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C1,α regularity for the normalized p-Poisson problem

Amal Attouchia, Mikko Parviainena, Eero Ruosteenojaa,∗

aDepartment of Mathematics and Statistics, University of Jyväskylä, PO Box 35, FI-40014 Jyväskylä, Finland

Abstract

We consider the normalized p-Poisson problem

−ΔN
p u = f in Ω ⊂ R

n.

The normalized p-Laplacian ΔN
p u := |Du|2−pΔpu is in non-divergence form and arises for example

from stochastic games. We prove C1,α
loc regularity with nearly optimal α for viscosity solutions of

this problem. In the case f ∈ L∞ ∩ C and p > 1 we use methods both from viscosity and weak
theory, whereas in the case f ∈ Lq∩C, q > max(n, p2 , 2), and p > 2 we rely on the tools of nonlinear
potential theory.

Résumé

On considère l’équation de Poisson pour le p-Laplacien normalisé

−ΔN
p u = f dans Ω ⊂ R

n.

Le p-Laplacien normalisé est un opérateur sous forme non-divergence et il apparâıt dans l’étude
de certains jeux aléatoires. On démontre un résultat de régularité C1,α

loc pour des solutions de
viscosité de ce problème avec un exposent α quasi optimal. Dans le cas d’une function f ∈ L∞∩C
et pour p > 1, on combine des arguments utilisés dans la théorie des solutions de viscosité avec
des arguments provenant de la théorie des solutions distributionnelles. Dans le cas d’une fonction
f ∈ Lq ∩ C où q > max(n, p2 , 2) et p > 2, on se base sur des outils de la théorie du potentiel
non-linéaire.

Keywords: Normalized p-Laplacian, p-Poisson problem, viscosity solutions, local C1,α regularity.
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1. Introduction

In this paper we study local regularity properties of the inhomogeneous normalized p-Laplace
equation

−ΔN
p u = f in Ω, (1.1)
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where Ω ⊂ R
n is a bounded domain. The normalized p-Laplacian is defined as

ΔN
p u := |Du|2−pΔpu = Δu+ (p− 2)ΔN

∞u,

where ΔN∞u := 〈D2u Du
|Du| ,

Du
|Du|〉 denotes the normalized infinity Laplacian. The motivation to study

these types of normalized operators stems partially from their connections to stochastic games and
their applications to image processing. Equation (1.1) is different from the standard p-Laplace
equation due to the right hand side f . Indeed, it is in non-divergence form. The normalized
p-Laplacian is gradient dependent and discontinuous, so we cannot directly rely on the existing
general C1,α regularity theory of viscosity solutions. Only Hölder continuity for solutions of (1.1)
follows from the regularity theory for uniformly elliptic equations, see [7, 8].

Our aim is to show local Hölder continuity for gradients of viscosity solutions of (1.1) by relying
on different methods depending on regularity assumptions of the source term f . Assuming first
that f ∈ L∞(Ω)∩C(Ω), we show that solutions of (1.1) for p > 1 are of class C1,α

loc for some α > 0
depending on p and the dimension n.

Theorem 1.1. Assume that p > 1 and f ∈ L∞(Ω)∩C(Ω). There exists α = α(p, n) > 0 such that
any viscosity solution u of (1.1) is in C1,α

loc (Ω), and for any Ω′ ⊂⊂ Ω,

[u]C1,α(Ω′) ≤ C = C
(
p, n, d, d′, ||u||L∞(Ω), ||f ||L∞(Ω)

)
,

where d = diam(Ω) and d′ = dist(Ω′, ∂Ω).

By translation and scaling, we may prove the result at the origin and assume that u(0) = 0 and
oscB1 u ≤ 1. It is sufficient to show that for some ρ ∈ (0, 1) and for all k ∈ N, there exists qk ∈ R

n

for which
osc

x∈Brk

(u(x)− qk · x) ≤ r1+α
k ,

where rk := ρk. Heuristically, we want to show that if a solution u can be approximated by a plane
qk · x in a small ball Brk , then in a smaller ball Brk+1

there is a slightly different plane qk+1 · x
giving a better approximation. To get a C1,α estimate, we have to show that the approximation
improves by a sufficiently small multiplicative factor. An inductive argument leads us to analyze
regularity of deviations of solutions from planes, w(x) = u(x) − q · x for different q ∈ R

n. The
required oscillation estimate for these deviations is called improvement of flatness:

osc
x∈Bρ

(w(x)− q′ · x) ≤ 1

2
ρ

for some q′ ∈ R
n, under the assumption that the oscillation of f is sufficiently small. This is shown

in Lemma 3.3 by using a compactness and contradiction argument. Recently, Imbert and Silvestre
[18] used this method to show C1,α regularity for viscosity solutions of |Du|γF (D2u) = f , where
F is uniformly elliptic. In our case, the most technical part of the proof of Lemma 3.3 is to show
a uniform C1,α estimate for functions w under the assumption f ≡ 0. This is done in the proof of
Lemma 3.2 by using the Ishii-Lions method.

Earlier, in the restricted case p ≥ 2, a C2 domain Ω and f ∈ C(Ω), Birindelli and Demengel
[5, Proposition 3.5] proved global Hölder continuity for the gradient of viscosity solutions of (1.1)
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in connection to eigenvalue problems related to the p-Laplacian. In the case p ≥ 2 we provide an
alternative proof by showing first that viscosity solutions of (1.1) are weak solutions of

−Δpu = |Du|p−2f in Ω, (1.2)

and then relying on the known regularity results for quasilinear PDEs to see that weak solutions
of (1.2) are locally of class C1,α.

Restricting to the case p > 2, we can relax the estimate of Theorem 1.1 by providing a control
on the Hölder estimate of the gradient that depends on a weaker norm of f .

Theorem 1.2. Assume that p > 2, q > max(2, n, p/2), f ∈ C(Ω) ∩ Lq(Ω). Then any viscosity
solution u of (1.1) is in C1,α

loc (Ω) for some α = α(p, q, n). Moreover, for any Ω′′ ⊂⊂ Ω′ ⊂⊂ Ω, with
Ω′ smooth enough, we have

[u]C1,α(Ω′′) ≤ C = C
(
p, q, n, d, d′′, ||u||L∞(Ω), ||f ||Lq(Ω)

)
,

where d = diam (Ω) and d′′ = dist (Ω′′, ∂Ω′).

In the proof we first consider weak solutions uε of certain regularized equations, and by using the
De Giorgi iteration and the potential estimates of Duzaar and Mingione [15] we obtain local uniform
estimates for ||Duε||L∞(Ω). From the classical result of Lieberman we get a uniform estimate for
[Duε]Cβ(Ω) for some β > 0, and Theorem 1.2 follows from a compactness argument. In the proof
we also show that under the assumptions of Theorem 1.2, there exists a weak solution of equation
(1.2) which is in C1,α

loc (Ω).

It is well known that p-harmonic functions are of class C1,α0

loc for some maximal exponent
0 < α0 < 1 that depends only upon n and p. This was shown independently by Uraltseva [43] and
Uhlenbeck [42] in the case p > 2, and later extended to the case p > 1, see [13, 29] and also [34, 20]
for related research. The question of optimal regularity for p-Laplace equations in divergence form
has attracted a lot of attention recently, see Section 5 for further references. Since the solutions of
(1.1) should not be expected to be more regular than p-harmonic functions, the maximal exponent
α0 is a natural upper bound for C1,α regularity for equation (1.1). In the following theorem we
obtain nearly optimal regularity for solutions of (1.1).

Theorem 1.3. Fix an arbitrary ξ ∈ (0, α0), where α0 is the optimal Hölder exponent for gradients
of p-harmonic functions in terms of an a priori estimate.

If p > 1 and f ∈ L∞(Ω) ∩ C(Ω), then viscosity solutions to (1.1) are in C1,α0−ξ
loc (Ω).

If p > 2, q > max(2, n, p/2) and f ∈ C(Ω) ∩ Lq(Ω), then viscosity solutions to (1.1) are in

C
1,αξ

loc (Ω), where αξ := min(α0− ξ, 1−n/q). Moreover the estimates given in the previous theorems
hold for αξ.

When the gradient is sufficiently large, the result follows from the classical regularity results
for uniformly elliptic equations. When the gradient is small, the first step is to use local C1,α

regularity of the solutions of (1.1), proved in Theorems 1.1 and 1.2, to show that the solutions
can be approximated by p-harmonic functions in C1,α. The next step is to use suitable rescaled
functions and iteration to obtain the required oscillation estimate.

Over the last decade, equation (1.1) and similar normalized equations have received growing
attention, partly due to the stochastic zero-sum tug-of-war games defined by Peres, Schramm,
Sheffield and Wilson in [37, 38]. In [37] Peres and Sheffield studied a connection between equation
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(1.1) and the game tug-of-war with noise and running pay-off. The game-theoretic interpretation
led to new regularity proofs in the case f = 0 in [32], and later in the case of bounded and positive
f in [39], see also [9] for a PDE approach. Regularity studies were extended to the parabolic version
ut = ΔN

p u in [35, 4, 21] and led to applications in image processing, see e.g. [14, 16].
This paper is organized as follows. In Section 2 we fix the notation and gather some definitions

and tools which we need later. In Section 3 we give two proofs for Theorem 1.1, in Section 4 we
prove Theorem 1.2, and in Section 5 Theorem 1.3.

2. Preliminaries

Throughout the paper Ω ⊂ R
n is a bounded domain. We use the notation∫

A
u dx :=

1

|A|
∫
A
u dx

for the mean value of a function u in a measurable set A ⊂ Ω with Lebesgue measure |A| > 0. The
oscillation of a function u in a set A is denoted by

osc
A

u := sup
A

u− inf
A

u.

For p > 1, we denote by Λ and λ the ellipticity constants of the normalized p-Laplacian ΔN
p .

Recalling the expression

ΔN
p u = Δu+ (p− 2)ΔN

∞u = tr

(
(I + (p− 2)

Du⊗Du

|Du|2 )D2u

)

and calculating for arbitrary η ∈ R
n, |η| = 1,

〈(I + (p− 2)
Du⊗Du

|Du|2 )η, η〉 = |η|2 + (p− 2)
〈η,Du〉2
|Du|2

= 1 + (p− 2)
〈η,Du〉2
|Du|2 ,

we see that Λ = max(p− 1, 1) and λ = min(p− 1, 1).
We denote by Sn the set of symmetric n × n matrices. For a, b ∈ R

n, we denote by a ⊗ b the
n× n-matrix for which (a⊗ b)ij = aibj .

We will use the Pucci operators

P+(X) := sup
A∈Aλ,Λ

− tr(AX)

and
P−(X) := inf

A∈Aλ,Λ

− tr(AX),

where Aλ,Λ ⊂ Sn is a set of symmetric n× n matrices whose eigenvalues belong to [λ,Λ].
When studying Hölder and C1,α regularity, for α ∈ (0, 1] and a ball Br ⊂ R

n we use the notation

[u]C0,α(Br) := sup
x,y∈Br,x �=y

|u(x)− u(y)|
|x− y|α
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for Hölder continuous functions, and

[u]C1,α(Br) := [u]C1(Br) + sup
x,y∈Br,x �=y

|Du(x)−Du(y)|
|x− y|α

for functions of class C1,α. Here [u]C1(Br) := supx∈Br
|Du(x)|.

Recall that weak solutions to −Δpu := − div(|Du|p−2Du) = 0 are called p-harmonic functions.

We will use the known C1,α0

loc a priori estimate in Sections 4 and 5. The existence of the optimal
α0 = α0(p, n) follows from the known regularity estimates for the homogeneous p-Laplace equation.

The normalized p-Laplacian is undefined when Du = 0, where it has a bounded discontinu-
ity. This can be remediated adapting the notion of viscosity solution using the upper and lower
semicontinuous envelopes (relaxations) of the operator, see [10].

Definition 2.1. Let Ω be a bounded domain and 1 < p < ∞. An upper semicontinuous function
u is a viscosity subsolution of (1.1) if for all x0 ∈ Ω and φ ∈ C2(Ω) such that u− φ attains a local
maximum at x0, one has⎧⎪⎨

⎪⎩
−ΔN

p φ(x0) ≤ f(x0), if Dφ(x0) �= 0,

−Δφ(x0)− (p− 2)λmax(D
2φ(x0)) ≤ f(x0), if Dφ(x0) = 0 and p ≥ 2,

−Δφ(x0)− (p− 2)λmin(D
2φ(x0)) ≤ f(x0), if Dφ(x0) = 0 and 1 < p < 2.

A lower semicontinuous function u is a viscosity supersolution of (1.1) if for all x0 ∈ Ω and
φ ∈ C2(Ω) such that u− φ attains a local minimum at x0, one has⎧⎪⎨

⎪⎩
−ΔN

p φ(x0) ≥ f(x0), if Dφ(x0) �= 0,

−Δφ(x0)− (p− 2)λmin(D
2φ(x0)) ≥ f(x0), if Dφ(x0) = 0 and p ≥ 2,

−Δφ(x0)− (p− 2)λmax(D
2φ(x0)) ≥ f(x0), if Dφ(x0) = 0 and 1 < p < 2.

We say that u is a viscosity solution of (1.1) in Ω if it is both a viscosity sub- and supersolution.

We will make use of the equivalence between weak and viscosity solutions to the p-Laplace
equation Δpu = 0. This was first proved in [23] by using the full uniqueness machinery of the
theory of viscosity solutions, and later in [22] without relying on the uniqueness. The techniques of
the second paper are particularly important for us in Section 3.2, where we do not have uniqueness.

3. Two proofs for Theorem 1.1

In this section we give two proofs for Theorem 1.1. In the first subsection we use an iteration
method often used to show C1,α regularity for elliptic equations.

In Section 3.2 we give another proof for Theorem 1.1 in the case p ≥ 2 by showing that a
viscosity solution to (1.1) is also a weak solution to (1.2).

3.1. First proof by improvement of flatness and iteration

In this subsection we give a first proof for Theorem 1.1. We assume that p > 1 and f ∈
L∞(Ω) ∩ C(Ω), and we want to show that there exists α = α(p, n) > 0 such that any viscosity
solution u of (1.1) is in C1,α

loc (Ω), and for any Ω′ ⊂⊂ Ω,

[u]C1,α(Ω′) ≤ C = C
(
p, n, d, d′, ||u||L∞(Ω), ||f ||L∞(Ω)

)
,
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where d = diam(Ω) and d′ = dist(Ω′, ∂Ω).
Since Hölder continuous functions can be characterized by the rate of their approximations by

polynomials (see [25]), it is sufficient to prove that there exists some constant C such that for all
x ∈ Ω and r ∈ (0, 1), there exists q = q(r, x) ∈ R

n for which

osc
y∈Br(x)

(u(y)− u(x)− q · (x− y)) ≤ Cr1+α.

If one also starts with a solution u such that oscu ≤ 1, then it is sufficient to choose a suitable
ρ ∈ (0, 1) such that the previous inequality holds true for r = rk = ρk, q = qk and C = 1 by
proceeding by induction on k ∈ N. The balls Br(x) for x ∈ Ω and r < dist (x, ∂Ω) covering the
domain Ω, we may work on balls. By translation, it is enough to show that the solution is C1,α at
0, and by considering

ur(y) = r−2u(x+ ry),

we may work on the unit ball B1(0). Finally, considering u − u(0) if necessary, we may suppose
that u(0) = 0. We also reduce the problem by rescaling. Let κ = (2||u||L∞(B1)+ ε−1

0 ||f ||L∞(B1))
−1.

Setting ũ = κu, then ũ satisfies
−ΔN

p (ũ) = f̃

with ||ũ||L∞(B1) ≤ 1
2 and ||f̃ ||L∞(B1) ≤ ε0. Hence, without loss of generality we may assume in

Theorem 1.1 that ||u||L∞(B1) ≤ 1/2 and ||f ||L∞(B1) ≤ ε0, where ε0 = ε0(p, n) is chosen later.
The idea of the proof is to first study the deviations of u from planes w(x) = u(x)− q ·x which

satisfy

−Δw − (p− 2)

〈
D2w

Dw + q

|Dw + q| ,
Dw + q

|Dw + q|
〉

= f in B1 (3.1)

in the viscosity sense, and show equicontinuity for uniformly bounded solutions in Lemma 3.1. By
the Arzelà-Ascoli theorem we get compactness, which, together with Lemma 3.2, we use to show
improvement of flatness for solutions of (3.1) in Lemma 3.3. Finally, we prove C1,α regularity for
solutions of (1.1) in Lemma 3.4 by using Lemma 3.3 and iteration.

In order to prove Theorem 1.1, we will first need the following equicontinuity lemma for viscosity
solutions to equation (3.1).

Lemma 3.1. For all r ∈ (0, 1), there exist a constant β = β(p, n) ∈ (0, 1) and a positive constant
C = C(p, n, r, osc

B1

(w), ||f ||Ln(B1)
) such that any viscosity solution w of (3.1) satisfies

[w]C0,β(Br) ≤ C. (3.2)

Proof. Equation (3.1) can be rewritten as

− tr

((
I + (p− 2)

Dw + q

|Dw + q| ⊗
Dw + q

|Dw + q|
)
D2w

)
= f.

Recalling the definitions of the Pucci operators P+ and P− respectively, we have{
P+(D2w) + |f | ≥ 0
P−(D2w)− |f | ≤ 0.

By the classical result of Caffarelli in [7, Proposition 4.10], there exists β = β(p, n) ∈ (0, 1) such
that

[w]C0,β(Br) ≤ C = C

(
p, n, r, osc(w)

B1

, ||f ||Ln(B1)

)
.
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The next lemma is needed to prove the key Lemma 3.3, where we show improvement of flatness.
For convenience, we postpone the technical proof of Lemma 3.2 and present it at the end of this
section.

Lemma 3.2. Assume that f ≡ 0 and let w be a viscosity solution to equation (3.1) with oscw
B1

≤ 1.

For all r ∈ (0, 12 ], there exist constants C0 = C0(p, n) > 0 and β1 = β1(p, n) > 0 such that

[w]C1,β1 (Br)
≤ C0. (3.3)

We are now in a position to show an improvement of flatness for solutions to equation (3.1) by
using the previous lemmas together with known regularity results for elliptic PDEs. Intuitively,
we show that graphs of the solutions get more flat when we look at them in smaller balls.

Lemma 3.3. There exist ε0 ∈ (0, 1) and ρ = ρ(p, n) ∈ (0, 1) such that, for any viscosity solution
w of (3.1), oscB1(w) ≤ 1 and ||f ||L∞(B1) ≤ ε0, there exists q′ ∈ R

n such that

osc
x∈Bρ

(w(x)− q′ · x) ≤ 1

2
ρ.

Proof. Thriving for a contradiction, assume that there exist a sequence of functions (fj) with
||fj ||L∞(B1) → 0, a sequence of vectors (qj) and a sequence of viscosity solutions (wj) with
oscB1(wj) ≤ 1 to

−Δwj − (p− 2)

〈
D2wj

Dwj + qj
|Dwj + qj | ,

Dwj + qj
|Dwj + qj |

〉
= fj , (3.4)

such that, for all q′ ∈ R
n and any ρ ∈ (0, 1)

osc
x∈Bρ

(wj(x)− q′ · x) > ρ

2
. (3.5)

Using the compactness result of Lemma 3.1, there exists a continuous function w∞ such that
wj → w∞ uniformly in Bρ for any ρ ∈ (0, 1). Passing to the limit in (3.5), we have that for any
vector q′,

osc
x∈Bρ

(w∞(x)− q′ · x) > ρ

2
. (3.6)

Suppose first that the sequence (qj) is bounded. Using the result of Appendix A, we extract a
subsequence (wj) converging to a limit w∞, which satisfies

− tr

((
I + (p− 2)

Dw∞ + q∞
|Dw∞ + q∞| ⊗

Dw∞ + q∞
|Dw∞ + q∞|

)
D2w∞

)
= 0 inB1

in a viscosity sense. (Here qj → q∞ up to the same subsequence.) By the regularity result of
Lemma 3.2, there exist β1 = β1(p, n) > 0 and C0 = C0(p, n) > 0 such that ||w∞||C1,β1 (B1/2)

≤ C0.

If the sequence (qj) is unbounded, we extract a converging subsequence from ej =
qj
|qj | , ej → e∞,

and obtain (see Appendix A)

−Δw∞ − (p− 2)
〈
D2w∞ e∞, e∞

〉
= 0 in B1, (3.7)

with |e∞| = 1. Noticing that equation (3.7) can be written as

− tr ((I + (p− 2)e∞ ⊗ e∞)D2w∞) = 0,

7



we see that equation (3.7) is uniformly elliptic and depends only on D2w∞. By the regularity

result of [8, Corollary 5.7], there is β2 = β2(p, n) > 0 so that w∞ ∈ C1,β2

loc and there exists
C0 = C0(p, n) > 0 such that ||w∞||C1,β1 (B1/2)

≤ C0.

We have shown that w∞ ∈ C1,β
loc for β = min(β1, β2) > 0. Choose ρ ∈ (0, 1/2) such that

C0ρ
β ≤ 1

4
. (3.8)

By C1,β
loc regularity, there exists a vector kρ such that

osc
x∈Bρ

(w∞(x)− kρ · x) ≤ C0ρ
1+β ≤ 1

4
ρ. (3.9)

This contradicts (3.6) so the proof is complete.

Proceeding by iteration, we obtain the following lemma.

Lemma 3.4. Let ρ and ε0 ∈ (0, 1) be as in Lemma 3.3 and let u be a viscosity solution of (1.1)
with oscB1(u) ≤ 1 and ||f ||L∞(B1) ≤ ε0. Then, there exists α ∈ (0, 1) such that for all k ∈ N, there
exists qk ∈ R

n such that
osc

y∈Brk

(u(y)− qk · y) ≤ r1+α
k , (3.10)

where rk := ρk.

Proof. For k = 0, the estimate (3.10) follows from the assumption oscB1(u) ≤ 1. Next we take
α ∈ (0, 1) such that ρα > 1/2. We assume for k ≥ 0 that we already constructed qk ∈ R

n such
that (3.10) holds true. To prove the inductive step k → k + 1, we rescale the solution considering
for x ∈ B1

wk(x) = r−1−α
k

(
u(rkx)− qk · (rkx)

)
.

By induction assumption, we have osc
B1

(wk) ≤ 1, and wk satisfies

−Δwk − (p− 2)

〈
D2wk

Dwk + (qk/r
α
k )∣∣Dwk + (qk/r
α
k )
∣∣ , Dwk + (qk/r

α
k )∣∣Dwk + (qk/r
α
k )
∣∣
〉

= fk,

where fk(x) = r1−α
k f(rkx) with ||fk||L∞(B1)

≤ ε0 since α < 1. Using the result of Lemma 3.3, there
exists lk+1 ∈ R

n such that

osc
x∈Bρ

(wk(x)− lk+1 · x) ≤ 1

2
ρ.

Setting qk+1 = qk + lk+1r
α
k , we get

osc
Brk+1

(u(x)− qk+1 · x) ≤ ρ

2
r1+α
k ≤ r1+α

k+1 .

Since the estimate (3.10) holds for every k, the proof of Theorem 1.1 is complete.

The rest of the section is devoted to the proof of Lemma 3.2. First we need the following
technical lemma concerning Lipschitz regularity of solutions of equation (3.1) in the case f ≡ 0.
For n× n matrices we use the matrix norm

||A|| := sup
|x|≤1

{|Ax|}.
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Lemma 3.5. Assume that f ≡ 0 and let w be a viscosity solution to equation (3.1) with oscw
B1

≤ 1.

For all r ∈ (0, 34), there exists a constant Q = Q(p, n) > 0 such that, if |q| > Q, then for all
x, y ∈ Br,

|w(x)− w(y)| ≤ C̃ |x− y| , (3.11)

where C̃ = C̃(p, n) > 0.

Proof. We use the viscosity method introduced by Ishii and Lions in [19].

Step 1

It suffices to show that w is Lipschitz in B3/4, because this will imply that w is Lipschitz in

any smaller ball Bρ for ρ ∈ (0, 34) with the same Lipschitz constant. Take r = 4
5 . First we fix

x0, y0 ∈ B 15r
16
, where now 15r

16 = 3
4 , and introduce the auxiliary function

Φ(x, y) := w(x)− w(y)− Lφ(|x− y|)− M

2
|x− x0|2 − M

2
|y − y0|2 ,

where φ is defined below. Our aim is to show that Φ(x, y) ≤ 0 for (x, y) ∈ Br × Br. For a proper
choice of φ, this yields the desired regularity result. We take

φ(t) =

{
t− tγφ0 0 ≤ t ≤ t1 := ( 1

γφ0
)1/(γ−1)

φ(t1) otherwise,

where 2 > γ > 1 and φ0 > 0 is such that t1 ≥ 2 and γφ02
γ−1 ≤ 1/4.

Then

φ′(t) =

{
1− γtγ−1φ0 0 ≤ t ≤ t1

0 otherwise,

φ′′(t) =

{
−γ(γ − 1)tγ−2φ0 0 < t ≤ t1

0 otherwise.

In particular, φ′(t) ∈ [34 , 1] and φ′′(t) < 0 when t ∈ [0, 2].

Step 2

We argue by contradiction and assume that Φ has a positive maximum at some point (x1, y1) ∈
B̄r × B̄r. Since w is continuous and its oscillation is bounded by 1, we get

M |x1 − x0|2 ≤ 2 oscB1 w ≤ 2,

M |y1 − y0|2 ≤ 2 oscB1 w ≤ 2.
(3.12)

Notice that x1 �= y1, otherwise the maximum of Φ would be non positive. Choosing M ≥
(
32

r

)2

,

we have that |x1 − x0| < r/16 and |y1 − y0| < r/16 so that x1 and y1 are in Br.
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We know that w is locally Hölder continuous and that there exists a constant Cβ > 0 depending
only on p, n, r such that

|w(x)− w(y)| ≤ Cβ|x− y|β forx, y ∈ Br.

Using that w is Hölder continuous, it follows, adjusting the constants (by choosing 2M ≤ Cβ),
that

M |x1 − x0| ≤ Cβ |x1 − y1|β/2 ,
M |y1 − y0| ≤ Cβ |x1 − y1|β/2 .

(3.13)

By Jensen-Ishii’s lemma (also known as theorem of sums, see [10, Theorem 3.2]), there exist

(ζ̃x, X) ∈ J 2,+
(
w(x1)− M

2
|x1 − x0|2

)
,

(ζ̃y, Y ) ∈ J 2,−
(
w(y1) +

M

2
|y1 − y0|2

)
,

that is

(a,X +MI) ∈ J 2,+
w(x1),

(b, Y −MI) ∈ J 2,−
w(y1),

where (ζ̃x = ζ̃y)

a = Lφ′(|x1 − y1|) x1 − y1
|x1 − y1| +M(x1 − x0) = ζ̃x +M(x1 − x0),

b = Lφ′(|x1 − y1|) x1 − y1
|x1 − y1| −M(y1 − y0) = ζ̃y −M(y1 − y0).

If L is large enough (depending on the Hölder constant Cβ), we have

|a| , |b| ≥ Lφ′(|x1 − y1|)− Cβ |x1 − y1|β/2 ≥ L

2
.

Moreover, by Jensen-Ishii’s lemma, for any τ > 0, we can take X,Y ∈ Sn such that

− [τ + 2 ||B|| ](I 0
0 I

)
≤
(
X 0
0 −Y

)
(3.14)

and (
X 0
0 −Y

)
≤
(

B −B
−B B

)
+

2

τ

(
B2 −B2

−B2 B2

)
(3.15)

= D2φ(x1, y1) +
1

τ

(
D2φ(x1, y1)

)2
,

where

B =Lφ′′(|x1 − y1|) x1 − y1
|x1 − y1| ⊗

x1 − y1
|x1 − y1|

+
Lφ′(|x1 − y1|)

|x1 − y1|

(
I − x1 − y1

|x1 − y1| ⊗
x1 − y1
|x1 − y1|

)
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and

B2 =
L2(φ′(|x1 − y1|))2

|x1 − y1|2
(
I − x1 − y1

|x1 − y1| ⊗
x1 − y1
|x1 − y1|

)

+ L2(φ′′(|x1 − y1|))2 x1 − y1
|x1 − y1| ⊗

x1 − y1
|x1 − y1| .

Notice that φ′′(t) +
φ′(t)
t

≥ 0, φ′′(t) ≤ 0 for t ∈ (0, 2) and hence

||B|| ≤ Lφ′(|x1 − y1|), (3.16)

∣∣∣∣B2
∣∣∣∣ ≤ L2

(
|φ′′(|x1 − y1|)|+ φ′(|x1 − y1|)

|x1 − y1|
)2

. (3.17)

Moreover, for ξ = x1−y1
|x1−y1| , we have

〈Bξ, ξ〉 = Lφ′′(|x1 − y1|) < 0, 〈B2ξ, ξ〉 = L2(φ′′(|x1 − y1|))2.

Choosing τ = 4L

(
|φ′′(|x1 − y1|)|+ φ′(|x1 − y1|)

|x1 − y1|
)
, we have that for ξ = x1−y1

|x1−y1| ,

〈Bξ, ξ〉+ 2

τ
〈B2ξ, ξ〉 = L

(
φ′′(|x1 − y1|) + 2

τ
L(φ′′(|x1 − y1|))2

)
≤ L

2
φ′′(|x1 − y1|) < 0. (3.18)

In particular applying inequalities (3.14) and (3.15) to any vector (ξ, ξ) with |ξ| = 1, we have that
X − Y ≤ 0 and ||X|| , ||Y || ≤ 2 ||B||+ τ . We refer the reader to [19, 10] for details.
Thus, setting η1 = a+ q, η2 = b+ q, we have for |q| large enough (depending only on L)

|η1| ≥ |q| − |a| ≥ |a|
2

≥ L

4
,

|η2| ≥ |q| − |b| ≥ |b|
2

≥ L

4
, (3.19)

where L will be chosen later on and L will depend only on p, n, Cβ . We write the viscosity
inequalities

0 ≤ tr(X +MI) + (p− 2)
〈(X +MI)(a+ q), (a+ q)〉

|a+ q|2

0 ≥ tr(Y −MI) + (p− 2)
〈(Y −MI)(b+ q), (b+ q)〉

|b+ q|2 .

In other words

0 ≤ tr(A(η1)(X +MI))

0 ≤ − tr(A(η2)(Y −MI))

where for η �= 0 η̄ =
η

|η| and
A(η) := I + (p− 2)η ⊗ η.
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Adding the two inequalities, we get

0 ≤ tr(A(η1)(X +MI))− tr(A(η2)(Y −MI)).

It follows that

0 ≤ tr(A(η1)(X − Y ))︸ ︷︷ ︸
(1)

+ tr((A(η1)−A(η2))Y )︸ ︷︷ ︸
(2)

+M
[
tr(A(η1)) + tr(A(η2))︸ ︷︷ ︸

(3)

]
. (3.20)

Estimate of (1). Notice that all the eigenvalues of X − Y are non positive. Moreover, applying
the previous matrix inequality (3.15) to the vector (ξ,−ξ) where ξ := x1−y1

|x1−y1| and using (3.18), we
obtain

〈(X − Y )ξ, ξ〉 ≤ 4

(
〈Bξ, ξ〉+ 2

τ
〈B2ξ, ξ〉)

)
≤ 2Lφ′′(|x1 − y1|) < 0. (3.21)

Hence at least one of the eigenvalue of X − Y that we denote by λi0 is negative and smaller than
2Lφ′′(|x1 − y1|). The eigenvalues of A(η1) belong to [min(1, p− 1),max(1, p− 1)]. Using (3.21), it
follows by [40] that

tr(A(η1)(X − Y )) ≤
∑
i

λi(A(η1))λi(X − Y )

≤ min(1, p− 1)λi0(X − Y )

≤ 2min(1, p− 1)Lφ′′(|x1 − y1|).

Estimate of (2). We have

A(η1)−A(η2) = (η1 ⊗ η1 − η2 ⊗ η2)(p− 2)

= [(η1 − η2 + η2)⊗ η1 − η2 ⊗ (η2 − η1 + η1)](p− 2)

= [(η1 − η2)⊗ η1 + η2 ⊗ η1 − η2 ⊗ (η2 − η1)− η2 ⊗ η1](p− 2)

= [(η1 − η2)⊗ η1 − η2 ⊗ (η2 − η1)](p− 2).

Hence,

tr((A(η1)−A(η2))Y ) ≤ n ||Y || ||A(η1)−A(η2)||
≤ n |p− 2| ||Y || |η1 − η2| (|η1|+ |η2|)
≤ 2n |p− 2| ||Y || |η1 − η2|.

On one hand we have

|η1 − η2| =
∣∣∣∣ η1|η1| −

η2
|η2|
∣∣∣∣ ≤ max

( |η2 − η1|
|η2| ,

|η2 − η1|
|η1|

)
≤ 8Cβ

L
|x1 − y1|β/2 ,
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where we used (3.19) and (3.13).

On the other hand, by (3.14)–(3.17),

||Y || = max
ξ

|〈Y ξ, ξ〉| ≤ 2|〈Bξ, ξ〉|+ 4

τ
|〈B2ξ, ξ〉|

≤ 4L

(
φ′(|x1 − y1|)
|x1 − y1| + |φ′′(|x1 − y1|)|

)
.

Hence, remembering that |x1 − y1| ≤ 2, we end up with

tr((A(η1)−A(η2))Y ) ≤ 128n |p− 2|Cβφ
′(|x1 − y1|) |x1 − y1|−1+β/2

+ 128n |p− 2|Cβ|φ′′(|x1 − y1|)|.

Estimate of (3). Finally, we have

M(tr(A(η1)) + tr(A(η2))) ≤ 2Mnmax(1, p− 1).

Step 3

Gathering the previous estimates with (3.20) and recalling the definition of φ, we get

0 ≤ 128n |p− 2|Cβ

(
φ′(|x1 − y1|) |x1 − y1|β/2−1 + |φ′′(|x1 − y1|)|

)
+ 2min(1, p− 1)Lφ′′(|x1 − y1|) + +2Mnmax(1, p− 1)

≤ 128n |p− 2|Cβ |x1 − y1|β/2−1 + 2nM max(1, p− 1)

+ 128n |p− 2|Cβγ(γ − 1)φ0 |x1 − y1|γ−2

− 2min(1, p− 1)γ(γ − 1)φ0L |x1 − y1|γ−2 .

Taking γ = 1 + β/2 > 1 and choosing L large enough depending on p, n, Cβ , we get

0 ≤ −min(1, p− 1)γ(γ − 1)φ0

200
L |x1 − y1|γ−2 < 0,

which is a contradiction. Hence, by choosing first L such that

0 > 128n |p− 2|Cβ

(
φ′(|x1 − y1|) |x1 − y1|β/2−1 + |φ′′(|x1 − y1|)|

)
+min(1, p− 1)Lφ′′(|x1 − y1|) + 2nM max(1, p− 1)

and then taking |q| large enough (depending on L, it suffices that |q| > 6L > 3
2 |a| see (3.19)), we

reach a contradiction and hence Φ(x, y) ≤ 0 for (x, y) ∈ Br × Br. The desired result follows since
for x0, y0 ∈ B 15r

16
, we have Φ(x0, y0) ≤ 0, we get

|w(x0)− w(y0)| ≤ Lφ(|x0 − y0|) ≤ L|x0 − y0|.

Remembering that 15r
16 = 15·4

16·5 = 3
4 , we get that w is Lipschitz in B 3

4
.

Finally, once we have a control on the Lipschitz norm of w, we can prove Lemma 3.2.
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Proof of Lemma 3.2. Introducing the function v(x) := w(x) + q · x, we notice that v is a viscosity
solution to

−ΔN
p v = 0 inB1,

and thus also a viscosity solution to the homogeneous p-Laplace equation Δpv = 0, see [23]. By the
equivalence result first proved by [23], v is a weak solution to the homogeneous p-Laplace equation.

By the classical regularity result, there is β1 = β1(p, n) > 0 so that v ∈ C1,β1

loc (B1) and hence also

w ∈ C1,β1

loc (B1). The main difficulty is to provide C1,β1 estimates which are uniform with respect
to q.

We notice that if |q| is large enough, then the equation satisfied by w is uniformly elliptic and
the operator is not discontinuous. Taking Q from Lemma 3.5 and assuming that |q| > Q, we
know from Lemma 3.5 that |Dw(x)| is controlled by some constant C̃ depending only on p, n and
independent of |q| for any x ∈ B3/4. It follows that, if q satisfies

|q| ≥ θ0 := max(Q, 2C̃) ≥ 2 ||Dw||L∞(B3/4)
,

then denoting ν := 1
|q| and e := q

|q| , we have

1

2
≤ |e| − |νDw| ≤ |νDw + e| ≤ |e|+ |νDw| ≤ 3

2
.

Defining

Σ(x) := (p− 2)
Dw(x) + q

|Dw(x) + q| ⊗
Dw(x) + q

|Dw(x) + q| ,

we note that (3.1) can be rewritten as

− tr(F (D2w, x)) = 0,

where F : Sn ×B3/4 → R,
F (M,x) = − tr((I +Σ(x))M),

is continuous.
Since Dw is Hölder continuous, we can see this equation as a linear elliptic equation with Cα

coefficients. The standard Calderón-Zygmund theory provides local C2,α regularity on w (boot-
strapping the argument gives even C∞ regularity on w).

Moreover, since v is a weak solution to the usual p-Laplacian, it follows that w is a weak solution
to

− div
(|Dw + q|p−2(Dw + q)

)
= 0 in B3/4. (3.22)

Writing the weak formulation, we have that for any test function ϕ ∈ C∞
0 (B3/4)∫

B3/4

|Dw + q|p−2(Dw + q) ·Dϕdx = 0. (3.23)

Fixing k, 1 ≤ k ≤ n, taking ϕk =
∂ϕ

∂xk
instead of ϕ as a test function and integrating by parts,

we obtain ∫
B3/4

(|Dw + q|p−2(I +Σ(x))Dwk) ·Dϕdx = 0.
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Dividing by |q|p−2, we have for any function ϕ ∈ C∞
0 (B3/4)∫

B3/4

(|νDw + e|p−2(I +Σ(x))Dwk

) ·Dϕdx = 0.

We conclude that h := wk is a weak solution to the linear uniformly elliptic equation

− div(A(x)Dh) = 0,

where A(x) := |νDw(x) + e|p−2(I +Σ(x)) ∈ Sn satisfies

A(x) ≥ min(1, p− 1)min

((
3

2

)p−2

,

(
1

2

)p−2
)
I,

A(x) ≤ max(1, p− 1)max

((
3

2

)p−2

,

(
1

2

)p−2
)
I.

Using the classical result of De Giorgi [12] for uniformly elliptic equations with bounded coefficients
(see also [36], [17, Theorems 8.24, 12.1]) we get that h is locally Hölder continuous and

[h]C0,β1 (B1/2)
≤ C(p, n) ||h||L2(B3/4)

(3.24)

for some β1 = β1(p, n) > 0.
We conclude that if |q| > θ0 = θ0(p, n), then there exist C = C(p, n, ||w||L∞(B1)

, ||Dw||L∞(B3/4)
) =

C0(p, n) > 0 (see Lemma 3.5) and β1 = β1(n, p) > 0 such that

[w]C1,β1 (B1/2)
≤ C0.

If |q| ≤ θ0, we have
osc
B1

v ≤ oscw
B1

+ 2|q| ≤ 1 + 2θ0.

It follows that

[w]C1,β1 (B1/2)
≤ [v]C1,β1 (B1/2)

+ 2|q| ≤ C(p, n)osc v
B1

+ 2θ0 ≤ C0(p, n).

3.2. Second proof by using distributional weak theory

In this part we establish a second method to show that viscosity solutions to (1.1) are in
C1,α
loc (Ω), when f ∈ L∞(Ω) ∩ C(Ω) and p ≥ 2. Recall that equation (1.2) reads as

−Δpu = |Du|p−2f in Ω.

Since the exponent of the nonlinear gradient term is less than p and f ∈ L∞(Ω), locally Hölder
continuous weak solutions of (1.2) are known to be of class C1,α

loc for some α ∈ (0, 1), see [41]. More
precisely, if u is a weak solution to (1.2) in B2r, then

[u]C1,α(Br) ≤ C = C
(
p, n, r, ||u||L∞(B2r)

, ||f ||L∞(B2r)

)
.
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We know that in the case p ≥ 2 viscosity solutions of (1.1) are viscosity solutions to (1.2),
and our aim is to show that they are also weak solutions to (1.2). The next theorem holds for
the more general case f ∈ Lq(Ω) ∩ C(Ω), where q > max(n, p/2), and will be useful not only in
this subsection, but in Section 4 and Section 5 as well. Our proof cannot rely on uniqueness, see
Example 3.7 below. Instead, we use a technique developed by Julin and Juutinen in [22]. We point
out that the uniqueness of viscosity solutions is known only when f is either 0 or has constant
sign (see [24]). A detailed discussion can be found in [3, 38] for the case of the normalized infinity
Laplacian.

Theorem 3.6. Assume that p ≥ 2, max(n, p/2) < q ≤ ∞, and f ∈ Lq(Ω) ∩ C(Ω). Let u be a
bounded viscosity solution to (1.1). Then u is a weak solution to (1.2).

Proof. We will prove that a viscosity supersolution u to (1.2) is also a weak supersolution to (1.2)
(the proof adapts to the case of subsolutions with obvious changes). We need to show that∫

Ω
|Du|p−2Du ·Dϕdx ≥

∫
Ω
|Du|p−2fϕ dx,

where ϕ ∈ C∞
0 (Ω).

Step 1: regularization.

Let us start by showing that the inf-convolution uε of u,

uε(x) := inf
y∈Ω

(
u(y) +

|x− y|2
2ε

)
, (3.25)

is a weak supersolution to
−Δpuε ≥ |Duε|p−2fε in Ωr(ε), (3.26)

where
fε(x) = inf

|y−x|≤2
√
ε oscΩ u

f(y)

and
Ωr(ε) = {x : dist(x, ∂Ω) > 2

√
ε oscΩ u} .

We recall some properties of inf-convolutions. For more general discussion and proofs, see the
appendix of [22]. First we mention that uε is a semi-concave viscosity supersolution to (3.26).
Moreover, uε ∈ W 1,∞

loc (Ωr(ε)) is twice differentiable a.e and satisfies

−Δpuε = −|Duε|p−2

(
Δuε + (p− 2)D2uε

Duε
|Duε| ·

Duε
|Duε|

)
≥ |Duε|p−2fε (3.27)

a.e. in Ωr(ε). Finally we mention that uε → u locally uniformly and ||uε||L∞(Ωr(ε)) ≤ ||u||L∞(Ω), see

[10].

Since the function φ(x) := uε(x)− 1

2ε
|x|2 is concave in Ωr(ε), we can approximate it by a sequence

(φj) of smooth concave functions by using standard mollification. Denoting uε,j := φj +
1

2ε
|x|2, we

can integrate by parts to obtain∫
Ωr(ε)

|Duε,j |p−2Duε,j ·Dϕdx =

∫
Ωr(ε)

(−Δpuε,j)ϕdx. (3.28)
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Since Duε is locally bounded, the dominated convergence theorem implies

lim
j→∞

∫
Ωr(ε)

|Duε,j |p−2Duε,j ·Dϕdx =

∫
Ωr(ε)

|Duε|p−2Duε ·Dϕdx. (3.29)

Next, using the concavity of uε,j (we have D2uε,j ≤ 1
εI) and the local boundedness of Duε,j , we

get

−Δpuε,j ≥ −Cp−2(n+ p− 2)

ε
locally in Ωr(ε). Applying Fatou’s lemma, we obtain

lim inf
j→∞

∫
Ωr(ε)

(−Δpuε,j)ϕdx ≥
∫
Ωr(ε)

lim inf
j→∞

(−Δpuε,j)ϕdx. (3.30)

Since
lim inf
j→∞

(−Δpuε,j(x)) = −Δpuε(x)

almost everywhere, by using (3.28), (3.29) and (3.30) we obtain∫
Ωr(ε)

|Duε|p−2Duε ·Dϕdx ≥
∫
Ωr(ε)

(−Δpuε)ϕdx

≥
∫
Ωr(ε)

|Duε|p−2fεϕdx.

Hence, we have shown that uε ∈ W 1,p
loc (Ωrε) is a weak supersolution to (3.26).

Step 2: passing to the limit in the regularization.

Take an arbitrary test function ϕ ∈ C∞
0 (Ω). We finish the proof by showing that∫

Ωr(ε)

|Duε|p−2Duε ·Dϕdx →
∫
Ω
|Du|p−2Du ·Dϕdx (3.31)

and ∫
Ωr(ε)

|Duε|p−2fεϕdx →
∫
Ω
|Du|p−2fϕ dx. (3.32)

Let Ω′′ be the support of ϕ and ε so small that Ω′′ ⊂ Ω′ ⊂⊂ Ωr(ε). We start by showing
that Duε is uniformly bounded in Lp(Ω′). Take a compactly supported smooth cut-off function
ξ : Ωr(ε) → [0, 1] such that ξ ≡ 1 on Ω′′ and such that the support of ξ is included in Ω′. Choose
the test function (2L − uε)ξ

p in the weak formulation, where L = supΩ′ |uε|. By using Hölder’s
inequality we obtain∫

Ωr(ε)

ξp|Duε|p dx ≤
∫
Ωr(ε)

|Duε|p−2(2L− uε)ξ
2ξp−2|fε| dx

+ p

∫
Ωr(ε)

ξp−1|Duε|p−2Duε ·Dξ(2L− uε) dx

≤ 1/4

∫
Ωr(ε)

ξp|Duε|p dx+ C(p)Lp/2

∫
Ωr(ε)

|fε|p/2ξp dx

+ C(p)

∫
Ωr(ε)

Lp|Dξ|pdx+ 1/4

∫
Ωr(ε)

ξp|Duε|p dx.
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It follows that∫
Ωr(ε)

ξp|Duε|p dx ≤ C(p)Lp/2

∫
Ωr(ε)

|fε|p/2ξp dx+ C(p)

∫
Ωr(ε)

Lp|Dξ|pdx

≤ C = C
(
p, n, ||u||L∞(Ω) , ||f ||Lq(Ω)

)
. (3.33)

Hence, Duε is uniformly bounded with respect to ε in Lp(Ω′). It follows that there exists a
subsequence such that Duε → Du weakly in Lp(Ω′), and we can also show that Duε → Du
strongly in Lp(Ω′). Indeed, taking this time the test function (u− uε)ξ

p, we estimate

−
∫
Ωr(ε)

ξp|Duε|p−2Duε · (Du−Duε) dx ≤
∫
Ωr(ε)

|Duε|p−2(u− uε)ξ
p|fε| dx

+ p

∫
Ωr(ε)

ξp−1|Duε|p−1|Dξ|(u− uε) dx.

Adding
∫
Ωr(ε)

|Du|p−2Du · (Du−Duε)ξ
p dx to this inequality and recalling that for p > 2

(|a|p−2a− |b|p−2b) · (a− b) ≥ C(p)|a− b|p,
we get

C(p)

∫
Ωr(ε)

|Du−Duε|pξp dx ≤ ||u− uε||L∞(Ω′) ||Duεξ||p−2
Lp(Ω′) ||fεξ||Lp/2(Ω′)

+ p ||u− uε||L∞(Ω′) ||Duεξ||p−1
Lp(Ω′) ||Dξ||Lp(Ω′)

+

∫
Ωr(ε)

|Du|p−2Du · (Du−Duε)ξ
p dx.

By using the local uniform convergence of uε to u, the facts that ||fε||Lq(Ω′) ≤ C(q,Ω) ||f ||Lq(Ω),

Du ∈ Lp(Ω′) and the weak convergence of Duε in Lp(Ω′), we obtain∫
Ωr(ε)

|Du−Duε|pξp dx → 0,

so Duε → Du strongly in Lp(Ω′).
Finally, we are ready to show that (3.31) and (3.32) hold. First we use the triangle inequality

to obtain ∣∣∣∣
∫
Ω′

|Duε|p−2fεϕdx−
∫
Ω′

|Du|p−2fϕ dx

∣∣∣∣
≤
∣∣∣∣
∫
Ω′

|Duε|p−2(fε − f)ϕdx

∣∣∣∣+
∣∣∣∣
∫
Ω′
(|Duε|p−2 − |Du|p−2)fϕ dx

∣∣∣∣
=: I1 + I2.

Using the generalized Hölder’s inequality, we get

I1 ≤ ||Duε||Lp(Ω′)||fε − f ||Lq(Ω)||ϕ||L∞(Ω′) ≤ C||fε − f ||Lp/2(Ω′) → 0.
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To estimate I2, notice first that since f and ϕ are continuous in Ω′, fϕ is bounded in Ω′. By using
Hölder’s inequality and the convexity of p

p−2 power function, we obtain

I2 ≤ C
∣∣∣∣|Duε|p−2 − |Du|p−2

∣∣∣∣
L

p
p−2 (Ω′)

≤ C
∣∣∣||Duε||pLp(Ω′) − ||Du||pLp(Ω′)

∣∣∣ p−2
p → 0,

since Duε → Du in Lp(Ω′). Hence, (3.32) holds, and by using the same argument, also (3.31)
holds. The proof is complete.

Finally, we give an example to show why we deliberately avoided using the uniqueness machin-
ery. For similar counterexamples in the case of the infinity Laplacian, see [11].

Example 3.7. We give an example to show that for given continuous boundary data, there can be
several weak solutions to equation (1.2). Let f = (p − 1). Consider the 1-dimensional situation,
where for R ∈ [0, 1] we define a function

u(x) =

⎧⎪⎨
⎪⎩
C − C( x+R

−1+R)
2 x ∈ (−1,−R)

C [−R,R]

C − C(x−R
1−R )2 x ∈ (R, 1).

Solving C from

−(p− 1)u′′ = (p− 1)

gives

2C

(−1 +R)2
= 1 i.e. C =

1

2
(−1 +R)2.

This gives different weak solutions for the whole range of R. Indeed, assuming that u ∈ W 1,p((−1, 1)),
for any test function ϕ ∈ C∞

0 ((−1, 1))∫ 1

−1
|u′|p−2u′ϕ′ dx = −

∫ −R

−1
(x+R)p−1ϕ′(x) dx+

∫ 1

R
(x−R)p−1ϕ′(x) dx

= (p− 1)
(∫ −R

−1
(x+R)p−2ϕ(x) dx

+

∫ 1

R
(R− x)p−2ϕ(x) dx

)
=

∫ 1

−1
|u′|p−2ϕf dx.

Only the largest i.e. R = 0 is a solution to the original −ΔN
p u = (p− 1).

This counterexample also shows that in general weak solutions to (1.2) are not necessarily viscosity
solutions to (1.1).
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4. Uniform gradient estimates when f ∈ C(Ω) ∩ Lq(Ω)

In this section we assume that p > 2, f ∈ C(Ω)∩Lq(Ω) for some q > max
(
n, p2 , 2

)
. Our aim is

to prove Theorem 1.2, which states that viscosity solutions of (1.1) are of class C1,α
loc (Ω) for some

α = α(p, q, n), and for any Ω′′ ⊂ Ω′ ⊂⊂ Ω,

[u]C1,β(Ω′′) ≤ C = C
(
p, q, n, d, d′′, ||u||L∞(Ω), ||f ||Lq(Ω)

)
,

where d = diam (Ω) and d′′ = dist (Ω′′, ∂Ω′).
Let u be a viscosity solution of (1.1). From Lemma 3.1, we know that u is locally of class C0,β

for some β = β(p, n). From Section 3, we know that u is a weak solution to (1.2) and passing to
the limit in (3.33), we know that for any Ω′ ⊂⊂ Ω,

||Du||Lp(Ω′) ≤ C(p, n, ||u||L∞(Ω) , ||f ||Lq(Ω)). (4.1)

Moreover, for any λ > 0 the function u is a bounded viscosity solution to the following equation

−ΔN
p v(x) + λv(x) = h(x) := f(x) + λu(x), x ∈ Ω. (4.2)

Let Ω′ ⊂⊂ Ω with Ω′ smooth enough so that weak solutions to (1.2) satisfy the boundary condition
in a classical sense. In the sequel we fix small enough λ = λ(p, n,Ω′) > 0 and a viscosity solution u
of (1.1). We take Hölder continuous functions fε ∈ C(Ω)∩Lq(Ω) such that fε converges uniformly
to f in Ω′ and fε converges to f in Lq(Ω′). The idea for the proof of Theorem 1.2 is to obtain
uniform estimates for solutions vε to the following regularized problems{

−div
((|Dvε|2 + ε2

)(p−2)/2
Dvε

)
= (|Dvε|2 + ε2)

p−2
2 (hε − λvε), x ∈ Ω′,

vε = u x ∈ ∂Ω′, (4.3)

where hε = fε+λu. Notice that the right-hand side of the equation has a growth of power less than
p with respect to the gradient, and hε is bounded. Since the regularized equations are uniformly

elliptic with smooth coefficients, in Step 1 we notice that vε ∈ C
1,β(ε)
loc (Ω′) ∩W 2,2

loc (Ω
′). In the next

two steps we obtain uniform estimate for the norm ||Dvε||Lp(Ω′) and local Lipschitz estimate for vε.

Once we know that vε and |Dvε|p−2 are locally uniformly bounded, in Step 4 we use the regularity
result of Lieberman [30] to get a local uniform Hölder estimate for the gradient Dvε. By using
the equicontinuity of (Dvε), we obtain a subsequence (vε) converging to a viscosity solution v of
equation (4.2) in C1,α

loc (Ω
′) when ε → 0.

For λ > 0 and a given continuous boundary data, uniqueness for viscosity solutions of (4.2) is easy
to prove. By using uniqueness, we conclude in Step 5 that the function v is the unique viscosity
solution to (4.2) with given boundary data u. Since u is a solution to (4.2), we get that u = v.
This gives a proof for Theorem 1.2.

Step 1: Local C1,β regularity for vε. Let vε ∈ W 1,p(Ω′) be a weak solution of the regular-
ized problem (4.3). Since p − 2 < p and hε ∈ Lq(Ω′) with q > n/2, regularity theory implies
that the solutions vε are bounded and locally Hölder continuous. This follows from the Sobolev
embedding for p > n and from [28, Theorems 7.1,7.2, Chapter 4 p. 286–290] for p ≤ n. Since
hε ∈ C(Ω′) is bounded and the exponent on the gradient in the left term is less than p, we also

have vε ∈ C
1,α(ε)
loc (Ω′) ∩ W 2,2

loc (Ω
′) (see [28, Theorem 8.7, chapter 4, p. 311], and also [13, 41] for
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more general regularity results.) This observation is useful, since we will derive estimates for Dvε
by using test functions involving the derivatives of vε.

Step 2: Uniform boundedness of ||Dvε||Lp(Ω′) and ||vε||L∞(Ω′). First we derive a uniform
bound for ||Dvε||Lp(Ω′). Considering the weak formulation and taking ϕ = vε−u as a test function,
we have ∫

Ω′

(|Dvε|2 + ε2
) p−2

2 |Dvε|2 dx ≤
∫
Ω′
(|Dvε|+ ε)p−2|vε − u||hε| dx

+

∫
Ω′

(|Dvε|2 + ε2
) p−2

2 |Dvε ·Du| dx

+ λ

∫
Ω′
(|Dvε|+ ε)p−2|vε||vε − u| dx

≤
∫
Ω′
(|Dvε|+ ε)p−2|vε − u||hε| dx

+

∫
Ω′

(|Dvε|2 + ε2
) p−2

2 |Dvε||Du| dx

+ λ

∫
Ω′
(|Dvε|+ ε)p−2|vε − u|2 dx

+ λ

∫
Ω′
(|Dvε|+ ε)p−2|vε − u||u| dx.

Using the inequality ∫
Ω′

|Dvε|p dx ≤
∫
Ω′

(|Dvε|2 + ε2
) p−2

2 |Dvε|2 dx

together with Young’s inequality and the previous estimate, we obtain∫
Ω′

|Dvε|p dx ≤ δ0

∫
Ω′

|Dvε|p dx+ C(p)εp|Ω′|+
∫
Ω′

|Du|p dx

+ C(p)

∫
Ω
|vε − u|p/2|hε|p/2 dx

+ λC(p)

∫
Ω′

|vε − u|p dx+ C(p)λ

∫
Ω′

|u|p dx. (4.4)

If λ = λ(p, n,Ω′) > 0 is small enough, then using the Sobolev embedding, we get∫
Ω′

|Dvε|p dx ≤ δ1

∫
Ω′

|Dvε|p dx+ C(p)

∫
Ω′

|vε − u|p/2|hε|p/2 dx

+δ2

∫
Ω′

|Dvε|p dx+ C(p, n)

∫
Ω′

|Du|p dx (4.5)

+C(p)λ

∫
Ω′

|u|p dx+ C(p)εp|Ω′|. (4.6)

Now we have to estimate
∫
Ω′ |vε − u|p/2|hε|p/2 dx. We deal separately with the cases p < n, p = n

and p > n.
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Case p < n

We denote by p∗ =
np

n− p
the Sobolev’s conjugate exponent of p. Using Sobolev’s and Hölder’s

inequalities and noticing that p∗p
2p∗−p = np

n+p , we get

∫
Ω′

|vε − u| p2 |hε|
p
2 dx ≤ ||vε − u||

p
2

Lp∗ (Ω′)

(∫
Ω′

|hε|
p∗p

2p∗−p dx

) 2p∗−p
2p∗

≤ C(p, n, |Ω′|) ||Dvε −Du||
p
2

Lp(Ω′) ||hε||
p/2

L
np
n+p (Ω′)

≤ δ3

∫
Ω′

|Dvε −Du|p dx+ C(p, n, |Ω′|) ||hε||p
L

np
n+p (Ω′)

≤ δ4

∫
Ω′

|Dvε|p dx+ C(p, n, |Ω′|) ||Du||pLp(Ω′)

+C(p, n, |Ω′|) ||hε||p
L

np
n+p (Ω′)

. (4.7)

Combining (4.4) and (4.7) and choosing δ1+δ2+C(p)δ4 = 1/2 in order to absorb terms, we obtain
remembering the definition of the function hε

||Dvε||pLp(Ω′) ≤ C(p, n, |Ω′|)
(
||hε||p

L
np
n+p (Ω′)

+

∫
Ω′
(|Du|+ 1 + |u|)p dx

)

≤ C(p, n, |Ω′|)
(
||f ||p

L
np
n+p (Ω′)

+ |Ω′|1+p/n ||u||pL∞(Ω)

)
+ C(p, n, |Ω′|)

∫
Ω′
(|Du|+ 1 + |u|)p dx. (4.8)

Case p = n

First we calculate∫
Ω′

|vε − u|p/2|hε|p/2 dx ≤ δ5 ||vε − u||pLp(Ω′) + C(p) ||hε||pLp(Ω′)

≤ δ5C(p, n, |Ω′|) ||Dvε −Du||pLp(Ω′) + C(p) ||hε||pLp(Ω′)

≤ δ6 ||Dvε||pLp(Ω′) + C(n, p, |Ω′|) ||Du||pLp(Ω′)

+ C(p) ||hε||pLp(Ω′) . (4.9)

Combing (4.4) and (4.9) and choosing δ1 + δ2 + C(p)δ6 = 1/2, we obtain

||Dvε||pLp(Ω′) ≤ C(p, n, |Ω′|) ||hε||pLp(Ω′) + C(p, n,Ω′)
∫
Ω′
(|Du|+ |u|+ 1)p dx

≤ C(p, n, |Ω′|)
(
||f ||pLn(Ω′) + |Ω′| ||u||pL∞(Ω′)

)
+ C(p, n,Ω′)

∫
Ω′
(|Du|+ |u|+ 1)p dx. (4.10)
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Case p > n

First we calculate∫
Ω′

|vε − u|p/2|hε|p/2 dx ≤ δ7 ||vε − u||pL∞(Ω′) + C(p, n) ||hε||p
L

p
2 (Ω′)

≤ δ7C(p, n, |Ω′|) ||Dvε −Du||pLp(Ω′)

+ C(p, n) ||hε||p
L

p
2 (Ω′)

≤ δ8 ||Dvε||pLp(Ω′) + C(p, n) ||hε||p
L

p
2 (Ω′)

+ C(p, n, |Ω′|) ||Du||pLp(Ω′) . (4.11)

Combing (4.4) and (4.11) and choosing δ1 + δ2 + C(p)δ8 = 1/2, we get

||Dvε||pLp(Ω′) ≤ C(p, n, |Ω′|) ||hε||p
L

p
2 (Ω′)

+ C(p, n, |Ω′|)
∫
Ω′
(|Du|+ 1 + |u|)p dx

≤ C(p, n, |Ω′|)
(
||f ||p

L
p
2 (Ω′)

+ |Ω′|2 ||u||pL∞(Ω′)

)
+ C(p, n, |Ω′|)

∫
Ω′
(|Du|+ 1 + |u|)p dx. (4.12)

Once the boundedness of ||Dvε||Lp(Ω′) is proved, we can derive a uniform bound for ||vε||L∞(Ω′).
Using the Sobolev embedding, in the case p > n we get

||vε||L∞(Ω′) ≤ ||vε − u||L∞(Ω′) + ||u||L∞(Ω′)

≤ C(n,Ω′, p) ||Dvε −Du||Lp(Ω′) + ||u||L∞(Ω′)

≤ C(p, n, |Ω′|)
(
||f ||Lq(Ω′) + ||u||W 1,p(Ω′) + ||u||L∞(Ω′) + 1

)
.

For p ≤ n, since hε ∈ Lq(Ω) for q > n
2 , we can apply [28, Theorem 7.1, Chapter 4] giving an

estimate for ||vε||L∞(Ω′) when combined with the previous estimates of ||Dvε||Lp(Ω′). We get

||vε||L∞(Ω′) ≤ C
(
||u||L∞(Ω) , p, n, |Ω′|, ||hε||Lq(Ω′) , ||vε||Lp∗ (Ω′)

)
≤ C
(
||u||L∞(Ω′) , p, n, q, |Ω′|, ||f ||Lq(Ω′) , ||u||W 1,p(Ω′)

)
,

where we also used the estimate

||vε||Lp∗ (Ω′) ≤ ||vε − u||Lp∗ (Ω′) + ||u||Lp∗ (Ω′)

≤ C(p, n,Ω′)(||u||L∞(Ω′) + ||u||W 1,p(Ω′) + ||vε||W 1,p(Ω′)).

In both cases p ≤ n and p > n, by using the estimate (4.1) we get

||vε||L∞(Ω′) ≤ C
(
||u||L∞(Ω′) , p, n, q, |Ω′|, ||f ||Lq(Ω′)

)
. (4.13)

Step 3: Local uniform Lipschitz estimate for vε. In this subsection we derive a uniform local
gradient estimate for vε by combining [15, Theorem 1.5] with the previous estimates (4.8)-(4.13).
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We follow the main steps of Duzaar and Mingione [15]. For the sake of completeness, we give some
details of these steps. We denote by V (x) := hε(x)− λvε(x). Then vε solves the equation{

−div
((|Dvε|2 + ε2

)(p−2)/2
Dvε

)
= (|Dvε|2 + ε2)

p−2
2 V, x ∈ Ω′,

vε = u x ∈ ∂Ω′.

The Duzaar-Mingione gradient estimate relies on the use of a nonlinear potential of the function
|V |2 defined by

PV (x,R) :=

∫ R

0

( |V |2(B(x, ρ))

ρn−2

) 1
2 dρ

ρ
, (4.14)

where

|V |2(B(x, ρ)) :=

∫
B(x,ρ)

|V (y)|2 dy.

Let us recall the main ingredients of the proof of the result of [15]. A key step is to derive a
Caccioppoli type estimate for the function (|Dvε|2+ ε2)

p
2 with a suitable remainder involving |V |2.

Relying on the regularity result of Step 1, this can be done by taking

ϕij(x) :=
∂

∂xj

(
η(x)2

(
(|Dvε(x)|2 + ε2)

p
2 − k

)
+

∂vε(x)

∂xi

)

as test functions in the weak formulation, where η is a non negative cut-off function. Next, a
modification of the De Giorgi techniques allowed them to get pointwise estimate of |Dvε|p in terms
of the L2p norm of Dvε and the nonlinear potential PV . Finally, using interpolation, they improved
the estimate in terms of the natural Lp norm of the gradient and the L∞ norm of the nonlinear
potential.

Our approximation is slightly different, but the Caccioppoli type estimate of [15, Lemma 3.1]
(adapted for the new right hand side) holds for 2 < p ≤ n and also for p > n. Indeed, by using
the weak formulation with the test function ϕij and integration by parts, there exists a constant
C = C(p, n) such that for any ball BR := B(x,R) ⊂ Ω′,∫

BR
2

∣∣∣∣D ((|Dvε|2 + ε2)
p
2 − k

)
+

∣∣∣∣2 dy ≤ C

R2

∫
BR

(
(|Dvε|2 + ε2)

p
2 − k

)2
+
dy

+C

∫
BR

∣∣∣∣(ε2 + ||Dvε||2L∞(BR)

)(p−1)/2
V

∣∣∣∣2 dy.

It follows that the oscillation improvement estimate [15, Lemma 3.2] holds. Once we have such
control on the level sets of |Dvε|p, a standard modification of the De Giorgi iteration argument
implies the following potential estimate (see for example [15, Lemma 3.3])

(|Dvε(x)|2 + ε2
) p

2 ≤ C

(∫
BR

(|Dvε|2 + ε2
)p

dy

)1/2

+ C
(
ε2 + ||Dvε||2L∞(BR)

) p−1
2 PV (x,R),
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where C = C(p, n). Proceeding as in [15] we get for R/2 < ρ < r < R,

(
||Dvε||2L∞(Bρ)

+ ε2
) p

2 ≤ C

(
ε2 + ||Dvε||2L∞(Br)

) p
4

(r − ρ)n/2

(∫
Br

(|Dvε|2 + ε2
)p/2

dy

)1/2

+ C
(
ε2 + ||Dvε||2L∞(Br)

) p−1
2
∣∣∣∣PV (·, R)

∣∣∣∣
L∞(BR)

≤ 1

2

(
ε2 + ||Dvε||2L∞(Br)

) p
2
+ C
∣∣∣∣PV (·, R)

∣∣∣∣p
L∞(BR)

+
C

(r − ρ)n

∫
Br

(|Dvε|2 + ε2
)p/2

dy,

where C = C(p, n). Now the standard iteration lemma (see for example [15, Lemma 2.1]) implies
that (

||Dvε||2L∞(BR/2)
+ ε2
) p

2 ≤ C

∫
BR

(|Dvε|2 + ε2
)p/2

dy

+C
∣∣∣∣PV (·, R)

∣∣∣∣p
L∞(BR)

, (4.15)

where C = C(p, n). Consequently, combining (4.8), (4.10), (4.12) and (4.15) we get

||Dvε||L∞(BR/2)
≤ C

(
R−n/p ||Dvε||Lp(BR) +

∣∣∣∣PV (·, R)
∣∣∣∣
L∞(BR)

+ 1
)
,

for all R such that BR ⊂ Ω′ and where C = C(p, n). Since vε is uniformly bounded in L∞(Ω′) and
hε is uniformly bounded in Lq(Ω′), we have V ∈ Lq(Ω′). We obtain∫

B(x,ρ)
|V (y)|2 dy ≤ ||V ||2Lq(Ω′) |B(x, ρ)| q−2

q ≤ C ||V ||2Lq(Ω′) ρ
n(q−2)

q ,

where C = C(n), and

PV (x,R) ≤ ||V ||Lq(Ω′)

∫ R

0
ρ

n(q−2)
2q

−n
2 dρ ≤ CR

q−n
q ,

where C = C(q, n) ||V ||Lq(Ω′). It follows that

sup
B(x,R)

PV (·, R) ≤ C sup
B(x,R)

R
q−n
q < ∞, (4.16)

where C = C(n, q, ||V ||Lq(Ω′)). Recalling that V = hε − λvε, and using the bound (4.13) for
||vε||L∞(Ω′), we get

||V ||Lq(Ω′) ≤ C
(
p, n, q, |Ω′|, ||f ||Lq(Ω′) , ||u||L∞(Ω′)

)
. (4.17)

Hence,

||Dvε||L∞(BR/2)
≤ C̃
(
p, n,Ω, q, ||f ||Lq(Ω′) , ||u||L∞(Ω′) , R

)
.

Step 4: Local uniform C1,β estimate for uε. Since Dvε is locally uniformly bounded in L∞

with respect to ε, the function

με := (|Dvε|2 + ε2)
p−2
2 V
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is also locally bounded in Lq with q > n and satisfies∫
Br(x)

|με|dy ≤ C(p)
(
||Dvε||p−2

L∞(Br(x))
+ 1
)∫

Br(x)
|V (y)| dy

≤ C(p, n)
(
||Dvε||p−2

L∞(Br(x))
+ 1
)
||V ||Lq(Ω′) r

n(q−1)
q

≤ C̃
(
q, n, p,Ω′, ||f ||Lq(Ω′) , ||u||L∞(Ω′)

)
rn−p+δ,

where δ = qp−n
q , δ ∈ (p − 1, p). Applying the result of Lieberman [30, Theorem 5.3] ((vε) being

also bounded in L∞), we get that vε are locally of class C1,β for some β = β(p, q, n) and for any
Ω′′ ⊂⊂ Ω′

[vε]C1,β(Ω′′) ≤ C = C
(
p, q, n, |Ω′|, ||u||L∞(Ω′) , d

′′, ||f ||Lq(Ω′)

)
, (4.18)

where d′′ = dist(Ω′′, ∂Ω′).
Step 5: Convergence in the weak and viscosity sense and conclusion. We get from (4.18)
and the Arzelà-Ascoli theorem that (uε) converges (up to a subsequence) to a function v in C1,α

loc (Ω
′)

for some α = α(q, p, n) < β. Passing to the limit within the weak formulation, v is a weak solution
to

−Δpv = |Dv|p−2(h− λv), (4.19)

see Appendix B for details. Passing to the limit in (4.18), we get that for any Ω′′ ⊂⊂ Ω′, we have
the estimate

||v||C1,α(Ω′′) ≤ C
(
p, n, q, d′′, |Ω′|, ||u||L∞(Ω′) , ||f ||Lq(Ω′)

)
.

From the boundedness of vε, it follows that v is a bounded weak solution of the Dirichlet problem
associated to (4.19). Since (vε − u) is uniformly bounded in W 1,p

0 (Ω′), we have (v− u) ∈ W 1,p
0 (Ω′).

Assuming sufficient regularity for the boundary ∂Ω′, we have v ∈ C(Ω′) and for any x0 ∈ ∂Ω′

lim
x→x0

v(x) = u(x0). The reader can find further discussion of the boundary regularity problem for

elliptic equations in the monograph of Malý and Ziemer [33]. On the other hand, the local Hölder
continuity of Dvε and the Hölder continuity of hε imply, by the classical elliptic regularity theory,
that vε is also a classical solution to

−div
((|Dvε|2 + ε2

)(p−2)/2
Dvε

)
= (|Dvε|2 + ε2)

p−2
2 (hε − λvε) in Ω′.

This implies that vε solves in the classical sense

−Δvε − (p− 2)
D2vεDvε ·Dvε
|Dvε|2 + ε2

= hε − λvε in Ω′. (4.20)

Hence vε is a continuous viscosity solution of the Dirichlet problem associated to equation (4.20)
with continuous boundary data u. Passing to the limit in (4.20), we get that the limit function v
is also a continuous viscosity solution of (4.2) with boundary data equals u, see Appendix C. The
viscosity solution to (4.2) is understood in the sense of Definition C.1. It is easy to see that the
fixed viscosity solution u of (1.1) is a viscosity solution to (4.2) with the weaker Definition C.1 (η
is then taken as an eigen-vector of D2φ(x0)). It follows (see the Appendix D for details) that, for a
given boundary data, the Dirichlet problem associated to (4.2) admits a unique viscosity solution.
By uniqueness, we conclude that the limit function v is the unique viscosity solution of (4.2) and
since u is a viscosity solution to this problem, we conclude that u = v in Ω′. It follows that u is of
class C1,α

loc for some α = α(p, q, n) and the estimate of Theorem 1.2 holds.
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5. Nearly optimal Hölder exponent for gradients

In this section we prove Theorem 1.3. Assume that f ∈ Lq(Ω) ∩ C(Ω) and fix arbitrary ξ > 0.

We will prove that the viscosity solutions to (1.1) are of class C
1,αξ

loc , where

αξ =

{
α0 − ξ when q = ∞,
min(α0 − ξ, 1− n

q ) when max(n, p2 , 2) < q < ∞,

and α0 is the optimal Hölder exponent in an a priori estimate for gradients of p-harmonic functions.
In the case q = ∞ we only assume that p > 1, whereas in the case q < ∞ we require p > 2.

The question of optimal regularity for inhomogeneous p-Laplacian in divergence form has re-
ceived attention as well, see [31, 27, 1, 2]. An alternative approach to study optimal regularity
questions for p-Poisson problem in divergence form could be based on [26, equation (1.38)]. In our
paper we do not try to quantify the explicit optimal value of α in C1,α estimate to the homogenous
case.

Remark 5.1. If p ≥ 2 and f is a continuous and bounded function, in the case that Ω is either
a ball or an annulus, radial viscosity solutions to (1.1) have a better regularity and they are in
C1,1(Ω) (see [6, Theorem 1.1]).

5.1. The case q = ∞
In this subsection we prove Theorem 1.3 when f ∈ L∞(Ω)∩C(Ω). Since our results are local, by

translation and rescaling we can restrict our study in the unit ball B1 ⊂ Ω and show the regularity
at 0 ∈ B1 ⊂ Ω. Like previously, it is useful to do suitable rescaling to get an Arzelà-Ascoli type
compactness lemma. During the rest of this section, for δ0 > 0 to be determined later, we assume
that ||u||L∞(B1) ≤ 1 and ||f ||L∞(B1) ≤ δ0 without loss of generality. This can be seen like before:

Let κ = (||u||L∞(B1) + δ−1
0 ||f ||Lq(B1))

−1. Setting ũ = κu, then ũ satisfies

−ΔN
p (ũ) = f̃

with ||ũ||L∞(B1) ≤ 1 and ||f̃ ||Lq(B1) ≤ δ0.
For convenience, in this subsection we denote by C different constants depending only on p

and n. First we use our regularity result from Section 3 to show that the solutions to (1.1) can be
approximated by p-harmonic functions in C1,α

loc for some small α > 0.

Lemma 5.2. Let u ∈ C(B1) be a viscosity solution to equation (1.1). For given ε > 0, there exists
δ0 = δ0(p, n, ε) such that for ||u||L∞(B1) ≤ 1, ||f ||L∞(B1) ≤ δ0, there exists a p-harmonic function
h in B3/4 satisfying

||u− h||L∞(B1/2) < ε and ||Du−Dh||L∞(B1/2) < ε.

Proof. Suppose that the lemma is not true. Then, for some ε0 > 0 there is a uniformly bounded
sequence of continuous functions (uj) and a sequence (fj) ⊂ C(Ω)∩L∞(Ω), ||fj ||L∞(B1) → 0, such
that

−ΔN
p uj = fj ,

but for all p-harmonic functions h defined in B3/4 we have either ||uj −h||L∞(B1/2) ≥ ε0 or ||Duj −
Dh||L∞(B1/2) ≥ ε0.
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By Theorem 1.1, (uj) ⊂ C1,α(B3/4) for some α > 0, so by the Arzelà-Ascoli theorem there
is a subsequence, still denoted by (uj), which converges to some function h in C1,α(B1/2). Then

the limit function h satisfies ΔN
p h = 0 in the viscosity sense, so it also satisfies Δph = 0 in

the weak sense. By C1,α convergence, there is j0 ∈ N such that ||uj0 − h||L∞(B1/2) < ε0 and

||Duj0 −Dh||L∞(B1/2) < ε0. We have reached a contradiction.

By using the approximation with p-harmonic functions, in the next lemma we obtain an oscil-
lation estimate for solutions u to (1.1) near the critical set {x : Du(x) = 0}.
Lemma 5.3. There exist λ0 = λ0(p, n) ∈ (0, 12) and δ0 > 0 such that if ||f ||L∞(B1) ≤ δ0 and
u ∈ C1,α(B1) is a viscosity solution to (1.1) in B1 with ||u||L∞(B1) ≤ 1, then

sup
x∈Bλ0

|u(x)− u(0)| ≤ λ
1+αξ

0 + |Du(0)|λ0.

Proof. Take the approximating p-harmonic function h from the previous lemma. By the a priori
estimate for p-harmonic functions, there exist λ0 = λ0(p, n) ∈ (0, 12) such that

sup
x∈Bλ0

|h(x)− [h(0) +Dh(0) · x]| ≤ Cλ1+α0
0 ,

and Cλ1+α0
0 ≤ 1

2λ
1+αξ

0 . Now we choose ε > 0 satisfying ε < 1
6λ

1+αξ

0 . This ε determines δ0 through
the previous lemma. We get for all x ∈ Bλ0 ,

|u(x)− [u(0) +Du(0) · x]| ≤ |h(x)− [h(0) +Dh(0) · x]|
+ |(u− h)(x)|+ |(u− h)(0)|+ |D(u− h)(0) · x|
≤ Cλ1+α0

0 + 3ε

≤ λ
1+αξ

0 .

The result follows by the triangle inequality.

Next we iterate the previous estimate to control the oscillation of the solutions in dyadic balls.

Theorem 5.4. Under the assumptions of the previous lemma, there exists a constant C such that

sup
x∈Br

|u(x)− u(0)| ≤ Cr1+αξ
(
1 + |Du(0)|r−αξ

)
for all sufficiently small r ∈ (0, 1).

Proof. For k ∈ N, consider the rescaled function defined in B1,

vk(x) =
u(λk

0x)− u(0)

λ
k(1+αξ)
0 +

∑k−1
j=0 |Du(0)|λk+jαξ

0

.

We have vk(0) = 0,

Dvk(0) =
λk
0

λ
k(1+αξ)
0 +

∑k−1
j=0 |Du(0)|λk+jαξ

0

Du(0),
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and

−ΔN
p vk(x) =

λ2k
0

λ
k(1+αξ)
0 +

∑k−1
j=0 |Du(0)|λk+jαξ

0

f(λk
0x) ≤ |λk(1−αξ)

0 f(λk
0x)|,

where |λk(1−αξ)
0 f(λk

0x)| ≤ δ0, since λ
k(1−αξ)
0 ≤ 1.

Let us show by induction that ||vk||L∞(B1) ≤ 1. By the previous lemma, this holds for k = 1,
so assume that ||vj ||L∞(B1) ≤ 1 for j ≤ k. As shown above, the function vk satisfies the conditions
of the previous lemma, so we have

sup
x∈Bλ0

|vk(x)− vk(0)| ≤ λ
1+αξ

0 + |Dvk(0)|λ0.

Hence,

sup
x∈B1

|u(λk+1
0 x)− u(0)|

λ
k(1+αξ)
0 +

∑k−1
j=0 |Du(0)|λk+jαξ

0

≤ λ
1+αξ

0 +
λk+1
0

λ
k(1+αξ)
0 +

∑k−1
j=0 |Du(0)|λk+jαξ

0

|Du(0)|,

which reads

sup
x∈B1

|u(λk+1
0 x)− u(0)| ≤ λ

(k+1)(1+αξ)
0 +

k∑
j=0

|Du(0)|λk+jαξ+1
0 .

This is equivalent to ||vk+1||L∞(B1) ≤ 1, so induction is complete.
We obtain for arbitrary k,

sup
x∈B

λk+1
0

|u(x)− u(0)|
λ
(k+1)(1+αξ)
0

≤ 1 +

∑k
j=0 |Du(0)|λk+jαξ+1

0

λ
(k+1)(1+αξ)
0

≤ 1 + |Du(0)|λ−(k+1)αξ

0

k∑
j=0

λ
jαξ

0

≤
(
1 +

1

1− λ
αξ

0

)(
1 + |Du(0)|λ−(k+1)αξ

0

)
= C
(
1 + |Du(0)|λ−(k+1)αξ

0

)
.

Since this holds for all k ∈ N, we obtain for all sufficiently small r > 0,

sup
x∈Br

|u(x)− u(0)| ≤ Cr1+αξ
(
1 + |Du(0)|r−αξ

)
.

We are ready to show C
1,αξ

loc regularity for solutions to equation (1.1). If the gradient Du(0) is
very small, we obtain the result from the previous theorem. In the other case the result follows
from a more classical reasoning using the regularity theory of uniformly elliptic equations.

Theorem 5.5. Under the assumptions of Lemma 5.3, we have for all sufficiently small r ∈ (0, 1),

sup
x∈Br

|u(x)− [u(0) +Du(0) · x]| ≤ Cr1+αξ .
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Proof. When |Du(0)| ≤ rαξ , Theorem 5.4 gives

sup
x∈Br

|u(x)− [u(0) +Du(0) · x]| ≤ sup
x∈Br

|u(x)− u(0)|+ |Du(0)|r

≤ Cr1+αξ .

When |Du(0)| > rαξ , define μ := min (34 , |Du(0)|1/αξ) and use the rescaled function

w(x) =
u(μx)− u(0)

μ1+αξ
.

We have w(0) = 0, |Dw(0)| ≥ 1, and

−ΔN
p w(x) =

μ2f(μx)

μ1+αξ
= μ1−αξf(μx),

where ||μ1−αξf ||L∞(B1) ≤ δ0. From Theorem 5.4 we obtain

sup
x∈B1

|w(x)| = sup
x∈Bμ

|u(x)− u(0)|
μ1+αξ

≤ C
(
1 + |Du(0)|μ−αξ

)
= C.

Since u ∈ C1,α
loc (B1) for some α > 0, there exists γ ∈ (0, 12) such that

|Dw(x)| ≥ 1

2
in Bγ .

For all p > 1 w is a viscosity solution to −Δpw = |Dw|p−2μ1−αξf(μx) =: g ∈ C(Bγ) in Bγ , so by
[22] it is a weak solution to the same equation, which also satisfies the conditions of [28, Theorem
5.2, p. 277], see also [41]. Hence, w ∈ W 2,2(Bγ), so by the local version of [17, Lemma 9.16, p 241],
for arbitrary ε > 0 it holds w ∈ C1,1−ε(Bγ). In particular, w ∈ C1,αξ(Bγ). Hence, for all s ∈ (0, γ2 ),
we have

sup
x∈Bs

|w(x)−Dw(0) · x| ≤ Cs1+αξ ,

or equivalently,

sup
x∈Bs

∣∣∣∣u(μx)− u(0)

μ1+αξ
− μ−αξDu(0) · x

∣∣∣∣ ≤ Cs1+αξ ,

and we get
sup
x∈Bs

|u(μx)− [u(0) +Du(0) · (μx)]| ≤ C(μs)1+αξ .

If r < μγ
2 , then the previous estimate gives

sup
x∈Br

|u(x)− [u(0) +Du(0) · x]| ≤ Cr1+αξ .

If r ≥ μγ
2 , noticing that r < μ and |Du(0)| ≤ Cμαξ we obtain

sup
x∈Br

|u(x)− [u(0) +Du(0) · x]| ≤ sup
x∈Bμ

|u(x)− u(0)|+ |Du(0)|μ

≤ Cμ1+αξ

≤ C

(
2

γ

)1+αξ

r1+αξ

≤ Cr1+αξ .
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This theorem completes the proof of Theorem 1.3 when f ∈ C(Ω) ∩ L∞(Ω).

5.2. The case f ∈ C ∩ Lq

In this subsection we assume that p > 2 and f ∈ C(B1)∩Lq(B1), and use Theorem 1.2 to show

that the solutions to equation (1.1) are of class C
1,αξ

loc . As previously, for δ0 > 0 to be determined
later, we take the assumptions ||u||L∞(B1) ≤ 1 and ||f ||Lq(B1) ≤ δ0 without loss of generality. We
also denote by C different constants depending only on p and n.

We follow the reasoning of the first subsection. First we show that the solutions to equation
(1.1) can be approximated by p-harmonic functions in C1,α

loc .

Lemma 5.6. Let u ∈ C(B1), ||u||L∞(B1) ≤ 1, be a viscosity solution to equation (1.1). Given
ε > 0, there is δ0 = δ0(p, n, ε) such that if ||f ||Lq(B1) ≤ δ0, there is a p-harmonic function h in
B3/4 satisfying

||u− h||L∞(B1/2) < ε and ||Du−Dh||L∞(B1/2) < ε.

Proof. Thriving for contradiction, assume that there exists ε0 > 0 such that there are sequences
(uj) and (fj) satisfying ||uj ||L∞(B1) ≤ 1, fj ∈ C(B1) ∩ Lq(B1), ||fj ||Lq(B1) → 0, and

−ΔN
p uj = fj ,

but for all p-harmonic functions h in B3/4

||uj − h||L∞(B1/2) > ε0 or ||Duj −Dh||L∞(B1/2) > ε0.

Recall from Theorem 3.6 that uj is a weak solution to

−Δpuj = |Duj |p−2fj in B1.

From Theorem 1.2 we know that (uj) ⊂ C1,α(B3/4) for some α > 0, so by the Arzelà-Ascoli
theorem, there is a subsequence, still denoted by (uj), converging in C1,α(B3/4) to a function h.
By Appendix B, h is a p-harmonic function. We have reached a contradiction.

The next lemma follows from the previous approximation result as in the first subsection.

Lemma 5.7. There exists λ0 = λ0(p, n) ∈ (0, 12) and δ0 > 0 such that if ||f ||Lq(B1) ≤ δ0 and

u ∈ C1,α
loc (B1) is a viscosity solution to (1.1) in B1 with ||u||L∞(B1) ≤ 1, then

sup
x∈Bλ0

|u(x)− u(0)| ≤ λ
1+αξ

0 + |Du(0)|λ0.

Theorem 5.8. Under the assumptions of the previous lemma, we have

sup
x∈Br

|u(x)− u(0)| ≤ Cr1+αξ
(
1 + |Du(0)|r−αξ

)
for all sufficiently small r > 0.
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Proof. The proof is similar to the proof of Theorem 5.4. Again we consider the rescaled function

vk(x) =
u(λk

0x)− u(0)

λ
k(1+αξ)
0 +

∑k−1
j=0 |Du(0)|λk+jαξ

0

,

and see that vk(0) = 0,

Dvk(0) =
λk
0

λ
k(1+αξ)
0 +

∑k−1
j=0 |Du(0)|λk+jαξ

0

Du(0),

and

−ΔN
p vk(x) =

λ2k
0

λ
k(1+αξ)
0 +

∑k−1
j=0 |Du(0)λ

k+jαξ

0

f(λk
0x) =: fk(x).

Since q(1− αξ)− n > 0, we estimate∫
B1

|fk(x)|qdx ≤
∫
B1

(
λ
k(1−αξ)
0 |f(λk

0x)|
)q

dx

=

∫
B

λk0

(
λ
k(1−αξ)
0 |f(y|)

)q
λ−nk
0 dy

=

∫
B

λk0

λ
kq(1−αξ)−nk
0 |f(y)|qdy

≤
∫
B

λk0

|f(y)|qdy.

Hence, we have ||fk||Lq(B1) ≤ δ0. By continuing as in the proof of Theorem 5.4, we get the
result.

Theorem 5.9. Under the assumptions of Lemma 5.7, we have

sup
x∈Br

|u(x)− [u(0) +Du(0) · x]| ≤ Cr1+αξ

for all sufficiently small r ∈ (0, 1).

Proof. We follow the ideas of the proof of Theorem 5.5. We get the result from Theorem 5.8
when |Du(0)| ≤ rαξ . In the case |Du(0)| > rαξ , define the rescaled function w(x) = (u(μx) −
u(0))/μ1+αξ), for which w(0) = 0, |Dw(0)| ≥ 1, and

−ΔN
p w(x) =

μ2f(μx)

μ1+αξ
= μ1−αξf(μx) =: fμ(x),

where ||fμ||Lq(B1) ≤ δ0. From Theorem 5.8 we get

sup
x∈B1

|w(x)| = sup
x∈Bμ

|u(x)− u(0)|
μ1+αξ

≤ C
(
1 + |Du(0)|μ−αξ

)
= C.
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Since u ∈ C1,α
loc (B1) for some α > 0, there exists γ ∈ (0, 1/2) such that

|Dw(x)| ≥ 1

2
in Bγ .

As explained in the proof of Theorem 5.5, we know that w ∈ C1,1−n/q(Bγ). Since αξ ≤ 1 − n/q,
we have w ∈ C1,αξ(Bγ). Hence, for all s ∈ (0, γ2 ), we have

sup
x∈Bs

|w(x)−Dw(0) · x| ≤ Cs1+αξ ,

and the rest of the argument follows as in the proof of Theorem 5.5.

The proof of Theorem 1.3 is complete.

Appendix

A. The limit equation in Lemma 3.3

We prove two convergence results needed in the proof of Lemma 3.3. Assume that there exist
a sequence of continuous functions (fj) with ||fj ||L∞(B1) → 0, a sequence of vectors (qj) and a
sequence of viscosity solutions (wj) with oscB1 wj ≤ 1 to

−Δwj − (p− 2)

〈
D2wj

Dwj + qj
|Dwj + qj | ,

Dwj + qj
|Dwj + qj |

〉
= fj .

Case 1: (qj) is bounded

First we show that if (qj) is bounded, there is a subsequence (wj) converging to a limit w∞,
which satisfies

− tr

((
I + (p− 2)

Dw∞ + q∞
|Dw∞ + q∞| ⊗

Dw∞ + q∞
|Dw∞ + q∞|

)
D2w∞

)
= 0 inB1 (A.1)

in a viscosity sense. Here qj → q∞ up to the same subsequence. We show that w∞ is a subsolution
of (A.1) (the case of supersolution being similar). We fix φ ∈ C2(Ω) such that w∞ − φ has a strict
maximum at x0. As w∞ is the uniform limit of the subsequence (wj) and x0 is a strict maximum
point, there exists a sequence of points xj → x0 such that (wj − φ) has a local maximum at xj .

Suppose first that −Dφ(x0) �= q∞. Then −Dφ(xj) �= qj when j is large, and at those points
we have

−Δφj − (p− 2)

〈
D2φj

Dφj + qj
|Dφj + qj | ,

Dφj + qj
|Dφj + qj |

〉
≤ fj .

Passing to the limit, we get the desired result.
Suppose next that −Dφ(x0) = q∞. We have to consider two cases. Assuming that there exists

a subsequence still indexed by j such that |Dφ(xj) + qj | > 0 for all j in the subsequence, then

−Δφj − (p− 2)

〈
D2φj

Dφj + qj
|Dφj + qj | ,

Dφj + qj
|Dφj + qj |

〉
≤ fj ,

and we conclude by passing to the limit. If such a subsequence does not exist, then we have

−Δφ(xj)− (p− 2)λmax(D
2φ(xj)) ≤ fj(xj)

for j large enough. Passing to the limit we get

−Δφ(x0)− (p− 2)λmax(D
2φ(x0)) ≤ 0.

We have shown the desired result.
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Case 2: (qj) is unbounded
When (qj) is unbounded, take a subsequence, still denoted by (qj), for which |qj | → ∞, and

then a converging subsequence from ej =
qj
|qj | , ej → e∞. We have

−Δwj − (p− 2)

〈
D2wj

Dwj |qj |−1 + ej
|Dwj |qj |−1 + ej | ,

Dwj |qj |−1 + ej
|Dwj |qj |−1 + ej |

〉
= fj .

We show that the uniform limit w∞ (up to a subsequence) satisfies in the viscosity sense

−Δw∞ − (p− 2)
〈
D2w∞ e∞, e∞

〉
= 0 in B1, (A.2)

with |e∞| = 1.
We only show that w∞ is a subsolution of (A.2) (the case of supersolution is similar). We fix

φ ∈ C2(Ω) such that w∞−φ has a strict maximum at x0. By the uniform convergence of wj to w∞,
there are points xj such that wj − φ has a maximum at xj and xj → x0. Since Dφ(xj) → Dφ(x0)
and |qj | → ∞, we know that

Dφ(xj)

|qj | �= −ej

for j large. Denoting Aj := Dφ(xj)|qj |−1 for short, we get at those points

−Δφ(xj)− (p− 2)

〈
D2φ(xj)

Aj + ej
|Aj + ej | ,

Aj + ej
|Aj + ej |

〉
≤ fj(xj).

Since Aj → 0, we get the desired result.

B. Convergence in the weak formulation

Assume that p > 2, q > max(2, n, p/2), fε, f ∈ C(Ω) ∩ Lq(Ω) and fε → f in Lq(Ω). We show
that if uε is a weak solution to

−Δpuε = |Duε|p−2fε,

and if uε → u in C1,α(K) for any K ⊂⊂ Ω, then u is a weak solution to

−Δpu = |Du|p−2f.

For any test function φ ∈ C∞
0 (Ω), uε satisfies∫
Ω
|Duε|p−2Duε ·Dφdx =

∫
Ω
|Duε|p−2fεφ dx.

Since Duε → Du locally uniformly, we have for all sufficiently small ε,

|Duε|p−2|Duε ·Dφ| ≤ (||Du||L∞(suppφ) + 1)p−1|Dφ| ∈ L1(Ω),

so by the dominated convergence theorem,∫
Ω
|Duε|p−2Duε ·Dφdx →

∫
Ω
|Du|p−2Du ·Dφdx.

It remains to show that ∫
Ω
|Duε|p−2fεφ dx →

∫
Ω
|Du|p−2fφ dx. (B.1)

Notice that
|Duε|p−2fεφ = |Duε|p−2(fε − f)φ+ |Duε|p−2fφ. (B.2)

Since Duε ∈ L∞
loc(Ω), by the dominated convergence and identity (B.2), (B.1) holds.
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C. Convergence in the viscosity sense

Assume that hε ∈ C(Ω) and let vε be a viscosity solution to

−Δvε − (p− 2)
D2vεDvε ·Dvε
|Dvε|2 + ε2

+ λvε = hε in Ω′, (C.1)

and assume that vε → v locally uniformly in Ω′ and hε → h locally uniformly. We prove that the
limit v is a viscosity solution of (4.2). Viscosity solutions to (4.2) are understood in the following
sense

Definition C.1. Let Ω′ be a bounded domain and 2 < p < ∞. An upper semicontinuous function
v is a viscosity subsolution of (4.2) if, for all x0 ∈ Ω′ and φ ∈ C2(Ω′) such that v − φ attains a
local maximum at x0 and v(x0) = φ(x0), one has either

−ΔN
p φ(x0) + λv(x0) ≤ h(x0) if Dφ(x0) �= 0,

or there exists a vector η ∈ R
n with |η| ≤ 1 such that

−Δφ(x0)− (p− 2)〈D2φ(x0)η, η〉+ λv(x0) ≤ h(x0) if Dφ(x0) = 0.

The notion of viscosity supersolution is defined similarly and a function v is a viscosity solution to
(4.2) if and only if it is a sub- and supersolution.

We only show that v is a viscosity subsolution to (4.2). To show that v is a viscosity super-
solution, one proceeds similarly. Let φ ∈ C2 be such that v − φ has a local strict maximum at
x0 and v(x0) = φ(x0). Since vε → v locally uniformly, there exists a sequence xε → x0 such that
vε − φ has a local maximum at xε. Since vε is a viscosity solution of (4.20), it follows that

−Δφ(xε)− (p− 2)
D2φ(xε)Dφ(xε) ·Dφ(xε)

|Dφ(xε)|2 + ε2
+ λvε(xε) ≤ hε(xε). (C.2)

First suppose that Dφ(x0) �= 0, then Dφ(xε) �= 0 for ε small enough. Since hε converges to h
locally uniformly and vε converges to v locally uniformly, passing to the limit in (C.2), we get that

−Δφ(x0)− (p− 2)
D2φ(x0)Dφ(x0) ·Dφ(x0)

|Dφ(x0)|2 + λv(x0) ≤ h(x0).

Next suppose that Dφ(x0) = 0. Noticing that

∣∣∣∣∣ Dφ(xε)√|Dφ(xε)|2 + ε2

∣∣∣∣∣ ≤ 1, it follows that (up to a

subsequence) the sequence
Dφ(xε)√|Dφ(xε)|2 + ε2

converges to a vector η ∈ R
n with |η| ≤ 1. Passing to

the limit in (C.2), we get that, there exists a vector η such that

−Δφ(x0)− (p− 2)〈D2φ(x0)η, η〉+ λv(x0) ≤ h(x0).
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D. Uniqueness of viscosity solutions to (4.2)

In this section we prove the uniqueness of viscosity solutions to (4.2), where viscosity solutions
of (4.2) are understood in the sense of Definition C.1 and λ > 0. Notice that, for λ > 0, the
operator

F (X, ξ, r, x) := − tr(A(ξ)X) + λr − h(x)

where

A(ξ) :=

{
I + (p− 2)ξ ⊗ ξ if ξ �= 0

I + (p− 2)η ⊗ η for a certain η, |η| ≤ 1 if ξ = 0

with ξ :=
ξ

|ξ| is proper, that is

F (X, ξ, s, x) ≤ F (Y, ξ, r, x) for Y ≤ X, s ≤ r.

Now, let v1 and v2 be two continuous viscosity solutions to (4.2) in Ω′ and such that v1 = v2 on
∂Ω′. We want to show that v1 = v2. We argue by contradiction. Without loss of generality, we
assume that v1 − v2 reaches a positive maximum at an interior point x0 ∈ Ω′. For ε > 0, the
function

Φ(x, y) := v1(x)− v2(y)− |x− y|4
4ε

,

reaches a maximum in Ω′ × Ω′ at (xε, yε). By classical arguments we have that xε ∈ Ω′, yε ∈ Ω′

for ε > 0 small enough and xε → x0, yε → x0 when ε → 0. We also observe that the function

x �→ v1(x) −
(
v2(yε) +

|x− yε|4
4ε

)
= v1(x) − φ1(x) reaches a maximum at xε and y �→ v2(y) −(

v1(xε)− |xε − y|4
4ε

)
= v2(y) − φ2(y) reaches a minimum at yε. From the definition of viscosity

sub- and supersolution we obtain the following. If xε = yε then D2φ1(xε) = D2φ2(yε) = 0 and
writing the viscosity inequalities we get that

λv1(xε) ≤ h(xε), λv2(xε) ≥ h(xε).

It follows that λ(v1(xε)− v2(xε)) ≤ 0 and passing to the limit we get that λ(v1(x0)− v2(x0)) ≤ 0,
which is a contradiction since λ > 0 and v1(x0)− v2(x0) > 0.
If xε �= yε, then by the theorem of sums [10, Theorem 3.2] there are

(ξx, X) ∈ J 2,+
(v1(xε)), (ξy, Y ) ∈ J 2,−

(v2(yε))

with X ≤ Y and ξx = ξy = Dφ1(xε) = Dφ2(yε) �= 0. Writing the viscosity inequalities, we have

− tr(A(ξx)X) + λv1(xε) ≤ h(xε)

− tr(A(ξx)Y ) + λv2(yε) ≥ h(yε).

Since A(ξx) = I + (p− 2)ξx ⊗ ξx ≥ 0 and X − Y ≤ 0, subtracting the previous two inequalities, we
get that

λ(v1(xε)− v2(yε)) ≤ h(xε)− h(yε)

and passing to the limit we get a contradiction.
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