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Abstract

Electronic excitations can be efficiently analyzed in terms of the underlying Kohn–

Sham (KS) electron-hole transitions. While such a decomposition is readily available

in the linear-response time-dependent density-functional theory (TDDFT) approaches

based on the Casida equations, a comparable analysis is less commonly conducted

within the real-time-propagation TDDFT (RT-TDDFT). To improve this situation, we

present here an implementation of a KS decomposition tool within the local-basis-set

RT-TDDFT code in the free GPAW package. Our implementation is based on post-

processing of data that is readily available during time propagation, which is impor-
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tant for retaining the efficiency of the underlying RT-TDDFT to large systems. After

benchmarking our implementation on small benzene derivatives by explicitly recon-

structing the Casida eigenvectors from RT-TDDFT, we demonstrate the performance

of the method by analyzing the plasmon resonances of icosahedral silver nanoparticles

up to Ag561. The method provides a clear description of the splitting of the plasmon in

small nanoparticles due to individual single-electron transitions as well as the formation

of a distinct d-electron-screened plasmon resonance in larger nanoparticles.

1 Introduction

Time-dependent density-functional theory (TDDFT)1 built on top of Kohn–Sham (KS)

density-functional theory (DFT)2,3 is a powerful tool in computational physics and chem-

istry for accessing the optical properties of matter.4,5 Starting from seminal works on jellium

nanoparticles,6–8 TDDFT has become a standard tool for modeling plasmonic response from

a quantum-mechanical perspective,9,10 and proven to be useful for calculating the response

of individual nanoparticles,11–21 and their compounds22–32 as well as other plasmonic ma-

terials.33–36 Additionally, a number of models and concepts have been developed for quan-

tifying and understanding plasmonic character within the TDDFT framework.37–48 Thus,

in conjunction with other theoretical and computational methods49–56 and experimental de-

velopments,57–68 TDDFT is a valuable tool for understanding quantum effects within the

nanoplasmonics field.69,70 Recent methodological advances and a steady increase in com-

putational power have extended the system size that can be treated at the TDDFT level,

enabling the computational modeling of plasmonic phenomena in noble metal nanoparticles

of several nanometers in diameter.71–75

TDDFT in the linear-response regime is often formulated in frequency space76,77 in terms

of the Casida matrix expressed in the Kohn–Sham electron-hole space.76,78 The calculations

are commonly performed by diagonalizing the Casida matrix directly or by solving the equiv-

alent problem with different iterative subspace algorithms.79–82 The real-time-propagation
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formulation of TDDFT (RT-TDDFT)83,84 is a computationally efficient alternative with

favorable scaling with respect to system size,85 and it is furthermore applicable to the non-

linear regime.

The Casida approach directly enables a decomposition of the electronic excitations into

the underlying KS electron-hole transitions, which readily yields quantum-mechanical under-

standing of the plasmonic response.39–44,73,74,86,87 By contrast, RT-TDDFT results are often

limited to absorption spectra or the analysis of induced densities or fields. Accordingly the

lack of KS decomposition tools has been identified as a limitation of RT-TDDFT imple-

mentations.73,74,85,88 While RT-TDDFT results can be analyzed, for example, by fitting KS

transition densities to induced densities89 or by considering time-dependent transition coeffi-

cients45–47,90–92 or occupation numbers,93–96 a natural way for obtaining a KS decomposition

is to consider the full time-dependent Kohn–Sham density matrix in the KS electron-hole

space.97,98 Although such analysis in terms of KS transition coefficients arises naturally in the

linear-response TDDFT, spatial analyses of the contributions can also be useful for obtaining

complementary information.99–101

In this work, we present an implementation of a KS decomposition tool based on the

RT-TDDFT code72 that is available in the free gpaw package.102–104 The underlying RT-

TDDFT code uses the linear combination of atomic orbitals (LCAO) method105 and enables

calculations involving hundreds of noble metal atoms.72 Our approach is based on the linear-

response of the KS density matrix in the KS electron-hole space.97,98 In our implementation,

the relevant quantities are readily available and recorded during time propagation. After the

simulation has completed, the KS decomposition can be constructed for the frequencies of

interest. In particular, this implies that it is not necessary to define regions or features of

possible interest before the time propagation.

We benchmark the numerical accuracy of our implementation on small benzene deriva-

tives by explicitly reconstructing the Casida eigenvectors from RT-TDDFT. For such a bench-

mark, the gpaw code is advantageous since it provides RT-TDDFT and Casida approaches
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on an equal footing, minimizing numerical error sources.

The primary application area of our implementation is in large-scale systems where the

favorable size scaling of RT-TDDFT is beneficial. We demonstrate the applicability of the

method to this class of problems by performing a KS decomposition analysis of plasmon

formation in a series of icosahedral silver nanoparticles comprising Ag55, Ag147, Ag309, and

Ag561. We observe that in the small Ag55 nanoparticle individual single-electron transitions

still have a strong effect on the plasmonic response and cause the splitting of the plasmon

resonance.106–109 In Ag147 and larger nanoparticles, however, a distinct plasmon resonance

is formed by the constructive coupling of low-energy single-electron transitions.110,111 Here,

the analysis also illustrates the important role of d-electrons in screening the plasmon.112–114

The structure of the article is as follows. In Sec. 2 we discuss the linear response of the

time-dependent KS density matrix in the KS electron-hole space and review the formulation

of the same quantity in the Casida approach. Additionally, we describe the decomposition of

the photo-absorption spectrum in KS electron-hole contributions. In Sec. 3 we benchmark

the numerical accuracy our RT-TDDFT implementation against the Casida method, and

analyze the plasmonic response of the silver nanoparticles. In Sec. 4 we discuss the general

features of the presented methodology. Our work is concluded in Sec. 5.

2 Methods

2.1 Linear response of the Kohn–Sham density matrix in the real-

time propagation method

The time-dependent Kohn–Sham equation is defined as

i
∂

∂t
ψn(r, t) = HKS(t)ψn(r, t), (1)

4
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where HKS(t) is the time-dependent KS Hamiltonian and ψn(r, t) is a KS wave function.

The KS density matrix operator is defined as

ρ(t) =
∑

n

|ψn(t)〉 fn 〈ψn(t)| , (2)

where fn is an occupation factor of the nth KS state. In order to proceed with KS decom-

position, we express the density matrix in the KS basis, spanned by the ground-state KS

orbitals ψ(0)
n (r), which fulfill the ground-state KS equation

H
(0)
KSψ

(0)
n (r) = ǫnψ

(0)
n (r), (3)

where H(0)
KS is the ground-state KS Hamiltonian and ǫn the KS eigenvalue of nth state. The

KS density matrix can be written in this KS basis as

ρnn′(t) = 〈ψ(0)
n |ρ(t)|ψ(0)

n′ 〉

=
∑

m

〈ψ(0)
n |ψm(t)〉 fm 〈ψm(t)|ψ(0)

n′ 〉 . (4)

This equation establishes a link between a time-dependent density matrix and the usual

KS (electron-hole) basis set used in linear-response calculations, see Sec. 2.2. Such a basis

transformation of the KS density matrix has previously been shown to be useful for analyzing

the decomposition of electronic excitations.97,98

When the real-time propagation method is applied in the linear-response regime, the

usual approach is to use a δ-pulse perturbation.83,84 This corresponds to the Hamiltonian

HKS(t) = H
(0)
KS + zKzδ(t), (5)

where the interaction with external electromagnetic radiation is taken within the dipole

approximation. The electric field is assumed to be aligned along the z direction and the
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constant Kz is proportional to the external electric field strength, which is assumed to be

small enough to induce only negligible non-linear effects. After the perturbation by the

δ-pulse at t = 0, Eq. (1) is propagated in time and the quantities of interest are recorded

during the propagation. As a post-processing step, time-domain quantities, such as ρnn′(t),

can be Fourier transformed into the frequency domain.

It is important to note that the size of the density matrix ρnn′(t) can be significantly

reduced since only its electron-hole part is required in the linear-response theory.76,78 It is

thus sufficient to consider only ρia(t), where i and a represent occupied and unoccupied KS

states, respectively. Then, we obtain the linear response of the KS density matrix in the

electron-hole space as

δρzia(ω) =
1

Kz

∫

∞

0

[

ρzia(t)− ρia(0
−)
]

eiωtdt+O(Kz), (6)

where ρia(0−) is the initial density matrix before the δ-pulse perturbation and the superscript

z indicates the direction of the perturbation. Note that in Eq. (6), the response is already

normalized with the perturbation strength Kz [see Eq. (5)].

In common TDDFT implementations, there is no mechanism for energy dissipation and

the lifetime of excitations is infinite. A customary way to restore a finite lifetime is to

apply the substitution ω → ω + iη, where the parameter η is small. This leads to an

exponentially decaying term in the integrand in Eq. (6), i.e., eiωt → eiωte−ηt, and to the

Lorentzian line shapes in the frequency domain. The decaying integrand also means that

a finite propagation time is sufficient in practical calculations. The Gaussian line shapes

can be obtained by replacing the Lorentzian decay e−ηt with the Gaussian decay function

e−(σt)2/2, where the parameter σ determines the spectral line width.

6
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Implementation

We have implemented the density matrix formalism outlined above in the RT-TDDFT code72

that is a part of the free gpaw package,102–104 utilizing the ase library.115,116 Our implemen-

tation uses the LCAO basis set105 and the projector-augmented wave (PAW)117 method. In

the LCAO method the wave function ψn(r, t) is expanded in localized basis functions φµ(r)

centered at atomic coordinates

ψn(r, t) =
∑

µ

φµ(r)Cµn(t) (7)

with expansion coefficients Cµn(t). The KS density matrix in the LCAO basis set is

ρµν(t) =
∑

n

Cµn(t)fnC
∗

νn(t). (8)

Then, Eq. (4) can be written in LCAO formalism as (using implied summation over repeated

indices)

ρnn′(t) = C(0)∗
µn Sµµ′ρµ′ν′(t)S

∗

νν′C
(0)
νn′ , (9)

where Sµµ′ =
∫

φ∗

µ(r)φµ′(r)dr is the overlap integral of the basis functions. A detailed

derivation of Eq. (9) is given in Supporting Information, in which it is shown that the PAW

transformation affects only the evaluation of the overlap integral.

The emphasis in our implementation is to minimize the computational footprint of the

analysis method in order to retain the performance of the underlying RT-TDDFT code.

Thus, instead of calculating Eq. (9) at every time step during the time propagation, we do

the basis set transformation as a post-processing step.

During the propagation, we store the matrix Cz
µn(t) that is already available, and after

the simulation has completed, we calculate ρzµν(t) via Eq. (8) [alternatively, ρzµν(t) could be

directly stored during the propagation]. The density matrix in the LCAO basis set is Fourier

transformed analogously to Eq. (6) to obtain δρzµν(ω), which is subsequently transformed to

7
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the Kohn–Sham basis as

δρznn′(ω) = C(0)∗
µn Sµµ′δρzµ′ν′(ω)S

∗

νν′C
(0)
νn′ , (10)

which is analogous to Eq. (9). By keeping only the electron-hole part in Eq. (10), δρzia(ω) is

obtained. Thus, in practice, the linearity of the equations allows exchanging the order of the

Fourier transformation and matrix multiplications, and the basis set transformation needs

to be evaluated only for the chosen frequencies.

In our experience it is advantageous to store the whole time-dependent evolution of the

system, i.e., Cz
µn(t) or ρzµν(t), as is done in the present implementation. The main drawback

of this approach is that the disk space requirements can be large, though not insuperable

in a modern supercomputing environment. If necessary, the disk space requirements can,

however, be significantly reduced by, e.g., filtering out the high-frequency components of

ρzµν(t), when they are of no interest. Further reduction in required disk space could be

obtained by calculating the Fourier transformation δρzµν(ω) already during the propagation.

However, a major disadvantage of such an on-the-fly Fourier transformation is that it would

restrict the analysis to the set of frequencies and Gaussian/Lorentzian broadening parameters

specified at the outset of the calculation.

2.2 Linear response of the Kohn–Sham density matrix in the Casida

method

In Casida’s linear-response formulation of TDDFT76,78 the response is obtained by solving

the matrix eigenvalue equation

ΩFI = ω2
IFI (11)

yielding excitation energies ωI and corresponding Casida eigenvectors FI . The matrix Ω

is constructed in the KS electron-hole space. Using a double-index ia (jb) to denote a KS

excitation from an occupied state i (j) to an unoccupied state a (b), the elements of the

8
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matrix can be written as

Ωia,jb = ω2
iaδia,jb + 2

√

fiaωiaKia,jb

√

fjbωjb, (12)

where fia = fi − fa is the occupation number difference, ωia = ǫa − ǫi is the KS eigenvalue

difference, see Eq. (3), and the matrix Kia,jb represents the coupling between the excitations

i→ a and j → b.76

The linear response of the KS density matrix at frequency ω can be obtained as76

δρzia(ω) =
√

fiaωia

∑

I

FI,iaGI(ω)
eh
∑

jb

F ∗

I,jb

√

fjbωjbµ
z
jb. (13)

where µz
jb =

∫

ψ
(0)∗
j (r)zψ

(0)
b (r) dr is the dipole matrix element and the summation runs over

electron-hole pairs (eh). HereGI(ω) = 1/(ω2−ω2
I ) originates from the spectral decomposition

(ω2
1−Ω)

−1
ia,jb =

∑

I FI,iaGI(ω)F
∗

I,jb.
76

The term GI(ω) is divergent at excitation energies ωI in the common TDDFT imple-

mentations due to the infinite lifetime of the excitations. Analogously to the time domain,

a finite lifetime for the excitations can be restored by the substitution ω → ω + iη, where

the arbitrary parameter η determines the lifetime. This leads to a Lorentzian line shape and

the imaginary part is given by

Im [GI(ω)] =
π

2ωI

[L(ω)− L(−ω)] , (14)

where L(ω) = 1/π ·η/[(ω−ωI)
2+η2] is the Lorentzian function. Alternatively, the Gaussian

line shape can be obtained by using the Gaussian function g(ω) = 1/
√
2πσ · exp[−(ω −

ωI)
2/2σ2] instead of the Lorentzian function L(ω) in Eq. (14).

9
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2.3 Kohn–Sham decomposition

The linear response of the KS density matrix in the KS electron-hole space, δρzia(ω), can

be calculated equivalently using both the real-time propagation [Eq. (6)] and the Casida

approach [Eq. (13)]. While this quantity would already allow the analysis of the response

at frequency ω in terms of its components in the KS electron-hole space, a more intuitive

analysis can be obtained by connecting δρzia(ω) to an observable photo-absorption cross-

section describing the resonances of the system. First, the dynamical polarizability is given

by

αxz(ω) = −2
eh
∑

ia

µx∗
ia δρ

z
ia(ω), (15)

where the negative sign incorporates the electron charge.76 The photo-absorption is described

by the dipole strength function

Sz(ω) =
2ω

π
Im [αzz(ω)] , (16)

which is normalized to integrate to the number of electrons in the systemNe, i.e.,
∫

∞

0
Sz(ω)dω =

Ne. This is similar to the sum rule
∑

I f
z
I = Ne, where f z

I = 2
∣

∣

∑

ia µ
z∗
ia

√
fiaωiaFI,ia

∣

∣

2
is the

z-component of the oscillator strength of the discrete excitation I.76,118

By comparing Eqs. (15) and (16), we can now define the KS decomposition of the ab-

sorption spectrum as

Sz
ia(ω) = −4ω

π
Im [µz∗

ia δρ
z
ia(ω)] . (17)

Similar photo-absorption decompositions have been used in the electron-hole space97,98 and

based on, e.g., spatial location75,101 or angular momentum.75

Once the relevant KS transitions of a resonance have been recognized, their real-space

induced density contributions to the resonance can be analyzed. The density contribution

10
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from the transition i→ a is given by

δnz
ia(r, ω) = 2ψ

(0)
i (r)ψ(0)∗

a (r)δρzia(ω), (18)

where ψ(0)
i (r) and ψ(0)

a (r) are the occupied (i) and unoccupied (a) ground-state KS orbitals

corresponding to the transition, respectively. Eq. (17) can be expressed in terms of δnz
ia(r, ω)

as Sz
ia(ω) = −2ω/π ·

∫

z Im [δnz
ia(r, ω)] dr. Thus, analogously to the photo-absorption, the

imaginary part Im[δn] describes the resonant response. The density contributions sum up to

the total induced electron density δnz(r, ω) =
∑eh

ia δn
z
ia(r, ω). Eqs. (17) and (18) are used

for analyzing the response of silver nanoparticles in Sec. 3.2 below.

3 Results

3.1 Benzene derivatives

To benchmark the presented methods and their computational implementation, we now an-

alyze the optical response of the molecular systems benzene (C6H6), naphthalene (C10H8),

and anthracene (C14H10) using both the RT-TDDFT and Casida implementations in gpaw

package.102–104,119 These characteristic conjugated molecules are suited for the present bench-

mark as they have well-defined π → π∗ transitions that exhibit a systematic red-shift as the

extent of the conjugated π-system increases.120,121

As the real-time propagation uses the full time-dependent Hamiltonian matrices, the end

result includes contributions from all electron-hole pairs and the limit of the full KS space is

automatically achieved by propagating only the occupied orbitals. This is in contrast to the

gpaw implementation of the Casida approach,119 which commonly requires setting an energy

cut-off that determines the KS transitions included in the calculation of the Casida matrix.

In order to ensure the comparability of the results, we have included in the calculation of the

Casida matrix all the transitions that are possible within the KS electron-hole space spanned

11
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by the orbitals.

Both the RT-TDDFT and Casida calculations were carried out using the default PAW

data sets and the default double-ζ polarized (dzp) basis sets within the LCAO descrip-

tion. While these dzp basis sets might not be sufficient for yielding numerical values at the

complete-basis-set limit,105,122 they are suitable for qualitative analyses and for the bench-

marking study presented here. The Perdew-Burke-Ernzerhof (PBE)123 exchange-correlation

functional was employed in the adiabatic limit. A coarse grid spacing of 0.3 Å was chosen to

represent densities and potentials and the molecules were surrounded by a vacuum region of

at least 6Å. The Hartree potential was evaluated with a multigrid Poisson solver using the

monopole and dipole corrections for the potential.

For the RT-TDDFT calculations, we used a small time step of ∆t = 5 as in order to

achieve high numerical accuracy. The total propagation time was T = 30 fs, which is sufficient

for the used Gaussian broadening with σ = 0.07 eV corresponding to a full width at half-

maximum (FWHM) of 0.16 eV.

The calculated photo-absorption spectra of the benzene derivatives are shown in Fig. 1.

The Casida and RT-TDDFT methods yield virtually indistinguishable spectra. For concise-

ness, we only present an analysis for excitations along the long axis (x) of the molecules.

Note, however, that the response in the other directions can be analyzed in similar fashion.

Figure 1: Photo-absorption spectra Sx(ω) along the long axis (x) of the benzene derivatives.
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Table 1: Casida analysis of the most prominent excitations of benzene (C6H6), naphthalene
(C10H8), and anthracene (C14H10). Orbitals are enumerated with respect to HOMO (π−0)
and LUMO (π∗

+0). The orbital characters are given in brackets based on the point groups
D6h (benzene) and D2h (naphthalene, anthracene).

Molecule ωI (eV) fx
I i→ a F 2

I,ia

C6H6

7.198 0.2784

π−1(E1g)→ π∗

+1(E2u) 0.31430
π−0(E1g)→ π∗

+0(E2u) 0.31254
π−1(E1g)→ π∗

+0(E2u) 0.16863
π−0(E1g)→ π∗

+1(E2u) 0.16833

7.199 1.3546

π−1(E1g)→ π∗

+0(E2u) 0.31362
π−0(E1g)→ π∗

+1(E2u) 0.31325
π−1(E1g)→ π∗

+1(E2u) 0.16895
π−0(E1g)→ π∗

+0(E2u) 0.16793

C10H8 5.883 3.4839
π−0(Au)→ π∗

+1(B3g) 0.48451
π−1(B2u)→ π∗

+0(B1g) 0.47748

C14H10 5.044 5.2000
π−0(B3g)→ π∗

+1(Au) 0.50237
π−1(B2g)→ π∗

+0(B1u) 0.45773
π−4(B1u)→ π∗

+2(B2g) 0.01049

Casida approach

The response of each of the molecules is dominated by a single absorption peak (see Fig. 1),

which results from discrete excitations. In Table 1, we show the KS decomposition of these

excitations as described by the components of the normalized Casida eigenvectors FI,ia. Due

to the normalization,
∑

ia F
2
I,ia = 1 for each excitation I.

For benzene (C6H6, point group D6h) the excitation at 7.2 eV corresponds to the first E1u

transition from the doubly degenerate highest occupied molecular orbital (HOMO; E1g) to

the doubly degenerate lowest unoccupied molecular orbital (LUMO; E2u). In the present

calculations the symmetry of the molecule has not been enforced and the orbitals π−0/1 and

π∗

+0/1 span the E1g and E2u symmetries, respectively. Implementation-dependent numerical

factors slightly lift their degeneracy and determine the exact unitary rotation between the

states.

Naphthalene (C10H8) and anthracene (C14H10) belong to the D2h symmetry point group.

In both molecules the most prominent excitation is the B3u transition, which is mainly com-

posed of transitions from HOMO to LUMO+1 and HOMO−1 to LUMO. While in naphtha-
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Table 2: RT-TDDFT analysis at the peak energies ω of benzene (C6H6), naphthalene
(C10H8), and anthracene (C14H10). The intensities Sx(ω) have been multiplied with the area
under the peak to facilitate a comparison with the oscillator strengths fx

I shown in Table 1.
The last column shows for reference [F x

ia(ω)]
2 as calculated with the Casida approach.

Molecule ω (eV) Sx(ω) i→ a [F x
ia(ω)]

2 Casida

C6H6 7.20 1.6283

π−1 → π∗

+0 0.46184 0.46186
π−0 → π∗

+1 0.46126 0.46126
π−1 → π∗

+1 0.02045 0.02043
π−0 → π∗

+0 0.02032 0.02030

C10H8 5.88 3.4776
π−0 → π∗

+1 0.48472 0.48451
π−1 → π∗

+0 0.47728 0.47748

C14H10 5.04 5.1903
π−0 → π∗

+1 0.50277 0.50241
π−1 → π∗

+0 0.45745 0.45777
π−4 → π∗

+2 0.01044 0.01049

lene the other contributions amount to less than 1%, in anthracene, a minor contribution

originates also from a transition from HOMO−4 to LUMO+2.

RT-TDDFT approach

The Casida eigenvector FI,ia considered in Table 1 is directly related to the linear response

of the KS density matrix, see Eq. (13), and is employed here for benchmarking the RT-

TDDFT methodology described Sec. 2.1. In order to proceed with comparison, consider a

discrete excitation J that is energetically separated from other excitations. Since Im[GI(ωJ)]

in Eq. (14) is approximately zero when I 6= J , only the excitation J contributes in Eq. (13).

This implies that Im[δρxia(ωJ)] ≈ A
√
fiaωiaFJ,ia, where A is a constant independent of index

ia. Thus, after normalization, Im[δρxia(ωJ)]/
√
fiaωia ≡ F x

ia(ωJ) yields the components of

the Casida eigenvector FJ,ia. This connection allows us to calculate the Casida eigenvector

also from the RT-TDDFT approach. This is demonstrated in Table 2, in which we show

the calculated KS decompositions at the peak energies of the photo-absorption spectrum

(Fig. 1).

In the case of benzene (C6H6), we inevitably obtain a superposition of the two underlying

degenerate excitations (see Table 1). We can, however, calculate the equivalent superimposed
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F x
ia(ω) eigenvector also from the Casida approach (shown in the last column of Table 2). For

this quantity, we obtain an excellent match between the RT-TDDFT and Casida approaches.

For naphthalene (C10H8) and anthracene (C14H10), a single excitation dominates the

response and F 2
I,ia and [F x

ia(ω)]
2 should yield the same decomposition as discussed above. In-

deed, we observe that the RT-TDDFT calculations of the decomposition [F x
ia(ω)]

2 reproduce

the discrete Casida eigenvector F 2
I,ia with very good numerical accuracy. When both F 2

I,ia

and [F x
ia(ω)]

2 are calculated with the Casida approach, their values should be identical if the

excitation is completely isolated. While for naphthalene (C10H8), these quantities are exactly

the same up to the shown number of digits (compare the last columns of Tables 1 and 2),

for anthracene (C14H10), the numerical values differ slightly. This deviation is due to a small

contribution from a weak excitation that is close in energy (ωI = 5.051 eV, fx
I = 5 · 10−4) to

the dominant excitation of the anthracene molecule.

3.2 Silver nanoparticles

TDDFT calculations of noble metal nanoparticles up to diameters of several nanometers are

computationally demanding, but they have become feasible with recent developments.71–75

Here, we focus on silver nanoparticles as prototypical nanoplasmonic systems with a strong

plasmonic response in the visible–ultraviolet light regime.58,59 Using the methodology de-

scribed above in conjunction with the underlying RT-TDDFT implementation,72 we can

analyze the response of silver nanoparticles with reasonable computational resources. For

illustration, a full real-time propagation of 3000 time steps for Ag561 can be realized in

110 hours using 144 cores on an Intel Haswell based architecture.124

Kuisma et al. have previously studied icosahedral silver nanoparticles composed of 55,

147, 309, and 561 atoms corresponding to diameters ranging from 1.1 nm to 2.7 nm.72 Here,

we consider the same nanoparticle series and use the same geometries and computational

parameters as in ref 72. We employ optimized LCAO basis sets72 and the orbital-dependent

Gritsenko-van Leeuwen-van Lenthe-Baerends (GLLB)125 exchange-correlation potential with

15

Page 15 of 41

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 2: Photo-absorption spectra of icosahedral silver nanoparticles. The non-interacting-
electron spectra shown for comparison are vertically shifted and scaled by a factor of 0.2.

the solid-state modification by Kuisma et al. (GLLB-SC),126 which yields an accurate de-

scription of the d electron states in noble metals.72,127,128

The calculated photo-absorption spectra of the nanoparticles are shown in Fig. 2. The

non-interacting-electron spectra calculated from the KS eigenvalue differences ωia and tran-

sition dipole matrix elements µx
ia are also shown to facilitate the discussion below. In ref 72 it

was observed that the plasmon resonance is well-formed in Ag147 and in larger nanoparticles,

whereas the response of Ag55 consists of multiple peaks, the origin of which could not be

readily resolved. In the following, we analyze the response of nanoparticles in terms of the

KS decomposition, which enables us to shed light on the response of the Ag55 nanoparticle.

Transition contribution maps

In order to analyze the response in terms of the Kohn–Sham decomposition, we present

the decomposition as a transition contribution map (TCM; see Fig. 3 below),40,129 which is

an especially useful representation for plasmonic systems in which resonances are typically

superpositions of many electron-hole excitations. The TCM represents the KS decomposition

weight wia(ω) at a fixed ω in the two-dimensional (2D) (εo, εu)-plane spanned by the energy
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Figure 3: Transition contribution maps for the photo-absorption decomposition of Ag55 at
different resonance energies ω (a–c), and those of Ag147 (d), Ag309 (e), and Ag561 (f) at
the respective plasmon resonance energies. The KS eigenvalues are given with respect to
the Fermi level. The constant transition energy lines εu − εo = ω are superimposed at
the analysis energy (solid line) and at the resonance energies of the non-interacting-electron
spectra (dashed lines, see Fig. 2). Red and blue colors indicate positive and negative values
of the photo-absorption decomposition, respectively. The inset of each panel shows the
absorption spectrum with the arrow pointing at the analysis frequency ω. The densities of
states (DOS) have been colored to indicate sp and d character of the states. The transitions
marked with green ellipses in panels (a–c) are discussed in the text.

axes for occupied and unoccupied states. More specifically, the 2D plot is defined by

MTCM
ω (εo, εu) =

∑

ia

wia(ω)gia(εo, εu), (19)
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where gia is a 2D broadening function for the discrete KS i → a transition contributions.

Here, we employ the 2D Gaussian function

gia(εo, εu) =
1

2πσ2
exp

[

−(εo − ǫi)
2 + (εu − ǫa)

2

2σ2

]

(20)

with σ = 0.07 eV to give a finite size for each i → a contribution. The same σ parame-

ter is also used in the spectral broadening. For the weight wia(ω), we use the absorption

decomposition of Eq. (17) normalized by the total absorption, i.e.,

wia(ω) = Sx
ia(ω)/Sx(ω). (21)

Due to the icosahedral symmetry of the nanoparticles their response is isotropic, Sx(ω) =

Sy(ω) = Sz(ω), and the decomposition is degenerate (compare to the case of benzene in

Sec. 3.1).

Alternatively, instead of Eq. (21) one could use, e.g., the normalized transition density

matrix (wia(ω) = |δρxia(ω)|2) as the weight. Eq. (21), however, has the advantage that it

retains the information about the sign of the response in the KS decomposition and has a

physically sound interpretation as the photo-absorption decomposition.

TCMs of the nanoparticles at different resonance energies are shown in Fig. 3 along with

the density of states (DOS), which has been colored to indicate the sp and d character of the

states. The latter decomposition is based on the angular momentum quantum number lµ of

the LCAO basis functions indexed by µ. For example, the d character of the nth state is

estimated as
∑

µ:lµ=2 |C
(0)
µn |2, where the coefficients are normalized such that

∑

µ |C
(0)
µn |2 = 1.

Analysis of Ag147, Ag309, and Ag561

First, we consider the largest nanoparticles Ag147, Ag309, and Ag561, the TCMs of which are

shown in Figs. 3(d–f). The TCMs highlight two major features in their response. First,

there is a strong positive constructive contribution41 (red features in Fig. 3) from the KS
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transitions whose eigenvalue differences are significantly lower than the plasmon resonance

energy ω.111 The same low-energy sp transitions are responsible for the strong peaks in

the non-interacting-electron spectra (see Fig. 2), which are indicated in Fig. 3 by dashed

lines. Thus, TCM shows how the resonance energy is blue-shifted as the interaction is

turned on from the non-interacting case (λ = 0) to the fully interacting one (λ = 1). This

demonstrates the plasmonic nature of the excitation in the so-called λ-scaling approach

for plasmon identification,39,130 and illustrates the importance of low-energy transitions for

plasmon formation.47,111 Another prominent feature in the response is the damping due to

d electrons,112–114 which is seen in the TCMs as large negative contributions from occupied

d states into unoccupied states (blue features at εo ≈ −4 eV in Fig. 3). Interestingly, the

plasmon peak appears close to the onset of d electron transitions, corresponding to the

intersection of the line εu − εo = ω and the horizontal Fermi level line. Generally, with

increasing nanoparticle size the DOS becomes increasingly continuous, which is also visible

in the increasing uniformity of the TCMs.

Fig. 4 visualizes for Ag561 the real-space contributions of the low-energy KS transitions

(with ǫa − ǫi < 3 eV; corresponding in the TCM to the region εu − εo < 3 eV) and d electron

transitions (with ǫi < −3 eV; in the TCM the region εo < −3 eV) in panels (b) and (c),

respectively. Such contributions are obtained via Eq. (18) by summing up the selected KS

transitions. The full induced density in panel (a) is obtained by a sum over all the KS

transitions. The low-energy sp contributions show clearly the localized surface plasmon

resonance. The d electron transitions are seen as counter-polarized dipoles localized mostly

at the atomic coordinates.72

In ref 74, TCMs for charged silver nanoparticles up to Ag309 have been studied. The two

main features in Fig. 3, the low-energy sp transitions and the d electron damping, are in

agreement with these TCMs reported earlier. In contrast to Fig. 3, the TCMs in ref 74 show,

however, also a significant contribution from sp transitions close to the εu − εo = ω line.

We consider this to be due to the different choice of the TCM weight wia(ω) in ref 74. In
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Figure 4: Visualization of Ag561 plasmon resonance. (a) Full and (b–c) partial induced
densities Im[δn] at 3.64 eV. Positive (red) and negative (blue) isosurfaces are shown using
the same isovalues in all the panels. Panel (b) includes KS transitions with ωia < 3 eV and
panel (c) those with ǫi < −3 eV.

the absorption decomposition we used in Fig. 3 [Eqs. (17) and (21)] the KS components are

essentially weighted with the dipole matrix element µx
ia, which affects the relative magnitudes

observed in TCM.

Analysis of Ag55

Next, we consider the Ag55 nanoparticle that exhibits multiple strong peaks in the absorption

spectrum, resulting in difficulties in identifying the plasmon resonance. The TCM analyses

for the three prominent peak energies are shown in Figs. 3(a–c). Due to its small size,

Ag55 has well separated, discrete KS states as is visible in its DOS. The overall features in

TCMs are similar to those of the larger nanoparticles, i.e., the low-energy sp transitions and

the d electron transitions yield positive and negative contributions, respectively, though the

low-energy transitions that form the plasmon are energetically clearly separated.

In contrast to the larger nanoparticles, in the Ag55 nanoparticle some of the strongly

contributing sp transitions are located close to the peak frequencies, i.e., close to the solid

εu − εo = ω lines in the TCMs. These excitations are marked in Figs. 3(a–c) by green circles

numbered as 1 and 2. By examining these KS transitions as a function of frequency ω (TCMs

with the 0.01 eV resolution are provided in Supporting Information), we note that the first

transition changes its sign at ω = 3.85 eV, close to the minimum between the peak maxima

at 3.71 eV [Fig. 3(a)] and 4.00 eV (b). Similarly, the second transition changes its sign at

ω = 4.06 eV between the maxima at 4.00 eV (b) and 4.20 eV (c). At the same time, the
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Figure 5: Visualization of Ag55 resonances. Induced density contributions from sp transitions
(ǫi > −3 eV) at (a) 3.71 eV, (b) 4.00 eV, and (c) 4.20 eV. In panels (d–e), the induced density
of (a) is split into two parts: density contributions from (d) the KS transition numbered 1
and from (e) all the other sp transitions. Similarly, panel (f) shows the density contribution
from the KS transition numbered 2 to the 4.20 eV resonance [panel (c)]. In panels (a–c) the
isosurface values are 5% of the maxima. Panels (d–e) use the same isovalues as panel (a),
and panel (f) the same as (c).

low-energy transitions forming the plasmon remain mainly unchanged over this frequency

window. Thus, the presence of multiple peaks in the Ag55 spectrum seems to correspond to

a strong coupling between the marked KS transitions and the plasmon. This is seen as the

splitting (or fragmentation) of the plasmon into multiple resonances106–109 with antisymmet-

ric and symmetric combinations of the KS transition and the plasmonic transitions. The

resulting resonances at 3.71 eV and 4.00 eV have relatively strong contributions from the cor-

responding individual KS transitions, i.e., they have single-particle character in this respect.

However, the positive contribution to the resonances originates from the lower-energy transi-

tions forming the plasmon. In the larger nanoparticles, the interaction between the plasmon

and the nearby KS transitions is weak and the coupling is merely seen as a broadening of

the plasmon peak.111

Further insight can be obtained by considering the real-space shapes of the strongly

contributing KS transitions. The induced density contributions from the KS transitions

with ǫi > −3 eV (sp transitions; corresponding in the TCM to the region εo > −3 eV)

are shown in Figs. 5(a–c) for the different resonance energies. The contributions from the
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KS transitions numbered 1 and 2 are shown in panels (d) and (f) for 3.71 eV and 4.20 eV

resonances, respectively. These transition densities are of the same spatial shape at all

energies, but their signs and relative strengths are different at different resonances following

the corresponding values in the TCMs. Both of the transitions are delocalized over the

nanoparticle, which allows them to couple strongly with the other delocalized low-energy

KS transitions forming the plasmon. This is illustrated for the 3.71 eV resonance in panels

(d–e). The total response [panel (a)] is composed of an emerging surface contribution from

the low-energy transitions [panel (e)], which is disturbed by a destructive contribution from

the single KS transition [panel (d)]. At the higher 4.00 eV and 4.20 eV resonances these two

contributions are constructively coupled leading to a smoother surface density [panels (b–

c)]. For these two higher resonances, the second KS transition [panel (f)] couples either

destructively (4.00 eV) or constructively (4.20 eV).

A detailed inspection reveals that some d electron transitions also change their sign in the

frequency range where the peak splitting occurs. These transitions are marked in Figs. 3(a–

c) by a dashed green ellipse with the number 3. The changes in their sign, however, do not

match the maxima and minima of the absorption spectrum as in the case of the marked

KS transitions. Thus, we expect the indicated sp transitions to be the major cause for the

plasmon splitting.

In the literature, Ag55 has been reported to have slightly varying spectra depending,

e.g., on the exact geometry, the exchange-correlation functional, and the numerical parame-

ters used.14,47,74,75,122,131,132 Correspondingly, the Ag55 spectra have single or multiple peaks

depending on the exact electronic structure and the alignment of the discrete KS states.

4 Discussion

The RT-TDDFT approach provides more favorable scaling with the system size than the

Casida approach. The latter, however, achieves a smaller pre-factor, especially when using
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non-local (e.g., hybrid) exchange-correlation functionals,85 which renders it computationally

more efficient for small and moderately-sized systems. In contrast, the RT-TDDFT ap-

proach becomes very attractive for systems comprising thousands of electrons (and typically

hundreds of atoms) such as the silver nanoparticles considered in the present work.

It should be noted that in the RT-TDDFT approach the observable response is sensitive

to the external perturbation used to initialize the time propagation. If the perturbation is

chosen to be, say, a dipole perturbation along the x direction, only the excitations with a

dipole component parallel to x are observable in the response. By combining at most three

separate time-propagation calculations (possibly even less in the cases of higher symmetry)

with dipole perturbations along the x, y, and z axes, one can recover the full dynamical

polarizability tensor. However, for obtaining optically dark (dipole-forbidden) excitations

from RT-TDDFT calculations, one would need to run the time propagation with different

initial perturbations. This is in contrast to the Casida approach, where also dipole-forbidden

excitations are obtained by diagonalizing the Ω matrix.

It was illustrated in Sec. 3.1 that the presented method does not yield direct access to

the discrete spectrum, but rather allows an analysis at chosen frequencies yielding the com-

bined response coming from all the contributing discrete excitations. Usually, this is not

a significant restriction as in experimental measurements the energy resolution is limited

by instrumental broadening and the excitation lifetimes. Computationally, when a Fourier

transform is used as in Eq. (6), the energy resolution is determined by the broadening pa-

rameter, which can be always reduced by increasing the propagation time. Alternatively,

fitting approaches can be beneficial for accessing the underlying discrete response with re-

duced propagation time.98 However, for larger systems that are the primary application area

for RT-TDDFT, the electronic spectrum becomes increasingly dense and the distinction of

individual excitations is less relevant.
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5 Conclusions

In this work, we have presented an implementation of a Kohn–Sham decomposition analysis

tool in RT-TDDFT. The tool is combined with a recent RT-TDDFT code72 and is to be

made publicly available as a part of the free electronic structure code gpaw.102–104 In our

implementation, the efficiency of the underlying RT-TDDFT code is retained and the anal-

ysis is performed as a post-processing step from the data that is recorded during the time

propagation. Thus, all the analysis, including the transition contribution maps as well as

the full and partial induced densities, can be obtained after the time propagation, without

a priori knowledge or guesses of the interesting frequencies or KS transitions for the system

in consideration.

The present approach yields orbital assignments of electronic excitations on par with the

Casida method. This was specifically demonstrated by a careful comparison of the results

for benzene derivatives, which were shown to be numerically almost identical for Casida and

RT-TDDFT calculations.

The performance of the approach and implementation was further demonstrated by ana-

lyzing plasmon resonances in icosahedral silver nanoparticles up to Ag561. The Ag55 nanopar-

ticle was considered in detail and the multiple resonances in its response were shown to reflect

the splitting of the plasmon due to the strong coupling between the plasmon and individual

single-electron transitions.106–109 In the larger Ag147, Ag309, and Ag561 nanoparticles, the in-

teraction between plasmon and individual single-electron transitions close to the resonance

is weaker and a distinct plasmon resonance emerges from the constructive superposition

of low-energy Kohn–Sham transitions39,111 accompanied by the damping due to d-electron

transitions.112–114

In summary, the implemented tool raises the analysis capabilities of RT-TDDFT to the

same level with the Casida approach, without compromising the computational benefits of

RT-TDDFT.
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