, then

(g ·VF(w)) ∩ (h ·VF(w)) 6= ∅

if and only if h = g. Furthermore, π(h · VF(w)) = π(VF(w)) is a neighbourhood
of w and

π−1
(

π(VF(w))
)
= ä

g∈G
g ·VF(w), h

∣∣
Vg·F(w)

=

(
π
∣∣
V(hg)·F(w)

)−1

◦ π
∣∣
Vg·F(w)

.
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Proof:
This is a corollary of Theorem 1.2.15, Proposition 1.1.7 Part (b) and Proposi-
tion 1.2.11.

Proposition 1.2.17:
Let (X′, π) and (Y, µ) be covering spaces of X.

(a) Suppose that X′ is simply-connected and x ∈ X′. Then given any y ∈
µ−1(π(x)), there exists a unique lift of π along µ satisfying φ(x) = y.

(b) If φ is a lift of π along µ, then φ is a covering map.

(c) Let ψ : Z′ → Z be a covering map and suppose that Z is simply-connected.
Then Z′ is simply-connected and ψ is a homeomorphism.

In particular, if X is simply-connected, and φ is as above, the covering
maps π, µ and φ are homeomorphisms, and Y is simply-connected. If
Y is simply-connected, then φ is a homeomorphism and X′ is simply-
connected.

Proof:
Part (a): Theorem 1.2.8 is always applicable as X′ is simply-connected.

Part (b): Consider surjectivity of φ. Let x ∈ X′ and y = φ(x). Fix z ∈ Y
and consider a path θ starting at y and ending at y. The path µ ◦ θ has a lift γ
along π such that γ(0) = x (Theorem 1.2.8). It is readily checked that φ ◦ γ and
θ are lifts of π ◦ γ along µ that agree at t = 0, hence they are equal everywhere
by uniqueness of lifts. Computing θ at 1 implies the surjectivity of φ. The rest of
the claim is a straight-forward corollary of Proposition 1.2.11, and the continuity
and surjectivity of φ.

Part (c): If ψ is injective, it follows that it is a homeomorphism. Furthermore, if
Z is simply-connected and ψ is a homeomorphism, then Z′ is simply-connected.
The rest of the claim is a corollary of the first part. Thus it is sufficient to show
that ψ is injective.

Let z, w ∈ Z′ such that ψ(z) = ψ(w). Let γ be a path starting from z and ending
at w. Then θ = ψ ◦ γ is a closed path and it is homotopic to the constant path
t 7→ θ(0), where h1 = θ and the homotopy ht fixes the basepoint θ(0). This
means that t 7→ ht(0), t 7→ ht(1) and s 7→ h1(s) are constant paths. As constant
paths lift to constant paths and the homotopy ht lifts to a homotopy Ht between
γ and H1 (Theorem 1.2.7), the injectivity of ψ follows.
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Remark 1.2.18:
Suppose that (X′, π) is a universal covering of X. Then (X′, π) is a normal
covering space of X as a corollary of Proposition 1.2.17: let (Y, µ) = (X′, π) and
consider lifts of π along π.

Definition 1.2.19 (Conjugation):
Let ψ : X → Y be a homeomorphism and let φ : X → X be a map. Then Fψ(φ) =

ψ ◦ φ ◦ ψ−1 is the conjugation of φ by ψ.

Remark 1.2.20:
The composition of conjugations satisfy Fψ◦ψ′ = Fψ ◦ Fψ′ whenever ψ ◦ ψ′ is well-

defined. Furthermore, Fid = id, Fψ−1 =
(

Fψ

)−1 and Fψ(φn) =
(

Fψ(φ)
)n.

Theorem 1.2.21 (Homeomorphisms between covering spaces):
Let (X′, πX) and (Y′, πY) be universal covers of X and Y, respectively. Let GX
and GY denote the covering groups of πX and πY, respectively.

(a) Let φ : X → Y be a homeomorphism. Then for every x ∈ X and y ∈
π−1

Y (φ(x)), there exists a unique map ψ : X′ → Y′ that is a lift of φ along
πX and πY, ψ(x) = y and ψ is a homeomorphism. Additionally, the con-
jugation map

Fψ : GX → GY

is a well-defined isomorphism between the covering groups GX and GY.

(b) Suppose that ψ : X′ → Y′ is a continuous map and F : GX → GY is a group
homomorphism for which F(g) ◦ ψ = ψ ◦ g for every g ∈ GX. Then there
exists a unique continuous map φ : X → Y that is a descension of ψ along
πX and πY.

In particular, if ψ is a homeomorphism and F is an isomorphism, the con-
tinuous map φ is a homeomorphism and F = Fψ.

(c) Given homotopic homeomorphisms φ : X → Y and φ′ : X → Y and ψ, a lift
of φ satisfying (a), there exists a unique ψ′ satisfying (a) for φ′ such that
Fψ(g) = Fψ′(g) for every g ∈ GX.

Furthermore, the homotopy between φ and φ′ lifts to a homotopy between
ψ and ψ′. If the homotopy between φ and φ′ is rel A ⊂ X, the homotopy
between ψ and ψ′ is rel π−1

X (A).
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Proof:
Part (a): The maps πY and φ ◦πX are covering maps of Y as φ is a homeomorph-
ism. Let x ∈ X′ and y ∈ π−1

Y (φ ◦ πX(x)). Then Proposition 1.2.17 Part (a) shows
that there exists a unique lift ψ of φ ◦ πX along πY mapping x to y. Parts (b)
and (c) show that ψ is a homeomorphism; the maps πY and φ ◦ πX are covering
maps and Y′ is simply-connected.

Consider the conjugation map Fψ : GX → GY, g 7→ ψ ◦ g ◦ ψ−1. It is clear that if
it is well-defined, it is a group homomorphism. If g ∈ GX, then

φ−1 ◦ πY ◦ (ψ ◦ g) = (φ−1 ◦ πY ◦ ψ) ◦ g = πX ◦ g = πX = φ−1 ◦ πY ◦ ψ.

This implies that πY ◦ ψ = πY ◦ (ψ ◦ g), therefore Fψ(g) ∈ GY. This means that
Fψ is well-defined and a homomorphism from GX to GY. Symmetry in the ar-
gument shows that Fψ−1 : GY → GX is well-defined, a homomorphism, and the
inverse of Fψ.

Part (b): The goal is to construct a continuous map φ : X → Y just by us-
ing ψ and πY. Let y ∈ π−1(x) for some x ∈ X′. Since g 7→ F(g) is a ho-
momorphism between GX and GY, and GX acts transitively, it is clear that
πY ◦ ψ(y) = πY ◦ ψ(x). As πX(y) = πX(x), the map φ can be defined as
πY ◦ ψ = φ ◦ πX. Since πX is surjective, it follows that φ is well-defined and
unique. Since ψ is continuous and the maps πX and πY are surjective local
homeomorphisms, the map φ is continuous.

If ψ is a homeomorphism and F is an isomorphism, it is clear that F = Fψ. The
assumptions of the first portion apply for ψ and ψ−1. Let φ and φ′ denote the
descensions of ψ and ψ−1, respectively. By applying the uniqueness of the first
part to the pairs (φ ◦ φ′, idY′) and (φ′ ◦ φ, idX′), it follows that φ′ = φ−1.

Part (c): Let ht : X → Y be a homotopy between two homeomorphisms φ = h0
and φ′ = h1. Part (a) implies that φ lifts to a homeomorphism along πX and πY.
Then Theorem 1.2.7 shows that ht lifts to a unique homotopy Ht : X′ → Y′ along
πX and πY satisfying H0 = ψ (apply the theorem for ht ◦πX). The map H1 := ψ′

is a lift of φ and Part (a) implies that it is a homeomorphism. If the homotopy ht
fixes some set A, the map ht ◦ πX fixes π−1

X (A). As it was deduced in the proof
of Proposition 1.2.17 Part (c), the homotopy Ht is fixed in the set π−1

X (A).

Fix g ∈ GX and define Gt = Fψ(g) ◦ Ht ◦ g−1. Since Fψ(g) ∈ GY, it is clear that
πY ◦ Gt = ht ◦ πX. Since G0 = ψ, the uniqueness stated in Part (a) shows that
Fψ(g) ◦ ψ′ ◦ g−1 = ψ′. This can be restated as Fψ(g) = Fψ′(g). Since this holds
for any g ∈ GX, the claim follows.
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Chapter 2

Algebra

2.1 Automorphism groups of planar domains

Remark 2.1.1:
It is known from complex analysis that Möbius transformations are the con-
formal automorphisms from the Riemann sphere onto itself. In this text, this
group is the automorphism group of the Riemann sphere Ĉ and it is denoted by
Aut

(
Ĉ
)
. They are of the form

Aut(Ĉ) =

{
z 7→ az + b

cz + d
| a, b, c, d ∈ C, ad− bc = 1

}
.

The topology of Aut
(
Ĉ
)

is given by the identification of Aut
(
Ĉ
)

with PSL(2, C) =
SL(2, C)/{I, −I}. The identification is made using the action of SL(2, C) on
Aut

(
Ĉ
)

defined by [
a b
c d

]
7→
(

z 7→ az + b
cz + d

)
.

Every another subgroup of Aut
(
Ĉ
)

is given the subspace topology as subsets of
Aut

(
Ĉ
)
; see [13, p. 35] and [2, Section 3.7] for more details.

The conformal automorphisms of the Riemann sphere fixing ∞ are identified
with the conformal automorphisms of C, denoted by Aut(C), and they are char-
acterized as

Aut(C) = {z 7→ az + b | a ∈ C \ {0} , b ∈ C} .

Furthermore, in the case of the upper half-plane, it is clear that

Aut(H) =

{
z 7→ az + b

cz + d
| a, b, c, d ∈ R, ad− bc = 1

}
.

This can be deduced from the fact that every element of this group must map
R ∪ {∞} onto itself and the upper half-plane onto itself, thus the coefficients
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must be real. Sometimes it is more convenient to study D instead of H. These
are conformally equivalent, where a conformal map from the disk to H is given
by z 7→ i 1−z

1+z . The conformal automorphisms of the disk are

Aut(D) =

{
z 7→ az + b

bz + a
| a, b ∈ C, |a|2 − |b|2 = 1

}
.

For future reference, given α ∈ C \ {0}, let Tα denote the translation z 7→ z + α
and gα denote the dilation z 7→ αz.

Any Möbius transformation can be identified with its representation in SL(2, C).
The trace of a Möbius transformation is the trace of its representative in SL(2, C).
The trace is denoted by Tr. The trace squared is independent of the chosen
representative.

Definition 2.1.2 (Classification of Möbius transformations):
Let id 6= φ ∈ Aut(Ĉ). The Möbius transformation φ is

(a) parabolic if there exists ψ ∈ Aut(Ĉ) such that Fψ(φ) = Tα for some α 6= 0;

(b) elliptic if there exists ψ ∈ Aut(Ĉ) such that Fψ(φ) = z 7→ exp (iθ) z for
some θ ∈ (0, 2π) + 2πZ;

(c) hyperbolic if there exists ψ ∈ Aut(Ĉ) such that Fψ(φ) = gλ for some 1 6=
λ > 0.

If φ is hyperbolic or none of the above type, it is loxodromic.

A fixed point x ∈ Ĉ of a Möbius transformation ψ is attracting if given z ∈ Ĉ,
the limit of ψn(z) as n→ ∞ is x and repelling if ψn(z)→ x when n→ −∞.

Lemma 2.1.3 (Conjugation and fixed points):
Let φ, φ′ : Ĉ→ Ĉ be Möbius transformations and L : Ĉ→ Ĉ a homeomorphism.
If FL(φ) = φ′ and x ∈ Fix (φ) is a fixed point of φ, then L(x) is a fixed point of
φ′ and

L (Fix (φ)) = Fix
(
φ′
)

.

If x ∈ Ĉ is an attracting or repelling fixed point of φ, then L(x) is a fixed point
of ψ′ of the same type.

Furthermore, if idĈ 6= φ, φ′ ∈ Aut(Ĉ) are two Möbius transformations, then φ
and φ′ commute if and only if φ (Fix (φ′)) = Fix (φ′) and φ′ (Fix (φ)) = Fix (φ).
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Proof:
The identity FL(φ) = φ′ can be restated as L ◦ φ = φ′ ◦ L and L−1 ◦ φ′ = φ ◦ L−1.
The first equality implies that every fixed point of φ is mapped to a fixed point
of φ′ by L. The second equality shows the same for the fixed points of φ′ and
L−1. Since L is bijective, the equality follows. The basic properties of conjugation
show that L ◦ φn = (φ′)n ◦ L, therefore the claim about conjugation preserving
the types of fixed points is clear. The characterization of commutative Möbius
transformations can be found in [2], see Theorem 4.3.6.

Lemma 2.1.4 (Classification by Trace):
An element id 6= φ ∈ Aut(Ĉ) is parabolic if and only if Tr2(φ) = 4, elliptic if and
only if Tr2(φ) ∈ [0, 4), hyperbolic if and only if Tr2(φ) ∈ (4, ∞) and loxodromic
if and only if Tr2(φ) ∈ C \ [0, 4].

Proof:
This follows from the fact that Tr2 and the type is invariant under conjugation
by Möbius transformation, see [2, Theorem 4.3.1]. The square of the trace for
translations, rotations, and dilations is readily computed. This implies the clas-
sification result and the details are shown in Theorem 4.3.4 of [2] and also in
Section 2.3.3 of Imayoshi and Taniguchi [13].

Remark 2.1.5:
Let id 6= φ ∈ Aut(Ĉ). The fixed point equation φ(z) = z is equivalent to studying
the zeroes of a polynomial of degree one or two, depending on whether φ fixes
∞ or not. Then it is clear from the fundamental theorem of algebra that every
non-trivial Möbius transformation has at least a single fixed point in Ĉ, and at
most two fixed points in Ĉ. In particular, a Möbius transformation has three or
more fixed points if and only if it is the identity.

By considering the Möbius transformations of Aut(C), i.e. maps of the form
z 7→ az + b, it is clear that such a map does not have a fixed point in C if and
only if φ = Tb for some b ∈ C \ {0}. Furthermore, if φ ∈ Aut(H), then φ is either
parabolic, elliptic or hyperbolic; the square of the trace of φ is real and positive.

If id 6= φ ∈ Aut(H), then φ is parabolic if and only if it has a single fixed point in
R∪ {∞}, elliptic if and only if it has two fixed points z1 and z2 such that z1 ∈H

and z2 = z1, or hyperbolic if and only if it has two fixed points in R ∪ {∞} [13,
Lemma 2.10]. In the parabolic and hyperbolic case the conjugation Fψ in the
Definition 2.1.2 can be done by an element of Aut(H); see the discussion after
Lemma 2.9 of [13]. Beardon has a more extensive discussion on the topic [2].

It is worth noting that a parabolic element of Aut(H) can be conjugated by an
element of Aut(H) to exactly one of T1 or T−1 and a hyperbolic element of
Aut(H) to exactly one of gλ or gλ−1 , where λ > 1. This follows from the fact
that there does not exists h ∈ Aut(H) that conjugates T1 to T−1 nor gλ to gλ−1 .
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Definition 2.1.6 (Fuchsian group):
A group G is a Fuchsian group if it is a discrete subgroup of Aut(H).

Remark 2.1.7:
An equivalent definition for a Fuchsian group is that every point of H satisfies
the neighbourhood property discussed in Definition 1.1.5 without requiring that
the action is free. This is shown in Lemma 2.16 of [13]. Some texts define
a Fuchsian group as a discrete subgroup of Aut(D) [17] [12]. An even more
general definition is given in [2], where D or H can be replaced by any disk that
is mapped onto H by a Möbius transformation.

The first paragraph of this remark implies that a Fuchsian group defines a cov-
ering space action if and only if its elements do not have fixed points in H, i.e. it
does not contain any elliptic elements (Remark 2.1.5). Furthermore, given g ∈ G
from a Fuchsian group that defines a covering space action on H, either g or its
inverse can be conjugated by an element φ of Aut(H) to T1 in the parabolic case
and gλ for λ > 1 in the hyperbolic case.

A non-trivial Fuchsian group acting freely on H is Abelian if and only if it
is cyclic and generated either by parabolic or hyperbolic elements [13, Lemma
2.14].

Proposition 2.1.8 (Non-Abelian Fuchsian groups):
Let G be a Fuchsian group containing no elliptic elements. If g1, g2 ∈ G such
that g1 ◦ g2 6= g2 ◦ g1, then the following holds:

(a) The element g3 = g1 ◦ g2 ∈ G does not commute with g1 nor g2.

(b) The elements g1, g2 and g3 have distinct fixed points and all of them are
contained in R∪ {∞}.

(c) There exists a conformal map ψ ∈ Aut(H) such that the conformal map
Fψ(g1) fixes 0, Fψ(g2) fixes 1, and Fψ(g3) fixes ∞.

Proof:
Part (a) is clear because of Lemma 2.1.3. Consider Part (b): Let {gi}3

i=1 be as in
Part (a). Since G is a Fuchsian group, the elements g1, g2, g3 are either hyperbolic
or parabolic and their fixed points are contained in R∪ {∞} (Remark 2.1.5). Let
i, j = 1, 2, 3 with i 6= j. If gi is hyperbolic, then either gi and gj share all of their
fixed points or all of their fixed points are distinct [13, Lemma 2.20] – this is the
hard part of the proof. This also holds if gi and gj are parabolic. Lemma 2.1.3
shows that the fixed points of gi and gj must be distinct as they do not commute.

Part (c): For i = 1, 2, 3, let pi be a fixed point of gi. The unique Möbius trans-
formation obtained by solving the cross-ratio [ψ(z), 0, 1, ∞] = [z, p1, p2, p3] is
in Aut(H) as pi ∈ R∪ {∞}. Then Lemma 2.1.3 implies the claim.
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2.2 Covering groups

Remark 2.2.1:
The point of this section is to characterize the covering groups of Ĉ, C, and H.
The results of the previous section and Chapter 1 give an intermediate result
Theorem 2.2.2, but a more useful characterization in the context of this work is
Corollary 2.2.4. The latter result will play a major role in Chapters 3 and 4.

Theorem 2.2.2 (Covering groups):
Let X = Ĉ, C or H and let G be a subgroup of Aut(X).

(a) If X = Ĉ, the group G is a covering group if and only if it is the trivial
group.

(b) If X = C, the group G is a covering group if and only if it is the trivial
group, it is generated by a single non-trivial translation Tα, or it is gener-
ated by two non-trivial translations Tα, Tβ, where α and β are R-linearly
independent.

(c) If X = H, the group G is a covering group if and only if it is a Fuchsian
group containing no elliptic elements.

If G is Abelian, the group is the trivial group, or a cyclic group generated
by a parabolic or a hyperbolic element of Aut(H).

If G is non-Abelian, there are two possibilities. Either G contains a sub-
group H generated by a hyperbolic element with index [G : H] equal to
two, or every subgroup generated by a hyperbolic element has infinite
index and G contains a subgroup H that consists entirely of hyperbolic
elements such that H is isomorphic to the free group of two generators.

Proof:
Consider the case X = Ĉ. The trivial group is the only subgroup of Aut(X)
that acts freely on X; every Möbius transformation has a fixed point in X as
discovered in Remark 2.1.5, therefore Remark 1.1.6 gives the result.

If X = C, then Remark 2.1.5 shows that G can be the trivial group or generated
by translations. Since C is an R-linear vector space of dimension two, it follows
that G must be generated by one element or at most two R-linearly independent
elements: Consider this claim. The group G can be identified with the G-orbit of
{0}, i.e. G = G · 0, and since Proposition 1.1.7 Part (a) holds, the set G ⊂ C is a
discrete subset of C. Then Z acts naturally on G as (Tα)n = Tnα holds for every
translation.

The set G ∩ B(0, R) is finite for every R > 0 by compactness of Euclidean balls
and discreteness of G. If this intersection is equal to G for every R > 0, it follows
that G is the identity group. If this is the case, the claim is done. Otherwise,
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let 0 6= α be the element closest to the origin for some R > 0. The minimality
of α implies that if γ ∈ R · α, where R· refers to the vector product in C, then
γ ∈ Z · α. Otherwise it would be possible to find an element 0 6= α′ ∈ G closer
to the origin than α.

Now if G ∩ B(0, R) = Z · α for every R > 0, the claim is done as α is a generator
of G. Thus let R′ ≥ R such that the intersection contains an element not in the
subgroup generated by α and let β ∈ G \Z · α be closest to the origin. Note that
β 6∈ R · α, and if γ ∈ R · β, then γ ∈ G if and only if γ ∈ Z · β.

The minimality of β, the facts β 6∈ R · α and |α| ≤ |β|, and triangle inequality
imply that γ = λ1α + λ2β ∈ G if and only if (λ1, λ2) ∈ Z×Z. Since α and β
form a R-linear vector basis over C, every element γ ∈ G can be represented in
the form λ1α + λ2β. The claim follows.

Consider the claim about X = H. The first part follows from Remark 2.1.7
and the fact that elliptic elements have fixed points in H. The non-Abelian
characterization result is shown in Parts 3 and 4 of Proposition 3.1.2 in [12]. It is
the hardest part of the proof.

Definition 2.2.3 (Standard covering groups):
Let G ⊂ Aut(X) be the covering group of X, where X = Ĉ, C or H. Then G is
said to be standardized if one of the following holds:

(a) The group G is the trivial group.

(b) If X = C, then G is generated either by a translation T1 or by two transla-
tions T1, Tt with t ∈H.

(c) If X = H and G is Abelian, it is generated either by T1 or gλ for some
λ > 1. If G is non-Abelian, then for every x = 0, 1, ∞, there exists an
element hx of G not equal to the identity which fixes x.

Corollary 2.2.4 (Existence of standard covering groups):
Suppose that G ⊂ Aut(X) is a covering group of X = Ĉ, C or H. Then there ex-
ists a Möbius transformation ψ ∈ Aut(X) such that Fψ(G) is a standard covering
group.

Proof:
If G is trivial, there is nothing to show. Thus suppose that G is non-trivial. If
X = C, then either G is generated by Tα or Tα and Tβ, where α and β are R-

linearly independent. In the latter case, it can be assumed that Im
(

β
α

)
> 0.

Then the dilation ψ := g 1
α

: C→ C shows the claim.

If X = H and G is Abelian, then G is cyclic and generated either by a parabolic
or hyperbolic element g of Aut(H) (Remark 2.1.7). By replacing g by g−1, if
need be, there exists ψ ∈ Aut(H) such that Fψ(g) = T1 in the parabolic case
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and Fψ(g) = gλ for λ > 1 in the hyperbolic case (Remark 2.1.5). Then ψ is the
desired isomorpism. If G is not Abelian, and if G does not contain elements of
the wanted form, the desired isomorphism can be constructed using Proposi-
tion 2.1.8.

Remark 2.2.5:
Let X = Ĉ, C or H, and let G ⊂ Aut(X) be a covering group acting on X.
Consider the action of G on Ĉ. A point z ∈ Ĉ is a limit point of G, whenever there
exists w ∈ Ĉ and a sequence gn ∈ G of distinct elements such that gn(w) → z
in Ĉ. The limit set of G is the set of all limits points of G, and it is denoted by
L(G).

It is readily seen that g · L(G) = L(G) for every g ∈ G. Similarly, whenever
C : Ĉ → Ĉ is a homeomorphism and FC is an isomorphism between G and
FC(G) ⊂ Aut(X), then z ∈ L(G) implies C(z) ∈ L (FC(G)) and L (FC(G)) =
C (L(G)).

If X = Ĉ, the limit set is empty since G is the trivial group. If X = C, the limit
set is empty if G is the trivial group, otherwise it is ∞, and in fact, given any
z ∈ C, there exists a sequence of distinct elements of G such that gn(z) → ∞,
where gn = Tnα for some translation Tα for α 6= 0. If X = H, it is sufficient to
consider elements of w ∈ H ∪ ∂H as every element of G is reflection symmetric
along the extended real line.

Theorem 4A of [16, Chapter 3] shows that L(G) = G · z ∩ ∂H, whenever z ∈ H

(Proposition 1.1.7 implies that every z ∈ H satisfies property (1) of the quoted
theorem). The previous paragraphs show that L(G) = G · z ∩ ∂X for any z ∈ X,
whenever X = Ĉ, C or H.

Since G does not contain elliptic elements if it acts in X as a covering space
action, Remark 1L and Theorem 3L [16, Chapter 3] imply that the set X \ L(G)
is the largest subset of X, where G acts as a covering space action. Then the
implication of Theorem 4A can actually be strengthened: if z ∈ X \ L(G), then
L(G) = G · z. The set I(G) = ∂X \ L(G) is called the ideal boundary of G. It is
non-empty only if X = H.

Consider X = H. If {idX} 6= G is Abelian, the limit set consists of the fixed
points of the generators, which is readily seen from Corollary 2.2.4. Thus the
limit set is a singleton, if the group is generated by a parabolic element, and
contains two points, if the group is generated by a hyperbolic element.

If G is non-Abelian, then X = H and the group G always contains hyperbolic
elements by Theorem 2.2.2. The limit set always contains the fixed points of
hyperbolic elements. In fact, it is shown in Theorem 4H of [16, Chapter 3] that
the limit set is equal to the closure of the fixed points of the hyperbolic elements
of G. Theorem 4I [16, Chapter 3] shows that if G contains a parabolic element,
the limit set is also equal to the closure of the set of parabolic fixed points of G.
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Chapter 3

Quasiconformal maps and Riemann
surfaces

3.1 Quasiconformal maps between planar domains

Definition 3.1.1 (Beltrami coefficient):
Let Ω and Ω′ be open sets in C. A measurable function µ : Ω → C ∈ L∞(Ω) is
a Beltrami coefficient, if ‖µ‖∞, Ω < 1. A function ψ : Ω → Ω′ ∈ W1, 2

loc.(Ω) is a K-
quasiregular map if there exists a Beltrami coefficient µ with ‖µ‖∞, Ω ≤ k = K−1

K+1
such that ψ is a solution to

ψz = µψz

almost everywhere. This partial differential equation is called the Beltrami PDE.
The Beltrami coefficient µ is said to be Beltrami differential of ψ and it is denoted
by µψ. If ψ is a homeomorphism and the map ψ is K-quasiregular, the map ψ is
said to be a K-quasiconformal map.

Remark 3.1.2:
The continuity of quasiregular maps follow from Section 5.4.1 of [1]. Theorem
2.5.4 combined with Theorem 3.7.7 of [1] imply that given a homeomorphic K-
quasiconformal map, its inverse is a K-quasiconformal map. The same result
shows that a locally injective K-quasiregular map is locally K-quasiconformal.

The coefficient kψ := ‖µ‖∞, Ω defines the smallest possible constant Kψ =
1+kψ

1−kψ

for which ψ is a K-quasiregular. The factor Kψ is said to be the maximal dilatation
of ψ. Furthermore, a map ψ : Ω → Ω′ is 1-quasiregular if and only if µψ = 0 if
and only if it is analytic [1, p.27 and Weyl’s Lemma A.6.10].
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Lemma 3.1.3 (Chain rule of Beltrami differentials):
Let f : Ω→ Ω′ and g : Ω′ → Ω′′ be two quasiregular maps between open subsets
of C with Beltrami differentials µ f and µg, respectively. Then

µg◦ f =
µ f + r f (µg ◦ f )

1 + r f µ f (µg ◦ f )
, where r f =

fz

fz
.

In particular, if g and h : Ω′′′ → Ω are analytic, then µg◦ f ◦h = (µ f ◦ h)rh implying
that kg◦ f ◦h = k f and Kg◦ f ◦h = K f . Furthermore, if f is a quasiregular map and
h : Ω→ Ω′ is a quasiconformal map, then

µ f ◦h−1 ◦ h =
µ f − µh

1− µhµ f

(
hz

|hz|

)2

.

Proof:
The first claim is shown in [5, p.6]. The proof does not need the fact that the maps
are invertible. The form of µg◦ f ◦h whenever g and h are analytic follows from
the first result as analytic maps have vanishing Beltrami differentials, see Re-
mark 3.1.2. The last claim follows by applying the composition rule of Beltrami
differentials for h−1 ◦ h and h ◦ h−1.

Lemma 3.1.4:
Let f be a quasiconformal, h analytic, and g = Ff (h). Then g is analytic if and
only if µ f =

(
µ f ◦ h

)
rh.

If f : Ω → Ω′ and g : Ω′ → Ω′′ are K- and K′-quasiregular maps, then g ◦ f is
a KK′-quasiregular map. Additionally, if f : Ω → Ω′ is a quasiconformal map,
then K f = K f−1 .

Proof:
The definition of g can be restated as g ◦ f = f ◦ h. Since g = ( f ◦ h) ◦ f−1,
Lemma 3.1.3 implies that µg = 0 if and only if µ f ◦h = µ f . Now µ f ◦h =(
µ f ◦ h

)
rh, therefore the claim about g follows.

The latter part is shown in Theorem 1.4.1 [5] – the proof holds for quasiregular
maps as well. Lemma 3.1.3 implies that k f−1 = k f , hence K f−1 = K f .
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3.2 Quasiconformal maps between Riemann surfaces

Definition 3.2.1 (Riemann surface):
A Riemann surface is a connected topological surface of complex dimension
one with a conformal structure. A conformal structure refers to a maximal atlas,
where the coordinate transformations (also called transition maps) are conformal
maps between open subsets of the complex plane C.

Remark 3.2.2:
As a consequence of Zorn’s lemma, every atlas with conformal coordinate trans-
formations induces a conformal structure. Every Riemann surface is necessarily
orientable since conformal maps of the plane are sense-preserving. Further-
more, every orientable C2-surface smoothly embeddable into R3 can be made
into a Riemann surface [17, p.134].

It is also clear that every open subset of Ĉ has a natural Riemann surface struc-
ture. The natural structure makes the inclusion to Ĉ an analytic embedding.
Every open subset Ω of C will be represented using the chart (Ω, idΩ). The
Riemann sphere Ĉ has the standard charts (C, idC) and

(
Ĉ \ {0} , 1

z

)
.

Remark 3.2.3:
Let M be a Riemann surface and µ a measurable C-antilinear endomorphism of
the tangent bundle TM. The set of all such maps is denoted by L∞

∗ (TM). The
definition means that for almost every z ∈ M, there exists an C-antilinear map
µz : TzM → TzM. By identifying TzM with C, the map µz is of the form z 7→ λz
for some λ ∈ C.

Given an atlas {(Ui, φi)}i∈I of M, µ can be represented by measurable functions
µi ∈ L∞(φi(Ui)), where the change of coordinate from µi to µj satisfies

µi = µj ◦
(

φj ◦ φ−1
i

)
rφj◦φ−1

i
.

The notation corresponds to Lemma 3.1.3, where rg = gz
gz

. Then the norm

‖µ‖∞ = sup
i∈I
‖µi‖Ωi, ∞

is well-defined and Lemma 3.1.3 implies that it is independent of the used atlas.
If there exists 0 ≤ k < 1 such that ‖µ‖∞ ≤ k, then µ is said to be a k-Beltrami
differential of M. The collection of all such elements is denoted by B(M). Further
reading on the topic can be found in [12], [5], [13], and [17].
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Definition 3.2.4:
Let M and N be two Riemann surfaces and f : M → N a map. Then f is K-
quasiregular, if for every p ∈ M, there exist charts

(
Up, φ

)
and

(
W f (p), ψ

)
for

which f (Up) ⊂ W f (p) and ψ ◦ f ◦ φ−1 : φ(Up) → ψ(W f (p)) is a K-quasiregular
map. The map ψ ◦ f ◦ φ−1 is said to be a coordinate representation of f .

If f : M → N is bijective and K-quasiregular, it is K-quasiconformal. The map
f is analytic if its coordinate representations are analytic, and conformal if it is
bijective and its coordinate representations are analytic.

Remark 3.2.5:
Let ψ : M → N be a K-quasiregular map between Riemann surfaces and fix at-
lases {(Ui, φi)}i∈I for M and {(Vi, θi)}i∈I for N with ψ(Ui) ⊂ Vi. The coordinate
representations θi ◦ ψ ◦ φ−1

i define Beltrami differentials µi ∈ L∞(φi(Ui)).

Since composing from the right by a conformal map does not change a Beltrami
differential (Lemma 3.1.3), it follows that µi are independent of the atlas chosen
for N. By composing from the right by coordinate transformations of M shows
that µi transforms in a correct way to define a Beltrami differential on M as a
consequence of Lemma 3.1.3. This means that every K-quasiregular map defines
a k-Beltrami differential of M. It will later be shown that every k-Beltrami dif-
ferential on M is a Beltrami differential of some K-quasiconformal map, see
Theorem 4.2.5.

The definitions here agree with the definitions given in the planar case (Re-
mark 3.1.2). In the planar case a map is 1-quasiregular if and only if it is analytic
and this holds here as well. It immediately follows from the planar case that
a locally injective K-quasiregular map between Riemann surfaces is locally K-
quasiconformal, and the inverse of a homeomorphism that is K-quasiregular is
K-quasiregular. The discussion above motivates the next result.

Lemma 3.2.6:
Let f : M → N be a K-quasiregular map. Then there exists a k-Beltrami differ-
ential such that ∂z f = µ (∂z f ) almost everywhere. This Beltrami differential is
denoted by µ f .

Proposition 3.2.7:
The space (L∞

∗ (TM), ‖. . .‖∞) is a Banach space. In particular, given a Cauchy
sequence of k-Beltrami differentials, the limit is a k-Beltrami differential.
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Proof:
Given an element µ ∈ L∞

∗ (TM), it can represented locally as µi ∈ L∞(Ωi). Thus,
it is clear that ‖. . .‖∞ is a norm. Completeness follows from the property that
convergence in L∞(Ωi)-norm implies convergence pointwise almost everywhere.
Then the limits of L∞

∗ (TM) transform in the desired way to define an element of
L∞
∗ (TM).

Definition 3.2.8 (Pullback):
If π : M→ N is analytic map, and µ is a Beltrami differential on N, the pullback
Beltrami differential π∗µ on M is defined as follows: Let {(Ui, φi)}i∈I be an atlas
of M. Then there exists an atlas {(Wi, ψi)}i∈I for which f (Ui) ⊂Wi.

Let f̃i = ψi ◦ f ◦ φ−1
i and µi be the coordinate representative of f and µ in Wi.

Then the coordinate representation ( f ∗µ)i is defined by the formula ( f ∗µ)i =
(µi ◦ f̃i)r f̃i

.

Remark 3.2.9:
It is readily checked using Lemma 3.1.3 that the definition above defines a
Beltrami differential on M. In particular, the composition rule rg◦h = (rg ◦ h)rh

holds if g and h are analytic, where rg = gz
gz

. Furthermore, if f and g are analytic
maps and g ◦ f is well-defined, then (g ◦ f )∗ = f ∗ ◦ g∗, which is readily verified.
A pullback formula for quasiconformal maps is discussed in [12].

3.3 Standard covering spaces

Definition 3.3.1 (Analytic covering space):
If X and M are Riemann surfaces and (X, π) is a covering space of M such that
π is analytic, the covering space (X, π) is said to be an analytic covering space
of M.

Remark 3.3.2:
In the category of Riemann surfaces it is sufficient to require that π is a covering
map and analytic to get that every point x ∈ M has a neighbourhood Ux such
that its preimage is a disjoint union of open sets each of which is mapped to
Ux conformally by π since a locally injective analytic map is locally conformal
(Remark 3.2.5).

However, in the category of smooth manifolds (and Riemannian manifolds), it is
usual to require directly that the preimages of Ux are mapped diffeomorphically
to Ux by π [7, Definition 1.83]. This comes down to the fact that not every
smooth locally injective map is a local diffeomorphism.

The proof of Theorem 3.3.3 goes through even if the category of Riemann sur-
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faces is switched to category of smooth manifolds. And actually, analogous
result holds in the category of Riemannian manifolds; see [7, Theorem 1.95] for
the smooth and [7, Proposition 2.28] for the Riemannian case.

Theorem 3.3.3 (Conformal structure of covering spaces):
Suppose that (X, π) is a covering space of M. Then the following holds:

(a) If (X, π) is an analytic covering space of M, the covering transformations
of π are conformal.

(b) If M is a Riemann surface, the covering space (X, π) has a unique con-
formal structure making it an analytic covering space of M.

(c) Suppose that X is a Riemann surface, (X, π) is a normal covering space of
M, and its covering transformations are conformal mappings. Then M has
a unique conformal structure making (X, π) an analytic covering space of
M.

(d) If (X, π) is a normal analytic covering space of M, the covering map
µG : X → X/G defined by x 7→ G · x induces a unique conformal struc-
ture making X/G and M conformally equivalent. The map f : X/G → M
satisfying the commutative property f ◦ µG = π is a conformal map.

Proof:
It was already noted in Remark 1.2.3 that X has a topological surface structure if
and only if M has one. Thus it is sufficient to focus on constructing atlases in (b)
and (c) inducing the desired conformal structures. Furthermore, the uniqueness
in Parts (c) and (d) follows from the uniqueness shown in Part (b).

Part (a): This is a consequence of Proposition 1.2.11, since every element g ∈ G
can be locally represented as a composition of two analytic maps. This shows
that g is analytic. This argument holds for g−1 as well, hence g is actually con-
formal.

Part (b): Let {(Ux, φx)}x∈M be an atlas of M such that every Ux is connected and
π−1(Ux) = äw∈π−1(x) Wx, w and π maps every Wx, w homeomorphically onto Ux.
Then {(

Wx, w, φx ◦ π
∣∣
Wx, w

)}
forms an atlas of X inducing a conformal structure for X. The only unclear part
is whether the coordinate transformations are conformal maps.

Suppose that Wx, w ∩Wx′, w′ 6= ∅. The restriction of π to Wx, w ∩Wx′, w′ is a
homeomorphism onto its image. In this case the image is Ux ∩Ux′ . In fact, if
w ∈ φx ◦ π

∣∣
Wx′ , w′

(Wx, w ∩Wx′, w′), then

(
φx′ ◦ π

∣∣
Wx, w

)
◦
(

φx ◦ π
∣∣
Wx, w

)−1
(w) = φx′ ◦ φ−1

x (w).
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It follows that the coordinate transformations of X are conformal. Note that
every point of X has charts associated with it giving a coordinate representation
of π that is the identity implying that π is an analytic map.

Suppose that X is a Riemann surface such that π is analytic. Let (Ux, φx) and
Wx, w be as in the beginning of the claim. Then Wx, w maps π is conformally to
Ux. Let (W, ψ) be a chart of X with Wx, w ∩W 6= ∅. Then given z ∈ ψ(Wx, w ∩W),
it follows that (

φx ◦ π
∣∣
Wx, w

)
◦ ψ−1(z) = φx ◦ π ◦ ψ−1(z).

The right-hand side is a conformal map, since π is locally conformal. This shows
that φx ◦ π

∣∣
Wx, w

is compatible with the given structure. The uniqueness part of
the claim follows.

Part (c): This is an application of Corollary 1.2.16. Let Λ : M → X be a right-
inverse of π and x ∈ M. Using Corollary 1.2.16, there exists a path-connected
chart (Vx, ψx) of Λ(x) such that

π−1 (π(Vx)) = ä
g∈G

g ·Vx.

Let ψg·x := ψx ◦ g−1. Since the covering transformations of π are conformal
maps, the charts {(

g ·Vx, ψg·x
)}

(g, x)∈G×M

form an atlas of X compatible with the given structure. Define Wx := π(g · Vx)

(independent of g) and φx := ψx ◦
(

π
∣∣
Vx

)−1
.

The claim is that {(Wx, φx)}x∈M forms an atlas of M with conformal coordinate
transformations. It is sufficient to check that the coordinate transformations are
conformal maps.

Suppose that x, y ∈ M such that Wx ∩Wy 6= ∅. Let z ∈ φx(Wx ∩Wy) and define
w = φ−1

x (z). The definitions of Vx and Vy imply that there exists unique g, f ∈ G
such that x′ := g ·Λ(w) ∈ Vx and y′ := f · x′ ∈ Vy.

Let Ux′ be an open neighbourhood of x′ contained in(
g ·VΛ(w)

)
∩
(

π
∣∣
Vx

)−1
(Wx ∩Wy).

Corollary 1.2.16 implies that there exists a covering transformation h ∈ G such
that

φy ◦ φ−1
x

∣∣∣
Kz

= ψy ◦ h ◦ ψ−1
x

∣∣∣
Kz

.

The right-hand side is a conformal map because h is a conformal map. This
means that φy ◦ φ−1

x is locally conformal. This implies that its inverse is also
analytic, hence {(Wx, φx)}x∈M is an atlas for M inducing a conformal structure
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for M. The map π is an analytic map as every point z ∈ X and π(z) ∈ M has
charts that make the coordinare representation of π an identity map.

Part (d): Theorem 1.2.15 implies the existence of the maps µG and f as intro-
duced in the claim. Part (c) can be applied to give X/G a conformal structure
such that µG is an analytic map. Since the covering maps are locally conformal
and locally f = π ◦ (µG)

−1, and likewise f−1 = µG ◦ π−1, it follows that f and
f−1 are analytic. This means that f is a conformal map.

Theorem 3.3.4 (Uniformization theorem):
Every simply-connected Riemann surface is conformally equivalent to exactly
one of Ĉ, C and H.

Proof:
This is proven in [12]. The proof does not fit the scope of this work.

Remark 3.3.5:
The three model spaces Ĉ, C and H have a lot more structure. They have their
canonical conformal structure as open subsets of Ĉ. Furthermore, they can be
induced with a Riemannian surface structure: the Riemann sphere Ĉ can be in-
duced with the metric pulled back from the sphere via stereographic projection,
the plane C with the Euclidean metric and the hyperbolic plane H with the met-

ric defined as in [13], [12], and [1]: d s2 = |dz|2

Im(z)2 . The disk D can be induced

with the pull-back metric from H via the conformal map z 7→ i 1−z
1+z . This makes

H and D isomorphic as Riemann and Riemannian surfaces.

The conformal automorphisms of these spaces are precisely the ones stated in
Remark 2.1.1. In the hyperbolic case every single Möbius transformation is an
orientation-preserving isometry of H (or D) [12, Proposition 2.1.2]. In the case
of C, the only elements of Aut(C) that are isometries in the Euclidean metric are
the translations and rotations.

The hyperbolic plane has Gaussian curvature −1 with the metric defined as
above [12, Proposition 2.1.12]. The definition of the metric differs by a factor
of two from the metric used in [17], which is a standard reference on the topic
of Teichmüller spaces. The same difference of a factor of two will be in the
definition of the Teichmüller metric, which will be defined in Chapter 4.

Proposition 2.1.7 of [12] shows that the hyperbolic plane H and the hyperbolic
disk D are uniquely geodesic. Also Ĉ is a geodesic space. Then a corollary
of the classical Hopf-Rinow theorem [7, Corollary 2.105] shows that Ĉ, C and
H are complete and proper metric spaces. Since C, H and D are proper and
uniquely geodesic, a direct application of Arzela-Ascolí’s theorem shows that
the map (x, y, t) 7→ γx, y(t) is continuous, where γx, y : [0, 1] → X is the unique
constant speed geodesic between x and y and X is C, H or D.
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If G is a standard covering group of C or H – see Definition 2.2.3 – it follows
that an element g ∈ G satisfies g ◦ γx, y = γg(x), g(y) since g is an isometry and
the spaces of interest are uniquely geodesic. This will be useful later on.

The distance between two points µ and µ′ of D in the hyperbolic distance is
given by

dD(µ, µ′) = log
|1− µµ′|+ |µ− µ′|
|1− µµ′| − |µ− µ′| ,

which is derived in [1]. Since z 7→ i 1−z
1+z is an isometry between D and H, it

follows that given t and t′ from H, then

dH(t, t′) = log

(∣∣t′ − t
∣∣+ |t− t′|∣∣t′ − t
∣∣− |t− t′|

)
.

These distances will play an important role later in this text.

Definition 3.3.6:
Let X = Ĉ, C or H and M be a Riemann surface with a Riemannian metric. Let
(X, π) be a covering space of M, and let G denote the covering group of π.

If π is an analytic covering map and a local isometry in the Riemannian sense,
and G is a standard covering group of Aut(X), then (X, π) is said to be a stand-
ard covering of M.

Corollary 3.3.7:
Let G be a standard covering group of X = Ĉ, C or H. Then X/G has a unique
Riemann and Riemannian surface structures making the covering space (X, µG)
a standard covering of X/G.

Proof:
The Riemann structure part follows immediately from the definition of standard
covering groups Definition 2.2.3, the characterization of covering space actions
Lemma 1.2.4, and Theorem 3.3.3. Since standard covers consist of isometries of
X – see Definition 2.2.3 and the discussion in Remark 3.3.5 – the claim follows
from Proposition 2.28 [7].

Remark 3.3.8:
From now on if G is a standard covering group of X, the associated surface X/G
will have the unique structure making µG an analytic map and a local isometry.
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Theorem 3.3.9 (Standard covers of Riemann surfaces):
Let M be a Riemann surface. Then M has a unique Riemannian surface structure
such that it admits a standard covering (X, π), where X is exactly one of Ĉ, C,
or H. Let G be the covering group of π. Then the map f : X/G → M satisfying
f ◦ µG = π is conformal and an isometry.

Proof:
Every topological manifold has a universal cover as discussed in Remark 1.2.3.
Theorem 3.3.3 gives the universal cover a structure of a Riemann surface such
that the covering map is analytic. Theorem 3.3.4 and the fact that a composition
of an analytic covering map and a conformal map is a covering map shows that
it can be assumed that X is exactly one of C, Ĉ or H.

Let (X, π′) be the constructed analytic covering map of M and let H denote
its covering group. Theorem 3.3.3 shows that the elements of H are conformal
maps and H is a covering group as shown in Theorem 1.2.12. Corollary 2.2.4
implies that there exists a conformal map ψ ∈ Aut(X) for which G := Fψ(H) is a
standard covering group. Define π = π′ ◦ ψ−1. This is still an analytic covering
map of M and it is readily seen that G is its covering group. Theorem 3.3.3
shows that M is conformally equivalent to X/G.

Then M can be induced with the Riemannian metric pulled backed from X/G
using the conformal map f−1; see Corollary 3.3.7. Since µG is a local isometry
and f is an isometry, it follows that π is a local isometry. The uniqueness part of
Proposition 2.28 [7] shows that this is the unique Riemannian surface structure
for M such that π is a local isometry.

Corollary 3.3.10 (Uniformization of Standard Covers):
Let φ : M → N be a K-quasiconformal map between Riemann surfaces, and let
(X, πM) and (Y, πN) be standard coverings of X and Y, respectively. Then X =
Y. In particular, every simply-connected Riemann surface is quasiconformally
equivalent to exactly one of Ĉ, C or H.

Proof:
Theorem 1.2.21 shows that there exists a homeomorphism ψ : X → Y such that
πN ◦ ψ = φ ◦ πN. Since πN and πM are locally conformal, it follows that ψ is a
K-quasiconformal map. Note that X is compact if and only if Y is compact as ψ
is a homeomorphism. This shows that X = Y if either one them is Ĉ.

Suppose that X = C. Since ψ is a quasiconformal map, Theorem 3.6.3 of [1]
shows that Y = C. This means that X = C if and only if Y = C. This concludes
the proof.
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Remark 3.3.11 (Ideal boundaries):
Let M be a Riemann surface with a standard covering (X, π) and a covering
group G. Suppose that M has a boundary ∂M and that π extends to a continuous
map from X ∪ I(G), where I(G) is the ideal boundary of G (Remark 2.2.5), to
M ∪ ∂M such that π(I(G)) = ∂M. Then it is readily seen that π : X ∪ I(G) →
M ∪ ∂M is a topological covering map of M ∪ ∂M with G as its covering group.
Furthermore, as (X, π) is a normal covering space of M, the same holds for its
extension.

Theorem 1.2.15 applies in this case, and the homeomorphism f given by that
result restricted to X/G is a conformal map and an isometry between X/G
and M (Corollary 3.3.7), and it maps I(G)/G homeomorphically onto ∂M. The
boundary ∂M is said to be the ideal boundary of M.

If M is a Riemann surface such that π does not extend continuously to I(G),
the ideal boundary of M can be constructed such that π extends to I(G): Let
M′ = M and ∂M′ = I(G)/G. Then define

π(z) =

{
π(z), z ∈ X
µ(z), z ∈ I(G).

Extending f : X/G → M as identity to I(G) implies that µG = f ◦π. By inducing
M′ ∪ ∂M′ with the quotient topology (use f as the quotient map) immediately
makes f a homeomorphism. Then π = f−1 ◦ µG is a covering map as a com-
position of a homeomorphism and a covering map, and it is the continuous
extension of π.

This means that M can always be assumed to be a Riemann surface with a(n
ideal) boundary ∂M such that its standard covering (X, π) extends continuously
to X ∪ I(G) as discussed in the second paragraph of this remark.

Remark 3.3.12:
The culmination point of the theory developed so far is Theorem 3.3.9 and Re-
mark 3.3.11. They show that every Riemann surface has a standard covering
(X, π), where X is exactly one of Ĉ, C or H. Furthermore, the Riemann surface
has a boundary that is related to the covering group of π. The significance of
the boundary will be seen in the next chapter. Since π is a local isometry and
the curvature of the Riemann sphere is 1, the plane has curvature 0 and the hy-
perbolic plane has curvature −1, Riemann surfaces can be classified using their
curvature.

Suppose that (X, π) is a standard covering of M. The fact that π is a local
isometry implies that the lifts of geodesics of M are geodesics in X and the
descensions of geodesics of X are geodesics of M ([7, Proposition 2.81]). This
implies that the length metric dM of M and dX of X induced by the Riemannian
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metrics are characterized by

dM(x, y) = inf
{

dX(x′, y′) | x′ ∈ π−1(x), y′ ∈ π−1(y)
}

.

In particular, the map π is a local isometry in the metric sense and also 1-
Lipschitz. It is worth noting that, in general, Riemannian length metrics do
not change the original topology of a manifold, see [15, Theorem 13.29]. It can
be checked that M is geodesically complete, hence M is complete and proper as
a metric space [7, Corollary 2.105 (classical Hopf-Rinow theorem)].

A lot more details about the geometric structure of hyperbolic Riemann surfaces
can be found in [13] and [12]. Also a more general look can be found in [7].

3.4 Quasiconformal maps of the Riemann sphere

Remark 3.4.1:
The next topic is to introduce some basic existence and compactness results for
quasiconformal maps. Some of their corollaries will be of interest in the study
of Teichmüller theory.

Remark 3.4.2:
Every element B(Ĉ), a Beltrami differential of the Riemann sphere, can be iden-
tified with its representation in the chart (C, idC). In fact, given µ ∈ L∞(C), by
defining

µ′(z) = µ

(
1
z

)(
z
|z|

)4

∈ L∞(Ω),

the pair µ and µ′ defines an element of B(Ĉ). From now on, every element of
B(Ĉ) will be represented in (C, idC).

The Measurable Mapping Theorem – see [1, Theorem 5.3.4] – shows that given
µ ∈ L∞(C) with ‖µ‖∞, C = k < 1, there exists a quasiconformal map ψ of the
Riemann sphere that fixes 0, 1, and ∞ such that µ = µψ. The quasiconformal
map can be identified with its coordinate representation in (C, idC). Further-
more, given a quasiconformal map from C onto itself fixing 0 and 1 defines a
normalized quasiconformal map of the Riemann sphere. These observations are
combined in the first part of the next result.
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Theorem 3.4.3:
Let µ be a k-Beltrami differential of C. Then there exists a K-quasiconformal
map ψ : Ĉ → Ĉ normalized by the conditions ψ(0) = 0, ψ(1) = 1, and ψ(∞) =
∞ solving the Beltrami PDE defined by µ. Every K-quasiconformal map of C

onto itself fixing 0 and 1 extends to a normalized K-quasiconformal map of the
Riemann sphere.

If Ω, Ω′ ⊂ Ĉ are open sets and g : Ω→ Ω′ is a K-quasiconformal map satisfying
µg = µ almost everywhere, there exists a conformal map h : ψ (Ω) → Ω′ such
that g = h ◦ ψ

∣∣
Ω. In particular, if Ω = Ĉ and g is normalized, then g = ψ.

If the boundaries of Ω and Ω′ are Jordan curves in Ĉ, the quasiconformal map
g has a continuous extension to the boundary of Ω that is a homeomorphism
between the closures of Ω and Ω′ in Ĉ.

Proof:
The first part follows from the discussion in Remark 3.4.2. The second part is a
straight-forward consequence of Theorem 5.5.1 and Corollary 5.5.4 of [1].

Consider the extension result. The fact that g extends to the boundary follows
from the observation that ψ maps Jordan domains to Jordan domains of Ĉ. Then
the classical Carathéodory’s theorem [9, Theorem 3.1], combined with the Uni-
formization Theorem 3.3.4, implies that h extends continuously to the boundary
of ∂ψ(Ω) = ψ(∂Ω). The extension of h maps ψ(∂Ω) homeomorphically onto
the boundary of Ω′. Then the extension of g can be defined using the formula
h ◦ ψ : Ω→ Ω′.

Remark 3.4.4:
The last part of Theorem 3.4.3 is a generalization of the classical Carathéodory’s
theorem. An alternative proof for the generalization can be found in [1, Section
5.9].

Lemma 3.4.5:
Let {µn}∞

n=1 be a Cauchy sequence of k-Beltrami coefficients of C. Then there
exists a k-Beltrami coefficient µ of C such that

µ(z) = lim
n→∞

µn(z)

almost every z ∈ C. Let fn be the normalized solutions to the Beltrami PDE
defined by µn. Then the limit

f (z) = lim
n→∞

fn(z)

exists everywhere in Ĉ, the convergence of fn to f is locally uniform in the
Riemann sphere, and f is the normalized solution of the Beltrami PDE defined
by µ. Additionally, k f ◦ f−1

n
converges to zero when n→ ∞.
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Proof:
This is a consequence of the completeness of L∞(C), Theorem 5.3.5 [1] and The-
orem 3.4.3. The chain rule of Beltrami differentials 3.1.3 implies that k f ◦ f−1

n
con-

verges to zero.

Definition 3.4.6 (Extensions and normalizations):
Let X = Ĉ, C or H and f : X → X be a quasiconformal map. A quasiconformal
map f̃ of the Riemann sphere is an extension of f if the restriction of f̃ to X is
equal to f and in the case X = H, f̃ is reflection symmetric with respect to the
extended real line.

The extension of µ ∈ L∞(X) is defined to be µ if X = C. If X = H, the extension
of µ is defined as µ(z) = µ(z) for every z ∈H.

The family of quasiconformal maps from X onto X, whose extensions fix 0, 1
and ∞ are denoted by FX. The elements of FX are said to be normalized.

Theorem 3.4.7 (Extensions of Beltrami differentials):
Let X = Ĉ, C or H and let µ be a Beltrami differential of X. Then there exists a
unique normalized quasiconformal map ψ ∈ FX such that µψ = µ.

The map ψ is the restriction of the normalized solution of the Beltrami PDE
defined by the extension of µ. If ψ′ : X → X is a quasiconformal map with
µψ′ = µ almost everywhere, there exists a Möbius transformation h ∈ Aut(X)
such that ψ′ = h ◦ ψ.

Proof:
Theorem 3.4.3 handles the first two cases. Consider the case X = H. Let ψ be
the normalized solution of the extension PDE defined by the extension of µ. The
goal is to show that ψ ∈ FH. The boundary of ψ(H) is a Jordan curve, therefore
the claim follows straight-forwardly from Theorem 3.3.4, Theorem 3.4.3, and
Lemma 3.1.3 as seen from below.

First extend µ as µ(z) = µ(z) for every z ∈ H, and let ψ : Ĉ→ Ĉ be the normal-
ized solution solving that Beltrami PDE in the Riemann sphere. Let Ω = ψ(H).
The boundary of Ω is a Jordan curve, therefore Theorem 3.3.4 implies the exist-
ence of a conformal map h : Ω → H. Now φ := h ◦ ψ : H → H is a quasicon-
formal map as a composition of two such maps.

Theorem 3.4.3 shows that φ can be extended to the boundary of H and the
extension maps it homeomorphically onto itself. Then there exists a conformal
map g ∈ Aut(H) such that g ◦ φ : H ∪ ∂H → H ∪ ∂H is normalized. The map
g ◦ φ can be extended to the Riemann sphere by reflecting it along the extended
real line.

Lemma 3.1.3 shows that the Beltrami differential of g ◦ φ and ψ agree on H, and
since they are both reflection symmetric, the Beltrami differentials agree in the
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Riemann sphere. Uniqueness of normalized solutions implies that g ◦ φ = ψ.
This means that ψ ∈ FH. The uniqueness follows from Theorem 3.4.3.

Corollary 3.4.8 (Extensions of quasiconformal maps):
Let f : X → X be as in Definition 3.4.6. Then the extension f̃ exists and is unique.
If g, h ∈ Aut(X) such that f ◦ g = h ◦ f , the extension of f satisfies f̃ ◦ g = h ◦ f̃
in Ĉ.

Proof:
After the discussion in Remark 3.4.2, the only unclear case is X = H. This is
straight-forward to verify after Theorem 3.4.7.

Remark 3.4.9:
The notation f̃ will be dropped as f ’s extension is unique, thus f can be iden-
tified with f̃ . Whenever an extension of f is mentioned, it refers to this specific
one.

3.5 Lifting characterization of quasiconformal maps

Remark 3.5.1:
From now on X will denote Ĉ, C or H. Let GX denote the standard covering
groups of X and RX denote the set of Riemann surfaces M admitting a standard
covering (X, πM) with an ideal boundary ∂M.

For every M ∈ RX there exists a standard covering (X, πM) such that πM
extends continuously to I(GM) and ∂M = πM(I(GM)) as discussed in Re-
mark 3.3.11. From now on (X, πM) will refer to such a standard covering and
GM to its covering group. If M = X/G, it will be assumed that πM := µG.
Theorem 3.3.9 (and Remark 3.3.11) show that given M ∈ RX, then X/GM and
M are related by

X ∪ I(GM)
µGM //

πM

%%

(X ∪ I(GM))/GM

fM

��
M ∪ ∂M

(3.5.1)

The map fM is a homeomorphism mapping I(GM)/GM homeomorphically onto
∂M, and mapping X conformally and isometrically onto M. The ideal boundary
will become relevant in the next chapter.
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Remark 3.5.2:
The next theorem plays a major role in the Teichmüller theory developed in the
next chapter. It will also be utilized in establishing the existence result for the
solutions of Beltrami PDE’s in Riemann surfaces.

Theorem 3.5.3 (Lifts of quasiconformal maps):
Let φ : M→ N be a homeomorphism between Riemann surfaces and let (X, πM)
and (X, πN) be standard covers of M and N, respectively.

(a) For every x ∈ X and y ∈ π−1
N (φ(πM(x))), there exists a unique homeo-

morphism ψ : X → X such that πN ◦ ψ(y) = φ ◦ πM(x) and ψ is a lift of φ
along πM and πN.

(b) The map ψ is K-quasiconformal if and only if φ is.

(c) If φ and ψ are as above, and GM and GN are the covering groups of πM
and πN, respectively, the map Fψ : GM → GN is well-defined and a group
isomorphism.

(d) Suppose that ψ : X → X is a quasiconformal map and the conjugation map
Fψ : GM → GN is well-defined and an isomorphism. Then there exists a
unique quasiconformal map φ : M → N such that ψ is a lift of φ along πM
and πN.

(e) Suppose that φ and φ′ are homotopic quasiconformal maps and ψ is a lift
of φ. Then there exists a unique lift ψ′ of φ′ for which Fψ = Fψ′ .

Furthermore, if X = Ĉ, any two quasiconformal maps φ and φ′ are homo-
topic and Fψ = Fψ′ are trivial maps. If X = C or H and there exists a lift ψ′

of φ′ such that Fψ = Fψ′ , then φ and φ′ are homotopic.

Proof:
Part (a), Part (c), Part (d) and first part of (e) follow from Theorem 1.2.21. Part (b)
is trivial, because analytic covering maps are locally conformal. Thus the second
part of (e) is the only part that requires more justification.

Suppose that X = Ĉ. Theorem 2.2.2 shows that πM and πN are conformal maps
and the isomorphisms Fψ = Fψ′ are trivial maps. Since quasiconformal maps are
orientation-preserving homeomorphisms, it follows that ψ and ψ′ have the same
degree. Hopf Degree Theorem [10, Chapter 3, p. 146] shows that ψ and ψ′ are
homotopic. Since φ = π−1

N ◦ ψ ◦ πM and φ′ = π−1
N ◦ ψ′ ◦ πM, it follows that φ

and φ′ are also homotopic.

Suppose that X = H or C. Let γxy : [0, 1]→ X be the family of geodesics as dis-
cussed in Remark 3.3.5. The map (x, t) 7→ θt(x) := γψ(x)ψ′(x)(t) is a continuous
function as a composition of two continuous functions.

Notice that θ0(x) = ψ(x) and θ1(x) = ψ′(x), i.e. θ is a homotopy between ψ and
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ψ′. Let g ∈ GM. Then Fψ′(g) is an element of GN, therefore it is an isometry –
see Remark 3.3.5 – hence

Fψ′(g)(θt(x)) = γFψ′ (g)◦ψ(x), Fψ′ (g)◦ψ(x).

Since Fψ′ = Fψ, the definitions of the conjugation map F and the homotopy θt
show that this is equal to θt(g(x)). It follows that

Fψ′(g) ◦ θt = θt ◦ g.

By considering Theorem 1.2.21 Part (b) for the covering maps πM × id[0, 1] and
πN× id[0, 1], there exists a unique continuous map ht for which ht ◦πM = πN ◦ θt.
The uniqueness of descensions implies that h0 = φ and h1 = φ′, therefore ht is
the desired homotopy.

Definition 3.5.4:
Let X = Ĉ, C or H and G a subgroup of Aut(X). A Beltrami differential µ of X
is G-invariant, if µ = g∗µ for every g ∈ G. The collection of G-invariant Beltrami
differentials of X is denoted by BX(G).

Remark 3.5.5:
Let µ be a Beltrami differential on M. Then the pullback η := π∗Mµ defines
a Beltrami differential on X as discussed in Definition 3.2.8. Since π ◦ g = π
for every g ∈ GM, the differential η satisfies g∗η = η. Conversely, if there is a
Beltrami differential η on X that satisfies g∗η = η for every g ∈ GM, then there
exists a unique Beltrami differential µ on M such that π∗Mµ = η.

If X = Ĉ or C, the Beltrami differential η can be identified with its coordinate
representation in C. Furthermore, in the case X = H, η can be represented us-
ing its coordinate representation in H. In the Riemann sphere case, the Beltrami
differential η has no useful symmetries as G is trivial – this follows from The-
orem 2.2.2 – however, if X is the Euclidean plane or the hyperbolic plane, the
fact that g∗η = η implies that η = (η ◦ g)rg = (η ◦ g) gz

gz
almost everywhere for

every g ∈ G.

Theorem 3.5.3 and Lemma 3.1.4 show that a quasiconformal map between two
Riemann surfaces M and N in RX lifts to a quasiconformal map. Its Beltrami
differential is GM-invariant and its inverse’s Beltrami differential is GN-invariant.
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3.6 Examples of Riemann surfaces

Definition 3.6.1:
Let arg : C → (−π, π] denote the branch of arg such that arg R+ = 0 and
arg R− = π. For r > 1 define λr = exp

(
2π2

log r

)
and let A(1, r) denote the

open annulus centered at the origin with inner radius 1 and outer radius r. Let
πr : H → A(1, r) denote the map defined by πr(z) = exp

(
−2πi log z

log λr

)
. For

t ∈H, let G1, t denote the subgroup of Aut(C) generated by T1 and Tt.

Remark 3.6.2:
It is readily seen that πr : H → A(1, r) is an analytic covering map and its cov-
ering group is generated by gλr . Furthermore, Theorem 3.3.9 shows that A(1, r)
is conformally equivalent to H/〈gλr〉. It follows that (H, πr) is a standard cov-
ering of A(1, r), when the annulus is endowed with the pushforward metric
from H. The map λr : (1, ∞) → (1, ∞), where r 7→ λr is surjective, therefore
a Riemann surface with a covering group generated by a hyperbolic element is
conformally equivalent to some annulus A(1, r), where r > 1. This follows from
Corollary 2.2.4.

As πr extends continuously to R \ {0}, where the positive real line is mapped
onto S(0, 1), and the negative real line onto S(0, r), the discussion in Corol-
lary 3.3.7 and Remark 3.3.11 show that the extension of πr is a covering map
of the closed annulus. In this case the ideal boundary I(〈gλr〉) is mapped to a
disjoint union of 1-manifolds.

Every Riemann surface C/G1, t for t ∈ H is topologically a torus of genus one.
They can be endowed with Riemannian metrics that make (C, µG1, t) a standard
covering of C/G1, t. Remark 1.2.14 and Theorem 2.2.2 imply that every Riemann
surface that is topologically a torus of genus one is conformally equivalent to
some such surface.

If the standard covering group of M is 〈T1〉 in C or in H, then M is conformally
equivalent to C \ {0} or D \ {0}, respectively. A standard covering is given by
z 7→ exp (2πiz), when C \ {0} or D \ {0} are endowed with the pushforward
metric from C and H, respectively. The covering map of the punctured disk
extends to the real line continuously and it is the ideal boundary of the covering
group 〈T1〉. The ideal boundary is mapped to the unit circle by the covering
map. The ideal boundary of the punctured plane is empty.

If the standard covering group of an analytic covering of a Riemann surface is
trivial, the Riemann surface is conformally equivalent to its universal cover.

The Riemann surfaces discussed so far have had Abelian covering groups. Ac-
tually, every another family of Riemann surfaces have non-Abelian covering
groups. The standard covering space is H, i.e. all of these Riemann surfaces
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are hyperbolic with Gaussian curvature −1.

The rest of compact Riemann surfaces are connected sums of 1-tori, thus such
surfaces have genus g ≥ 2 (Proposition 6.20 of [14] – the classification of orient-
able compact surfaces). It is shown in Theorem 2.22 of [13] that G ⊂ Aut(H)
consists entirely of hyperbolic elements and in Proposition 2.19 that the limit set
L(G) is the extended real line, i.e. I(G) is empty. All compact Riemann surfaces
are now classified.

Another example of interest are Riemann surfaces of finite analytic type (g, n):
A Riemann surface M is of finite analytic type (g, n) if there exists a compact
Riemann surface M′ of genus g and an analytic embedding φM : M → M′ such
that the cardinality of M′ \ φM(M) is n. It is later shown that if g = 0 and
n ≥ 3, g = 1 and n ≥ 1, or g ≥ 2 and n ≥ 0, the Riemann surface is hyperbolic.
Otherwise the surface is non-hyperbolic. Furthermore, the type (g, n) turns
out to be a topological invariant in the following sense: if Riemann surfaces of
type (g, n) and (g′, n′) are homeomorphic, then (g, n) = (g′, n′). Additionally,
any pair of homeomorphic surfaces of type (g, n) are actually quasiconformally
equivalent. This is discussed in the last chapter.
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Chapter 4

Teichmüller theory of Riemann
surfaces

4.1 Deformation space of standard covering groups

Definition 4.1.1:
Let X = Ĉ, C or H. Given a standard covering group G ∈ GX of X, let DefX(G)
denote the collection of pairs (H, ψ) such that H ∈ GX is a standard covering
group of X, the conjugation map Fψ : G → H is an isomorphism, and ψ : X → X
is a quasiconformal map. The collection DefX(G) is the deformation space of G.

Given (G′, ψ′) ∈ DefX(G) and (H, ψ) ∈ DefX(G), the function (G′, ψ′)# is
defined as

(G′, ψ′)# : DefX(G)→ DefX(G′), (H, ψ) 7→ (H, ψ ◦ (ψ′)−1).

The composition of two such functions, whenever ψ′′ ◦ ψ′ is well-defined, is
defined as (

G′′, ψ′′
)# ◦

(
G′, ψ′

)#
=
(
G′′, ψ′′ ◦ ψ′

)# .

Remark 4.1.2:
It is clear that the functions (. . . )# are well-defined, the identity element (G, idX)
induces the identity map (G, idX)

#, and if (H, ψ) ∈ DefX(G), then (G, ψ−1)# is
the inverse function of (H, ψ)#.

The motivation for this section is given by Theorem 3.5.3, Corollary 3.3.10, and
Section 3.4. Given two Riemann surfaces M and N with standard coverings
(X, πM) and (Y, πN) (Definition 3.3.6), and a quasiconformal map φ : M → N,
then X = Y, and Theorem 3.5.3 shows that φ admits a lift ψ : X → X along πM
and πN. It also shows that ψ defines an isomorphism Fψ : GM → GN, where
g 7→ ψ ◦ g ◦ ψ−1 is the conjugate isomorphism discussed in Definition 1.2.19.
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This means that the properties of DefX(G) tell a lot about the properties of
quasiconformal maps between Riemann surfaces. Even more can be said and
that will be the topic of the next section. Before that some basic properties of
DefX(G) will be studied.

Proposition 4.1.3:
Suppose that X is Ĉ, C, or H and G ∈ GX is a standard covering group of X.

(a) If ψ ∈ FX is a normalized quasiconformal map and Fψ(G) is a subgroup
of Aut(Ĉ), then Fψ(G) is a standard covering group of X and of the same
type as G. In particular,

(
Fψ(G), ψ

)
∈ DefX(G).

If G contains T1, then Fψ(T1) = T1 and if G contains Tt for t ∈ H, then
Fψ(Tt) = Tψ(t), where ψ(t) ∈ H. If G is generated by gλ, then Fψ(gλ) =

gψ(λ) generates Fψ(G) and ψ(λ) > 1. If G is non-Abelian and for every
x = 0, 1, ∞, the element hx ∈ G fixes x, then Fψ(hx) fixes x and x is a same
type of fixed point for hx and Fψ(hx).

(b) Let ψ ∈ FX such that
(

Fψ(G), ψ
)
∈ DefX(G). If ψ′ ∈ FX is a normalized

quasiconformal map and there exists C ∈ Aut(X) such that FC = Fψ′◦ψ−1 ,
then Fψ′ = Fψ : G → Fψ(G). In particular,

(
Fψ(G), ψ′

)
∈ DefX(G).

Proof:
Part (a): If G is the trivial group, there is nothing to do, thus the non-triviality
can be assumed. Suppose that G contains an element idX 6= hx fixing x, where
x = 0, 1, or ∞. Define fx = Fψ(hx). Since ψ is normalized, Lemma 2.1.3 shows
that x is fixed by fx. It also shows that if hx has a single fixed point, then fx has
only one fixed point, and in this case it is x. If hx has an attractive fixed point
at x and a repulsive fixed point and x′, then fx has an attractive fixed point at x
and a repulsive one at ψ(x′). This actually implies the non-Abelian cases of the
claim.

Consider the Abelian cases. Suppose that Tα is contained in G. Then Tnα ∈ G
for every n ∈ Z and f n := Fψ(Tnα) for some f ∈ Aut(X). The discussion above
shows that f n fixes ∞ and no other points. Since ψ is normalized, it follows that

f n(0) = ψ(nα), f n(1) = ψ((n + 1)α).

It is readily verified that this can happen if and only if f = Tψ(α). This implies
that if G is generated by T1, the group Fψ(G) is generated by T1 = Fψ(T1). If G
is generated by T1 and Tt, where t ∈H, then Fψ(G) is generated by T1 = Fψ(T1)
and Tψ(t) = Fψ(Tt). It is shown in Lemma 4.5.6 that ψ(t) ∈ H (independent
result).

If G is generated by gλ for λ > 1, then gµ = Fψ(gλ) for some µ > 1; the Möbius
transformation Fψ(gλ) has an attractive fixed point at ∞ and a repulsive one at 0,
therefore such a µ exists. Computing gµ = Fψ(gλ) at z = 1 shows that µ = ψ(λ).
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Part (b): First observe that Fψ′ = FC ◦ Fψ. Since Fψ(G) is a subgroup of Aut(X)
and C is a conformal map, it follows that Fψ′(G) is a subgroup of Aut(X) as well.

If fx and hx are as in the beginning of the proof of the first part and θx = Fψ′( fx),
the assumption on C shows that FC(hx) = θx. The claim follows from Part (a)
and Lemma 2.1.3.

Proposition 4.1.4:
Let X = Ĉ, C or H, and let H and G be subgroups of Aut(X). If F : H → G is a
group isomorphism, the subfamily of normalized K-quasiconformal maps from{

ψ ∈ FX | Fψ = F
}

is a normal family. In particular, the K-quasiconformal maps from FX form a
normal family.

Proof:
By considering the extensions of K-quasiconformal maps of FX, the normalicity
follows from Theorem 3.9.4 [1].

Proposition 4.1.5:
Suppose that X is Ĉ, C or H and G is a subgroup of Aut(X). Let (Hn, ψn) ∈
DefX(G) be a sequence of normalized K-quasiconformal maps such that

(
µψn

)∞
n=1

is a Cauchy sequence in L∞ (C).

Then the normalized solution ψ of the limit Beltrami differential µ of µψn is a
K-quasiconformal map, it is the locally uniform limit of ψn, kψ◦ψ−1

n
converges to

0 when n → ∞, and Fψ(G) is a standard covering group of X, i.e.
(

Fψ(G), ψ
)
∈

DefX(G).

Proof:
By extending ψn to the Riemann sphere, Lemma 3.4.5 shows the existence of ψ
and µ with the wanted properties. Proposition 4.1.4 shows that the limit is an
element of FX and Fψ(G) is a subgroup of Aut(X) as a corollary of Lemma 3.1.4
and Lemma 3.1.3. Since G is a standard covering group, Proposition 4.1.3 shows
that so is Fψ(G).

Proposition 4.1.6:
Let (H, ψ) and (H′, ψ′) be two normalized quasiconformal maps of DefX(G).
Then the maps ψ and ψ′ are homotopic via (Ht, ψt) ∈ DefX(G) such that ψ0 = ψ,
ψ1 = ψ′, and ψt are normalized quasiconformal maps.

The homotopy can be chosen in such a way that log Kψt◦ψ−1
s

= |t− s| log Kψ′◦ψ−1 ,
in addition to satisfying µψs◦ψ−1

t
→ 0 and µψt → µψs in L∞(X) as t→ s. Further-

more, the map (t, z) 7→ ψ−1
t (z) is a homotopy between ψ−1 and (ψ′)−1.
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Proof:
First consider the case ψ′ = idX and Fψ : G → H is an isomorphism. Consider
the Beltrami differential

µt =

(
1 +

∣∣µψ

∣∣)t − (1−
∣∣µψ

∣∣)t(
1 +

∣∣µψ

∣∣)t
+ (1−

∣∣µψ

∣∣)t

µψ∣∣µψ

∣∣ .
The expression is defined for almost every z ∈ X. The following expressions in
the proof are evaluated at some such point. The path t 7→ µt defines the constant
speed radial geodesic between 0 and µψ in the hyperbolic metric dD introduced
in Remark 3.3.5.

Let ψt ∈ FX denote the normalized solution to the Beltrami PDE µt given by
Theorem 3.4.7. The Beltrami differential of ψ is G-invariant since Fψ is an iso-
morphism, hence so is µt by construction. Lemma 3.1.4 shows that Ht := Fψt(G)
is a group of Möbius transformations and the normalicity of ψt and standard-
ness of G combined with Proposition 4.1.3 shows that Ht is a standard covering
group of X. Uniqueness of normalized solutions implies that idX = ψ0 and
ψ = ψ1. The chain rule of Beltrami differentials 3.1.3 implies that

dD

(
0, µψt◦ψ−1

s

)
= dD (µt, µs) = |t− s| dD

(
0, µψ

)
.

If s → t, Lemma 3.4.5 shows that ψs converges to ψt locally uniformly. The left-
hand side implies that ψt ◦ ψ−1

s converges to the identity locally uniformly as
|t− s| → 0. Also, by taking the essential supremum from both sides, it is readily
checked that

log Kψt◦ψ−1
s

= |t− s| log Kψ.

This shows that ψt ◦ ψ−1
s converges to the identity and ψs to ψt locally uniformly

as s → t. The map z 7→ ψ−1
t (z) is locally Hölder continuous, where the Hölder

exponent depends only on the supremum of Kψ−1
t
≤ Kψ (Corollary 3.10.3 of [1]).

As a consequence, the maps ψ−1
s converge to ψ−1

t locally uniformly as s → t.
The locally uniform convergences imply that the maps (t, z) 7→ ψ−1

t (z) and
(t, z) 7→ ψt(z) are continuous.

For the general case, let f = ψ′ ◦ ψ−1 and construct ft as above. Then ψt :=
ft ◦ ψ ∈ FX is a homotopy between ψ0 = ψ and ψ1 = ψ′. The map ψt satisfies
the desired properties.
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4.2 Deformation space of Riemann surfaces

Remark 4.2.1:
Let X = Ĉ, C or H. Then M ∈ RX refers to a Riemann surface admitting a
standard covering (X, πM), where πM extends to the ideal boundary I(GM) and
it is mapped to the ideal boundary ∂M of M – the group GM is the covering
group of πM. Furthermore, the covering map πM extends to a normal topolo-
gical covering map (X ∪ I(GM), πM) of M ∪ ∂M with the covering group GM.
The notations are introduced in Remark 3.5.1. Corollary 3.3.10 shows that if
φ : M→ N is a quasiconformal map, then N ∈ RX.

Definition 4.2.2 (Deformation space):
Let M ∈ RX. The collection Def(M), called the deformation space of M, denotes
the pairs (N, φ) where φ : M→ N is a quasiconformal map and N ∈ RX. Given
(M′, φ′) ∈ Def(M) and (N, φ) ∈ Def(M), then

(M′, φ′)# : Def(M)→ Def(M′), (N, φ) 7→ (N, φ ◦ (ψ′)−1).

The composition of (. . . )# is defined as in Definition 4.1.1.

Remark 4.2.3:
It is clear that the functions (M′, φ′)# are well-defined, the identity element is
the function defined by (M, idM), and every function (. . . )# is invertible.

Given a standard covering (X, πM) of M, the connection between DefX(GM)
and Def(M) is discussed in Remark 4.1.2. Even more can be said. If (H, ψ) ∈
DefX(GM), Corollary 3.3.7 shows that X/H ∈ RX, and Theorem 3.5.3 shows
that there exists a unique quasiconformal map (X/H, φ) ∈ Def(M) that is the
descension of ψ along πM and πX/H = µH. Theorem 3.5.3 shows that lifting and
descending quasiconformal maps does not change their maximal dilatations.

Remark 4.2.4:
Given a standard covering (X, πM) of M with a covering group GM, the pullback
π∗M, defined in Definition 3.2.8, induces a bijection from B(M) – the Beltrami
differentials of M – onto BX(GM), the GM-invariant Beltrami differentials of X
(Remark 3.5.5).

Let µ ∈ B(M) be a Beltrami differential on M and π∗M (µ) ∈ BX(GM). The
notation (Hµ, ψµ) ∈ DefX(GM) refers to the normalized quasiconformal map
ψµ ∈ FX such that µψµ = π∗M (µ), where the standard covering group Hµ is
equal to Fψµ(GM).

Then Nµ refers to the Riemann surface X/Hµ with standard covering (X, πNµ =

µHµ), and φµ : M → Nµ to the quasiconformal map solving the Beltrami PDE
defined by µ such that ψµ is its lift along πM and πNµ = µHµ . The existence of
these is established in Theorem 4.2.5.
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Theorem 4.2.5 shows that the maps µ 7→ π∗M (µ), µ 7→ (Hµ, ψµ), and µ 7→
(Nµ, φµ) are injective and well-defined. The idea of the next section is to define
appropriate equivalence relations on B(M), BX(GM), Def(M), and DefX(GM) to
make the above maps bijective modulo the equivalence relations, but still have
some meaningful structure on the spaces. Each of these spaces will highlight
different kind of properties of the same structure of interest.

Theorem 4.2.5 (Measurable Riemann mapping theorem):
Let µ be a Beltrami differential on M. Given a standard covering (X, πM) of
M, there exists a unique normalized quasiconformal map ψµ ∈ FX such that
π∗M(µ) = µψµ . Let Hµ := Fψµ(GM) and Nµ = X/Hµ.

Then Nµ is a Riemann surface, (X, µHµ) its standard cover, and there exists a
unique quasiconformal map (Nµ, φµ) ∈ Def(M) such that µ = µφµ , and φµ is the
descension of ψµ along πM and µHµ .

Let N′ be a Riemann surface and (X, πN′) its standard cover. Suppose that
(N′, φ′) ∈ Def(M), and (GN′ , ψ′) ∈ DefX(GM) is its lift along πM and πN′ . Then
µφ′ = µ if and only if (Nµ, φµ)#(N′, φ′) ∈ Def(Nµ) is a conformal map if and
only if (Hµ, ψµ)#(GN′ , ψ′) ∈ DefX(Hµ) is an element of Aut(X).

Proof:
Theorem 3.4.7 shows that there exists a unique ψµ ∈ FX such that µψµ = π∗M (µ).
Since π∗ (µ) is GM-invariant, Corollary 3.4.8 shows that Hµ := Fψµ(GM) defines
a subgroup of Aut(X). Proposition 4.1.3 says that it is a standard covering
group of M. Then Nµ := X/Hµ is a Riemann surface with a standard cover-
ing (X, πNµ := µHµ) as shown in Corollary 3.3.7. Theorem 3.5.3 implies the
existence of a unique quasiconformal (Nµ, φµ) ∈ Def(M) that is the descension
of ψµ along πM and πNµ . It is clear that µφµ = µ.

Suppose that (N′, φ′) ∈ Def(M) is a quasiconformal map. Let (X, πN′) be a
standard covering of N′. Then Theorem 3.5.3 shows that φ′ lifts to a quasicon-
formal map (GN′ , ψ′) ∈ DefX(GM), i.e. πN′ ◦ ψ′ = φ′ ◦ πM. Now µ = µφ′ if and
only if µψµ = µψ′ (bijectivity of π∗M) if and only if ψ′ ◦ (ψµ)−1 ∈ Aut(X) (The-
orem 3.4.7) if and only if φ′ ◦ φ−1

µ : Nµ → N′ is a conformal map (Theorem 3.5.3).
The claim follows.

Remark 4.2.6:
Let M and N be two Riemann surfaces of RX. If X = Ĉ or X = C, the ideal
boundaries of M and N are always empty. If X = H, the ideal boundary may or
may not be empty, see Remark 3.6.2. If the ideal boundary happens to be empty,
the following remarks have obvious interpretations.

Let φ : M → N be a quasiconformal map between Riemann surfaces, and let
(X, πM) and (X, πN) be standard covers of M and N, respectively. Suppose
that M and N have ideal boundaries ∂M and ∂N as discussed in Remark 3.3.11,
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and let ψ be a lift of φ along πM and πN. Then ψ extends to the boundary of ∂X
such that Fψ : GM → GN is an isomorphism, when GM and GN are considered
to be acting on X ∪ I(GM) and X ∪ I(GN), respectively. This is a consequence of
Corollary 3.4.8.

It is readily seen from the definition of the limit set (Remark 2.2.5) that if w ∈
L(GM), then ψ(w) ∈ L(GN) and ψ(L(GM)) = L(GN). Theorem 1.2.21 shows
that there exists a unique homeomorphism φ̃ : M ∪ ∂M → N ∪ ∂N that is a
descension of ψ along (the extensions of) πM and πN. As φ̃ agrees with φ in M,
the extension φ̃ maps ∂M homeomorphically onto ∂N. This yields the following
result.

Proposition 4.2.7:
Let (N, φ) ∈ Def(M) with ideal boundaries ∂M and ∂N, respectively. Then φ has
a unique continuous extension φ : M∪ ∂M→ N ∪ ∂N that is a homeomorphism.

Definition 4.2.8:
Let G ∈ GX be a standard covering group of X, and let (H, ψ) and (H, ψ′) be
two quasiconformal elements of DefX(G). Then (H, ψ) and (H, ψ′) are said to
be homotopic rel ∂X, if Fψ = Fψ′ : G → H in X ∪ I(G) and ψ = ψ′ in ∂X.

Let (N, φ) ∈ Def(M) be a quasiconformal map between Riemann surfaces. The
extension of φ refers to the unique continuous extension of φ to the ideal bound-
aries of ∂M and ∂N, respectively. As the extension is unique, φ will be identified
with its extension.

If (N, φ) and (N, φ′) are two quasiconformal maps in Def(N), they are said to
be homotopic rel ∂M, if there exists a homotopy ht : M∪ ∂M→ N ∪ ∂N between
φ and φ′ rel ∂M.

Remark 4.2.9:
The homotopy rel ∂X and homotopy ∂M defined above define equivalence re-
lations and it is straight-forwardly checked. The next result is the motivation
behind the definition of homotopy in DefX.

Proposition 4.2.10:
Suppose that (N, φ) and (N, φ′) are two quasiconformal maps of Def(M), and
let (X, πM) and (X, πN) be standard coverings of M and N, respectively. Let
(GN, ψ) ∈ DefX(GM) be a lift of φ along πM and πN. The following are equival-
ent:

(a) The maps (N, φ) and (N, φ′) are homotopic rel ∂M.

(b) There exists a lift (GN, ψ′) ∈ DefX(GM) of (N, φ′) such that (GN, ψ) and
(GN, ψ′) are homotopic rel ∂X.

If the lift exists, it is unique. If X = H, these are equivalent to
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(c) There exists a lift (GN, ψ′) ∈ DefX(GM) of (N, φ′) such that ψ′ = ψ in ∂X.

(d) There exists a lift (GN, ψ′) ∈ DefX(GM) of (N, φ′) and a homotopy (GN, ψt) ∈
DefX(GM) between (GN, ψ) and (GN, ψ′) rel ∂X.

(e) There exists a homotopy (N, φt) ∈ Def(M) rel ∂M between the maps
(N, φ) and (N, φ′).

If a lift (GN, ψ′) ∈ DefX(GM) satisfies any one of Part (b)-(d), it satisfies all
of them. Especially, the lift (GN, ψ′) satisfying any one of these properties is
unique.

Proof:
If X = Ĉ or C, the equivalence of Parts (a) and (b) follows from Theorem 3.5.3. It
also shows uniqueness. This means that it is sufficient to consider the case X =
H. It is clear that Part (d) implies Part (e) (Theorem 1.2.21 and Theorem 3.5.3).
The implications (e) ⇒ (a) and (b) ⇒ (c) are readily verified. This means that it
is sufficient to show that Part (a) implies Part (b) and Part (c) implies Part (d).

If φ and φ′ are homotopic rel ∂M, Theorem 1.2.21 shows that there exists a
unique lift ψ′ for which Fψ = Fψ′ : GM → GN in X ∪ I(GM), and the maps ψ and
ψ′ agree in I(GM). If L(GM) contains two or less points, the continuity of ψ and
ψ′ in ∂X implies that ψ = ψ′ in ∂X. If L(GM) contains more than two points, the
discussion in Remark 2.2.5 implies that it is infinite and it is equal to the closure
of the hyperbolic fixed points of ψ and ψ′. As Fψ = Fψ′ in X, Lemma 2.1.3 implies
that ψ and ψ′ agree on the hyperbolic fixed points of the elements of GM, hence
they agree in L(GM). Thus Part (a) implies Part (b).

Consider the implication Part (c) ⇒ Part (d). The idea of this proof comes ori-
ginally from [4]. There exists a conformal map (FC(GN), C) ∈ DefX(GN) so that
(FC(GN), C ◦ ψ) and (FC(GN), C ◦ ψ′) are normalized quasiconformal maps of
DefX(GM); this follows from Corollary 3.4.8 and the fact that ψ and ψ′ agree in
∂X. Let (Ht, ψ̃t) ∈ DefX(GM) be the homotopy between C ◦ ψ and C ◦ ψ′ given
by Proposition 4.1.6.

The homotopy ψ̃−1
t depends continuously on t, hence its restriction ψ̃−1

t to ∂X
is a continuous function of t. The restriction defines a continuous family of
quasisymmetric maps [17, Sections I.5.1-I.5.2]. The restriction of ψ̃−1

t to ∂X can
be extended to a normalized quasiconformal map ft of FX via the so-called
Douady-Earle extension [3]. The Douady-Earle extension ft has the following
properties: it is equal to (ψ̃t)−1 in ∂X; the extension depends continuously on
t; (GM, ft) ∈ DefX(Ht); the isomorphism Fft◦ψ̃t

is the identity isomorphism in
X∪ I(GM); ft ◦ ψ̃t is the identity when restricted to ∂X; and f0 = f1 as C ◦ψ = ψ̃0
and C ◦ ψ′ = ψ̃1 agree in ∂X.

The homotopy ψt defined by the formula C ◦ ψt = f−1
0 ◦ ft ◦ ψ̃t shows the last

implication. It is clear from the proof that if (GN, ψ′) ∈ DefX(GM) satisfies any
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of the properties discussed here, it satisfies all of them. The uniqueness of the
lift is a consequence of Theorem 1.2.21.

Corollary 4.2.11:
Let M and N be Riemann surfaces fromRX, (X, πM) and (X, πN) their standard
coverings, (N, φ) ∈ Def(M) quasiconformal, and a lift (GN, ψ) ∈ DefX(GM) of
(N, φ) along πM and πN.

Then there exists a quasiconformal map (N, φ′) ∈ Def(M) homotopic to (N, φ)
rel ∂N minimizing the maximal dilatation in the homotopy class of (N, φ). The
minimizer can be assumed to admit a lift (GN, ψ′) ∈ DefX(GM) such that ψ and
ψ′ are normalized by the same Möbius transformation h ∈ Aut(X) and (GN, ψ′)
minimizes the maximal dilatation in the rel-homotopy class of (N, φ).

Proof:
Let (GN, ψ) be a lift of (N, φ). Proposition 4.2.10 and Theorem 3.5.3 show
that there is a one-to-one correspondence between the quasiconformal maps
(GN, ψ′) ∈ DefX(GM) homotopic rel ∂X to (GN, ψ) and the quasiconformal
maps (N, φ) ∈ Def(M) homotopic to (N, φ) rel ∂M. The corresponce is given
by lifts and descensions, which leave the maximal dilatation invariant (The-
orem 3.5.3). This means that it is sufficient to find the minimizer in the rel-
homotopy class of (GN, ψ).

The claim can be reduced to the compactness result Proposition 4.1.4: Suppose
that (GN, ψ′) and (GN, ψ) are homotopic rel ∂X. This means that Fψ′ = Fψ in
X ∪ ∂X and ψ′ = ψ in ∂X. Corollary 3.4.8 shows the existence of C and h in
Aut(X) for which C ◦ ψ′ and h ◦ ψ are normalized quasiconformal maps. It is
readily checked using the properties of conjugations that

FC◦h−1 = F(C◦ψ′)◦(h◦ψ)−1

in X. Proposition 4.1.3 Part (a) shows that FC◦ψ′(GM) and Fh◦ψ(GM) are standard
covering groups of X and by Part (b), the conjugations FC◦ψ′ and Fh◦ψ agree in
X. Since Fψ′ = Fψ in X, it follows that FC = Fh in X.

If X = Ĉ or C, this is sufficient to conclude that (GN, h−1 ◦ (C ◦ψ′)) is homotopic
to (GN, ψ) rel ∂X (Proposition 4.2.10 Part (a)-Part (b)). If X = H, then ψ′ and
ψ are equal to one another in ∂X, hence C must be equal to h. This means that
(GN, h−1 ◦ (C ◦ ψ′)) is homotopic to (GN, ψ) rel ∂X in this case as well.

Since composing by a conformal map does not change maximal dilatations
(Lemma 3.1.3), this implies that to find the minimizer, it is sufficient to con-
sider quasiconformal maps (GN, ψ′) ∈ DefX(GM) homotopic rel ∂X to (GN, ψ)
that are normalized by the same conformal map as (GN, ψ).

A minimizer of the maximal dilatation of such a family exists due to Proposi-
tion 4.1.4, Theorem 3.5.3, and Proposition 4.2.10: given a sequence of quasicon-
formal maps approaching the infimum from above, the first claim shows that
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some subsequence of it converges to a quasiconformal map that induces the
same isomorphism between GM and GN in X. Theorem 3.5.3 shows that such a
map descends to a quasiconformal map between M and N. This suffices for the
cases X = Ĉ and C due to Proposition 4.2.10 Part (a) and Part (b) as ∂X is empty.
If X = H, then the restrictions of the minimizing sequence to ∂X are the same
maps ∂X, hence the limit is also the same map. Then Proposition 4.2.10 Part (c)
shows the desired result. The claim follows.

4.3 Teichmüller spaces

Remark 4.3.1:
Now there is enough theory developed to meaningfully study the structure on
Teichmüller spaces. The next definition gives four notions of equivalence rela-
tions, one for each of the following spaces: the deformation space DefX(G) of
a standard covering group, the deformation space Def(M) of a Riemann sur-
face, the Beltrami differentials B(M) on a Riemann surface, and the space of
G-invariant Beltrami differentials BX(G).

The notion of equivalence in Def(M) is the standard definition found in [17] and
[12], and in special cases in [13] and [5] (when the ideal boundary is empty). The
notion of equivalence in DefX(G) is motivated by Proposition 4.2.10. The idea
for the equivalence relation in B(M) arises from Theorem 4.2.5, and the notion of
equivalence in BX(G) is motivated by the bijectivity of the pullback map defined
by the standard covering maps as discussed in Remark 3.5.5.

Definition 4.3.2:
Equivalence relations:

(a) Let G ∈ GX and (H1, ψ1), (H2, ψ2) ∈ DefX(G). Then (H1, ψ1) ' (H2, ψ2)
if and only if there exists a conformal map (H1, C) ∈ DefX(H2) such that
(H1, C) is homotopic to (H1, ψ1)

# (H2, ψ2) rel ∂X. The equivalence classes
are denoted by [[(H1, ψ1)]]. The short-hand [[ψ1]] is also utilized at times.

(b) Let M ∈ RX and (N1, φ1), (N2, φ2) ∈ Def(M). Then (N1, φ1) ∼ (N2, φ2)
if and only if (N2, φ2)#(N1, φ1) is homotopic to a conformal map (N1, c) ∈
Def(N2) rel ∂N1. The equivalence classes are denoted by [(N1, φ1)], and
sometimes by [φ1].

(c) Two Beltrami differentials µ1 and µ2 of B(M) are equivalent under ∼B if
(Hµ1 , ψµ1) is homotopic to (Hµ2 , ψµ2) rel ∂X and (Nµ1 , φµ1) is homotopic
to (Nµ2 , φµ2) rel ∂M. The equivalence class of µ is denoted by [µ]B.

(d) Two G-invariant Beltrami differentials η1 and η2 of BX(G) are equivalent
(denoted by ∼BX ) if their inverse images under π∗X/G are equivalent ele-
ments of B(X/G). The equivalence class of η is [η]BX

.
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Remark 4.3.3:
The goal of this remark is to deduce that the relations are in fact equivalence
relations, and see how they are related to one another.

Let µ1, µ2 ∈ B(M) and assume that (Hµ1 , ψµ1) ' (Hµ2 , ψµ2). The idea is to
show that this is equivalent to (Nµ1 , φµ2) ∼ (Nµ2 , φµ2) and these are equivalent
to µ1 ∼B µ2. This will take a couple of steps and it will be useful in establishing
that ∼ and ' are equivalence relations.

The definition of ' implies that there exists a conformal map (Hµ2 , C) of the de-
formation space DefX(Hµ1) that is homotopic to (Hµ1 , ψµ1)# (Hµ2 , ψµ2) rel ∂X.
As (Hµ1 , ψµ1)# (Hµ2 , ψµ2) is a lift of

(
Nµ1 , φµ1

)
#

(
Nµ2 , φµ2

)
, Proposition 4.2.10

shows that the descension (Nµ2 , c) of (Hµ2 , C) – given by Theorem 1.2.21 – is
homotopic to

(
Nµ1 , φµ1

)
#

(
Nµ2 , φµ2

)
rel ∂Nµ1 . Theorem 3.5.3 shows that the re-

striction of (Nµ2 , c) to M is a conformal map onto N.

Conversely, if
(

Nµ1 , φµ1

)
#

(
Nµ2 , φµ2

)
is homotopic to a conformal map

(
Nµ2 , c

)
rel ∂Nµ1 , Proposition 4.2.10 shows that

(
Nµ2 , c

)
admits a lift (Hµ2 , C) ∈ DefX(Hµ1)

that is homotopic to (Hµ1 , ψµ1)# (Hµ2 , ψµ2) rel ∂X.

Proposition 4.1.3 implies that such a C can exists only if Hµ2 = Hµ1 , Fψµ1 = Fψµ2

in X, and Nµ2 = Nµ1 . If X = Ĉ or C, Proposition 4.1.3 shows that actually
(Hµ1 , ψµ1) is homotopic to (Hµ2 , ψµ2) rel ∂X. If X = H, the fact that ψµ1 and ψµ2

are normalized shows that C must fix 0, 1 and ∞ (Proposition 4.2.10 Part (c)). It
follows that C = idX, and (Hµ1 , ψµ1) is homotopic to (Hµ2 , ψµ2) rel ∂X in this
case as well. Proposition 4.2.10 shows that this happens if and only if

(
Nµ1 , φµ1

)
is homotopic to

(
Nµ2 , φµ2

)
rel ∂M. It follows that µ1 ∼B µ2. The goal of the

second paragraph is achieved.

If X = Ĉ or C, it is clear from Theorem 4.2.5 and Proposition 4.2.10 that (N1, φ1) ∼
(N2, φ2) if and only if

(Nµφ1
, φµφ1

) ∼ (Nµφ2
, φµφ2

)

(Hµφ1 , ψµφ1 ) ' (Hµφ2 , ψµφ2 ).

This happens if and only if µφ1 ∼B µφ2 as discussed before.

If X = H, then (N1, φ1) ∼ (N2, φ2) if only if given lifts (GN1 , ψ1) and (GN2 , ψ2)
of (N1, φ1) and (N2, φ2), respectively, there exists a conformal map C – a lift of
the conformal map given by the definition of ∼ – such that ψ2 = C ◦ ψ1 in ∂X
(Theorem 4.2.5 and Parts (a) and (c) of Proposition 4.2.10). Now

ψµφ2 =
(

ψµφ2 ◦ ψ−1
2 ◦ C

)
◦ ψ1

in ∂X. As the left-hand side fixes 0, 1, ∞ and ψµφ2 ◦ ψ−1
2 ◦ C is a Möbius trans-

formation of Aut(X), the uniqueness part of Corollary 3.4.8 shows that the right-
hand side must be equal to ψµφ1 . Proposition 4.2.10 and the beginning part of
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this remark imply that this happens if and only if µφ1 ∼B µφ2 . It follows that
(N1, φ1) ∼ (N2, φ2) if and only if µφ1 ∼B µφ2 .

To show that ' is an equivalence relation for an arbitrary standard covering
group G ∈ GX, just consider the Riemann surface M = X/G and the stand-
ard covering (X, µG). Then it can be checked that (H1, ψ1) ' (H2, ψ2) implies
that their descensions (X/H1, φ1) and (X/H2, φ2) are equivalent elements of
Def(X/G). The converse also holds as a consequence of Proposition 4.2.10. This
means that (H1, ψ1) ' (H2, ψ2) if and only if µφ1 ∼ µφ2 . Since being homotopic
is an equivalence relation, it is readily checked that ∼B defines an equivalence
relation. It follows that ∼B, ∼BX , ∼ and ' are equivalence relations. These
observations imply the next result.

Proposition 4.3.4:
Characterization of equivalence relations:

(a) Given a quasiconformal map (N, φ) ∈ Def(M), the map (Nµφ , φµφ)#(N, φ)
is conformal in Nµφ . In particular, (N, φ) ∼ (Nµφ , φµφ), and there ex-
ists a lift (GN, ψ) ∈ DefX(GM) of (N, φ) along πM and πN such that
(Hµφ , φµφ)#(GN, ψ) is a Möbius transformation of Aut(X), and (GN, ψ) '
(Hµφ , φµφ).

(b) Given two quasiconformal maps (N, φ) and (N′, φ′) of the deformation
space Def(M), then (N, φ) ∼ (N′, φ′) if and only if µφ1 ∼B µφ2 .

If X = H, then (N, φ) ∼ (N′, φ′) if and only if given a lift (GN, ψ) ∈
DefX(GM) of (N, φ), there exists a lift (GN′ , ψ′) ∈ DefX(GM) of (N′, φ′)
and a conformal map (GN′ , C) ∈ DefX(GN) such that C ◦ ψ = ψ′ in ∂X.

(c) The relations ∼B, ∼BX , ∼ and ' are equivalence relations.

Proposition 4.3.5 (Quasiconformal invariance):
Let (H, f ), (H′, f ′) ∈ DefX(G) and suppose that (F, ψ) and (F, ψ′) are homo-
topic quasiconformal maps of DefX(G) rel ∂X. Then [[H, f )]] = [[(H′, f ′)]] if
and only if [[

(F, ψ)#(H, f )
]]

=
[[
(F, ψ′)#(H′, f ′)

]]
.

Similarly, let (N, f ) and (N′, f ′) be two quasiconformal maps of Def(M). Sup-
pose that (M′, φ) and (M′, φ′) are two quasiconformal elements of Def(M) ho-
motopic rel ∂M. Then [(N, f )] = [(N′, f ′)] if and only if [(M′, φ)#(N, f )] =
[(M′, φ′)#(N′, f ′)].



65

Proof:
If X = Ĉ or C, this is just a direct computation from the definitions using the
given assumptions. If X = H, Proposition 4.3.4 and Proposition 4.2.10 imply the
claim.

Definition 4.3.6 (Teichmüller spaces):
Let G be a standard covering group of GX. The quotient BX(G)/∼X is called the
Teichmüller space of G-invariant Beltrami differentials and DefX(G)/' is called
the Teichmüller space of G. They are denoted by BX(G) and TX(G).

If M is a Riemann surface in RX, the quotients B(M)/∼ and Def(M)/∼ are
called the Teichmüller space of Beltrami differentials of M and the Teichmüller
space of M, and they are denoted by B(M) and T(M), respectively.

Theorem 4.3.7:
The maps π∗M : B(M) → BX(GM), where [µ]B 7→

[
π∗M(µ)

]
BX

, SM : B(M) →
TX(GM), where [µ]B 7→ [[(Hµ, ψµ)]], and PM : B(M) → T(M), where [µ]B 7→[
(Nµ, φµ)

]
are well-defined and bijective.

Proof:
The claim is clear from Remark 4.3.3, Proposition 4.3.4, and the bijectivity of
π∗M on the level Beltrami differentials B(M) of M and the GM-invariant Beltrami
differentials BX(GM) of X.

Definition 4.3.8:
The lift operator LM : T(M) → TX(GM) is defined as LM = SM ◦ P−1

M . The
descension operator DM : TX(GM)→ T(M) is defined by DM = (SM ◦ PM)−1.

Let (N, φ) ∈ Def(M). The map (N, φ)∗ : T(M)→ T(N) is defined by [(N′, φ′)] 7→
[(N, φ)#(N′, φ′)]. Furthermore, given (H, ψ) ∈ DefX(G), the map (H, ψ)∗ from
TX(G) to TX(H) is defined as[[

(H′, ψ′)
]]
7→
[[
(H, ψ)#(H′, ψ′)

]]
.

Let [µ] ∈ B(M) and η ∈ [µ]. Then [µ]∗ : TX(GM)→ TX(Hµ) is defined as

[[(H, ψ)]] 7→ (Hη, ψη)∗ [[(H, ψ)]] ,

and [µ]∗ : T(M)→ T(Nµ) is defined as [(N, φ)] 7→
(

Nη, φη

)
∗ [(N, φ)].
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Corollary 4.3.9:
The lift operator LM, descend operator DM, (N, φ)∗, (H, ψ)∗, and the maps
[µ]∗ : TX(GM) → TX(Hµ) and [µ]∗ : T(M) → T(X/Hµ) are well-defined and
bijective.

Proof:
The lift and descend operators are well-defined and bijective as compositions of
bijective maps. Furthermore, they are inverses of one another by construction.
Proposition 4.3.5 shows that the maps (N, φ)∗ and (H, ψ)∗ are well-defined. If
η ∈ [µ], then η ∼B µ by definition. Proposition 4.3.5 implies that the maps [µ]∗

and [µ]∗ are well-defined. The maps (H, ψ)# and (N, φ)# are invertible, therefore
the maps (. . . )∗, (. . . )∗, [µ]

∗, and [µ]∗ are invertible as well.

4.4 Teichmüller spaces as metric spaces

Remark 4.4.1:
If (L, l) is an element of DefX(G) or Def(M), the maximal dilatation of (L, l),
denoted by K(L, l) refers to the maximal dilatation Kl of l. At first, a distance
function will be defined for B(M) and some of its properties will be studied.
After that, a notion of distance for the Teichmüller spaces TX(G) and T(M) will
be introduced. After that the maps introduced in Corollary 4.3.9 will turn out to
be isometries.

Definition 4.4.2:
Given two Beltrami differentials [µ] and [µ′] of B(M), their distance is defined
as

dB(M)

(
[µ] ,

[
µ′
])

= inf
{

log K(Nη , φη) | η ∈ B(M),
[
(Nη, φη)

]
= [µ]∗ PM(

[
µ′
]
)
}

= inf
{

log K(Hη , ψη) | η ∈ B(M), [[(Hη, ψη)]] = [µ]∗ SM(
[
µ′
]
)
}

.

Remark 4.4.3:
The two distinct definitions of dB(M) require some unpacking. Let η ∈ B(M)

such that
[
(Nη, φη)

]
= [µ]∗ PM([µ′]). This equality shows that the equivalence

classes of (Nη, φη) and (Nµ′ , φµ′ ◦ (φµ)−1) are the same. This is equivalent to
stating that (Hη, ψη) and (Hµ′ , ψµ′ ◦ (ψµ)−1) are in the same equivalence class,
i.e. [[(Hη, ψη)]] = [µ]∗ SM([µ′]).

The latter one happens if and only if Hη = Hµ′ and (Hη, ψη) is homotopic
to (Hµ, ψµ)#(Hµ′ , ψµ′) rel ∂X. This happens if and only if Nη = Nµ′ and the
maps (Nη, φη) and (Nµ, φµ)#(Nµ′ , φµ′) are homotopic rel ∂Nµ. It follows that the
infimum is actually taken in the rel-homotopy classes of (Hµ, ψµ)#(Hµ′ , ψµ′) and



67

(Nµ, φµ)#(Nµ′ , φµ′), respectively. Theorem 3.5.3 shows that ψη and φη have the
same maximal dilatation, hence these two notions of distances in B(M) agree.

Proposition 4.4.4 (Extremal representatives):
Let M be a Riemann surface, and let µ and µ′ be two Beltrami differentials of
B(M). Then there exists a Beltrami differential η ∈ B(Nµ) such that

dB(M)

(
[µ] ,

[
µ′
])

= log K(Nη , φη) = log K(Hη , ψη),

where Nη = Nµ′ , Hη = Hµ′ , and the maps (Nη, φη) and (Nµ, φµ)#(Nµ′ , φµ′) are
homotopic rel ∂Nµ, and (Hη, ψη) is homotopic to (Hµ, ψµ)#(Hµ′ , ψµ′) rel ∂X.

Proof:
After the discussion in Remark 4.4.3, the claim follows from Corollary 4.2.11 and
the bijectivity of π∗Nµ

: B(Nµ)→ BX(Hµ).

Corollary 4.4.5:
The Teichmüller space of Beltrami differentials

(
B(M), dB(M)

)
is a metric space.

Proof:
The latter part of Lemma 3.1.4, i.e. the fact that Ka◦b ≤ KaKb for quasiconformal
maps, implies that dB(M) satisfies the triangle inequality. It also shows that
that the metric is symmetric. Proposition 4.4.4 shows that dB(M) is a distance:
The distance between two equivalence classes of Beltrami differentials [µ] and
[µ′] is zero if and only if the extremal representative (Hµ′ , ψη) ∈ DefX(Hµ) is
conformal. Since (Hµ′ , ψη) is normalized, this can be happen if and only if ψη

is the identity. It follows that [µ] and [µ′] are distance zero apart if and only if
(Hµ, ψµ) and (Hµ′ , ψµ′) are homotopic rel ∂X, i.e. [µ] = [µ′].

Definition 4.4.6 (Teichmuller metrics):
Let G be a standard covering group in GX. The map dTX(G) : TX(G)× TX(G) →
R∪ {∞} defined as(

[[ψ]] ,
[[

ψ′
]])
7→ inf

{
log K(H′, f ′)#(H, f ) | ((H, f ), (H′, f ′)) ∈ [[ψ]]×

[[
ψ′
]]}

is the Teichmüller distance between [[ψ]] and [[ψ′]].

Let M be a Riemann surface in RX. The map dT(M) : T(M)× T(M)→ R ∪ {∞}
defined as(

[φ] ,
[
φ′
])
7→ inf

{
log K(N′, f ′)#(N, f ) | ((N, f ), (N′, f ′)) ∈ [φ]×

[
φ′
]}

is the Teichmüller distance between the equivalence classes [φ] and [φ′].
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Remark 4.4.7:
The discussion in Remark 4.4.3 implies that

dT(M)

(
PM([µ]), PM(

[
µ′
]
)
)
≤ dB(M)

(
[µ] ,

[
µ′
])

dT(GM)

(
SM([µ]), SM(

[
µ′
]
)
)
≤ dB(M)

(
[µ] ,

[
µ′
])

.

The inequalities "≥" are corollaries of Remark 4.3.3 and Lemma 3.1.3: every
quasiconformal map of the deformation space DefX(GM) is of the form (Hµ, ψµ)
modulo a conformal map (similar result holds for (Nµ, φµ)). Then the inequality
"≥" follows from Lemma 3.1.3 – composing by conformal maps from left and
right leave maximal dilatations unchanged.

As PM and SM are bijective due to Theorem 4.3.7 and B(M) is a metric space as
shown in Corollary 4.4.5, it follows that dT(M) and dG define distance functions,
and that PM and SM are isometries.

Proposition 4.4.4 implies that the distance between two equivalence classes [[ψ]]
and [[ψ′]] of TX(G) is realized by a normalized quasiconformal map (Fψ′(G), f )
contained in DefX

(
Fψ(G)

)
. These observations, together with some corollaries,

are gathered to the next result.

Corollary 4.4.8:
The Teichmüller distances are distances and the maps

PM : B(M)→ T(M), SM : B(M)→ TX(M),
LM : T(M)→ TX(GM), DM : TX(GM)→ T(M),

and the maps (N, φ)∗ and (H, ψ)∗, together with [µ]∗ and [µ]∗ are isometries.
Furthermore, the Teichmüller spaces are complete and geodesic.

Proof:
The Teichmüller distances are distance functions due to Remark 4.4.7, therefore
it is sufficient to consider the rest of the claim. Consider the claim about the
isometries. The first two isometries follows from the discussion in Remark 4.4.7,
and the lift operator LM and the descension operator DM are isometries as com-
positions of isometries (Definition 4.3.8). The last four cases follow from Corol-
lary 4.3.9 and the observation that ( f ◦ g−1) ◦ (h ◦ g−1)−1 = f ◦ h−1.

As isometries preserve completeness and geodesics, it is sufficient to show that
TX(G) is complete and geodesic. Let [[ψn]] be a Cauchy sequence in TX(G).
It can be assumed without loss of generality that ψn ∈ FX is a normalized
quasiconformal map – every equivalence class has such a representative. For
every n, let fn ∈ FX such that (Ffn(G), fn) is homotopic to the quasiconformal
map (Fψn(G), ψn)#(Fψn+1(G), ψn+1) rel ∂X and

dTX(G) ([[ψn]] , [[ψn+1]]) = log K fn .
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By passing to a subsequence and reindexing, it can be assumed that k fn ≤ 2−n.
This implies that K fn ≤ 1 + 22−n. Let g1 = ψ1 and gn = fn−1 ◦ gn−1. Induction
shows that (Fgn(G), gn) is homotopic to (Fψn(G), ψn) rel ∂X. The sum over 22−k

is finite, therefore by induction and Lemma 3.1.4

Kgn ≤ Kψ1

∞

∏
k=1

K fk
≤ Kψ1

∞

∏
k=1

(
1 + 22−k

)
< ∞.

This means that K = sup Kgn is finite. The chain rule of Beltrami differentials
Lemma 3.1.3 implies that∥∥µgn+1 − µgn

∥∥
∞ =

∥∥1− µgn µgn+1

∥∥
∞

∥∥∥µgn+1◦g−1
n

∥∥∥
∞

≤ 2 ·
∥∥µ fn

∥∥
∞ ≤ 21−n.

As the sum ∑∞
n=1

∥∥µgn+1 − µgn

∥∥
∞ is finite, the sequence

{
µgn

}∞
n=1 is a Cauchy

sequence. Proposition 4.1.5 shows that there exists (Fg(G), g) ∈ DefX(G) with

dTX(G) ([[ψn]] , [[g]]) = dTX(G) ([[gn]] , [[g]]) ≤ log Kg◦g−1
n

= log
1 + kg◦g−1

n

1− kg◦g−1
n

→ log 1 = 0.

This means that [[g]] is the limit of the Cauchy sequence. It follows that the
Teichmüller space TX(G) is complete.

Consider the claim about TX(G) being geodesic. Since [[ ]]∗ are isometries,
it is sufficient to show that every point [[ψ′]] = [[(H′, ψ′)]] can be connected
to [[idX]] = [[(G, idX)]] via a geodesic. Let (H, ψ) ∈ DefX(G) be a normal-
ized quasiconformal map realizing the distance between [[ψ′]] and [[idX]]. Pro-
position 4.1.6 and reverse triangle inequality imply the claim: the homotopy
constructed in Proposition 4.1.6 is a unit speed geodesic between [[idX]] and
[[ψ′]].

Remark 4.4.9:
It is not clear from Proposition 4.4.4 when an extremal representative is unique.
Some clarification should be made. Uniqueness refers to the following property:
If the infimum in Proposition 4.4.4 is reached by η and η′ with η ∼B η′, then
η = η′. It is clear from the proof of Corollary 4.4.8 that uniqueness holds if and
only if the Teichmüller spaces are uniquely geodesic. Moreover, this is equivalent
to the statement that there exists a unique geodesic between the origin and any
other equivalence class. This is not true in general, extremal representatives need
not be unique, see [5, Example 8.1.3].

The uniqueness of extremal representatives can be established in several cases.
The proofs do not fit the scope of this work. However, here are some known
results: Uniqueness of extremal representatives can be established when the
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Teichmüller space is finite dimensional – see Theorem 8 of Section 6.7 and Sec-
tions 6.1-6.3 of [8]. This includes hyperbolic Riemann surfaces of finite analytic
type (g, n) for 3g − 3 + n > 0 and (g, n) = (0, 3) [8, Section 1.11]. It will be
shown in the next section that every such surface is quasiconformally equivalent
to every other one of the same type. This means that their Teichmüller spaces
are isometric.

The non-hyperbolic Riemann surfaces of finite analytic type will also be char-
acterized – the uniqueness of extremal representatives, in the sense above, also
holds. The uniqueness in the case g = 1 and n = 0 follows from the results
of [8, Section 2.2], specifically Theorem 2. It is also shown in some detail in
[17, Chapter V Section 6.4]. More on that in the next section. Uniqueness of
an extremal representative of an equivalence class can be established in a more
general setting as well, even if the Teichmüller space is not finite dimensional,
see Theorem 9 of Section 6.8 of [8].

4.5 Examples of Teichmüller spaces

Remark 4.5.1:
Corollary 4.4.8 shows that quasiconformally equivalent Riemann surfaces have
isometric Teichmüller spaces. This means that it is sufficient to characterize
Teichmüller spaces for a smaller class of Riemann surfaces. Additionally, Co-
rollary 4.4.8 gives a way to conclude when two Riemann surfaces cannot be
quasiconformally equivalent if their Teichmüller spaces is known. As discussed
in Remark 4.2.1, another way to see whether two Riemann surfaces can be
quasiconformally equivalent is to study their Gaussian curvature induced by
the natural structure as in Theorem 3.3.9; Corollary 3.3.10 shows that quasicon-
formal maps do not change the curvature of these structures.

By concentrating on the level of DefX, a necessary condition that two Riemann
surfaces can be quasiconformally equivalent is that their standard covering groups
are isomorphic, where the isomorphism maps parabolic elements to parabolic
elements and hyperbolic elements to hyperbolic elements (Theorem 3.5.3 and
Lemma 2.1.3). In particular, the ideal boundaries of the Riemann surfaces must
be homeomorphic on the level of I(GM) and ∂M; this follows from Proposi-
tion 4.2.7 and Proposition 1.2.17.

As an example, consider Riemann surfaces with cyclic non-trivial standard cov-
ering groups. There are essentially three different cases as shown in Remark 3.6.2.
First of all, if a Riemann surface is quasiconformally equivalent to the punctured
plane, its Gaussian curvature is zero, whereas the punctured disk and annuli
have negative curvature. Furthermore, the Riemann surfaces quasiconformally
equivalent to annuli have ideal boundary homeomorphic to a disjoint union of
circles, whereas the ideal boundary of surfaces quasiconformally equivalent to
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the punctured disk is homeomorphic to a circle. Thus there are (at least) three
families of conformal structures on a topological cylinder of dimension two.

A question arises whether two Riemann surfaces are quasiconformally equival-
ent if and only if they are conformally equivalent. If a Riemann surface has
a singleton Teichmüller space, the answer turns out to be yes as seen later in
this section. The "only if" direction does not hold – consider for example annuli
A(1, r) and A(1, r′) with r 6= r′. It is observed in the next subsection that any two
such annuli are quasiconformally equivalent, but two such annuli are conform-
ally equivalent if and only if r = r′. Furthermore, even though the Teichmüller
space of a punctured disk is non-trivial, any Riemann surface quasiconformally
equivalent to a punctured disk is conformally equivalent to it.

Another question arises whether two Riemann surfaces of finite analytic type
(g, n) and (g′, n′) are quasiconformally equivalent if and only if g = g′ and
n = n′. Neither direction is clear initially, but it turns out that both directions
hold. Some work needs to be done to show this. First some easier examples.

Simple examples

Lemma 4.5.2:
Let M be conformally equivalent to either Ĉ, C, or the punctured plane. Then
the Teichmüller space T(M) is a singleton.

Proof:
Let GM be the standard covering group of M. In the first two cases it is trivial
and in the last case it is generated by T1. Every equivalence class of TX(GM)
has a normalized representative, hence Proposition 4.1.3 shows that the nor-
malized representative induces an automorphism of GM, more specifically the
automorphism is equal to Fid. Thus the equivalence class contains id by Propos-
ition 4.3.4 and Proposition 4.1.3.

This means that for Ĉ, C, and the punctured plane, the Teichmüller space
TX(GM) is a singleton. Corollary 4.3.9 shows that TX(GM) and T(M) are biject-
ive, hence the claim follows.

Remark 4.5.3:
It is clear from the proof for the punctured plane and Proposition 4.1.3 that if M
is a Riemann surface that is quasiconformally equivalent to the punctured disk,
then M is actually conformally equivalent to it. This does not mean that the
Teichmüller space of a punctured disk is a singleton – the ideal boundary of the
punctured disk is not empty.



72

Remark 4.5.4:
Suppose that M is conformally equivalent to H. Then T(M) is isometric to
TH({idH}), which is bijective with the space of normalized quasisymmetric
maps of the extended real line: This is clear due to Proposition 4.2.10, the fact
that the restriction of a quasiconformal map ψ : H → H to the extended real
line defines a quasisymmetric map, every equivalence class of TH({idH}) is rep-
resented by a normalized quasiconformal map (Proposition 4.3.4), and every
normalized quasisymmetric map extends to a quasiconformal map ψ : H → H

via the Douady-Earle extension discussed in Proposition 4.2.10 and in [3].

The space TH({idH}) is called the universal Teichmüller space. It is clear that
whenever G ∈ GH is a standard covering group, the space TH (G) is a subset of
the universal Teichmüller space. In fact, it turns out that the inclusion map is a
topological embedding, but not an isometry in general as shown in Chapter III
Section 3 of [17].

Consider the following examples: If M = D \ {0}, every normalized quasisym-
metric map of the extended real line satisfying g(z + n) = g(z) + n for every
z ∈ R and n ∈ Z defines an equivalence class of T(GM) as a consequence of
Proposition 4.1.3. If g and g′ are two different normalized quasisymmetric maps
as above, they define distinct equivalence classes in the Teichmüller space of
T(GM). Furthermore, every equivalence class of T(GM) can be represented by
such a normalized quasisymmetric map.

For r, r′ ∈ (1, ∞), let ψr, r′(z) = |z|K−1 z with K =
log r′
log r . It is a normalized

quasiconformal map of FH and its maximal dilatation is max
{

K, K−1} [1, p.
29]. The discussion in Remark 3.6.2 implies that(

〈gλr′
〉 , ψr, r′

)
∈ DefH(〈gλr〉),

therefore the annuli A(1, r) and A(1, r′) are quasiconformally equivalent. The
quasiconformal map ψr, r′ is an extremal representative of its equivalence class
since every other quasiconformal map between A(1, r) and A(1, r′) has a bigger
maximal dilatation [5, Theorem 2.2.1].

Riemann surfaces of finite analytic type
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Remark 4.5.5:
The next topic is the Teichmüller space of tori of genus one. For t, t′ ∈ C \R, let
ut, t′(z) = λ (z + µz) be the unique R-linear map fixing 0, 1 and mapping t to t′.
The determinant of ut, t′ is |λ|2 (1− |µ|2). As {1, t} and {1, t′} are R-linear basis
of C, it follows that |λ| 6= 0 and |µ| 6= 1 as ut, t′ is invertible.

The map ut, t′ is sense-preserving if and only if |µ| < 1, which can be seen
by considering the sign of the determinant of ut, t′ . This is equivalent to the
inequality 0 < Im (t) Im (t′). A direct computation shows that the maximal
dilatation of ut, t′ satisfies log Kut, t′ = dD(0, µ) = dH(t, t′), where the distances
are as in Remark 3.3.5.

Lemma 4.5.6 (Existence of extremal maps between tori):
Let t ∈ H and ψ : C → C be a normalized quasiconformal map satisfying ψ ◦
Tn1+n2t = Tn1+n2t′ ◦ ψ. Then t′ = ψ(t) ∈H, Fut, t′ = Fψ, and Kut, t′ ≤ Kψ.

Proof:
Let ψ and u := ut, t′ be as in the claim. Define the set Qt := [0, 1] + t [0, 1]. As
u is R-linear, it is clear that Fψ = Fu. The periodicity of ψ and u combined with
the compactness of Qt implies that

L := ‖ψ− u‖∞,C = ‖ψ− u‖∞, Qt
< ∞.

Observe that ψ(t) = t′ follows from ψ(t) = ψ ◦ Tt(0) = Tt′ ◦ ψ(0) = t′. For
each k ∈ N define ψk(z) = ψ(kz)

k , and note that ψk ◦ Tn1+n2t = Tn1+n2t′ ◦ ψk and
µψk(z) is equal to µψ(kz). The first equality is a direct computation using the
corresponding assumption of ψ. The second one follows from Lemma 3.1.3 and
it implies Kψk = Kψ. The periodicity of ψ and u, in addition to u being R-linear,
implies that

‖ψk − u‖C, ∞ =
1
k
‖ψ− u‖Qt, ∞ =

L
k

.

The limit k → ∞ shows that ψk converge to u uniformly in C. This implies that
u is a quasiconformal map and Ku ≤ Kψ (Proposition 4.1.4). In particular, u is
orientation-preserving. Remark 4.5.5 shows that this is equivalent to t′ ∈H.

Remark 4.5.7:
As a reminder, the group G1, s refers to the group generated by the translations T1
and Ts. Since Remark 4.5.5 and Lemma 4.5.6 hold, it is clear that the Teichmüller
space TX(G1, t) (and T(X/G1, t)) is isometric to H for any t ∈ H as the maps
(G1, s′ , us, s′) ∈ DefX(G1, s) are normalized extremal representatives of their equi-
valence classes with maximal dilatations exp (dH(s, s′)), see Proposition 4.4.4.
The discussion in Remark 4.4.9 implies that it is the unique normalized extremal
representative of its equivalence class.



74

Every torus of genus one is quasiconformally equivalent to every other torus of
genus one. This follows from Remark 3.6.2 and the fact that ut, t′ is a quasicon-
formal map whenever t, t′ ∈ H. Furthermore, this holds true for every family
of Riemann surfaces studied so far. The examples include the non-hyperbolic
Riemann surfaces of finite analytic type (g, n).

Consider a Riemann surface of finite analytic type (g, n) (hyperbolic or non-
hyperbolic). It is readily seen that an orientation-preserving homeomorphism
between Riemann surfaces of type (g, n) and (g′, n′) extends to an orientation-
preserving homeomorphism between the compact Riemann surfaces of genus
g and g′ in such a way that g = g′ and n = n′. Such a homeomorphism is
homotopic to a diffeomorphism, where the homotopy can be taken to fix the
punctures n. The proof of the existence of such a diffeomorphism consists of the
following facts. The following gives a rough idea behind the proof.

Firstly, the Douabdy-Earle extension [3] shows that a homeomorphism mapping
the unit circle onto itself extends to a diffeomorphism of the disk onto itself.
This implies that a homeomorphism of the closed unit disk onto itself mapping
the unit circle onto itself is homotopic to a diffeomorphism where the homotopy
fixes the unit circle.

Secondly, given an orientation-preserving homeomorphism of the closed unit
disk onto itself which fixes the origin and is a diffeomorphism of the punctured
closed disk onto itself, there exists a diffeomorphism of the closed unit disk onto
itself agreeing with the original map at the origin and at the unit circle. The
maps are homotopic where the homotopy can be chosen in such a way that it
fixes the origin and the unit circle. Such a diffeomorphism can be constructed
using a slight modification of Alexander’s trick, where the modification uses
the fact that two orientation-preserving diffeomorphisms of the unit circle onto
itself are homotopic via ht, where the map t 7→ ht(z) is smooth and the maps
z 7→ ht(z) are orientation-preserving diffeomorphisms.

Given these two facts, the claim itself relies on covering the compact Riemann
surface of genus g with appropriate coordinate balls in two steps. Firstly, a
homotopy between the given homeomorphism and another homeomorphism
is constructed. The latter homeomorphism is a diffeomorphism outside the
n punctures and homotopic to the original homeomorphism in such a way
that the homotopy fixes the n punctures. This can be achieved using the first
fact. Secondly, given the newly-obtained homeomorphism, there exists a dif-
feomorphism that agrees with the new homeomorphism outside small neigh-
bourhoods of the punctures and a homotopy between these maps that fixes the
punctures. The diffeomorphism and the homotopy can be constructed using the
second fact. Then the original homeomorphism is homotopic to a diffeomorph-
ism, where the homotopy fixes the punctures. Since an orientation-preserving
diffeomorphism between compact Riemann surfaces is a quasiconformal map,
the claim is done.
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The claim of the third paragraph of this remark and the classification of compact
surfaces discussed in Remark 3.6.2 implies that two Riemann surfaces of (g, n =
0) and (g′, n′ = 0) are quasiconformally equivalent if only if the corresponding
compact Riemann surfaces of genus g and g′ are quasiconformally equivalent.
The same holds for n = n′ > 0: the case n = 0 = n′ implies that it is sufficient to
construct a quasiconformal map from a Riemann surface of genus g onto itself
mapping any given set of cardinality n to any other other set with the same
cardinality.

Fix a Riemann surface M of genus g and two sets P and Q with cardinality n > 0.
There are two cases. If g = 0, by taking advantage of Möbius transformations,
it is sufficient to show that there exists a normalized quasiconformal map of
the Riemann sphere mapping a set P ⊂ C of cardinality n to a set Q ⊂ C

with the same cardinality. If g > 0, by the classification of compact surfaces,
there exists a 4g-gon Ω that represents the Riemann surface of genus g in the
sense of classification of compact surfaces, see [14, Example 6.13]. It can be
assumed without loss of generality that the punctures P and Q are contained in
the interior of Ω. Then it is sufficient to show that there exists an orientation-
preserving homeomorphism mapping P onto Q and fixing the boundary of Ω.

These statements can be deduced from the following fact: given an open convex
subset Ω of C and two sets P and Q of cardinalities n contained in Ω, there
exists an orientation-preserving diffeomorphism mapping P to Q, the set Ω onto
itself, and fixing the complement of Ω. This can be shown using the theory of
smooth vector fields – the basic results of [15, Chapter 9] suffices. The idea is
illustrated in Figure 4.1: given two points z1 and z2, a set P contained in the
line between z1 and z2 positive distance apart from the endpoints, and a small
open neighbourhood U of the line [z1, z2], there exists an orientation-preserving
diffeomorphism mapping z1 to z2 which fixes the set P and the complement of
U.

Remark 4.5.8:
Remark 4.5.7 shows that two surfaces of a fixed type (g, n) are quasiconformally
equivalent if and only if the corresponding compact Riemann surfaces of genus
g are quasiconformally equivalent. In this case, their Teichmüller spaces are
isometric. The extremal representatives are of a very special form, which allows
the computation of the dimension of the Teichmüller space for these spaces. As
discussed in Remark 4.4.9, the Teichmüller spaces of such surfaces are uniquely
geodesic. It is shown in Section 6.7 of [8] that if 3g− 3+ n > 0 or (g, n) = (0, 3),
the Teichmüller space of a Riemann surface of type (g, n) is homeomorphic
to R6g−6+2n. If g = 0 and n < 3, then it was also already shown that the
Teichmüller space is a singleton. If g = 1 and n = 0, the Teichmüller space
is isometric to the hyperbolic plane. This means that the Teichmüller spaces of
Riemann surfaces of type (g, n) are characterized.

Theorem 3.3.3 shows that if (N, φ) ∈ Def(M), there exists a conformal structure
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z1 z2

P

(a) The starting setup.

z1 z2

P

(b) Flowing the set P vertically.

z1 z2

P

(c) Flowing the point z1 to z2 horizontally.

z1 z2

P

(d) Returning the set P to its original position.

Figure 4.1. Illustration of the discussion in Remark 4.5.7. Given two points
z1 and z2 from C, a set P contained in the open interval (z1, z2), and a small
neighbourhood U of the line segment [z1, z2], there exists an orientation-
preserving diffeomorphism mapping z1 to z2, fixing the set P, and equal to
the identity outside the complement of U.

on M that makes φ a conformal map and this structure is unique. The results of
this section show that for Riemann surfaces of finite analytic type (g, n), every
conformal structure on them is obtained this way. This is not true in general.
Consider for example topological cylinders (the punctured plane, annuli, and the
punctured disk), the topological disks (the Euclidean plane and the hyperbolic
plane), or a more exotic example 6.1.2 of [12], where a topological surface is
constructed which has uncountably many distinct families of quasiconformal
structures. This means that a topological surface can have different conformal
structures with wildly different Teichmüller spaces as seen readily from the case
of topological cylinders.
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