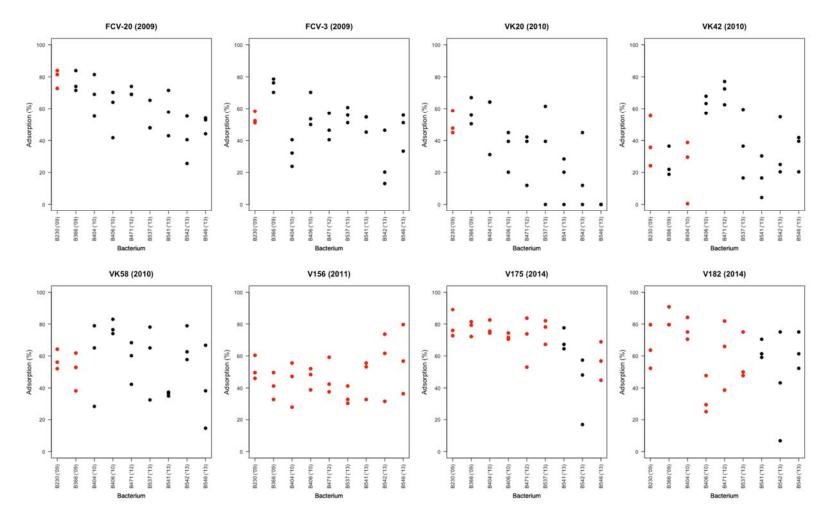


This is an electronic reprint of the original article. This reprint *may differ* from the original in pagination and typographic detail.

Author(s): Laanto, Elina; Hoikkala, Ville; Ravantti, Janne; Sundberg, Lotta-Riina

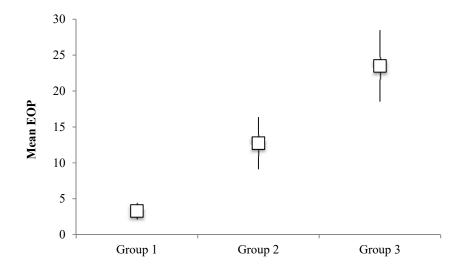
Title: Long-term genomic coevolution of host-parasite interaction in the natural environment

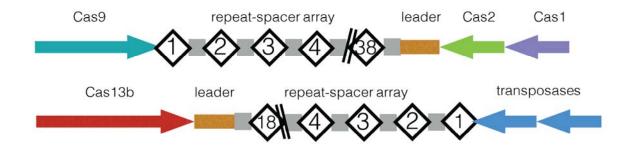

Year: 2017

Version:


Please cite the original version:

Laanto, E., Hoikkala, V., Ravantti, J., & Sundberg, L.-R. (2017). Long-term genomic coevolution of host-parasite interaction in the natural environment. Nature Communications, 8, Article 111. https://doi.org/10.1038/s41467-017-00158-7


All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.


Supplementary Figure 1. Percentage of phage adsorption on bacterial hosts isolated in different years. Red dots represent (individual values of) adsorption on susceptible hosts (see Fig. 2 in the main text) and black dots adsorption on resistant hosts. Assay was done in three replicates.

Supplementary Figure 2. (A) The genome alignment shows predicted open reading frames (ORFs). Numbers underneath the alignment indicate the assigned number of some of the ORFs. ORFs with putative function are marked with colors indicating the functions shown in the bottom of **B**. In the consensus sequence bar above the genomes, green color indicates 100% identical DNA-sequences, yellow 30% and red < 30% identity respectively. Note that also the bar height changes accordingly. (**B**) A closeup to the end of genomes FCV-3 and V181 where the 100% identity between the ORFs is shown in grey.

Supplementary Figure 3. Mean efficiency of plating (EOP, phage titers in relation to host B230, Supplementary Table 3) of phages belonging to genomic group 1, 2 and 3 (see Fig. 2 in the main text) in all bacterial hosts (+/- S.E.M.)

Supplementary Figure 4. Diagrams of CRISPR1 (top) and CRISPR2 (below) loci.

	 C1s36	 C2s25	(C1s40	C1s33 C2s1	4 C2s24	C2s19	C1s41	(C2s18*	C1s4	1 17 C2s29'	C2s2t	1 3* C1s49) C1s50	535 C2s26	1s37*C1s4 * 1 1 C1s34*	8* 		C2s20*	U	s27 C1s4
F	T	I	1		1	1		(2310	1		1	1	1	1		1	1	(<u>)</u>	1	1244
	1	1	1	(1	1	1	(i		1	1	1	1	ų	11			11)	()	1
	1	1	l.	()	ĩ	T	1	1		1	1	1	1	ų	Î I			10	()	
-	1	t	I	11	t	T.	1	1	1	T	1	1	1	ij	N I		=	10	()	-
1	T	í.	1	()	I	T.	I.	1		L	1	1	1	ij	11				()	1
	T	I.	I	11	t	1	1	1		1	1	1	1	ij	11			11)	()	1
	1	L	1	(1	I	1	1	1		1	1	1	1			s22*-	I	10	1	1
1	÷	(I	E I	T	1	I	1		I.	1	ł	1	ų	C2:	s16*	1	······································	()	1
1	1	t	1	11	1	1	1	1		T	1	1	1	j ·			T	10		1
		t.	I	-	••	T	l i	(1	t	1	1	1				1		11	
	1	Ű	1	- T T	••	T	l i	1	1	T	1	1	1				1		C1s	
	T	L	1	11	1	t	1	1	1		i	1	1	"			,		0	
	1	t	1	11	1	1	1	1	1	I.	1	1	1	"	11		(*** <mark>1</mark>			-
	1	ſ	1	11	1	1		1	1		i	ł	1	ij		-	1 1 1		0	-
	1	1	1	11	1	1			1	-	1	1	1	11						-

Supplementary Figure 5. Location of protospacers in the phage genomes. Protospacers that have variation among the phage genomes are marked with an asterisk and these corresponding changes are marked with rectangles in the protospacer areas (one rectangle may include multiple protospacers). Color coding only highlights similar protospacers in different phages and does not correspond to colors in Fig. 2a.

Bacterial isolate	Date of isolation	Source
B425	14 th August 2007	rainbow trout
B447	14 th August 2007	tank water
B230	30 ⁿ June 2009	outlet water
B235	7≞ July 2009	tank water
B236	7≞ July 2009	tank water
B237	7≞ July 2009	tank water
B245	14 th July 2009	tank water
B339	5 th July 2010	outlet water
B366	2 nd August 2010	outlet water
B397	21 * June 2010	inlet water
B404	2 nd August 2010	inlet water
B406	16 th August 2010	inlet water
B471	12 th July 2012	rainbow trout
B537	28 ⁿ June 2013	rainbow trout
B541	8 th August 2013	rainbow trout
B542	8 th August 2013	rainbow trout
B546	8 th August 2013	rainbow trout
C1	1997	Reference 1

Supplementary Table 1. *Flavobacterium columnare* isolates used in this study. All isolates belong to the genetic group C.

Phage isolate	Date of isolation	Source	Enrichment host	Enrichment host isolation year	Phage genome size (bp)	Accession Number
FCV-2	7 th July 2009	tank water	B235	2009		
FCV-3	7 th July 2009	tank water	B236	2009	46 496	KY951963
V99	7 th July 2009	tank water	B237	2009		
FCV-9	14 th July 2009	tank water	B245	2009		
FCV-10	14 th July 2009	tank water	B247	2009	46 482	KY979236
FCV-1	22 [™] July 2009	tank water	C1	1997	46 450	KY979235
FCV-11	22 [™] July 2009	outlet water	C1		46 481	KY951964
FCV-16	25 th August 2009	outlet water	C1		46 481	KY979237
FCV-20	11 h August 2009	outlet water	C1		46 469	KY979238
VK16	5≞ July 2010	inlet water	C1			
VK20	5 th July 2010	tank water	C1		46 496	KY979243
VK42	2 nd August 2010	tank water	B339	2010	46 455	KY979244
VK46	2 nd August 2010	tank water	C1			
VK48	2 nd August 2010	tank water	C1		46 570	KY979245
VK51	16 th August 2010	inlet water	C1			
VK52	16 [⊪] August 2010	tank water	C1		46 455	KY979246
VK53	30≞ August 2010	outlet water	C1			
VK54	30 th August 2010	eathren pond	C1			
VK58	11 h October 2010	outlet water	C1		46 448	KY979247
V156	4 [⊪] August 2011	eathren pond	C1		48 564	KY979239
V157	4 ^₅ August 2011	inlet water	B270	2009	48 565	KY979240
V158	4 [≞] August 2011	inlet water	C1			
V162	14 [⊪] August 2014	outlet water	B366	2010		
V165	14 [⊪] August 2014	inlet water	B366		49 013	KY979241
V167	214⋼ August 014	outlet water/river	B366			
V171	22th August 2014	inlet water	B366			
V175	22 rd August 2014	outlet water	B366		49 016	KY992519
V178	222 [™] August 014	outlet water/river	B366			
V181	27 th August 2014	inlet water	B366		49 014	KY992520
V182	27≞ August 2014	outlet water	B366		49 099	KY979242

Supplementary	Table 2.	Bacteriophage	e isolates use	d in this study

Supplementary Table 3. (A) Phage plaque numbers in bacterial hosts and (B) efficiency of plating (EOP) calculated using strain B230 as a reference host.

A)	Phage	B425	B447	B230	B235	B236	B237	B245	B339	B366	B397	B404	B406	B471	B537	B541	B542	B546
	FCV-2	0	0	1E+07	1E+07	1E+07	1E+08	1E+07	0	0	0	0	0	0	0	0	0	0
	FCV-3	0	0	1E+07	1E+07	1E+07	1E+08	1E+07	0	0	0	0	0	0	0	0	0	0
	V99	0	0	1E+07	1E+07	1E+07	1E+08	1E+07	0	0	0	0	0	0	0	0	0	0
	FCV-9	0	0	1E+08	1E+08	1E+08	1E+07	1E+08	0	0	0	0	0	0	0	0	0	0
	FCV-10	0			1E+08				1E+06	0	0	0	0	0	0	0	0	0
	FCV-1	0			1E+08				1E+06	0	0	0	0	0	0	0	0	0
	FCV-11	0			1E+06				0	0	1E+06	0	0	0	0	0	0	0
	FCV-20	0			1E+07				0	0	1E+08	0	0	0	0	0	0	0
	FCV-16	0			1E+06				0	0	1E+07	0	0	0	0	0	0	0
	VK16	0			1E+05				0	0	1E+07	0	0	0	0	0	0	0
	VK20	0			1E+06				0	0	1E+07	0 1E+08	0	0	0	0 0	0	0
	VK42 VK46	0 0			1E+06 1E+06			1E+06 1E+06	0	0 0	1E+07 1E+08	0	0 0	0 0	0 0	0	0 0	0 0
	VK40 VK48	0			1E+00					0	1E+08	0	0	0	0	0	0	0
	VK48 VK51	0			1E+07				0		1E+05	0	0	0	0	0	0	0
	VK51 VK52	0			1E+07					0		1E+08	0	0	0	0	0	0
	VK53	0			1E+05				0	0	1E+08	0	0	0	õ	0	0	0
	VK54	0			1E+06				0		1E+06	0	0	0	0	0	0	0
	VK58	0			1E+06				0		1E+08	0	0	0	0	0	0	0
	V156	1000	1E+08	1E+08	1E+07	1E+08	1E+09	1E+08	1E+09	1E+09	1E+09	1E+09	1E+08	1E+09	1E+09	1E+06	0	1E+07
	V157	0	1E+06	1E+05	10000	1E+05	1E+06	1E+06	1E+07	1E+07	1E+07	1E+07	1E+06	1E+07	1E+07	0	0	1E+06
	V158	0	1E+08	1E+08	1E+07	1E+09	1E+08	1E+08	1E+09	1E+09	1E+09	1E+09	1E+09	1E+09	1E+09	1E+06	0	1E+07
	V162	1E+08	1E+08	1E+07	1E+07	1E+09	1E+09	1E+07	1E+08	1E+09	1E+08	1E+09	1E+09	1E+09	1E+09	1E+08	1E+08	0
	V165	1E+08	1E+09	1E+07	1E+07	1E+09	1E+09	1E+07	1E+08	1E+09	1E+08	1E+09	1E+09	1E+09	1E+09	1E+07	1E+08	0
	V167				1E+07							1E+08				1E+06	1E+08	0
	V171				1E+07								1E+09				1E+08	0
	V175	0			1E+07							1E+08			1E+09	0	0	1E+07
	V178	0			1E+07			1E+08			1E+09	1E+08	1E+09	1E+08	1E+09	0	0	1E+07
	V181				1E+06								1E+09	1E+09		0	0	0
	V182	1E+08	1E+09	1E+09	1E+06	1E+09	1E+09	1E+07	1E+09	1E+09	1E+09	1E+09	1E+09	1E+09	1E+09	0	0	0
B)		B425	B447	B230	B235	B236	B237	B245	B339	B366	B397	B404	B406	B471	B537	B541	B542	B546
B)	FCV-2	0	0	1	1	1	10	1	0	0	0	0	0	0	0	0	0	0
B)	FCV-2 FCV-3	0 0	0 0	1 1	1 1	1 1	10 10	1 1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
B)	FCV-2 FCV-3 V99	0 0 0	0 0 0	1 1 1	1 1 1	1 1 1	10 10 10	1 1 1	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
B)	FCV-2 FCV-3 V99 FCV-9	0 0 0 0	0 0 0 0	1 1 1 1	1 1 1 1	1 1 1 1	10 10 10 0,1	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0
B)	FCV-2 FCV-3 V99 FCV-9 FCV-10	0 0 0 0	0 0 0 0,01	1 1 1 1	1 1 1 1	1 1 1 1	10 10 10 0,1 0,1	1 1 1 1	0 0 0 0,01	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
B)	FCV-2 FCV-3 V99 FCV-9 FCV-10 FCV-1	0 0 0 0 0	0 0 0 0,01 0,01	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	10 10 0,1 0,1 10	1 1 1 1 1 1	0 0 0 0,01 0,01	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
B)	FCV-2 FCV-3 V99 FCV-9 FCV-10 FCV-11 FCV-11	0 0 0 0 0 0	0 0 0 0,01 0,01 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1	10 10 0,1 0,1 10 1	1 1 1 1 1 1 1	0 0 0 0,01 0,01 0	0 0 0 0 0 0	0 0 0 0 0 0 1	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0
B)	FCV-2 FCV-3 V99 FCV-9 FCV-10 FCV-1	0 0 0 0 0	0 0 0 0,01 0,01	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	10 10 0,1 0,1 10	1 1 1 1 1 1	0 0 0 0,01 0,01	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
В)	FCV-2 FCV-3 V99 FCV-9 FCV-10 FCV-10 FCV-11 FCV-11 FCV-20	0 0 0 0 0 0 0	0 0 0 0,01 0,01 1 100	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 10	10 10 0,1 0,1 10 1 10	1 1 1 1 1 1 1 1	0 0 0,01 0,01 0 0	0 0 0 0 0 0 0	0 0 0 0 0 1 10	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0
В)	FCV-2 FCV-3 V99 FCV-9 FCV-10 FCV-11 FCV-11 FCV-20 FCV-16	0 0 0 0 0 0 0 0 0	0 0 0,01 0,01 1 100 10	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 10 1	10 10 0,1 0,1 10 1 10 10	1 1 1 1 1 1 1 1 1 10	0 0 0,01 0,01 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 1 10 10	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0
В)	FCV-2 FCV-3 V99 FCV-9 FCV-10 FCV-11 FCV-11 FCV-20 FCV-16 VK16	0 0 0 0 0 0 0 0 0 0	0 0 0 0,01 0,01 1 100 10	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 10 1 1	10 10 0,1 0,1 10 1 10 10 10	1 1 1 1 1 1 1 1 10 10	0 0 0 0,01 0,01 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 10 100	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0
В)	FCV-2 FCV-3 V99 FCV-9 FCV-10 FCV-11 FCV-11 FCV-20 FCV-16 VK16 VK20	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0,01 0,01 1 100 100 100	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 10	1 1 1 1 1 1 1 10 1 1 10	10 10 0,1 0,1 10 1 10 10 10 10	1 1 1 1 1 1 1 1 10 10 10	0 0 0,01 0,01 0,01 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 1 10 100 100	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0
В)	FCV-2 FCV-3 V99 FCV-9 FCV-10 FCV-10 FCV-11 FCV-20 FCV-16 VK16 VK20 VK42 VK46 VK48	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0,01 0,01 1 100 100 100 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 10 0,1	1 1 1 1 1 1 1 10 1 10 1	10 10 0,1 0,1 10 1 10 10 10 10 0,1	1 1 1 1 1 1 1 1 10 10 10 0,1	0 0 0,01 0,01 0,01 0 0 0 0 0 0 10	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 1 10 100 100 100	0 0 0 0 0 0 0 0 0 0 0 0 0 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
В)	FCV-2 FCV-3 V99 FCV-9 FCV-10 FCV-11 FCV-20 FCV-16 VK16 VK20 VK42 VK46 VK48 VK51	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0,01 0,01 1 100 100 100 1 100 1 0 0 1 0 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 0,1 0,1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0,1	10 10 0,1 0,1 10 1 10 10 10 10 0,1 0,1 1 1	1 1 1 1 1 1 1 1 1 1 0,1 0,1 1 1	0 0 0,01 0,01 0 0 0 0 0 0 0 0 10 0 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1	0 0 0 0 1 10 100 100 1 100 100 1 100 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
В)	FCV-2 FCV-3 V99 FCV-9 FCV-10 FCV-11 FCV-20 FCV-16 VK16 VK16 VK42 VK42 VK46 VK48 VK51 VK52	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0,01 0,01 1 100 100 100 1 100 1 10 10 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 0,1 0,1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 0,1 0,1 10 1 10 10 10 10 0,1 0,1 1 1 10	1 1 1 1 1 1 1 1 10 10 0,1 0,1 1 1 1	0 0 0,01 0,01 0 0 0 0 0 0 0 10 0 1 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0	0 0 0 0 1 10 100 100 1 100 1 000 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
В)	FCV-2 FCV-3 V99 FCV-9 FCV-10 FCV-10 FCV-11 FCV-11 FCV-20 FCV-16 VK16 VK20 VK42 VK46 VK46 VK51 VK52 VK53	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0,01 0,01 1 100 100 100 1 10 10 10 10 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 0,1 1 0,1 1 0,01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 0,1 0,1 10 1 10 10 10 0,1 0,1 1 1 10 0,001	1 1 1 1 1 1 1 1 1 1 1 0 0,1 1 1 0,01	0 0 0,01 0,01 0 0 0 0 0 0 0 10 0 1 0 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 10 100 100 100 1 10 100 1 1 10 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
в)	FCV-2 FCV-3 V99 FCV-9 FCV-10 FCV-11 FCV-11 FCV-20 FCV-16 VK16 VK46 VK46 VK46 VK48 VK51 VK52 VK53 VK54	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0,01 100 100 100 100 1 100 100 1 100 100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 0,1 0,	1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 0,1 0,1 10 10 10 10 10 0,1 0,1 1 1 10 0,001 1	1 1 1 1 1 1 1 1 1 1 1 0,1 0,	0 0 0,01 0,01 0 0 0 0 0 0 0 10 0 1 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1	0 0 0 0 1 10 100 100 1 100 1 100 1 1 1 100 0,1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
в)	FCV-2 FCV-3 V99 FCV-9 FCV-10 FCV-10 FCV-10 FCV-10 FCV-10 FCV-16 VK16 VK16 VK42 VK46 VK42 VK46 VK48 VK51 VK52 VK53 VK54 VK58	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0,01 0,01 1 100 100 100 1 100 1 100 1 100 1 0,1 0,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 0,1 0,	1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 0,1 0,1 10 10 10 10 10 0,1 0,1 1 1 10 0,001 1 1	1 1 1 1 1 1 1 1 1 1 1 1 0,1 0,	0 0 0,01 0,01 0 0 0 0 0 0 10 0 1 0 1 0 0 1 0 0 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1	0 0 0 0 1 10 100 100 1 100 1 100 1 1 1 0,1 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
в)	FCV-2 FCV-3 V99 FCV-9 FCV-10 FCV-10 FCV-11 FCV-11 FCV-16 VK16 VK16 VK16 VK42 VK46 VK48 VK54 VK53 VK54 VK58 V156	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0,01 100 100 100 100 100 100 1 10 10 10 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 0,1 0,	1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 0,1 0,1 10 10 10 10 10 10 0,1 0,1	1 1 1 1 1 1 1 1 1 1 1 1 0,1 0,	0 0 0,01 0,01 0 0 0 0 0 0 0 0 10 0 1 0 0 1 0 0 1 0 0 10 0 0 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 10 100 100 1 100 100 1 100 100 1 10 0,1 10 10 10 10 10 10 100 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
в)	FCV-2 FCV-3 V99 FCV-9 FCV-10 FCV-10 FCV-11 FCV-20 FCV-16 VK16 VK26 VK46 VK48 VK51 VK52 VK53 VK54 VK58 VK55 VK55 VK55	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0,01 1,00 100 100 100 100 100 100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 0,1 0,1 10 10 10 10 10 10 0,1 1 1 10 0,001 1 1 10 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0,01 0,01 0 0 0 0 0 0 0 10 0 1 0 0 1 0 0 10 0 10 0 10 0 100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 10 100 100 1 100 1 1 10 100 1 1 10 0,1 10 100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
в)	FCV-2 FCV-3 V99 FCV-9 FCV-10 FCV-11 FCV-11 FCV-20 FCV-16 VK16 VK20 VK46 VK46 VK48 VK51 VK48 VK51 VK52 VK53 VK54 VK55 VK55 VI55 V155	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0,01 0,01 1 100 100 100 100 1 10 10 10 10 10 1 1 1 1 0,1 1 10 1 1 0,1 1 0 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 0,1 0,1 10 10 10 10 10 0,1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 0,1 0,	0 0 0,01 0,01 0 0 0 0 0 0 0 0 0 10 0 1 0 0 1 0 0 10 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 10 100 100 100 1 1 1 10 0,1 1 10 100 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
В)	FCV-2 FCV-3 V99 FCV-9 FCV-10 FCV-11 FCV-11 FCV-20 FCV-16 VK16 VK20 VK42 VK46 VK48 VK51 VK52 VK53 VK53 VK54 VK58 V155 V157 V158 V162	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0,01 0,01 1 100 100 100 100 1 10 10 10 1 1 1 0,1 1 0,1 1 10 1 10 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 0,1 0,1 10 10 10 10 10 0,1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0,01 0,01 0 0 0 0 0 0 0 0 0 10 10 10 10 10 10 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 10 100 100 1 10 100 1 10 0,1 10 100 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
В)	FCV-2 FCV-3 V99 FCV-9 FCV-10 FCV-11 FCV-11 FCV-20 FCV-16 VK16 VK20 VK46 VK42 VK51 VK52 VK53 VK53 VK53 VK54 VK58 V155 V157 V158 V165	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0,01 0,01 1 100 100 100 100 1 10 10 10 10 10 1 1 1 1 0,1 1 10 1 1 0,1 1 0 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 0,1 0,1 10 10 10 10 10 0,1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 0,1 0,	0 0 0,01 0,01 0 0 0 0 0 0 0 0 0 10 0 1 0 0 1 0 0 10 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 10 100 100 100 1 1 1 10 0,1 1 10 100 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
в)	FCV-2 FCV-3 V99 FCV-9 FCV-10 FCV-11 FCV-11 FCV-20 FCV-16 VK16 VK20 VK42 VK46 VK48 VK51 VK52 VK53 VK53 VK54 VK58 V155 V157 V158 V162	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0,01 1 100 100 100 1 0 0 1 1 1 0,1 0,	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 0,1 0,1 10 10 10 10 10 0,1 0,1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0,01 0,01 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 10 100 100 1 10 100 1 1 10 0,1 10 100 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
в)	FCV-2 FCV-3 V99 FCV-9 FCV-10 FCV-11 FCV-11 FCV-11 FCV-20 FCV-16 VK16 VK20 VK42 VK46 VK48 VK51 VK52 VK53 VK54 VK53 VK54 VK58 V155 V157 V158 V162 V165 V167	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0,01 1 100 100 100 1 0 0 1 1 1 0,1 0,	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 0,1 0,1 10 10 10 10 10 0,1 0,1 1 1 10 0,001 1 1 10 10 100 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0,01 0,01 0 0 0 0 0 0 0 0 10 0 10 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 10 100 100 1 10 100 1 10 0,1 10 100 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
в)	FCV-2 FCV-3 V99 FCV-9 FCV-10 FCV-11 FCV-11 FCV-11 FCV-12 FCV-16 VK16 VK46 VK46 VK46 VK46 VK46 VK51 VK52 VK53 VK54 VK53 VK54 VK58 V155 V157 V155 V162 V165 V167 V171	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0,01 1 100 100 100 1 10 10 1 1 1 0,1 1 1 1 1 1 1 0,1 1 100 100	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 10 0,1 10 10 10 10 10 10 0,1 1 1 10 0,001 1 1 10 10 100 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0,01 0,01 0 0 0 0 0 0 0 0 10 0 10 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 10 100 100 1 10 100 1 10 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
в)	FCV-2 FCV-3 V99 FCV-9 FCV-10 FCV-10 FCV-11 FCV-20 FCV-16 VK16 VK26 VK46 VK48 VK51 VK52 VK46 VK53 VK54 VK58 V156 V157 V158 V162 V167 V171 V175	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0,01 1 100 100 100 100 1 10 10 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 10 0,1 10 10 10 10 10 10 0,1 1 1 10 0,001 1 1 10 10 100 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0,01 0,01 0 0 0 0 0 0 0 0 10 0 10 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 1 10 100 100 1 10 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						

ORF	Name	Accession	Description	Interval	Blastp E-value
ORF4	Terminase_GpA	pfam05876	Phage terminase large subunit (GpA)	44-654	1.27e-100
ORF7	SNF2_N	pfam00176	SNF2 family N-terminal domain	22-278	1.00e-13
ORF8	ParB	smart00470	ParB-like nuclease domain	15-109	2.27e-08
ORF9	PAPS_reductase	cd01713	This domain is found in phosphoadenosine phosphosulphate (PAPS) reductase enzymes	32-222	3.06e-26
ORF10	STKc_TLK	cd13990	Catalytic domain of the Serine/Threonine kinase, Tousled-Like Kinase; STKs catalyze the transfer of the gamma- phosphoryl group from ATP to serine/threonine residues on protein substrates.	2-37	6.53e-03
ORF11	Phage_portal_2	pfam05136	Phage portal protein, lambda family	65-402	3.47e-33
ORF16	Peptidase_M15_4	pfam13539	D-alanyl-D-alanine carboxypeptidase	87-152	1.39e-12
ORF21	S49_Sppa_N_C	cd07023	Signal peptide peptidase A (SppA), a serine protease, has catalytic Ser-Lys dyad	76-284	6.83e-28
ORF23	Phage_cap_E	pfam03864	Phage major capsid protein E	22-357	3.93e-23
ORF27	COG4386	COG4386	Mu-like prophage tail sheath protein gpL [Mobilome: prophages, transposons]	26-482	3.54e-29
ORF31	tape_meas_TP901	TIGR01760	phage tail tape measure protein, TP901 family, core region	62-409	2.41e-19
ORF33	Baseplate_J	pfam04865	Baseplate J-like protein	69-325	6.39e-21
ORF34	DUF2313	pfam10076	Uncharacterized protein conserved in bacteria (DUF2313). Members comprise various hypothetical and putative bacteriophage tail proteins	40-152	3.04e-10
ORF39	COG4379	COG4379	Mu-like prophage tail protein gpP [Mobilome: prophages, transposons];	5-290	3.18e-11
ORF42	PRK12539	PRK12539	RNA polymerase sigma factor	16-47	9.89e-03
ORF44	COG5665	COG5665	CCR4-NOT transcriptional regulation complex, NOT5 subunit [Transcription]	95-222	4.23e-03
ORF46	RecT	pfam03837	RecT family	24-185	3.43e-03
ORF47	NTP-PPase_u3	cd11540	Nucleoside Triphosphate Pyrophosphohydrolase (EC 3.6.1.8) MazG-like domain found in a group of uncharacterized proteins from bacteria and archaea	8-98	4.86e-20
ORF50	N6_N4_Mtase	pfam01555	DNA methylase	463-713	2.63e-15
ORF54	HTH_36	pfam13730	Helix-turn-helix domain	17-72	1.54e-04
ORF55	PIF1	pfam05970	PIF1-like helicase	4-288	2.91e-27
ORF58	PRK03992	PRK03992	proteasome-activating nucleotidase	99-141	1.54e-03
ORF61*	NUMOD4	pfam07463	NUMOD4 motif	7-55	3.38e-11
ORF65	PRK05733	PRK05733	single-stranded DNA-binding protein	1-110	1.32e-16
ORF66	CE_PFGI_1_parB	TIGR03764	integrating conjugative element, PFGI_1 class, ParB family protein	12-51	6.26e-03
ORF67.1**	lipid_A_lpxD	TIGR01853	UDP-3-O-[3-hydroxymyristoyl] glucosamine N-acyltransferase LpxD	54-147	1.07e-16
ORF74.1**	YopX	pfam09643	YopX protein	5-83	1.02e-08

Supplementary Table 4. Conserved domains detected in the predicted phage open reading frames

*not in phage genomes VK48, VK58, V156, V157 **only in phage genomes V156, V157, V175, V181 and V182

	CRISPR1	CRISPR2
Unique spacers	52	29
Spacers shared among all isolates	s 30/52 (~58%)	13/29 (~45%)
Unique spacers matching phage genomes	18/52 (~35%)	15/29 (~52%)
Phage protospacers (PP) with C1 PAM	16/18 (~89%)	8/15 (~53%)
Change in PP sequence after spacer appearance	6/18 (~33%)	9/15 (60%)
Resurfacing of ancestral PP sequence in phage genomes after disappearance of spacer	4/6 (~67%)	3/9 (~33%)
Unique spacers matching <i>F</i> . <i>columnare</i> genome	9/52 (~17%)	2/29 (~7%)
<i>F. columnare</i> protospacers with C1 PAM	6/9 (~67%)	1/2 (50%)
Spacer target strand (phage)	47% coding	100% coding
Cas genes	Cas9, Cas1, Cas2 (type II-C)	Cas13b (type VI-B)
Repeat sequence	GTTGTGGTTTGATTAAAGA TTAGAAAACACGATATT	GTTGGGAAAGCCCTTATT TTGAAGGGTATCTACAAC

Supplementary Table 5. Characterization of CRISPR loci in *Flavobacterium columnare* strains

	C1 protospacer su	irrounding regions
Spacer	20 nt (5' end)	20 nt (3' end)
C1s33	GTTTCGCTTCTAAGCATTGG	AATGCTAAAAATGTTCATGT
C1s34	TATTTTACGCCGATAGAACA	GATTTTAAAA ATTATTTATT
C1s35	TTATCATAAGTTAATACAGA	TGTTTTAAAA AAAATTGATG
C1s36	TTTTCTGGTGGTAAAGATAG	AGCTATAAAA AGAGATAGAA
C1s37	TCTTTGTCGAACTTTTCTTT	GTCTTTAAAA ACAATTTCTT
C1s39	AGAAAATCTTCACCACCTAA	CTCATTGCATGTACTTTCAC
C1s40	TTTATAGATGGAATTGCAAG	ACGATTCAAAAAATTATACA
C1s41	TTTACTCATTAACTGTAATA	TTAATTAAAA AAGATTCTGG
C1s42	TGATTCATAATCTTTAATTG	AAGTATAAAA CAATCCTAAG
C1s44	GAAAAGTATTAAAAACTTGT	GGTTATAAATGGTTAACTAA
C1s45	AAATAAAGAAAGGTGTCGAA	AGCRCTAAAAAATCCTACCT
C1s46	GCAATGAAAGAACAAATCAA	GAGTTTAAAA GTTTATCAAA
C1s47	ATTTTGATTTGCCTTGGAGT	AATTATAAAA ATGGCAGAAA
C1s48	TGTTTTTTTTTTTTTTTTTT	CATTGTAAAA TATTAATTAA
C1s49	GCGTGTATTTAAAAGTTTCA	CCTTTTAAAA TACTACTTTC
C1s50	TTTCTATTCATTTTGATAGC	AGGACTAAAAACAGTTTCTC
C1s51	TTCCAAAACCTGTTCTTTAT	TATCATAAAAAACAGCAATT
C1s52	TGTAAAGATTGTATTGATTT	GGCATTAAAA TTTTTTCCAT
WebLogo		2.0 # 1.0 0.0 5 10 15 Weelep 350

Supplementary Table 6. 20 nucleotides long DNA regions upstream (5' end) and downstream (3' end) of C1 protospacers using the guide-centric approach². Proposed PAM-sequence marked in bold.

Supplementary Table 7. 20 nucleotide RNA regions (from predicted ORFs) upstream (5' end) and downstream (3' end) of C2 protospacers using the target-centric approach². Sequence outside of predicted transcript in italic and sequence identical to the proposed C1 PAM in bold. Standard IUPAC codes used in cases of polymorphism between phage genomes.

	C2 protospacer s	surrounding regions
Spacer	20 nt (5' end)	20 nt (3' end)
C2s14	CAAAGAGUUGCAGGAUGGAU	GUACUUAAAUAUAAAUAAUG
C2s16	AGUUAGAAACAAAUCCAGAG	AGTGGUAAAA AAAAGAGUGA
C2s17	UUAGGAUUGUUUUAUACUUU	CAAUUAAAGAUUAUGAAUCA
C2s18	GGGUGAAGUUCCUAAACCGM	AUAAUUAAAA UGAUAACAUU
C2s19	GCUCAAGAACAAGCCAAAGU	AAAGUAUAAAAAAUGCUUUU
C2s20	UACAACUAUUACCUUUGAUU	GUAUAUAAAA UACAGAAAGC
C2s21	AAAGUAUUUUUUUAGACCCU	AAAACCUUUCAUUGAAUAUA
C2s22	UUAAGAGCCUGUUGUUUAGU	AGUUAUCAAAAAAAUAUCAA
C2s23	AAAAAUUACAAUGGCUAUAA	AAAUAUAAAA AACAUUGAAU
C2s24	UUAAAACUAGAGUAAAGCCA	UGAUUUAAAA AAUGAUGCUG
C2s25	UUGGCGGGUUUUUAUUGAUU	ACUAUUUUUUAACCCAAAGG
C2s26	AAAUCUAUUCUUUUAAAAAA	UAUUUACAAAAAAYUAAAUA
C2s27	ACCGAAAUUUUGAAAUCAAA	AGUAUUAAAAAACUUGUUUAG
C2s28	GAACAUUAGGAAGAAGUAUU	UUGGGGUAAAAUAAUGGAGU
C2s29	AAAAAGAGCGUGCCGAACGU	CAAUUUAAAA UUAGAAUAAA
WebLogo	20 20 20 20 20 20 20 20 20 20	

Spacer	Protospacer	Presence of	Protospacer	Mutated
	location	spacer in	mutations	protospacer in
	(consensus)	bacteria		phages
C2s18	28 361 - 28 390	2007 (B447) and	1 SNP	2009-2010
		2010 (B397)		
C1s47	29 294 - 29 322		none	
C2s29	$30\ 457 - 30\ 486$	2014 (B546)	12 bp deletion	2014
C2s28	$32\ 604 - 32\ 632$	2014 (B546)	2 SNPs	2014
C1s49	33 591 - 33 620		none	
C1s50	35 230 - 35 259		none	
C1s35	37 247 - 37 276		none	
C2s26	37 472 - 37 501		none	
C2s23	37 487 - 37 516	2010 (B366)	1 SNP	2010 - 2011

Supplementary Table 8. Spacers targeting the 11 kbp area (27 352 – 38 174 in the consensus sequence) and corresponding changes ("mutations") in the protospacers.

Supplementary Table 9. PCR and sequencing primers for phage genome sequencing and amplification of *F. columnare* CRISPR loci.

	Primer	Sequence
Phage genome	V113Rev7	TTCCACCATTCCGAACCACC
	EndF	AATCAAAATAAAGCGATATG
	EndR	TGAATCCTTCTGCAACTTCTTTC
CRISPR	CRISPR1 1F	GGACGAGGTTCAACGAAGT (PCR product FWD)
	CRISPR1 2F	GATATTTAAATCATCAGTAGT
	CRISPR1 1R	CCCTAAAGCACCACAACCCA (PCR product REV)
	CRISPR1 2R	GATTTAACTATTTGTAATAT
	CRISPR1 3R	ACAACGGTAACTTTTTAAAT
	CRISPR2 1F	GGTCTAAATACAATTGCTCTTTGACATT (PCR product FWD)
	CRISPR2 1R	TTAACGCTCGTCCCTCCTTCAA (PCR product REV)

Supplementary Discussion

Phage genomes. Genome sequencing of phage isolates from 2009 to 2014 resulted in highly similar sequences with the GC-content varying from 29.7 to 30.0%. Phage genomes showed significant sequence identity to a previously described *F. columnare* phage FCL-2, suggesting that these phages have only recently diverged. Structural proteins were similar to those of marine *Cellulophaga* phages, especially phiSM, as was also reported for FCL-2³.

For most of the predicted open reading frames (ORFs) (in phage FCV-3 52 out of 74) no putative function was assigned (Supplementary Table 3). Phage isolates from the year 2009, and three out of five of the 2010 isolates showed almost 100% sequence identity. These phages were assigned to Group 1, as shown in Fig. 2. In the two other 2010 isolates, VK48 and VK58 (Group 2), only very few differences in the nucleotide sequences in seven ORFs (56-62) could be detected, leading to only a few actual amino acid changes in ORFs 56-58 and 61-62. No putative function was predicted for these ORFs, although ORF 56 showed structural similarity to a primase-helicase of T7 and therefore could be involved in the phage replication. ORF 60 was notably different in these phages with only 14% amino acid-similarity. A homology search of the alignment of ORF 60 in FCV-3 and VK48 suggested putative function as a DNA-binding protein. The same differences were seen in the seven ORFs of the isolates from 2011, but in addition (similar to the most recent isolates from 2014 assigned to Group 3), these isolates had extra DNA in the terminal regions of the genomes, leading to increased genome size (46 448 bp in 2009 to 49 121 bp in 2014). The source of the additional DNA is not known but one possibility could be prophages, albeit none were detected during the experiments. Interestingly, the above-mentioned seven ORFs (56-62) in the 2014 isolates were identical to the 2009 isolates (except for a single nucleotide difference in ORF 61).

Single nucleotide differences resulting to change in one amino acid (glutamic acid to lysine) were seen in the 2011 isolates V156 and V157 in ORF 27. This ORF codes for a putative tail protein, having also structural similarity to a tail sheath protein. Two amino acid sequence differences were detected in the subsequent ORF 28, a putative structural protein (valine to isoleucine in both). Changes in both ORFs were identical in these two phages but were missing again in the 2014 isolates. In the 2014 phages (Group 3, except V175), changes identical between the genomes

concentrate on ORF 36 (several differences, including four additional amino acids and one missing) and ORF 37 (three amino acid changes alanine to valine, lysine to arginine and asparagine to histidine) which follow ORFs that contain predicted putative base plate domain (Blastp E-value 6.39e-21) and a tail protein domain (Blastp E-value 3.04e-10) (see Supplementary Table 4) and one hypothetical protein. As tail genes are in many phages clustered and the genes encoding base plate are in many cases by several other tail genes, it is possible that these predicted ORFs are structural. This could partly explain the expansion in host range, as mutations in tail fiber genes are typically associated changes in phage host range.

CRISPR PAM and PFS sequences. We searched for protospacer adjacent motifs (PAMS) by analysing 20 bp long regions surrounding each of the 18 C1 protospacers using the guide-centric approach². Alignment of the results with WebLogo⁴ revealed a putative 3' PAM with the sequence NNNNNTAAAA (Supplementary Table 6) shared by 15 of the 18 C1 protospacers. This is the longest PAM sequence described to date (10 bp) if the 5 bp linker sequence is included². *Flavobacterium columnare's* C1 PAM was briefly addressed in a previous study⁵, in which the authors report a similar yet truncated version of the sequence described here.

Analysing protospacer flanking sites (PFSs) associated with the 15 C2 RNA-protospacers revealed a preference for U or A in all but one 5' PFSs (Supplementary Table 7). Also, in the 5' PFS of spacer C2s18, A is replaced by C in some of the 2009-2010 phage genomes. These findings are in line with the study by Smargon *et al.*⁶, showing that in type VI-B systems a 5' PFS of A and U enhance interference, while C acts as an inhibitor. In the case of 3' PFSs, either or both previously reported patterns (NAN or NNA) were found in 10 of the 15 C2 protospacers. These phage genomes are, however, high in AT-content (GC%=29.8), which contributes to making such patterns likely.

As C2 contains no known spacer-acquisition related genes, it is possible that spacers are acquired autonomously (possibly by the two transposase-like genes downstream of the repeat-spacer array) or *in trans* by utilizing Cas1 and Cas2 from the C1 locus, as suggested by Smargon *et al.*⁶. If C2 spacer acquisition was dependent on C1 activity, we would expect to detect protospacer-adjacent sequences similar to those found in C1 PAMs, since bias towards specific PAMs is also governed by the acquisition machinery^{7, 8}. Surprisingly, almost half (7/15) of the C2 protospacer-adjacent sequences were identical to the proposed C1 PAM consensus NNNNTAAAA, while the rest had more variability (see Supplementary Table 7). A possible explanation for this variability could be the lack

of selection imposed on these protospacers-adjacent sequences after acquisition. Type VI CRISPR systems are considered to be independent on PAM sequences (only relying on PFSs) ⁹, which would indeed not impose these sequences under selection. Our data therefore suggests that in the type VI-B CRISPR locus of *F. columnare*, novel spacers might be acquired by recruiting the acquisition machinery from the adjacent C1 locus, although more specific studies are needed to substantiate this.

Sampling. As random field samples, the bacterial isolates in our study may not represent the complete CRISPR spacer pool present in the sampled fish farm's *F. columnare* population. However, the genotype specific infectivity of the phages allows us to dramatically narrow down the possible phage-bacterium interactions, increasing the possibility that even a smaller sample size, compared to, for example, spacer profiling by deep sequencing, is representative of the spacer pool of the specific *F. columnare* genotype at a given time.

Supplementary References

- 1. Suomalainen L-R, Kunttu H, Valtonen T, Hirvelä-Koski V, Tiirola M. Molecular diversity and growth features of *Flavobacterium columnare* strains isolated in Finland. *Dieases of Aquatic Organisms* **70**, 55-61 (2006)
- 2. Leenay RT, Beisel CL. Deciphering, communicating, and engineering the CRISPR PAM. *Journal of Molecular Biology* **429**, 177–191 (2016)
- Laanto E, Bamford JKH, Ravantti J, Sundberg L-R. The use of phage FCL-2 as an alternative to chemotherapy against columnaris disease in aquaculture. *Frontiers in Microbiology* 6, 829 (2015)
- 4. Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: A sequence logo generator, *Genome Research*, **14**,1188-1190 (2004)
- 5. Lopatina, A. *et al.* Metagenomic analysis of bacterial communities of Antarctic surface snow. *Frontiers in Microbiology* **7**, 398 (2016).
- Smargon, A. A., *et al.* Cas13b is a Type VI-B CRISPR-associated RNA-Guided RNase differentially regulated by accessory proteins Csx27 and Csx28. *Molecular Cell.* 65, 618-630 (2017)
- 7. Swarts, D. C., Mosterd, C., van Passel, M. W. J., & Brouns, S. J. J. CRISPR interference directs strand specific spacer acquisition. *PloS One* 7, ne35888 (2012)
- Wang, J., Li, J., Zhao, H., Sheng, G., Wang, M., Yin, M., & Wang, Y. Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems. *Cell*, 163, 840–853 (2015)

9. Abudayyeh, O. O. *et al.* C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. *Science* **353**, aaf5573 (2016).