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ABSTRACT 
This article presents an ongoing investigation whose goal is to 

model perceived segmentation of music-induced bodily gestures. The 
investigation consists of three stages. The first stage is a database of 
multimodal recordings of people moving to music. The data of these 
recordings are video and motion-capture (acceleration and position at 
several points of the body). In the second stage the videos produced 
in the first stage are manually segmented. This is regarded as ground 
truth for the evaluation of the performance of an automatic gesture 
segmentation system developed in the third stage of the study. This 
system extracts kinetic features from motion-captured data. Then a 
novelty score is computed from the kinetic features. The peaks of the 
novelty score indicate segmentation boundaries. So far the kinetic 
features that have been evaluated are composed of only one 
windowed statistical function. None of them yields a reasonable 
similarity between computed and perceived boundaries. However, 
different functions of the kinetic features yield considerably similar 
results between perceived and computed boundaries at isolated 
regions of the data. This suggests that each of these functions 
performs best on a specific kind of gesture. Further work will 
consider evaluating kinetic features composed of combinations of 
functions. 

I. INTRODUCTION 
A. Background 

In line with the Embodied Music Cognition train of 
thought (Leman, 2008), it has been argued that a person’s 
spontaneous movement when listening to music can reflect 
the person’s perception of the music. Qualitative investigation 
has observed, for example, that music teachers explain 
musical sound with bodily movements, especially with their 
hands (Clayton & Leante, 2011). Quantitative investigation 
has shown that bodily movement induced by music relates to 
features of the music, such as periodicity and kinetic energy  
(Toiviainen, Luck & Thompson, 2010) or tonality 
(MacRitchie, Buck & Bailey, 2013). The correspondence 
between music and bodily movement has been studied under 
the term musical gesture (Schneider, 2010). It has been noted  
that human beings have a remarkable ability to perceive and 
understand musical gestures by visual observation  (Camurri 
& Moeslund, 2010). The first stage in perception of a gesture 
is the identification of when and where it starts and ends, a 
process called segmentation (Kahol, Tripathi & Panchanathan, 
2004). Further phenomenological inquiry has observed that 
musical gestures are perceived in different time scales and that 
the grouping of shorter-scale gestures into larger entities 
depends on musical structure, a phenomenon called co-
articulation (Godøy et al., 2016).  

Several studies have observed the relation between bodily 
movement of people making music and moving to music (e.g., 
dancing) using qualitative analysis of video recordings 
(Wanderley et al., 2005; King & Ginsborg, 2011; Luck, 2011; 
Clayton & Leante, 2011; Trevarthen, Delafield-Butt & 
Schögler, 2011). Because the careful observation of video is a 

time-consuming task, these studies have focused in a few 
examples. Therefore their results, while being important for 
advancing knowledge, are not appropriate for generalization. 
In contrast, a large-scale experimental investigation that could 
yield statistically relevant results, would take the effort of 
people watching many videos. These videos should show a 
range of individuals moving to different kinds of music. The 
observation of videos should include precise annotations of 
where gestures occur and a description of them. Such an 
endeavor appears to be prohibitive in terms of human 
resources.  Thus, it seems reasonable to automate the process, 
which requires first to model human perceived segmentation 
of gestures. 

B. Aim 
The purpose of this study is to model perceived 

segmentation of music-induced bodily movement. 

II. METHODS 
This section presents the three-stage methodology used in 

this investigation project. Data is periodically added and 
methods are refined as the investigation advances. What 
follows corresponds to the state of the project as of April, 
2017. 

A. Multimodal Database 

1) Aim. This stage of the investigation consists in 
collecting multimodal data, which allows to observe people’s 
spontaneous movement to music. The data modalities are: 

• Tri-axial position 
• Tri-axial acceleration 
• Video 

2) Participants. N = 12, of which 7 (58.3%) are female 
and 6 (41.7%) are male. Their range of ages is 23 to 53, 
median 33. All of them are either degree students, researchers 
or other staff at the University of Jyväskylä. None of them is 
associated with the Music, Art and Culture Studies department 
or with research in musicology. All participants sign a 
document giving consent to the use of recorded data for 
research and communication thereof, including audio and 
video recordings. 

3) Apparatus. Data is collected at the motion capture 
laboratory of the Music, Art and Culture Studies department 
of the University of Jyväskylä. The apparatus is composed by 
the following measurement processes: 

• Optical Motion Capture: An array of 8 Qualisys 
Oqus cameras track the position of reflective markers 
attached to a tight suit that the participant wears. 
Markers are placed on every articulation and ending 
point of limbs, as well as on the head. Optical motion 
capture data is recorded using the Qualisys Track 
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Manager software running in a personal computer. 
This system is syncronised to an SMPTE signal 
emitted by a second computer. Also the Qualisys 
system sends back a syncronisation audio signal to 
the second computer. 

• Tri-axial accelerometers: The participant wears a 
Thalmic Myo armband on one forearm beneath the 
motion capture suit. Also the participant holds a 
Nintendo Wii-remote (“wiimote”) controller with the 
hand of the arm that wears the Myo armband. Data 
from these devices are simultaneously recorded at a 
rate of 100 Hz in the second computer, using 
software made with the Pure Data programming 
environment (Puckette, 1997). This software also 
simultaneously records audio.  

• Audio: Stimuli is presented to the participant using 
two Genelec 8030-A studio loudspeakers with their 
base at 110 cm. from the floor. A microphone 
hanging from the ceiling is connected to the audio 
system of the second computer, which 
simultaneously records this audio stream (i.e., room 
audio) in one audio channel and the audio 
synchronization signal from the optical motion 
capture system in a second channel. The starting and 
ending of the audio recording is set to be at the same 
time of the accelerometer devices’ data recording. 
The audio signal is used later to set a common 
starting time for accelerometer, optical motion 
capture and room audio. 

• Video: Two small digital cameras (Vivitar DVR-786 
and Sony DSC-W610) on flexible portable tripods 
record video and room audio. They are placed 
together, pointing perpendicular to the wall. The 
room shape is a rectangle. The image shows the 
participant’s full-body against a white wall. 
Redundancy of video recordings serves as a backup 
strategy. Later the video stream is synchronized to 
the accelerometer and optical motion capture using 
the room audio. This method allows flexibility when 
positioning the cameras, opposed to having cameras 
fixed to the wall or mounted on cumbersome rigging. 

4) Stimuli. The list below shows the excerpts of music that 
have been used and a brief description that explains the 
choice. 

• “Bouzouki Hiphop” (Tetarto Hood, 2014) from the 
beginning to 45.7 s. with no fade-in or fade-out. This 
is Rembetiko instrumental music mixed with Hip-
hop bass and drums, published on the Internet by an 
independent artist. Tempo is 90 BPM and meter is 
4/4. All participants declared to not know this piece. 

• “Minuet in G Major” (Petzold, ca. 1725). MIDI 
rendition with piano sound, from beginning to end 
(104 bars, 93 s.) with no fade-in or fade-out. Tempo 
is ca. 128 BPM and meter is 3/4. All participants 
declared to know this piece. 

• “Ciguri” (Otondo, 2008) from 56 to 180 s. with fade-
out the last 5 s. This is an electroacoustic piece that 
has no perceivable beat that indicates tempo and that 
has “an insistent and virtually isochronic rapid 
percussion attack, together with one or more streams 
of sustained electroacoustic sound with somewhat 
clear pitch structure” (Olsen, Dean & Leung, 2016). 
All participants declared to not  know this piece. 

• “Stayin’ Alive” (Bee Gees, 1977) from the beginning 
to 108 s. with fade-out the last 2.3 s. Tempo is 104 
BPM and meter is 4/4. All participants declared to 
know this piece.  

5) Procedure. Data recording is done with one participant 
at a time. Participants are asked to move spontaneously to the 
stimulus when it starts sounding through the loudspeakers. 
They are not asked to dance as it was observed in pilot 
experiments that if they are asked to dance they feel inhibited 
because they are afraid to fail. This fear derives from the 
association of the word “dance” with movements that have to 
be done correctly, as inferred from participants’ accounts. 
However, if participants are asked to move to music this 
inhibition disappears. In fact, participants usually ask “Do I 
have to dance?”. When they do ask this question, they are 
explained that they can dance if they want, otherwise they can 
move freely. 

Each stimulus is presented twice. Participants are asked on 
the first presentation to move to the music without any 
constraint other than an area of approximately 9m2, which 
corresponds to the bounds of the Optical Motion Capture and 
Video Capture systems. The second time participants are 
asked to hold the Wii-mote with one hand and dance only 
with that arm (this arm is also wearing the Myo armband). In 
this condition participants are asked to remain at the center of 
the area facing to a corner of the room. This is done to get in 
the video recording the most complete visualization of the 
arm’s movement. In this condition participants are allowed to 
move the rest of the body naturally as long as the previous 
constraints are not violated. This procedure (called “trial”) is 
repeated for each stimulus.  

Stimuli are presented in the order of the list above (4. 
Stimuli). However, participants were told that the first 
stimulus (Bouzouki...) was just for practice. Indeed that trial 
was intended to be a practice so that the participant could get 
familiarity with the procedure. Still, data for this stimulus is 
recorded and kept. Participants are allowed to rest as much as 
needed between trials.  

B. Ground Truth 

1) Aims. In this stage the videos from the Multimodal 
Database are manually segmented in two conditions. In each 
condition the time location of segmentation boundaries is 
recorded. This task is called annotation. 

• Real-time annotation: Videos with their 
corresponding audio are segmented as they are 
watched.  
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• Non-real-time annotation: Videos without audio are 
segmented as they are watched, with the option of 
scrolling back and forth to refine the annotation. 

2) Participants and Stimuli. Participants of this experiment 
are called annotators, to differentiate them from the 
participants in data collection for the Multimodal Database. 
So far two annotators have performed only the Non-real-time 
task upon the video corresponding to single-arm movement to 
the “Stayin’ Alive” stimulus. These annotators are doctoral 
students of musicology, one of them the first author of this 
article. This data has been regarded as preliminary. 

3) Apparatus.  

• Real-time annotation: A personal computer running a 
custom-made piece of software made with the Pure 
Data programming environment, which 
automatically presents the video and records the 
elapsed time when depressing a key of the 
computer’s keyboard. These times are recorded in a 
comma-separated-values text file. 

• Non-real-time annotation: A personal computer 
running the Reaper digital audio editing software 
(Cockos Reaper, 2010). This system allows video 
playback at different speeds, scrolling through the 
video and accurately placing markers, which can be 
assigned different colors. These markers are exported 
as a comma-separated-values text file. 

4) Procedure. 

• Real-time annotation: The participant is presented 
with a video of the Multimodal Database and asked 
to depress a key when noticing “a change of 
movement”. This wording is meant to indicate a 
change in bodily gesture without giving an extensive 
explanation of the concept. 

• Non-real-time annotation: The participant is asked to 
place markers where there is a change of movement. 
Additionally, the participant is asked to group the 
annotated markers into larger structures, without 
further explanation of what this means.  To indicate 
the boundaries of these bigger structures a new set of 
markers is placed on top of the existing ones, with a 
different colour. 

5) Data Analysis. Responses by all participants are 
summarized into a single compound response for each 
condition. This is done using Kernel Density Estimation, 
which produces a curve of density. The peaks of this curve, 
over a threshold, indicate the segmentation boundaries of the 
annotators as a group. Additionally, the digital audio file of 
the corresponding stimulus is segmented using Music 
Information Retrieval techniques (Lartillot, Toiviainen & 
Eerola, 2008). 

C. Automation 

1) Aim. In this stage an automated system is developed 
with the goal of predicting human perceived boundaries. The 
system takes as input the accelerometer or optical motion-

capture data from the Multimodal Database. Performance of 
the system is assessed by comparing its output with the 
corresponding annotations obtained in the Ground Truth 
stage. The main challenge is to find an appropriate 
combination of kinetic features and their parameters that are 
consistent and distinct for each gesture.  

2) Procedure. For now only accelerometer data from the 
Wii-mote is being considered. This means that data consists of 
tri-axial acceleration of a single moving point. This is a 
starting point and it is thought that the same method could be 
applied for data of any of the optical-motion-capture markers 
individually or in combination.  The core of the system was 
developed by Foote and Cooper (2003) for media 
segmentation. This method has been adapted and expanded to 
be used in this investigation for the segmentation of kinetic 
data. The procedure involves the choice of multiple free 
variables, which determine the system’s performance. In its 
current state of development, the procedure is as follows: 

• Downsample raw acceleration data from 100 Hz to 
10 Hz. This sampling rate is enough to achieve 
satisfactory results at a lower computational cost than 
using full resolution.  

• Compute magnitude (Euclidean norm). This is a free 
variable, here called “Input Data Type”, as either the 
tri-axial acceleration signal or its magnitude may be 
used as input for the next step. 

• Compute windowed functions. A set of statistical 
functions is computed individually over a sliding 
window with hop of a single sample. The functions 
currently used are a subset of functions evaluated by 
previous investigation on medical surveying of 
physical activity using accelerometers (Lara, & 
Labrador, 2013; Machado et al., 2015). To minimize 
distortion at the borders, the signals are extended at 
the beginning with the value of the first sample and 
at the ending with the value of the last sample. The 
length of each of these extensions is half of the 
sliding window. The width of the window is a free 
variable. Also the choice of functions is a free 
variable.  

The functions currently used are the following: 

○ kurtosis 
○ skewness 
○ mean 
○ root mean square 
○ standard deviation 
○ mean absolute deviation 
○ interquartile range 
○ centered zero-crossings count 

• Convolve the output of the previous step with a 
Gaussian kernel and rescale to a range between 0 and 
1. The same extension procedure of the previous step 
is applied to the input of this step before convolution. 
The window of the kernel is a free variable. If the 
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window length is set to zero, then convolution is not 
done but only rescaling. 

• Compute a distance matrix of a single function or 
combined functions. Here the outputs of one or more 
functions are dimensions of a matrix. Euclidean 
distance between each point with all the other points 
is computed to obtain the distance matrix. 
Additionally, for each function output there is a 
scaling factor 𝐶 0 < 𝐶 ≤ 1 , which determines the 
contribution (i.e., “weight”) of a function to the 
computed distances. 

• Compute a Novelty Score by convolving a Gaussian-
smoothed Checkerboard Kernel with volume V=1, 
along the diagonal of the distance matrix. Before 
performing the convolution, the matrix is extended to 
half the length of the kernel. The extension section at 
the beginning is set to the mean value of the section 
of the kernel that is in the non-extended distance 
matrix. The same procedure is done at the ending. 
These extensions with mean values help to reduce 
the distortion at the beginning and ending.  Here the 
free variable is the length of the kernel. 

• Extract peaks from the novelty score over a 
threshold. Here the free variable is the factor of the 
threshold 𝑇 0 < 𝑇 ≤ 1 . These peaks indicate the 
computed segmentation boundaries. 

 
Computed segmentation boundaries are then compared 

with perceived segmentation boundaries (i.e., ground truth) of 
the corresponding videos, by means of a similarity measure. 
An earlier version of this measure was used to assess 
similarity of computed and perceived segmentation 
boundaries of electroacoustic music (Mendoza, 2014). In this 
study an updated version is used, which is computed as 
follows:  

• a and b are vectors containing indexes (i.e., time 
location) of segmentation boundaries, at the 
downsampled rate. One of them contains perceived 
boundaries (ground truth) and the other contains 
computed boundaries (novelty peaks). 

• L is the length of the downsampled data. La=Lb  

• N is the amount of indexes. Na≥Nb  

• Compute a distance matrix Mjk of vectors a and b: 
𝑀𝑗𝑘 =  𝑎𝑗 − 𝑏𝑘  

• Find the minima (m) of rows (r) and columns (c): 

 𝑚𝑟(𝑗)  =argmin𝑀𝑗𝑘  𝑘 ∈ 1, 𝑛  
𝑚𝑐(𝑘)  =argmin𝑀𝑗𝑘  𝑗 ∈ 1, 𝑛  

The values of a and b at the intersection minima 
become vectors a’ and b’, the closest paired 
elements from a and b. 

• Find the mean distance 𝑑 from the intersection of 
minima: 

 𝑑(𝑎, 𝑏)  = mean( 𝑚𝑟  ∩  𝑚𝑐) 

• Compute average closeness (c) of paired elements: 
 𝑐 = 1 − 𝑑

𝐿
 

• Compute fraction of paired elements: 
 𝑓 𝑎, 𝑏 =  𝑁∗

!!!
 

N* is the least amount of unique elements and 𝑁′′is 
the largest amount of unique elements, in either 
vector a’ or b’. 

• Compute similarity (S): 
𝑆(𝑎, 𝑏)  =  𝑐 ⋅ 𝑓 

 
This measure is used because it gives a single value that 

encompasses the hit and misses given by the fraction of paired 
elements and closeness of those elements. In the context of 
this study these elements are the time locations of 
segmentation boundaries. In this way it is not necessary to 
specify a vicinity of annotated boundaries in which a 
computed boundary has to be to be considered a match, as is 
the case of the method used by the MIREX structural 
segmentation evaluation (MIREX Structural Segmentation, 
2016; Turnbull et al., 2007; Levy & Sandler, 2008). The 
MIREX 2016 structural segmentation evaluation considered a 
vicinity of 0.5 s. This is problematic as the transition from one 
gesture to another might take different times at different time-
scales. Therefore the vicinity should be adjusted to those 
transition times. It is not clear how this can be done, so the 
similarity measure described above avoids the problem. 
However, it has the disadvantage that a visual comparison of 
very high values of S (e.g., over 0.8) might not appear to be 
reasonably similar and a very small difference in S might be 
visually perceived as a considerably different. This drawback 
is only a perceptual scaling problem that does not affect the 
computational effectiveness of the similarity measure. The 
selection of features (i.e., combinations of free variables) that 
yield results most similar to the ground truth is an 
optimization problem in a highly dimensional space. The 
amount of possible combinations is astronomical and an 
extensive search (i.e., by brute force) for the highest S value is 
therefore impractical. To overcome this difficulty, the solution 
space is explored by brute-force with constraints that reduce 
the fee-variable space. Then the computed boundaries that 

have highest similarity with ground truth are manually 
inspected to find constraints that would facilitate the search by 
a genetic algorithm. A mixed-integer constrained genetic 
algorithm has previously been used for a similar problem by 
an investigation oriented to find the audio features that yield a 
novelty score that has highest correlation with Kernel Density 
Estimation of perceived audio segmentation (Hartmann, 
Lartillot & Toiviainen, 2016). 

III. RESULTS 
Data collected so far for the ground truth has been deemed 

not enough to make the analysis that compares real-time 
perceived segmentation, non-real-time perceived 
segmentation and computed audio segmentation. Nonetheless, 
the available non-real-time grouped annotated boundaries of 
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single-arm gestures have been used as ground truth in the 
development of the automated segmentation procedure. A 
brute-force search was done for the highest similarity values 
between annotated boundaries given by each annotator 
(ground truth) and computed   boundaries, for isolated time 
regions of the stimulus.   This   search   consisted   of   4900 
sequences of computed boundaries, produced with single 
(non-combined) functions and permutations of free variables 
having the constraints shown in Table 1. 

 
 
 

Table 1. Free variables used in the constrained brute-force 
search. 

FREE VARIABLES VALUES 

Input Data Type {Tri-axial Acceleration,  
Acceleration Magnitude} 

Function Window Size 
(samples) {10,20,..,60} 

Gaussian Filter Window 
Size (samples)  {5,10,15,..,60} 

Gaussian Checkerboard 
Kernel Size (samples) {200,300,...,600} 

Peak Threshold Factor {0.1,0.2,...,1} 

 
CONSTRAINED BRUTE FORCE SEARCH 

HIGHEST SIMILARITY (S) BETWEEN GROUND TRUTH AND COMPUTED SEGMENTATION BOUNDARIES 
PARTICIPANT 1 - STAYIN’ ALIVE - SINGLE-ARM 

 
Figure 1. The top panel shows perceived segmentation boundaries (ground truth). The panels below it show the computed 
segmentation boundaries and novelty scores that have highest similarity with ground truth, at the non-shaded regions. 
Visual inspection of the computed boundaries that have 

highest similarity with the perceived boundaries reveals that 
while some boundaries are remarkably close, there are some 
computed boundaries that do not have any matching annotated 
boundary or are too far to be considered as matching. 
However, considering only isolated regions it is possible to 
observe remarkable closeness between perceived and 
computed boundaries, only within those regions. Figure 1 
shows the highest similarity values within regions, compared 
to the annotation of perceived boundaries provided by one 
annotator (i.e., ground  truth). 

IV. CONCLUSIONS 
This article has presented an ongoing investigation project 

towards the modeling of perceived segmentation boundaries 
of bodily gestures induced by music. Preliminary results have 
been obtained to predict perceived segmentation of the 
movement of a person’s arm moving to a stimulus (a section 
of the song Stayin’Alive). Windowed statistical functions 

were applied to tri-axial accelerometer data from a sensor held 
by the hand of the moving arm. The functions kurtosis, 
skewness, interquartile range and root mean square returned 
very close segmentation boundaries compared to perceived 
boundaries, considering specific regions of the stimulus. 
However, no function returned a sequence of boundaries 
reasonably close to the perceived boundaries considering the 
full length of the stimulus. 

Further work in this project will focus in finding an 
appropriate combination functions and their parameters that 
yield computed boundaries reasonably similar to perceived 
boundaries. Also the collection of more multimodal and 
perceptual data will contribute to improve the automated 
system’s performance.  

The resulting model shall predict bodily gesture 
boundaries with data from a single point of the body. 
Nevertheless, the procedure could be used to process multiple 
points. This system can be combined with an unsupervised 
machine-learning technique that clusters the segments, 
completing an automatic unsupervised system for automatic 
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gesture recognition. Such a system will be useful for studying 
relationships between musical sound and bodily movement 
Furthermore, a real-time implementation of this system could 
be integrated into the design of electronic musical 
instruments, as a high-level feature for mapping movement to 
sound. Overall, this automated system provides a cost-
effective solution as it can take advantage of cheap 
accelerometer sensors and computing technology. 

REFERENCES 
Bee Gees (1977). Stayin' Alive. On Saturday Night Fever, The 

Original Movie Soundtrack. RSO. 
Clayton, M., & Leante, L. (2011). Imagery, melody and gesture in 

cross-cultural perspective. In A. Gritten & E. King (Eds.), New 
Perspectives on Music and Gesture, 203. Farnham, England: 
Ashgate. 

Cockos Reaper [Computer software] (2010). Retrieved from 
http://www.cockos.com/reaper 

Foote, J. T., & Cooper, M. L. (2003). Media segmentation using self-
similarity decomposition. In Electronic Imaging 2003 (pp. 167-
175). International Society for Optics and Photonics. 

Godøy, R. I., Song, M., Nymoen, K., Haugen, M. R., & Jensenius, A. 
R. (2016). Exploring Sound-Motion Similarity in Musical 
Experience. Journal of New Music Research, 45(3), 210-222. 

Hartmann, M., Lartillot, O., & Toiviainen, P. (2016). Interaction 
features for prediction of perceptual segmentation: Effects of 
musicianship and experimental task. Journal of New Music 
Research, 1-19. 

Kahol, K., Tripathi, P., & Panchanathan, S. (2004). Automated 
gesture segmentation from dance sequences. In Sixth IEEE 
International Conference on Automatic Face and Gesture 
Recognition, 2004 Proceedings. (pp. 883-888). IEEE. 

King, E., & Ginsborg, J. (2011). Gestures and glances: Interactions 
in ensemble rehearsal. In A. Gritten & E. King (Eds.), New 
Perspectives on Music and Gesture, 177-201. Farnham, England: 
Ashgate. 

Lara, O. D., & Labrador, M. A. (2013). A survey on human activity 
recognition using wearable sensors. IEEE Communications 
Surveys and Tutorials, 15(3), 1192-1209. 

Lartillot, O., Toiviainen, P., & Eerola, T. (2008). A matlab toolbox 
for music information retrieval. In C. Preisach, H. Burkhardt, L. 
Schmidt-Thieme, & R. Decker (Eds.), Data analysis, Machine 
Learning and Applications (pp. 261-268). Berlin, Heidelberg: 
Springer. 

Leman, M. (2008). Embodied Music Cognition and Mediation 
Technology. Cambridge, MA: MIT Press. 

Levy, M., & Sandler, M. (2008). Structural segmentation of musical 
audio by constrained clustering. IEEE Transactions on Audio, 
Speech, and Language Processing, 16(2), 318-326. 

Luck, G. (2011). Computational analysis of conductors’ temporal 
gestures.  In A. Gritten & E. King (Eds.), New Perspectives on 
Music and Gesture (159). Farnham, England: Ashgate. 

Machado, I. P., Gomes, A. L., Gamboa, H., Paixão, V., & Costa, R. 
M. (2015). Human activity data discovery from triaxial 
accelerometer sensor: Non-supervised learning sensitivity to 
feature extraction parametrization. Information Processing & 
Management, 51(2), 204-214. 

MacRitchie, J., Buck, B., & Bailey, N. J. (2013). Inferring musical 
structure through bodily gestures. Musicae Scientiae, 17(1), 86-
108. 

Mendoza, J. I. (2014). Self-report Measurement of Segmentation, 
Mimesis and Perceived Emotions in Acousmatic Electroacoustic 
Music. Master’s Thesis. University of Jyväskylä. Retrieved from  
http://urn.fi/URN:NBN:fi:jyu-201406192112 

MIREX Structural Segmentation (2016). Retrieved from 
http://www.music-
ir.org/mirex/wiki/2016:Structural_Segmentation 

Otondo, F. (2008). Ciguri. On Tutuguri. Sargasso. 
Olsen, K. N., Dean, R. T., & Leung, Y. (2016). What constitutes a 

phrase in sound-based music? A mixed-methods investigation of 
perception and acoustics. PloS One, 11(12): e0167643.  

Petzold, C. (ca. 1725). Minuet from The Anna Magdalena Bach 
Notebook, Anh. 114. 

Puckette, M. (1997). Pure Data. International Computer Music 
Conference. Thessaloniki, Greece: Michigan Publishing 

Schneider, A. (2010). Music and gestures. In R. I. Godøy & M. 
Leman (Eds.), Musical Gestures: Sound, Movement, and 
Meaning. London: Routledge. 

Tetarto Hood (2014). Bouzouki Hiphop Instrumental - Rempetila. 
Retrieved on the 23 August of 2016 from 
https://www.youtube.com/watch?v=mMWMS6VqXTg 

Toiviainen, P., Luck, G., & Thompson, M. R. (2010). Embodied 
meter: Hierarchical eigenmodes in music-induced movement. 
Music Perception, 28(1), 59-70. 

Trevarthen, C., Delafield-Butt, J., & Schögler, B. (2011). 
Psychobiology of musical gesture: Innate rhythm, harmony and 
melody. In A. Gritten & E. King (Eds.), New Perspectives on 
Music and Gesture, 11-43. Farnham, England: Ashgate. 

Turnbull, D., Lanckriet, G. R., Pampalk, E., & Goto, M. (2007, 
September). A Supervised Approach for Detecting Boundaries in 
Music Using Difference Features and Boosting. In ISMIR (pp. 
51-54). 

Wanderley, M. M., Vines, B. W., Middleton, N., McKay, C., & 
Hatch, W. (2005). The musical significance of clarinetists' 
ancillary gestures: An exploration of the field. Journal of New 
Music Research, 34(1), 97-113. 



Proceedings of the 25th Anniversary Conference of the European Society for the Cognitive Sciences of Music, 31 July-4 August 2017, Ghent, Belgium 
Van Dyck, E. (Editor) 

 

 134 

 


