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Minimality via second variation for
microphase separation of
diblock copolymer melts

By Vesa Julin at Jyväskylä and Giovanni Pisante at Caserta

Abstract. We consider a non-local isoperimetric problem arising as the sharp inter-
face limit of the Ohta–Kawasaki free energy introduced to model microphase separation of
diblock copolymers. We perform a second order variational analysis that allows us to provide
a quantitative second order minimality condition. We show that critical configurations with pos-
itive second variation are indeed strict local minimizers of the problem. Moreover, we provide,
via a suitable quantitative inequality of isoperimetric type, an estimate of the deviation from
minimality for configurations close to the minimum in the L1-topology.

1. Introduction

In this note, we are interested in performing a second order analysis for a non-local
isoperimetric problem arising as a variational limit of the Ohta–Kawasaki functional introduced
for a density functional theory for microphase separation of A/B diblock copolymers. To this
end we will follow the strategy introduced by Acerbi, Fusco and Morini in [1].

Among the several mean field approximation theories proposed to model the phase
separation in diblock copolymer melts, the one derived by Ohta and Kawasaki in [16] turns
out to be one of the most promising from the mathematical point of view. Let � � Rn be
a bounded domain representing the volume occupied by the polymeric material. The free
energy can be written as a non-local functional of Cahn–Hilliard type as

E".u/ D "

Z
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jruj2 dx C
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82 Julin and Pisante, Minimality via second variation for microphase

where u 2 H 1.�/ represents the density distribution of the monomers forming the copoly-
mers, G is the Green’s function of the Laplace operator with Neumann boundary conditions
and

m WD

«
�

udx

is the difference of the phases’ volume fractions. The formulation (1.1) was first introduced
in [15] and for a derivation of the Ohta–Kawasaki density function theory from the self-consis-
tent mean field theory we refer the reader to [6] and the references therein.

As pointed out in [6], depending on the molecular structure of the polymers there are
several regimes of phase mixture. Nevertheless, the presence of an observable phase separation
occurs in the so-called intermediate or strong segregation regimes, wherein the domain size is
much larger than the interfacial length. This suggests that most of the features of the model can
be described, from a mathematical point of view, by looking at the sharp interface limit of E" as
the thickness " of the diffuse interface tends to zero. Thus we are lead to study the minimizers
of the following energy functional, that arises as the �-limit of E" in the L1-topology,

(1.2) E.u/ D
8

3
jDuj.�/C 
0

Z
�

Z
�

G.x; y/.u.x/ �m/.u.y/ �m/dx dy;

where u W �! ¹�1; 1º is a function of bounded variation and jDuj.�/ denotes its total vari-
ation in �. The functional (1.2) can be described in a more geometric way that turns out to be
suitable for our analysis. Indeed, identifying the function u with the set

E D ¹x 2 � j u.x/ D 1º

and using the properties of G.x; y/, we can rewrite E.u/, up to a multiplicative constant, as

(1.3) J.E/ D P.E;�/C 


Z
�

jrvE j
2 dx;

where P.E;�/ stands for the perimeter of E in � and vE is the solution of

(1.4)

8̂̂̂̂
<̂
ˆ̂̂:
��vE D uE �m in �;
àvE
à�
D 0 on à�;Z

�

vE D 0;

with the positions

uE D �E � ��nE and m D

«
�

uE dx:

We are thus lead to study the variational problem

(1.5) min
²
J.E/

ˇ̌̌̌
E � �;

«
�

uE dx D m

³
:

Let us note that the condition
ª
� uE dx D m in problem (1.5) is nothing but a volume con-

straint imposed on the admissible sets, since jEj D 1
2
.mC 1/j�j.

Problem (1.5) has been presented in [7] as a mathematical paradigm for the phenomenon
of energy-driven pattern formation associated with competing short and long-range interac-
tions. Recently an increasing interest has been devoted to the second order variational analysis
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Julin and Pisante, Minimality via second variation for microphase 83

of energy functionals which exhibit this competing behaviour. Indeed it has successfully been
applied to prove stability and minimality criteria in several contexts (see e.g. [1, 3, 5, 10]).
Directly related to our problem is the work by Ren and Wei and by Choksi and Sternberg
(cf. [7, 17–21]). In a series of papers, as a first step toward the validation of the conjectured
periodicity of global minimizers of the functional (1.3), they computed the second variation
of (1.3) at a critical configuration and, among several other applications, they constructed
examples of periodical critical configurations and found conditions under which their second
variation is positive definite.

A different approach is taken in [1], where the authors consider the problem of minimiz-
ing the functional (1.3) in the periodic case, i.e., when � is the n-dimensional flat torus. They
prove the local minimality of regular critical configurations whose second variation is posi-
tive definite. In this direction goes also our present work, whose aim is to prove that a similar
minimality criterion holds true for problem (1.5).

In order to describe our main result, we recall that, if E is a sufficiently regular critical
set for J , then the following Euler–Lagrange equation holds:

(1.6) HM C 4
vE D � on M;

where M WD àE \� is the relative boundary of E in �, HM .x/ indicates the sum of the
principal curvatures ofM and the constant � is a Lagrange multiplier associated to the volume
constraint. Moreover, a regular critical set E meets à� orthogonally in the sense that

(1.7) h�M ; ��i D 0 on M \ à�;

where �M is the outward unit normal to M and �� is the exterior normal to �. Following [7]
and [22] (cf. in particular [7, Remark 2.8]), the second variation of the functional (1.3) at
a regular critical set E (cf. Definition 2.1) can be associated with the quadratic form defined
over all functions ' 2 H 1.M/ satisfying the integral conditionZ

M

' dHn�1
D 0;

as

à2J.E/Œ'� D
Z
M

.jD�'j
2
� jBM j

2'2/ dHn�1(1.8)
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Z
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Z
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C 4


Z
M

hrvE ; �M i'
2 dHn�1;

where Bà� stands for the second fundamental form of à�, i.e., the Hessian of the distance
function from the boundary, jBM j2 is the sum of the squares of the principal curvatures of M
and G W � ��! R is the Green’s function defined by the Neumann boundary value problem8̂̂̂̂

<̂̂
ˆ̂̂̂:

��yG.x; y/ D ıx �
1

j�j
in �;

DyG.x; y/ � ��.x/ D 0 for any x on à�;Z
�

G.x; y/ dx D 0:
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84 Julin and Pisante, Minimality via second variation for microphase

It follows from the results in [7] and [22] that every regular local minimizer E of (1.3) satisfies

à2J.E/Œ'� � 0 for every ' 2 H 1.M/ with
Z
M

' dHn�1
D 0:

As we already mentioned, our main result deals with the opposite question. In other words, we
study whether we may deduce the stability of a critical set E from the positivity of the second
variation. Our goal is to prove that a regular critical point with positive second variation is
indeed an isolated local minimum. This is achieved in the following theorem.

Theorem 1.1. Suppose � is C 4;˛-regular for some 0 < ˛ � 1 and that E � � withR
� uE dx D m is a regular critical set of (1.3) which satisfies

à2J.E/Œ'� > 0

for every ' 2 H 1.M/ n ¹0º with
R
M ' dHn�1 D 0. Then E is a strict local minimum for J

and there exist constants c > 0 and ı > 0 such that

J.F / � J.E/C c jF4Ej2

for every set F of finite perimeter in � with
R
� uF dx D m and jF4Ej � ı.

In particular, this implies that E is a local minimizer of J and, in addition, provides
a quantitative estimate of the deviation from the minimality for sets near to E. We remark
that our result holds also in the case 
 D 0 and thus we cover the case of volume constrained
isoperimetric problem in a regular domain �. However, in this case it is rather restrictive to
assume that the second variation is positive definite, and not just positive semi-definite.

Going back to the functionals E" defined in (1.1), as we already observed, it is well
known that, for "! 0, they �-converge in theL1-topology to E . As a corollary of the previous
theorem we can thus obtain the following stability result in the spirit of [1, Theorem 1.3].

Corollary 1.2. Assume E is a regular critical point of J with positive second variation
and define uE WD �E � ��nE . There exist "0 > 0 and a family ¹u"º"<"0 of isolated local min-
imizers of E" satisfying the constraint

R
� u" dx D m such that u" ! uE in L1.�/ as "! 0.

Some comments are in order on the differences between the periodic case (studied in [1])
and the Neumann boundary case. Indeed, if on one side working with the Neumann setting
dispenses us from several technicalities needed to deal with the translation invariance of the
functional J , on the other side new delicate arguments need to be introduced to deal with
problems which arise when E touches à�. We remark that in [1] the Neumann boundary
case was considered only under a restrictive assumption that the set E does not intersect the
boundary of �.

Finally, we outline the structure of the paper. In Section 2, we introduce the notation and
recall some preliminary results. In Section 3, we discuss some regularity results forƒ-minimi-
zers of the area functional and in particular a stability result for the regularity (cf. Theorem 3.3)
which will play an important role in the proof of the main theorem. Section 4 is devoted to
lengthy calculation of the second variation formula for regular sets which satisfy the orthogo-
nality condition (1.7) but are not necessarily critical. The main difficulties in the calculations
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Julin and Pisante, Minimality via second variation for microphase 85

are due to the perimeter term in (1.3). As in [4], where the general second variation formula
of the perimeter in Rn is derived, we have to find the right formula for the second variation
of the perimeter, but in our case we have to include the terms induced by the boundary à�.
The proof of the main result, Theorem 1.1, is presented in Sections 5 and 6. The scheme
follows a well-established path (see for instance [1, 3, 5, 10]). First we use the general second
variation formula from Proposition 4.1 to prove the local minimality among regular sets which
are close to the critical one in the W 2;p-topology and satisfy the orthogonality condition (1.7)
(cf. Proposition 5.2 for a precise statement). The proof of theW 2;p-minimality differs from the
periodic case, since we always have to preserve the orthogonality condition (see Lemma 5.3).
The final result is then proved by contradiction using a penalization argument and exploiting
the regularity theory of ƒ-minimizers of the area functional.

2. Preliminaries

In this section, we set up the basic notation and recall some preliminary results. Through-
out the paper � � Rn is assumed to be a bounded domain with boundary of class C 4;˛

for some ˛ 2 .0; 1�, unless otherwise mentioned. We say that a set E � � is C k;˛-regular,
with k 2 N and ˛ 2 .0; 1�, if its relative boundary, defined by

M WD àE \�;

is a C k;˛-regular .n � 1/-dimensional manifold with or without boundary if àE \ à� 6D ;
or àE \ à� D ; respectively.

For any sufficiently regular set E � � such that àM WDM \ à� 6D ;, we denote, for
a point x 2 àM , by ��.x/ the outward unit co-normal of àM at x, i.e., the unit vector which
is normal to M \ à� and tangent to M at the point x. Given an oriented regular manifold M

and x 2M we denote by �M.x/ the outward unit normal to M at the point x and we use the
notation HM.x/ to indicate the sum of the principal curvatures of M at x, i.e.,

HM.x/ D div� �M;

where div� denotes the tangential divergence on M (see [2, Section 7.3]). We shall omit the
dependence on the point x whenever it is clear from the context.

Let E be a C 1-regular set and let X be a C 1-vector field defined in �, which satisfies

(2.1) X.x/ 2 Tanx.à�/ for every x 2 à�;

where Tanx.à�/ denotes the tangent space of à� at the point x. We assume further that

(2.2)
Z
E

div.X/ dx D
Z
M

hX; �M i dHn�1
D 0:

We say that a vector fieldX is admissible if it satisfies (2.1) and (2.2). Using the flow associated
with X , i.e., the local solution ˆ W � � .�t0; t0/! � of the Cauchy problem

(2.3)
à
àt
ˆ.x; t/ D X.ˆ.x; t//; ˆ.x; 0/ D x;

we define the perturbations of E, induced by X and parametrized by t , by

Et D ˆ.E; t/:
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86 Julin and Pisante, Minimality via second variation for microphase

The condition (2.1) ensures that the flow is well defined and does not leave �, while (2.2)
ensures that jEt j D jEj C o.t/. We then define the first variation of the functional (1.3) at E
in the direction of the field X (or, equivalently, with respect to the flow ˆ) by

d

dt
J.Et /

ˇ̌
tD0

:

The well-known formula for the first variation (see [7] and [22]) leads us to the following
definition of regular critical sets of (1.3).

Definition 2.1. We say that a C 1-regular set E � � is a regular critical set for J if for
every admissible X 2 C 1.�IRn/ it holds

(2.4)
Z
M

div� X dHn�1
C 4


Z
M

vE hX; �M i dHn�1
D 0:

In other words, E is a set for which the first variation of J is zero in the direction of every
admissible vector field X of class C 1.

Since any regular critical set, E, by definition, satisfies equation (1.6) in the weak sense,
we may use this information to infer higher regularity for E. According to [1, Remark 2.3]
and [9, Section 1.3] it has been observed that a regular critical set is indeed of class C 3;˛ in �
for any ˛ 2 .0; 1/. In the next proposition, we show that this regularity can be significantly
improved using standard regularity theory for elliptic equations.

Proposition 2.2. Let� � Rn be a domain with boundary of class C k;˛ and let E � �
be a regular critical set. Then E is C k;˛-regular and C1-regular in �0 for every �0 �� �.

Proof. We will prove in detail only the interior regularity since the regularity up to the
boundary follows from a similar argument. As we already observed, àE is in fact C 3;˛-regular
in � for every ˛ 2 .0; 1/. This follows from (1.6) using standard elliptic estimates, after notic-
ing that vE , being a solution of (1.4), is of class C 1;˛.�/.

Let x0 be a point on àE\�. Then there exist a neighbourhoodU of x0 and aC 3;˛-diffeo-
morphism ˆ from NU to the unit ball NB1 such that

ˆ.U \E/ D B1 \ ¹yn < 0º; ˆ.U \ àE/ D B1 \ ¹yn D 0º; detDˆ�1 D 1:

Define w.y/ D vE .ˆ�1.y// and h.y/ D uE .ˆ�1.y// �m. By (1.4), w solves an equation of
the form

� div.A.y/Dw/ D h:

in B1 with A D ¹Aij ºi;jD1;:::;n of class C 2;˛. Since h.y/ is constant in every direction, except
in the normal direction yn, we may differentiate the above equation with respect to yi for
every i D 1; 2; : : : ; n � 1 and obtain

� div.A.y/Dwyi / D div.Ayi .y/Dw/:

Since Dw 2 C ˛.B1/ and Aij 2 C 2;˛.B1/, we obtain from standard elliptic regularity theory
(cf. [11, Chapter 8]) that wyi 2 C

1;˛.B1/. This implies that the tangential derivative D�vE is
locally C 1;˛ regular on àE \� and the Euler equation (1.6) in turn implies that àE \� is
locally of class C 4;˛. Thus the interior C1 regularity follows from a bootstrap argument.
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Julin and Pisante, Minimality via second variation for microphase 87

At the end of the section we remark that Definition 2.1 implies the orthogonality con-
dition (1.7), i.e., that the relative boundary M of a regular critical set meets à� orthogonally.
Indeed, since by Proposition 2.2, M is C 2-regular, using the Divergence Theorem on M we
have, for any vector field X , that

(2.5)
Z
M

div� X dHn�1
D

Z
M

HM hX; �M i dHn�1
C

Z
M\à�

hX; ��i dHn�2:

Moreover, M is classical solution of (1.6), thus by Definition 2.1 and (2.5), we can write, for
any X which satisfies (2.1) and (2.2),Z

M\à�
hX; ��i dHn�2

D

Z
M

.HM C 4
vE /hX; �M i dHn�1
C

Z
M\à�

hX; ��i dHn�2

D

Z
M

div� X dHn�1
C 4


Z
M

vE hX; �M idHn�1
D 0

and the orthogonality condition follows (cf. [22, Proof of Theorem 2.2]).

3. Regularity of ƒ-minimizers

In this section, we briefly discuss the regularity of sets which we callƒ-minimizers of the
perimeter. The regularity result will later play an important role in the proof of Theorem 1.1 and
we will also use it to deduce the partial C 1-regularity for local minimizers of (1.3). Together
with Proposition 2.2 this will then imply the partial C1-regularity for the local minimizers.

Definition 3.1. A set E of finite perimeter in �, i.e., such that �E 2 BV.�/, is called
a ƒ-minimizer of the perimeter if for every G � � it holds

P.E;�/ � P.G;�/CƒjG4Ej:

The above definition appears e.g. in [8] where it is called strongƒ-minimality. Very simi-
lar is the definition of ‘almost minimizer’ or ‘quasiminimizer’ of the perimeter used e.g. in [13]
and [23], where the perturbation is assumed to take place in a small ball, i.e., G4E � Br.x0/,
and the measure of the symmetric difference jG4Ej is replaced by the volume of that ball, jBr j.
The advantage of ƒ-minimality is that it implies the existence of a uniformly bounded gener-
alized mean curvature vector. This allows us to use the regularity result by Grüter and Jost
[14, Theorem 4.9] to prove the regularity of ƒ-minimizers.

Theorem 3.2. Suppose that E is a ƒ-minimizer in �. Then for every ˛ 2 .0; 1/ the
relative boundaryM WD àE \� of E is C 1;˛-regular outside a singular set � with Hausdorff
dimension dimH .�/ � n � 8. Moreover, M meets à� orthogonally on à� n � .

Proof. The result follows essentially from the work by Grüter [13], where he proves
the regularity for minimizers of the partitioning problem, i.e., (1.3) with 
 D 0. We need only
show that we may indeed apply the argument in [13].

Let us first show that there exists a function H WM ! Rn such that

(3.1)
Z
M

div� X dHn�1
D

Z
M

hX;Hi dHn�1
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88 Julin and Pisante, Minimality via second variation for microphase

for every X 2 C 1.�/ which satisfies the tangential condition (2.1), and that kHkL1 � ƒ. For
a fixed vector field X satisfying (2.1), consider the flow

à
àt
ˆ.x; t/ D X.ˆ.x; t//; ˆ.x; 0/ D x:

Since E is a ƒ-minimizer, it holds

(3.2) P.E;�/ � P.ˆ.E; t/;�/Cƒjˆ.E; t/4Ej

for some small t > 0. We claim that

jˆ.E; t/4Ej �

Z t

0

Z
M

jhX; �M ij dHn�1ds C o.t/:

Indeed, by the standard mollifying argument we an find a sequence of smooth sets E"
such that D�E" ! D�E weakly* in � and jD�E" j.�/! jD�E j.�/. Denote

M" WD àE" \�:

We may estimate the n-dimensional tangential Jacobian of ˆ on M" � Œ0; t/ from above by
jhX; �M"ij C ".t/, with a small remainder term ". � /. Hence, by the area formula, we have

jˆ.E"; t /4E"j � j¹ˆ.x; s/ j x 2M"; s 2 Œ0; t/ºj

�

Z t

0

Z
M"

jhX; �M"ij dHn�1ds C o.t/:

The above claim follows from Reshetnyak’s continuity theorem (see [2, Theorem 2.39]) by
letting "! 0.

Finally, letting t ! 0 in (3.2) we obtainZ
M

div� X dHn�1
� ƒ

Z
M

jhX; �M ij dHn�1:

Since the above inequality holds for every admissible X , the claim (3.1) follows from Riesz’s
representation theorem.

We may thus apply the regularity result from [14] and the C 1-regularity follows exactly
as in [13]. In particular, this result implies that, if the excess at a given point x0 2M

�.E; x0; �/ WD �
n�1

�Z
B�.x0/\�

jD�E j �

ˇ̌̌̌Z
B�.x0/\�

D�E

ˇ̌̌̌�
is small, then x0 is a regular point. By regular point we mean thatM coincides with an oriented
C 1-submanifold (with or without boundary) in a neighbourhood of x0. The C 1;˛-regularity
follows from the fact that the curvature is bounded.

It is well known that when n � 8, the singular set, even of a minimal surface, might not be
empty. However, as we pointed out in the proof of Theorem 3.2, we have the full regularity, if
we know a priori that the excess �.E; x; �/ is small for every x 2 �. This leads to the following
classical convergence result. The proof can be found e.g. in [8] with a few modifications due to
the fact that the relative boundary is a manifold with boundary.
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Julin and Pisante, Minimality via second variation for microphase 89

Theorem 3.3. Suppose that Ek areƒ-minimizers in�, and that E has C 1;˛-boundary
in � with ˛ 2 .0; 1/. If Ek ! E in L1, then àEk ! àE in C 1;˛. In particular, every Ek is
C 1;˛-regular when k is sufficiently large.

In order to exploit the relation between the local minimizers of the functional J and
the ƒ-minimizers of the perimeter, we recall that there exists a dimensional constant C such
that for every pair of measurable sets E;F � � we have

(3.3)
ˇ̌̌̌Z
�

jrvF j
2 dx �

Z
�

jrvE j
2 dx

ˇ̌̌̌
� C jF4Ej;

where vE and vF are defined by problem (1.4). The previous property of Lipschitz continuity
of the non-local part of the energy (1.3) follows for example arguing as in [1, Lemma 2.6]
(cf. also [9, Section 2.1]). The next proposition allows us to apply the regularity theory for
ƒ-minimizers to local minimizers of J .

Proposition 3.4. Any local minimizer E of the functional (1.3) is a ƒ-minimizer of the
perimeter for some ƒ depending on E.

Proof. Following the same argument of [1, Proposition 2.7] we can show that, if E is
a local minimizer for J , there exist ı > 0 and � > 0 such thatE solves the following penalized
minimization problem

(3.4) min¹J.F /C �jjF j � jEjj W F � �; jF4Ej < ıº:

Let G � �. According to Definition 3.1, we need to show that

P.E;�/ � P.G;�/CƒjG4Ej

for some largeƒ. If jG4Ej � ı, the above inequality is trivially true. If jG4Ej < ı, then (3.4)
yields

J.E/ � J.G/C �jjGj � jEjj:

The Lipschitz continuity of the non-local part (3.3) gives

P.E;�/ � P.G;�/C �jjGj � jEjj C C
 jG4Ej

� P.G;�/C .�C C
/jG4Ej;

proving the claim.

In view of Proposition 3.4 we can invoke the regularity for ƒ-minimizers proved in
Theorem 3.2 and the Proposition 2.2, to infer that every local minimizer of (1.3) is locally
C1-regular outside a singular set � with dimH .�/ � n�8. This motivates us to define regular
critical sets as critical sets with no singularities.

4. Second variation formula

In this section, we calculate the second variation of the functional (1.3) and our aim is
to write it in a form where the quadratic structure appears. As it is done in [1] in the periodic
setting, we also generalize the formula in [7] and calculate the second variation at any regular
set E, not necessarily critical.
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90 Julin and Pisante, Minimality via second variation for microphase

We assume that the set E � � is C 2-regular. As in Section 2 we consider a vector field
X 2 C 2.�IRn/ which satisfies the tangential condition (2.1) and the associated flow, defined
by (2.3), ˆ W � � .�t0; t0/! �. We define the second variation at E in the direction of X (or
with respect to the flow ˆ) as

d2

dt2
J.Et /

ˇ̌
tD0

;

where Et D ˆ.E; t/. Notice that we have not yet imposed any condition on the volume of Et .
A major technical challenge is the calculation that involves the local part of the energy,

namely P. � ; �/. We follow a slightly different path than [4, Proposition 3.9] where the general
second variation formula of the perimeter functional in Rn is derived. Instead of differentiating
the first variation formula we will first calculate the second derivative of P.Et ; �/, as it is done
e.g. in [12], and then use the Divergence Theorem in order to find its “correct” form. This saves
us from differentiating the boundary termZ

M\à�
hX; ��i dHn�2

which appears in the first variation formula. Along the calculations it will become clear that we
need to assume the orthogonality condition (1.7) on E in order to find the quadratic structure
in the second variation at E. However, this is not too restrictive since, as we pointed out in the
previous section, (1.7) is a necessary condition for local minimality (indeed even for ƒ-mini-
mality by Theorem 3.2), thus it can be viewed as a part of the regularity assumption on E.

Imposing the orthogonality condition on E implies �� D �� on M \ à� and, by (2.5),
we may write the integration by parts formula for any f 2 C 1.�/ asZ

M

f div� X dHn�1
D �

Z
M

hD�f;Xi dHn�1
C

Z
M

HMf hX; �M i dHn�1

C

Z
M\à�

f hX; ��i dHn�2;

where we recall that D�f D Df � hDf; �M i�M is the tangential derivative on M .

Proposition 4.1. Let E � Rn be a C 2-regular set which satisfies the orthogonality
condition (1.7) and X 2 C 2.�IRn/ be a vector field satisfying the tangential condition (2.1).
Then the second variation of (1.3) at E in the direction of X can be written as

d2J.Et /

dt2

ˇ̌̌
tD0
D

Z
M

.jD� hX; �M ij
2
� jBM j

2
hX; �M i

2/ dHn�1

�

Z
M\à�

Bà�.�M ; �M /hX; �M i
2 dHn�2

C 8


Z
M

Z
M

G.x; y/hX.x/; �M ihX.y/; �M i dHn�1.x/dHn�1.y/

C 4


Z
M

hrvE ; �M i hX; �M i
2 dHn�1

�

Z
M

.H C 4
vE / div� .X� .hX; �M i// dHn�1

C

Z
M

.H C 4
vE / div.X/hX; �M i dHn�1:
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Julin and Pisante, Minimality via second variation for microphase 91

Here jBM j2 is the sum of the square of the principal curvatures of M , Bà� stands for the
second fundamental form of à�, i.e., the Hessian of the distance function from the boundary
and X� D X �X� where X� D hX; �M i�M .

Before giving the proof, we remark that the above formula agrees with the quadratic
form (1.8) with two additional terms for ' WD hX; �M i. It turns out that both of these extra
terms vanish if E is critical and the flow is volume preserving. Indeed, if jEt j D jEj, we
deduce, by standard calculations (cf. [7, equations (2.29) and (2.30)] or [22, equations (2.15)
and (2.17)]), that

(4.1) 0 D
d

dt
jEt j

ˇ̌
tD0
D

Z
E

div.X/ dx D
Z
M

hX; �M i dHn�1;

which ensures (2.2) and

(4.2) 0 D
d2

dt2
jEt j

ˇ̌
tD0
D

Z
E

div.div.X/X/ dx D
Z
M

div.X/hX; �M i dHn�1:

Therefore, if E is a regular critical set, since H C 4
vE is constant, for a volume preserving
flow, we obtain

d2J.Et /

dt2

ˇ̌
tD0
D à2J.E/Œ'�;

where à2J.E/ is the quadratic form (1.8).

Proof of Proposition 4.1. We analyse separately the perimeter and the non-local part of
the energy for which we use respectively the notations

P.t/ D P.Et ; �/; F.t/ D 


Z
�

jrvEt j
2 dx:

The value of F 00.0/ has been calculated in [7] in the periodic setting. However, as it is
pointed out in [7, Remark 2.8], replacing the Neumann boundary condition does not produce
any new terms to it and the formula for F 00.0/ is the same as in the periodic case. Recalling the
condition (2.1) we thus have (cf. [7, Proof of Theorem 2.6, step 3])

F 00.0/ D 8


Z
M

Z
M

G.x; y/hX.x/; �ihX.y/; �i dHn�1.x/dHn�1.y/(4.3)

C 4


Z
M

div.vEX/ hX; �i dHn�1;

where for simplicity we have set (and we will continue to use this convention) � D �M . Also
the expression for P 00.0/ is well known, indeed, from [12, Theorem 10.4], we have

P 00.0/ D

Z
M

�
div� Z C .div� X/2 C j.D�X/T �M j2 � Tr.D�X/2

�
dHn�1;

where Z is the acceleration vector field given by Z D DXX , div� X D divX � hDX�; �i and
D�X D DX � .DX�/˝ �, i.e., .D�X/i;j D hD�Xj ; ei i. By the Divergence Theorem on M
we have

P 00.0/ D

Z
M

�
j.D�X/

T �j2 C .div� X/2 � Tr..D�X/2/CH hZ; �i
�
dHn�1(4.4)

C

Z
M\�

hZ; ��i dHn�2;
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92 Julin and Pisante, Minimality via second variation for microphase

where we have used that �� D �� on M \ à� by the orthogonality condition. Notice that this
is the second variation formula for the perimeter P.Et ; �/ given by any vector field X .

We have to manipulate (4.4) in order to find the quadratic structure in it. To this end we
will use the decomposition of X in its tangential and normal components with respect to M ,
i.e., we write X D X� CX� where X� D hX; �i� and rewrite every term in (4.4) accordingly.
Let us start with the first term. Since D� � D 0, we have

.D�X�/
T � D D� hX; �i

and therefore

j.D�X/
T �j2 D j.D�X�/

T �j2 C 2..D�X�/
T �/ � ..D�X� /

T �/C j.D�X� /
T �j2(4.5)

D jD� hX; �ij
2
C 2D� hX; �i � ..D�X� /

T �/C j.D�X� /
T �j2:

Since div� X� D H hX; �i, the second term in (4.4) can be written as

.div� X/2 D .div� X� C div� X� /2(4.6)

D H 2
hX; �i2 C 2H hX; �i div� X� C .div� X� /2:

For the third term in (4.4) we will use the equalities

.D�X�/
2
D hX; �i2.D�/2 C .D� hX; �i � �/ � ˝D� hX; �i

and
.D�X� /.D�X�/ D hX; �iD�D�X� :

Hence, we deduce

Tr.D�X/2 D Tr.D�X�/2 C 2Tr
�
.D�X� /.D�X�/

�
C Tr.D�X� /2(4.7)

D hX; �i2jBM j
2
C 2hX; �iTr

�
D�D�X�

�
C Tr.D�X� /2:

We treat the fourth term in (4.4) by writing

hZ; �i D hDXX; �i(4.8)

D h.DX.X�/CD.X�/.X� /CD.X� /.X� //; �i

D hX; �ihDX �; �i CD� hX; �i �X� C hZ� ; �i

D hX; �i divX � hX; �i div� X CD� hX; �i �X� C hZ� ; �i

D hX; �i divX � div� .X� hX; �i/ �H hX; �i2

C 2X� �D� hX; �i C hZ� ; �i;

where we have setZ� D D.X� /.X� / and in the last equality we have used div� X� D H hX; �i.
For the last term

R
M\�hZ; ��i dHn�2 we notice that the tangential condition (2.1) onX

implies hX; ��i D 0 onM \ à�. In particular,DhX; ��i �X D 0 onM \ à�. Hence the last
term in (4.4) becomes Z

M\à�
hZ; ��i dHn�2

D

Z
M\à�

hDXX; ��i dHn�2(4.9)

D �

Z
M\à�

hD��X;Xi dHn�2:
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From now on we will use the notation hD��X;Xi D Bà�.X;X/. We use (4.5), (4.6), (4.7),
(4.8) and (4.9) to rewrite (4.4) as

P 00.0/ D

Z
M

jD� hX; �ij
2
� jBM j

2
hX; �i2 dHn�1(4.10)

�

Z
M\à�

Bà�.X;X/ dHn�2

C 2

Z
M

D� hX; �i � ..D�X� /
T �/ dHn�1

C 2

Z
M

H.hX; �i div� X� / dHn�1

� 2

Z
M

hX; �iTr
�
D�D�X�

�
dHn�1

C 2

Z
M

H.X� �D� hX; �i/ dHn�1

C

Z
M

H.2X� �D� hX; �i C hX; �i divX � div� .X� hX; �i// dHn�1

C

Z
M

.div� X� /2C j.D�X� /T �j2�Tr.D�X� /2CH hZ� ; �i dHn�1:

We continue by treating the mixed terms in (4.10). We integrate by parts the third term
in (4.10) and deduce

2

Z
M

D� hX; �i � ..D�X� /
T �/ dHn�1(4.11)

D �2

Z
M

hX; �i div� ..D�X� /T �/ dHn�1

C 2

Z
M\à�

hX; �ih.D�X� /
T �; ��i dHn�2

D �2

Z
M

hX; �i div� ..D�X� /T �/ dHn�1

� 2

Z
M\à�

hX; �ihD� X� ; ��i dHn�2;

where we have used

hD�X� ��; �i C hD� X� ; ��i D D� hX� ; �i � �� D 0:

For the fourth term in (4.10) we observe that, by the orthogonality condition, X� vanishes
on M \ à� and therefore integration by parts yields

2

Z
M

H hX; �i div� X� dHn�1
D �2

Z
M

D� .H hX; �i/ �X� dHn�1(4.12)

C 2

Z
M\à�

H hX; �ihX� ; ��i dHn�2

D �2

Z
M

H X� �D� hX; �i dHn�1

� 2

Z
M

hX; �iD�H �X� dHn�1:
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94 Julin and Pisante, Minimality via second variation for microphase

Next we introduce the notation ıi for partial derivative onM , i.e., ıig D àxig�hDg; �i�i
for any smooth function g. We use ıj �i D ıi�j and

nX
i;j

.ıj ıi�i /X
j
� D

nX
i;j

.ıiıi�j /X
j
�

(see [12, Lemma 10.7]) and obtain

div� ..D�X� /T �/CD�H �X� C Tr.D� D�X� /(4.13)

D

nX
i;j

ıi .ıiX
j
� �j /C .ıj ıi�i /X

j
� C ıj �iıiX

j
�

D

nX
i;j

ıi .ıiX
j
� �j /C .ıiıi�j /X

j
� C ıi�j ıiX

j
�

D

nX
i;j

ıiıi .X
j
� �j / D �M hX� ; �i D 0;

where �M D
Pn
iD1 ıiıi is the Laplacian on M . Together with (4.11)–(4.13) formula (4.10)

becomes

P 00.0/ D

Z
M

jD� hX; �ij
2
� jBM j

2
hX; �i2 dHn�1(4.14)

�

Z
M\à�

Bà�.X;X/ dHn�2

� 2

Z
M\à�

hX; �ihD� X� ; ��i dHn�2

C

Z
M

H.hX; �i divX � div� .X� hX; �i// dHn�1

C

Z
M

.div� X� /2C j.D�X� /T �j2�Tr.D�X� /2CH hZ� ; �i dHn�1:

With the aim of understanding the last row in the previous formula, we observe that, as we
noticed before, X� vanishes on M \ à� and therefore the flow associated with X� leaves M
unchanged. Thus the second variation (formula (4.4)) of the perimeter in the direction of the
vector field X� is zero. In other words we haveZ

M

.div� X� /2 C j.D�X� /T �j2 � Tr.D�X� /2 CH hZ� ; �i dHn�1(4.15)

C

Z
M\à�

hZ� ; ��i dHn�2
D 0:

Since X� vanishes on M \ à�, we have DhX� ; ��i �X� D 0 on M \ à�. This yieldsZ
M\à�

hZ� ; ��i dHn�2
D

Z
M\à�

hD.X� /X� ; ��i dHn�2(4.16)

D �

Z
M\à�

Bà�.X� ; X� / dHn�2:

Moreover, since h�; ��i D 0 on M \ à�, we get

0 D Dh�; ��i �X� D hD� X� ; ��i C hD��X� ; �i
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and therefore Z
M\à�

hX; �ihD� X� ; ��i dHn�2
D �

Z
M\à�

hD��X� ; X�i dHn�2(4.17)

D �

Z
M\à�

Bà�.X� ; X�/ dHn�2:

We combine (4.3) and (4.14), together with (4.15)–(4.17) to write the second variation as

d2J.Et /

dt2

ˇ̌̌
tD0
D

Z
M

.jD� hX; �M ij
2
� jBM j

2
hX; �M i

2/ dHn�1

�

Z
M\à�

Bà�.�; �/hX; �i
2 dHn�2

C

Z
M

H.hX; �i divX � div� .X� hX; �i// dHn�1

C 8


Z
M

Z
M

G.x; y/hX.x/; �ihX.y/; �i dHn�1.x/dHn�1.y/

C 4


Z
M

div.vEX/ hX; �i dHn�1:

Finally, we integrate by parts and obtainZ
M

div.vEX/ hX; �i dHn�1
D

Z
M

hDvE ; XihX; �i dHn�1

C

Z
M

vE div.X/ hX; �i dHn�1

D

Z
M

hD�vE ; X� ihX; �i dHn�1

C

Z
M

hrvE ; �ihX; �i
2 dHn�1

C

Z
M

vE div.X/ hX; �i dHn�1

D �

Z
M

vE div.X� hX; �i/ dHn�1

C

Z
M

hrvE ; �ihX; �i
2 dHn�1

C

Z
M

vE div.X/ hX; �i dHn�1;

where the last equality follows again from the fact that X� vanishes on M \ à�. The last
equality, combined with the formula above, yields the result.

5. W 2;p-minimality

In this section, we prove that a regular critical set E with positive second variation is
a strict local minimizer among sets which are regular and close to E in a strong sense, namely
in the W 2;p-topology, and which satisfy the orthogonality condition (1.7). This result is stated
in Proposition 5.2 and can be interesting in itself. The idea is to construct an appropriate volume
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96 Julin and Pisante, Minimality via second variation for microphase

preserving flow ˆ for every set F near E such that ˆ.E; 1/ D F . We can then use Proposi-
tion 4.1 to estimate the second variation of Et D ˆ.E; t/ at any time t 2 Œ0; 1�. Notice that
by the assumption on E we know that the second derivative of t 7! J.Et / at t D 0 is strictly
positive. We use the fact that Et are close to E in W 2;p-topology to deduce that the function
t 7! J.Et / is in fact strictly convex.

In the following we say that J has positive second variation at the set E if

à2J.E/Œ'� > 0 for every ' 2 H 1.M/ n ¹0º with
Z
M

' dHn�1
D 0;

where we recall that à2J.E/Œ'� is defined by (1.8). We begin with a simple compactness argu-
ment whose proof is exactly the same as in [1, Lemma 3.6] and will therefore be omitted.

Lemma 5.1. Suppose that J has positive second variation at the critical set E. Then
there exists a constant c0 > 0 such that

à2J.E/Œ'� � c0k'k2H1.M/

for every ' 2 H 1.M/ with
R
M ' dHn�1 D 0.

We define the W 2;p- and C 2-distance between regular sets E;F � � as

kE;F kW 2;p WD inf¹k‰ � IdkW 2;p.�/ j ‰ W E ! F; C 2-diffeomorphismº;

kE;F kC2 WD inf¹k‰ � IdkC2.�/ j ‰ W E ! F; C 2-diffeomorphismº:

The main result of the section is the following:

Proposition 5.2. Let E be as in Theorem 1.1 and let p > n. There exist ı > 0 and
a constant c1 > 0 such that for any F � � with jF j D jEj, satisfying the orthogonality con-
dition (1.7) and kE;F kW 2;p � ı, it holds

J.F / � J.E/C c1jF4Ej
2:

We begin by proving some technical lemmata and we give the proof of Proposition 5.2
at the end of the section. A crucial point is Lemma 5.3 where we construct a vector field X
and a flow ˆ which deforms the set E into a given regular set F sufficiently close to E. The
difficulty lies in the fact that the flow needs to satisfy both the orthogonality condition and the
volume constraint. We have to construct it carefully near the boundary à� in order to preserve
the orthogonality condition.

Let us recall some well-know facts on the distance function. Since � is C 4;˛-regular,
the distance function d�.x/ D infy2à� jx � yj is C 4;˛-regular in a neighbourhood of à�. By
a neighbourhood of à� we mean a connected set V � � which contains à� and it is relatively
open with respect to �. We may define the projection … W V ! à� as ….x/ D yx , where
yx 2 à� is the unique point for which d�.x/ D jx � yxj. Every point x 2 V can therefore be
written as

(5.1) x D ….x/ � d�.x/��.….x//;

where ��.y/ is the outer normal of� at y 2 à�. We also remark that we may naturally define
D….y/ for every y 2 à� and the kernel of D….y/ is spanned by ��.y/,

(5.2) Ker.D….y// D span¹��.y/º; y 2 à�:
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Julin and Pisante, Minimality via second variation for microphase 97

The orthogonality condition (1.7) for a setE is equivalent to the fact that for every x 2M \ à�
the normal vector to à� at x belongs to the tangent plane of M at x, i.e.,

(5.3) ��.x/ 2 Tanx.M/:

Finally, we remark that we may consider à� itself as an .n � 1/-dimensional manifold
and define a natural distance on à� by

(5.4) distà�.x; y/ WD inf
²Z 1

0

j� 0.s/j ds

ˇ̌̌̌
� is a path on à� with �.0/ D x, �.1/ D y

³
:

Lemma 5.3. Let E be as in Theorem 1.1 and let F � � be a C 2-regular set which
satisfies the volume constraint jF j D jEj and the orthogonality condition (1.7). There exists
a constant ı > 0 such that, if kE;F kW 2;p � ı, with p > n, then we can find a C 2-regular
vector field X , with kXkW 2;p � Cı, that satisfies the tangential condition (2.1) and such that
the associated flow ˆ, defined by (2.3), has the following properties:

(i) For any t 2 Œ0; 1� the set Et D ˆ.E; t/ satisfies the volume constraint jEt j D jEj and
the orthogonality condition (1.7).

(ii) The flow ˆ takes E to F , i.e., E1 D ˆ.E; 1/ D F .

Proof. The proof is rather technical and long and it is therefore divided into three steps.

Step 1. We begin by constructing a vector field, which gives us the trajectories of the
final flow. It will be enough to construct the vector field in a neighbourhood of the relative
boundary M D àE \�, which we denote by U . By a neighbourhood of M we mean a con-
nected set U which contains M and is relatively open with respect to �.

First of all, by Proposition 2.2, M is C 4;˛-regular and therefore the signed distance
function from M in �

dM .x/ WD

8̂<̂
:

inf
y2M
jx � yj for x 2 � nE;

� inf
y2M
jx � yj for x 2 � \E;

is in C 4;˛.U /. The gradient field rdM will define the trajectories away from the boundary
of �.

As we already pointed out, we have to construct the trajectories carefully near the bound-
ary à� in order to be able to verify the orthogonality condition in the forthcoming step. We
begin by noting that the .n � 2/-dimensional boundary M \ à� is C 4;˛-regular. The signed
distance function from M \ à� on à�

dM\à�.x/ WD

8̂<̂
:

inf
y2M\à�

distà�.x; y/ for x 2 à� nE;

� inf
y2M\à�

distà�.x; y/ for x 2 à� \E;

is therefore C 4;˛-regular near M \ à�. Here distà�.x; y/ is defined in (5.4). We will define
the vector field Z on the boundary à� as

(5.5) Z.x/ D r�dM\à�.x/ for x 2 à� \ U:
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98 Julin and Pisante, Minimality via second variation for microphase

Here r� denotes the tangential gradient on à�. We extend Z to a neighbourhood of à� \ U ,
which we will denote by V , such that Z 2 C 2.V;Rn/. The trajectories of the final flow will
then be given by the vector field

(5.6) Y 0.x/ D �.x/rdM .x/C .1 � �.x//Z.x/;

where � 2 C10 .U / is a cut-off function such that � � 1 outside V . Notice that Y 0 2 C 2.U;Rn/
and (5.5) implies that Y 0 satisfies the tangent condition (2.1). Since Y 0 defines the trajectories
for the final flow X , it will then also satisfy (2.1).

We will extend Z, defined on à� as (5.5), to V in such a way that it satisfies

(5.7) divZ D 0 in V

and it has a property which we call “the projection property”. To describe this, let us assume
that we have extended Z to V , and let ˆZ be the associated flow

à
àt
ˆZ.x; t/ D Z.ˆZ.x; t// with ˆZ.x; 0/ D x

defined in V . Let… be the projection operator onto à�. We construct Z such that the flow ˆZ
satisfies

(5.8) ….ˆZ.x; t// D ˆZ.….x/; t/

for every x 2 V and t 2 R for which ˆZ.x; t/ 2 V . Roughly speaking (5.8) means that any
point y 2 V will travel side-by-side with its projection point ….y/. In other words, for every
x 2 à� and h > 0 it holds

ˆZ.x � h��.x/; t/ D ˆZ.x; t/ � lh��.ˆZ.x; t//

for some lh > 0. We call this the projection property of Z (cf. Figure 1).

Figure 1. The projection property on a trajectory.

First we remark that if Z is an extension of (5.5) and satisfies (5.7) and (5.8), then it will
be uniquely defined and we may construct it locally. We first make sure thatZ will satisfy (5.8).
In order to do this, it is convenient to flatten the boundary à�.

Let us fix x0 2M \ à�, which we may assume to be the origin. We write x 2 Rn

as x D .x0; xn/ where x0 D .x1; : : : ; xn�1/ 2 Rn�1 and denote the projection Q… W Rn ! Rn

onto the plane ¹xn D 0º by
Q….x/ D .x0; 0/:

We may locally write, up to a translation and rotation, � D ¹x j xn > g.x0/º for a C 4;˛-func-
tion g W D � Rn�1 ! R with g.0/ D 0 and rg.0/ D 0.
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Julin and Pisante, Minimality via second variation for microphase 99

We will now define a C 4;˛-diffeomorphism ‰ in a neighbourhood of x0, say V 0 � V ,
which flattens the boundary. Since we may write every point x 2 à� as x D .x0; g.x0//, we
define the diffeomorphism on the boundary as ‰.x/ D Q….x/. By (5.1), every x 2 V 0 can
be expressed as x D ….x/ � d�.x/��.….x//. The diffeomorphism ‰ W V 0 ! ‰.V 0/ is then
defined as

‰.x/ D Q….….x//C d�.x/en:

Notice that en is the inner normal of the new domain ‰.V 0/ on the flat boundary. The map ‰
has the property that for every x 2 V 0 and every y 2 ‰.V 0/ it holds

(5.9) Q….‰.x// D ‰.….x// and ….‰�1.y// D ‰�1. Q….y//:

Notice that the flow ˆZ is already defined on à� by (5.5). We map this flow to the new
coordinates by

Q̂
Z.y; t/ WD ‰.ˆZ.‰

�1.y/; t//

and denote the associated vector field by QZ. We may write QZ explicitly as

(5.10) QZ.y/ D D‰.‰�1.y//Z.‰�1.y//

on the flat boundary of‰.V 0/. Since Q̂ Z does not exit the flat boundary à.‰.V 0// � ¹yn D 0º,
its vertical velocity is zero, i.e., h QZ; eni D 0. In other words, Q…. QZ/ D QZ, where Q… is the
projection onto the plane ¹yn D 0º. We extend QZ to ‰.V 0/ as

(5.11) QZ.y/ WD QZ. Q….y//C f .y/en for y 2 ‰.V 0/;

where f 2 C 2.‰.V 0// is some function with boundary values f .y/ D 0 on y 2 ¹yn D 0º,
which will be chosen later.

Let us denote, with a slight abuse of notation, the associated flow by Q̂ Z . The construc-
tion implies that

Q…. QZ.y// D QZ. Q….y// for y 2 ‰.V 0/:

This means that at every point y 2 ‰.V 0/ the flow has the same horizontal velocity as at its
projection point Q….y/. Therefore Q̂ Z satisfies

(5.12) Q…. Q̂ Z.y; t// D Q̂ Z. Q….y/; t/:

We map the flow Q̂ Z back to V 0 by

(5.13) ˆZ.x; t/ WD ‰
�1. Q̂ Z.‰.x/; t//;

for every x 2 V 0 and t 2 R for which ˆZ.x; t/ 2 V 0. It follows from (5.9), (5.12) and (5.13)
that

….ˆZ.x; t// D ….‰
�1. Q̂ Z.‰.x/; t///

D ‰�1. Q…. Q̂ Z.‰.x/; t///

D ‰�1. Q̂ Z. Q….‰.x//; t//

D ‰�1. Q̂ Z.‰.….x//; t//

D ˆZ.….x/; t/:

Hence, we have the projection property (5.8).
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100 Julin and Pisante, Minimality via second variation for microphase

Let Z be the vector field associated to ˆZ . We may use (5.10), (5.11), (5.9) and (5.13)
in order to write Z explicitly as

Z.x/ D D‰�1.‰.x// QZ.‰.x//(5.14)

D D‰�1.‰.x//. QZ. Q….‰.x///C f .‰.x//en/

D D‰�1.‰.x//. QZ.‰.….x///C f .‰.x//en/

D D‰�1.‰.x//D‰.….x//Z.….x//C f .‰.x//D‰�1.‰.x//en:

We remark that, since we impose the boundary condition f .y/ D 0 for yn D 0, we have
f .‰.….x/// D f . Q….‰.x// D 0. Therefore it follows from (5.14) thatZ really is an extension
of the vector field we defined on the boundary à� in (5.5).

Finally, we choose f , which defines the vertical velocity of QZ in (5.11), such that Z
satisfies (5.7). Let us write the equation divZ D 0 in a form

ha.x/;rf .‰.x//i C b.x/f .‰.x//C c.x/ D 0; x 2 V 0;

where, by (5.14), the coefficients are

a.x/ D D‰.x/D‰�1.‰.x//en D en;

b.x/ D div.D‰�1.‰.x//en/;

c.x/ D div.D‰�1.‰.x//D‰.….x//Z.….x///:

We remark that since ‰ is a C 4;˛-diffeomorphism and x 7! Z.….x// is C 3;˛-regular (in view
of (5.5)) then the above coefficients are C 2;˛-regular. Going back to the domain ‰.V 0/ with
a flat boundary, we have to solve the PDE

(5.15) hrf .y/; eni C Qb.y/f .y/C Qc.y/ D 0; y 2 ‰.V 0/;

with the boundary condition f .y/ D 0 on ‰.V 0/ \ ¹yn D 0º. Here Qb.y/ D b.‰�1.y// and
Qc.y/ D c.‰�1.y//. We may solve this equation by using the method of characteristics and
thus we have Z, which is C 2 regular.

We define the primitive vector field Y 0 by (5.6). For the distance function fromM it holds

rdM .x/ D �M .x/ for x 2M .

Moreover, since M satisfies the orthogonality condition (1.7), (5.5) implies that

Z.x/ D r�dM\à�.x/ D �M .x/ for x 2M \ à�:

By the regularity of Z and M , choosing the cut-off function such that � ¤ 1 only in a narrow
neighbourhood of à�, we can ensure that

(5.16) jY 0.x/ � �M .x/j �
1

16
; x 2M:

Step 2. In this short step, we change Y 0 to Y 2 C 2.U;Rn/, which has the same trajec-
tories and satisfies

(5.17) div.Y.x// D 0; x 2 U; and Y.x/ D Y 0.x/ on M;
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Julin and Pisante, Minimality via second variation for microphase 101

where U is a neighbourhood of M . We impose that Y is of the form Y.x/ D �.x/Y 0.x/,
where � is a function. In order to have divY D 0 and Y.x/ D Y 0.x/ on M , the function � has
to satisfy

(5.18) hY 0.x/;r�.x/i C �.x/ divY 0.x/ D 0; x 2 U;

with the boundary condition �.x/ D 1 for x 2M . By (5.6), Y 0 is of the form

Y 0 D .1 � �/Z C �rdM ;

where Z is C 2-regular and rdM and � are C 3-regular. However, since divZ D 0, equation
(5.18) has C 2-regular coefficients and we may solve it by using the method of characteristics.
Moreover, since Y 0 D Z and divZ D 0 in a neighbourhood of à�, say V , we have that

(5.19) Y.x/ D Z.x/ ; x 2 V:

We denote the flow associated to Y by ˆY . It is clear that ˆY is defined in U for a short
time interval .�t0; t0/. Moreover, since Y 2 C 2.U;Rn/, ˆY is also C 2-regular. Moreover,
from (5.16) and (5.17) it follows that

(5.20) jY.x/ � �M .x/j �
1

16
; x 2M:

Step 3. We finally construct the vector field X such that the associated flow, denoted
by ˆ, satisfies ˆ.E; 1/ D F , and that for every t 2 Œ0; 1� the set Et WD ˆ.E; t/ satisfies the
orthogonality condition (1.7) and the volume constraint jEt j D jEj.

In a neighbourhood U of M the map ˆY jM�.�t0;t0/ ! U is a C 2-diffeomorphism
and every point y 2 U can be written uniquely as y D ˆY .x; t/ for some x 2M and for
some t 2 .�t0; t0/. We may therefore define implicitly the two projections � W U !M and
T W U ! .�t0; t0/ such that

(5.21) ˆY .�.y/; T .y// D y:

Since ˆY is C 2-regular, � and T are C 2-regular as well.
By the assumption on F , there exists a C 2-diffeomorphism ‰F W E ! F satisfying

k‰F � IdkW 2;p < ı:

We assume without mentioning that ı > 0 is small. We define the map S WM !M as

S.x/ WD �.‰F .x//:

The tangential differential of S is

D�S.x/ D D��.‰F .x//D�‰F .x/ on x 2M:

From the regularity of � and from the fact that �.x/ D x for x 2M we conclude that

jD��.‰F .x//j � c:

Moreover, since kD�‰F .x/ � IkL1 � ı we conclude that S is a C 2-diffeomorphism and the
bound k‰F kW 2;p � C implies

(5.22) kS�1kW 2;p.M/ � C:
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102 Julin and Pisante, Minimality via second variation for microphase

We introduce a further projection onto the relative boundary of F , MF WD àF \�,
denoted by �F W U !MF and defined as

�F .y/ WD ‰F .S
�1.�.y///;

which labels for every point y 2 U a unique point z on MF on the same trajectory. Trivially
the map �F is constant along the trajectories of ˆY and the value

(5.23) TF .y/ WD T .�F .y//

denotes the time needed from M to MF along the trajectory passing through y. The definition
of �F , the estimate k‰F � IdkW 2;p < ı and (5.22) imply

k�F � S
�1
ı �kW 2;p < Cı:

Since S�1.�.y// 2M for every y 2U , it holds, by the definition of T , that T .S�1.�.y///D 0
for y 2 U . Therefore the above estimate yields

(5.24) kTF kW 2;p D kT ı �F � T ı S
�1
ı �kW 2;p � Cı:

We define the vector field X by

(5.25) X.y/ D TF .y/Y.y/:

Since Y is C 2-regular, estimate (5.24) yields kXkW 2;p � Cı. We denote the flow associated
to X by ˆ. We may write ˆ explicitly as

(5.26) ˆ.x; t/ D ˆY .x; TF .x/ t/ for x 2M:

We denote Et D ˆ.E; t/ andMt D àEt \�. Since TF .x/ is the time that the flowˆY needs
to get from x 2M to MF , it follows directly from (5.26) that MF D ¹ˆ.x; 1/ j x 2M º.
Hence E1 D F .

Since TF is constant along the trajectories of ˆY , (5.17) implies

(5.27) divX D div.TF Y / D hrTF ; Y i C TF divY D 0:

We may calculate as in (4.2)

d2

dt2
jEt j D

Z
Mt

div.X/hX; �M i dHn�1
D 0;

by (5.27). Therefore t 7! jEt j is an affine function. Since jEj D jF j, it has to be constant.
Hence, the flow satisfies the volume constraint jEt j D jEj for t 2 Œ0; 1�.

We have yet to make sure that at any time t 2 .0; 1/ the set Et satisfies the orthogonality
condition. Before that we remark that (5.19) implies that ˆY D ˆZ in a neighbourhood of à�
which we denote by V . We show first that for every z 2 à� and every s 2 .�t0; t0/ it holds

(5.28) DˆZ.z; s/��.z/ D ���.ˆZ.z; s//

for some � D �.z; s/ > 0.
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Julin and Pisante, Minimality via second variation for microphase 103

Indeed, the projection property (5.8) yields

….ˆZ.z � h��.z/; s// D ˆZ.….z � h��.z//; s/ D ˆZ.z; s/

for every small h > 0. This implies

0 D lim
h!0

1

h
.….ˆZ.z � h��.z/; s// �ˆZ.z; s//

D �D….ˆZ.z; s//DˆZ.z; s/��.z/:

In other words, DˆZ.z; s/��.z/ 2 Ker.D….ˆZ.z; s///, which implies (5.28) by (5.2).
Let us now prove the orthogonality condition. We fix t 2 .0; 1/ and y 2Mt\à�. We will

show that

(5.29) ��.y/ 2 Tany.Mt /;

which implies the orthogonality as we noted in (5.3). Since y 2Mt \ à�, there exists a unique
x 2M \ à� such that y D ˆ.x; t/ D ˆZ.x; TF .x/t/.

To show (5.29), we notice that since M satisfies the orthogonality condition (1.7),
it holds ��.x/ 2 Tanx.M/ by (5.3). Therefore, since ˆ. � ; t / WM !Mt is a diffeomorphism,
we have

(5.30) Dˆ.x; t/��.x/ 2 Tany.Mt /:

We use (5.26) to calculate

Dˆ.x; t/��.x/ D DˆZ.x; TF .x/t/��.x/C t
àˆZ
àt

.x; TF .x/t/hrTF .x/; ��.x/i:

Notice that (5.28) implies

DˆZ.x; TF .x/t/��.x/ D ���.y/

for some � > 0. Hence, by (5.30) we need yet to show

(5.31) hrTF .x/; ��.x/i D 0

to conclude (5.29).
We recall that TF .x/ D T .�F .x//, where �F is a map which labels for every x0 2 U

a unique point y0 2MF on the same trajectory. We may therefore write �F .x/ D ˆZ.x; s/
and �F .x � h��.x// D ˆZ.x � h��.x/; sh/ for some s; sh 2 .�t0; t0/. We also denote

Qy D �F .x/ and lim
h!0

sh � s

h
D �:

We have

D�F .x/��.x/ D lim
h!0

1

h
.�F .x/ � �F .x � h��.x///(5.32)

D lim
h!0

1

h
.ˆZ.x; s/ �ˆZ.x � h��.x/; sh//

D DˆZ.x; s/��.x/ � �
àˆZ
àt

.x; s/

D Q���. Qy/ � �Z. Qy/;
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104 Julin and Pisante, Minimality via second variation for microphase

where the last equality follows from (5.28) and àˆZàt .x; s/DZ.ˆZ.x; s//. Since �F .x/ 2MF ,
we have that D�F .x/��.x/ 2 Tan Qy.MF /. Moreover, since MF satisfies the orthogonality
condition (5.3), it holds

��. Qy/ 2 Tan Qy.MF /:

However, since F is close to E in W 2;p-sense, we have the estimate

j�M .x/ � �MF .�F .x//j � Cı

(see (5.35) in Lemma 5.4). SinceZ D Y in V , estimate (5.20) and the C 2-regularity ofZ then
imply

hZ. Qy/; �MF . Qy/i > 0

when ı is small. In particular, Z. Qy/ … Tan Qy.MF /. Therefore, by (5.32), we must have � D 0,
which in turns implies

(5.33) D�F .x/��.x/ D Q���. Qy/

for some Q� > 0.
Since TF D T ı �F , (5.31) can be written as

hrT .�F .x//;D�F .x/��.x/i D 0:

By (5.33) this is equivalent to

(5.34) hrT . Qy/; ��. Qy/i D 0

for Qy D �F .x/.
We recall that the definition of T W U ! R in (5.21) implies T .ˆY .x0; t 0// D t 0 for

every x0 2 U . Since ˆY D ˆZ in V , we have that

T .ˆZ.x
0; s// D s for every x0 2M \ V:

We recall that Qy D ˆZ.x; s/ for x 2M \ à�. Therefore the above equality implies

hrT . Qy/;DˆZ.x; s/�i D 0 for every � 2 Tanx.M/:

Since M satisfies the orthogonality condition, it holds ��.x/ 2 Tanx.M/. Hence,

hrT . Qy/;DˆZ.x; s/��.x/i D 0:

We then conclude from (5.28) that

hrT . Qy/; ��. Qy/i D 0:

This proves (5.34) and shows thatMt satisfies the orthogonality condition (1.7), and the lemma
is finally proved.

In the next lemma we study the regularity properties of the flow ˆ and the vector field X
constructed in the previous lemma.
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Lemma 5.4. Let E, F be as in Lemma 5.3, let X be the vector field defined by (5.25),
let ˆ be the associated flow and set Mt WD àEt \�. The flow ˆ satisfies

(5.35) kˆ. � ; t / � IdkW 2;p.M/ � Cı

for some constant C > 0 and ı given by Lemma 5.3. The vector field X satisfies

(5.36) jF4Ej � C

Z
M

jhX; �M ij dHn�1

and

(5.37) kX�tkH1.Mt /
� CkhX; �Mt

ikH1.Mt /

for some constant C , where �Mt
is the normal vector of Mt and X�t D X � hX; �Mt

i�Mt
.

Proof. We begin by proving (5.35). By the definition (2.3) ofˆ, we can write, for x 2M
and t 2 Œ0; 1�,

ˆ.x; t/ � x D

Z t

0

X.ˆ.x; s// ds:

Recalling that X satisfies the estimate kXkW 2;p � CkTF kW 2;p � Cı, we can easily get

jˆ.x; t/ � xj � Cı:

By differentiating (2.3), we obtain

à
àt
ˆxi .x; t/ D DX.ˆ.x; t//ˆxi .x; t/ ; ˆxi .x; 0/ D ei :

Again kXkW 2;p � Cı implies

jˆxi .x; t/ � ei j � Cı for all x 2M;

for every i D 1; 2; : : : ; n, since p > n. We differentiate (2.3) once more and use the previous
estimates to obtain

kˆxixj . � ; t /kLp.M/ � Cı;

which implies (5.35).
It follows from (5.35) that j�M .x/��Mt

.ˆ.x; t//j � Cı for x 2M and t 2 Œ0; 1�. There-
fore (5.20) implies

(5.38) jY.x/ � �Mt
.x/j �

1

8
for all x 2Mt :

We recall that TF . � / is constant along the trajectories, i.e., TF .ˆ.x; t// D TF .x/ for x 2M .
Hence, by (5.20) we have

jX.ˆ.x; t//j � C jTF .x/j � C jhX.x/; �M .x/ij for x 2M .

Similarly, it follows from (5.38) that

C�1jhX.x/; �M .x/ij � jhX.ˆ.x; t//; �Mt
.ˆ.x; t//ij(5.39)

� C jhX.x/; �M .x/ij for all x 2M;

for every t 2 Œ0; 1�, when ı is sufficiently small.
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We proceed by showing estimate (5.36). We use the same calculation as in the proof of
Theorem 3.2 to estimate

d

dt
jEt4Ej �

Z
Mt

jhX; �Mt
ij dHn�1

� C

Z
M

jhX; �M ij dHn�1;

where the last inequality follows from (5.35) and (5.39). Hence

jF4Ej D

Z 1

0

d

dt
jEt4Ej dt � C

Z
M

jhX; �M ij dHn�1:

The estimate (5.37) follows exactly as [1, Lemma 7.1], but we give the proof for the
convenience of the reader. We notice that (5.39) implies

jX�t j � jX j � C jhX; �Mt
ij on Mt .

In particular,
kX�tkL2.Mt /

� CkhX; �Mt
ikL2.Mt /

:

Notice that we may writeX D hX; NY iY , where NY D Y
jY j

. Estimate (5.38) implies j NY ��Mt
j �

1
4

on Mt . We may estimate the tangential differential on Mt by (5.38) and by the C 2-regularity
of Y :

jD�tX�t j D jD�tX �D�t .hX; �Mt
i�Mt

/j

D jD�t .hX;
NY iY / �D�t .hX; �Mt

i�Mt
/j

� jD�t .hX; �Mt
i.Y � �Mt

//j C jD�t .hX; .
NY � �Mt

/iY /j

�
1

8
jD�t hX; �Mt

ij C
1

2
jD�tX j C C jX j.1C jD�t�Mt

j/:

Since jD�tX j � jD�tX�t j C jD�t hX; �Mt
ij C jX jjD�t�Mt

j, we obtain

jD�tX�t j � C jD�t hX; �Mt
ij C C jhX; �Mt

ij.1C jD�t�Mt
j/;

where we have also used (5.39). Integrating and using Hölder’s inequality we get

kD�tX�tk
2
L2.Mt /

� CkhX; �Mt
ik
2
H1.Mt /

C C

Z
Mt

jhX; �Mt
ijjD�t�Mt

j dHn�1

� CkhX; �Mt
ik
2
H1.Mt /

C CkhX; �Mt
ik
2

L
2p
p�2 .Mt /

kD�t�Mt
k
2
Lp.Mt /

� CkhX; �Mt
ik
2
H1.Mt /

;

where the last inequality follows from (5.35) and from Sobolev inequality with p > n.

In the following lemma we show, by continuity, that if J has positive second variation
at a critical point E then the quadratic form (1.8) remains positive in a W 2;p-neighbourhood
of E.

Lemma 5.5. Let E be as in Theorem 1.1 and let p > n. There exists a constant ı > 0
such that for any C 2-regular set F with kE;F kW 2;p � ı and every function ' 2 H 1.MF /

with
R
MF

' dHn�1 D 0 it holds

à2J.F /Œ'� �
c0

2
k'k2

H1.MF /
:

Here MF WD àF \�, à2J.F /Œ'� is defined in (1.8) and c0 is the constant from Lemma 5.1.
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Proof. We argue by contradiction and assume that there are Fk with

kE;FkkW 2;p D "k ! 0

and functions 'k 2 H 1.Mk/ with
R
Mk

'k dHn�1 D 0, which by scaling we may assume to
satisfy k'kkH1.Mk/

D 1, such that

(5.40) à2J.Fk/Œ'k� <
c0

2
;

where Mk WD àFk \�. Let us recall the formula for à2J.Fk/:

à2J.Fk/Œ'k� D
Z
Mk

.jD�k'kj
2
� jBMk j

2'2k/ dHn�1(5.41)

�

Z
Mk\à�

Bà�.�k; �k/'
2
k dHn�2

C 8


Z
Mk

Z
Mk

G.x; y/'k.x/'k.y/ dHn�1.x/dHn�1.y/

C 4


Z
Mk

hrvFk ; �ki'
2
k dHn�1;

where �k is the unit normal of Fk . We will show that there exists a function ' 2 H 1.M/ with
k'kH1.M/ D 1 and

R
M ' dHn�1 D 0 such that, up to a subsequence,

lim
k!1
à2J.Fk/Œ'k� � à2J.E/Œ'�:

This together with (5.40) contradicts Lemma 5.1.
Since kE;FkkW 2;p ! 0, we can find a sequence of C 2-diffeomorphisms ‰k W E ! Fk

such that
k‰k � IdkW 2;p ! 0:

By compactness there exists some ' 2 H 1.M/ with k'kH1.M/ D 1 and
R
àE ' dHn�1 D 0

such that, up to a subsequence,

'k ı‰k * ' weakly in H 1.M/;

where M D àE \�. In particular, 'k ı‰k ! ' strongly in L2.M/. We also conclude that
�k ı‰k ! � uniformly on M where � is the unit normal of E. Therefore for the first term
in (5.41), by the weak lower semi-continuity, we obtain

lim
k!1

Z
Mk

jD�k'kj
2 dHn�1

�

Z
M

jD�'j
2 dHn�1:

Next we observe that the following convergences holds:

BMk ı‰k ! BM in Lp.M/ and vFk ! vE in C 1;˛.�/:

Indeed, the first one follows immediately from the W 2;p-convergence of Fk and the second
one follows from the uniform C 1;˛-regularity given by equation (1.4). Therefore we obtain the
convergences of the second and the last term in (5.41), namely

lim
k!1

Z
Mk

jBMk j
2'2k dHn�1

D

Z
M

jBM j
2'2 dHn�1

and
lim
k!1

Z
Mk

hrvFk ; �ki'
2
k dHn�1

D

Z
M

hrvE ; �i'
2 dHn�1:
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108 Julin and Pisante, Minimality via second variation for microphase

By compactness of the trace operator we have that 'k ı‰k ! ' onL2.M \ à�/. Hence
we deduce the convergence of the boundary term

lim
k!1

Z
Mk\à�

Bà�.�k; �k/'
2
k dHn�2

D

Z
M\à�

Bà�.�; �/'
2 dHn�2:

To conclude the proof it remains to show that

lim
k!1

Z
Mk

Z
Mk

G.x; y/'k.x/'k.y/ dHn�1dHn�1

D

Z
M

Z
M

G.x; y/'.x/'.y/ dHn�1dHn�1;

which is equivalent to show that

lim
k!1

kDwkkL2.�/ D kDwkL2.�/;

where
��wk D 'kHn�1

bMk and ��w D 'Hn�1
bM :

This in turn follows from the strong convergence of 'kHn�1bMk to 'Hn�1bM in H�1.�/.
The argument is the same as in the proof of [1, Theorem 3.9, Step 1] and therefore we present
here only the main steps outlining the differences. Fix f 2 H 1.�/\C 1.�/. Denote by JM‰k
the Jacobian of ‰k on M and notice that JM‰k ! 1 uniformly on M . For simplicity we
set Q'k D 'k ı‰k . By Lemma 5.3 we can construct a flow ˆFk . � ; t / such that ˆFk .x; 0/ D x
and ˆFk .E; 1/ D Fk , and that the associated vector field satisfies kXkkW 2;p � C"k . With
a slight abuse of notation we denote ˆFk . � ; 1/ D ˆk .

As in [1] we have˝
.'kHn�1

bMk�'Hn�1
bM /; f

˛
D

Z
Mk

f 'k dHn�1
�

Z
M

f ' dHn�1

� C k Q'kkL2.M/ � kf ıˆk � f kL2.M/ C Q"kkf kH1.�/

C CkJMˆk � 1kL1.M/kf kH1.�/;

with Q"k ! 0. Using (5.39) and arguing as in the proof of Theorem 3.2 we may estimate point-
wise the n-dimensional Jacobian of ˆFk WM � Œ0; 1�! � from below by cjXk.ˆFk .x; t//j
with c > 0. Let us denote M0 DM \ ¹Xk ¤ 0º. Then estimate (5.39) implies that the map
ˆFk WM0 � Œ0; 1�! � is a diffeomorphism onto its image and that jXk.ˆFk .x; t//j D 0 for
all x 2M nM0 and t 2 Œ0; 1�. Therefore we have

kf ıˆk � f k
2
L2.M/

D

Z
M

jf .ˆk.x// � f .x/j
2 dHn�1

D

Z
M

ˇ̌̌̌Z 1

0

d

dt
f .ˆFk .x; t// dt

ˇ̌̌̌2
dHn�1

�

Z
M

Z 1

0

jrf .ˆFk .x; t//j
2
jXk.ˆFk .x; t//j

2 dt dHn�1

� kXkkL1

Z
M0

Z 1

0

jrf .ˆFk .x; t//j
2
jXk.ˆFk .x; t//j dt dHn�1

� CkXkkL1

Z
�

jrf .y/j2 dy:
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Julin and Pisante, Minimality via second variation for microphase 109

Hence we have
k'kHn�1

bMk�'Hn�1
bMkH�1.�/ ! 0;

and the proof is completed.

We are now ready to prove Proposition 5.2.

Proof of Proposition 5.2. Without loss of generality we may assume that F is C 2-reg-
ular and MF D àF \� is a C 2-manifold with boundary that meets à� orthogonally.

Let X be the vector field and let ˆ be the associated flow given by Lemma 5.3. For
every t 2 Œ0; 1� we set Et D ˆ.E; t/,Mt D àEt \� and denote by �t the unit normal toMt .
Since E is a critical set, we have

d

dt
J.Et /

ˇ̌
tD0
D 0:

Moreover, Proposition 4.1 and Lemma 5.1 yield in particular, for ' D hX; �i, that

d2

dt2
J.Et /

ˇ̌
tD0
D à2J.E/Œ'� � c0k'k2H1.M/

for some constant c0 > 0. The idea of the proof is to show, by a continuity argument, that if
ı > 0 is chosen small enough, we have

(5.42)
d2

dt2
J.Et / �

c0

4
k'tk

2
H1.Mt /

for every t 2 Œ0; 1�,

where 't D hX; �t i. Once we have (5.42), the result then follows since we may infer, by (5.35)
and (5.39), that Z

Mt

j't j
2 dHn�1

� c

Z
M

jhX; �ij2 dHn�1;

and therefore the estimates (5.36) and (5.42) yield

J.F / � J.E/ D

Z 1

0

.1 � t /
d2

dt2
J.Et / dt � c k'k

2
L2.M/

� c jF4Ej2;

proving the claim.
Hence, it remains to prove (5.42). By Proposition 4.1 we can write the second derivative

of J.Et / at t as

d2J.Et /

dt2
D à2J.Et /Œ't � �

Z
Mt

.HMt
C 4
vEt / div�t .X�t hX; �t i/ dHn�1

C

Z
Mt

.HMt
C 4
vEt / div.X/hX; �t i dHn�1

for 't D hX; �t i as before. Notice that since the flow preserves the volume, we haveZ
Mt

't dHn�1
D

Z
Mt

hX; �t i dHn�1
D 0:

Therefore when ı > 0 is small enough, Lemma 5.5 yields

(5.43) à2J.Et /Œ't � �
c0

2
k'tk

2
H1.Mt /

:

Brought to you by | Jyväskylän Yliopisto University
Authenticated

Download Date | 8/4/17 9:48 AM



110 Julin and Pisante, Minimality via second variation for microphase

Moreover, by (5.27) divX D 0 and therefore to conclude the proof it is enough to show that,
when ı > 0 is chosen small enough, we have

(5.44) St WD

ˇ̌̌̌Z
Mt

.HMt
C 4
vEt / div�t .X�t .hX; �t i// dHn�1

ˇ̌̌̌
�
c0

4
k'tk

2
H1.Mt /

:

Since E solves (1.6), we deduce that .HMt
C 4
vEt / ıˆ. � ; t /! � in Lp.M/. Therefore for

every " > 0 we can find ı > 0 small enough such that

St D

ˇ̌̌̌Z
Mt

.HMt
C 4
vEt � �/ div�t .X�t hX; �t i/ dHn�1

ˇ̌̌̌

�

�Z
Mt

.HàFt C 4
vEt � �/
p dHn�1

� 1
p
�Z
Mt

.div�t .X�t hX; �t i//
p
p�1 dHn�1

�p�1
p

� ".kD�tX�tkL2.Mt /
khX; �t ik

L
2p
p�2 .Mt /

C kD�t hX; �t ikL2.Mt /
kX�tk

L
2p
p�2 .Mt /

/

� C" kX�tkH1.Mt /
khX; �t ikH1.Mt /

;

where the last inequality follows from the Sobolev inequality and from p > n. Estimate (5.44)
then follows from (5.37) of Lemma 5.4.

6. Proof of the main theorem

In this section, we prove Theorem 1.1. As it was mentioned in the introduction we will
use the regularity of ƒ-minimizers to rule out those competing sets which are not regular. This
idea goes back to the work by White [24] and more recently it has been used by Cicalese and
Leonardi [8] and by Fusco and Morini [10]. We begin by proving a simple lemma.

Lemma 6.1. Suppose that E � � is C 2-regular and satisfies the orthogonality con-
dition (1.7). There exists a constant C depending only on E such that for every set of finite
perimeter, F , we have

J.E/ � J.F /C C jF4Ej:

Proof. By the Lipschitz continuity of the non-local part (3.3) we have

J.E/ � J.F /C P.E;�/ � P.F;�/C C jF4Ej:

On the other hand by the assumptions on E we may construct a C 1-vector field X on � such
that X D �E on M D àE \�, hX; ��i D 0 on à� and kXkL1 � 1. Therefore

P.E;�/ � P.F;�/ �

Z
à.E\�/

hX; �i dHn�1.x/ �

Z
à.F\�/

hX; �i dHn�1.x/

D

Z
E\�

divX dx �
Z
F\�

divX dx

� kdivXkL1 jF4Ej:

We remark that the above proof also yields that E is a ƒ-minimizer in the sense of
Definition 3.1.

The next lemma that relates convergence of mean curvatures with W 2;p-convergence, is
very similar to [1, Lemma 7.2] therefore we only give a sketch of the proof.
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Julin and Pisante, Minimality via second variation for microphase 111

Lemma 6.2. Let p > n. Suppose that E is as in Theorem 1.1, and let Fk be a sequence
of sets such that there exist diffeomorphisms ‰k W E ! Fk with k‰k � IdkC1;˛ ! 0 and

HàFk .‰k. � //! HàE . � / in Lp.M/:

Then we can find a family of diffeomorphisms Q̂ k W E ! Fk such that k Q̂ k � IdkW 2;p ! 0.

Sketch of the proof. Since Mk are C 1;˛-manifolds with boundary, they can be repre-
sented locally as a graph of C 1;˛-functions. Far from the relative boundary àFk \ à� the
convergence follows as in [1, Lemma 7.2]. On the boundary we can flatten the boundary à�
locally to a half space and use similar elliptic regularity estimate as in the interior case.

We are now ready to prove the main result of the paper.

Proof of Theorem 1.1. As in [1, 5] the proof is divided into two steps: we first prove
that E is a local minimizer with respect to Hausdorff distance and then sharpen the result to
obtain the local minimality with respect to L1-distance with the quantitative estimate.

Step 1. First we prove that E is a local minimizer in L1-topology, i.e., there exists
a constant ı > 0 such that for every F � Iı.E/ WD ¹x 2� j dist.x;E/ < ıº of finite perimeter
in � with jF j D jEj it holds

J.F / � J.E/:

We argue by contradiction and assume that there exist Ek � � such that jEkj D jEj,
Ek � I1=k.E/ verifying

J.Ek/ < J.E/:

Since M D àE \� is C 4;˛-regular and satisfies the orthogonality condition (1.7), there exist
a neighbourhood of M , say U , and a function gM 2 C 2.U / such that

(i) gM D 0 on M and gM � 0 in E \ U ,

(ii) jrgM j � c > 0 in U ,

(iii) hrgM ; ��i D 0 on à� \ U .

We denote the sublevel sets of gM by

U" WD ¹x 2 � j gM .x/ < "º:

These sets are C 2-regular and, by the previous condition (iii), they satisfy the orthogonality
condition (1.7). Moreover, there is a sequence "k ! 0 such that

(i) I1=k.E/ � U"k ,

(ii) kU"k ; EkC2 ! 0.

We remark that we may, for instance, define the sets U" by using the flow ˆY constructed in
Step 2 of Lemma 5.3 as

U" WD ˆY .E; "/:

Using the terminology of Lemma 5.3 we choose TF .x/ D 1 for every x. The orthogonality
of U" then follows exactly as in Step 3 of Lemma 5.3.

Brought to you by | Jyväskylän Yliopisto University
Authenticated

Download Date | 8/4/17 9:48 AM



112 Julin and Pisante, Minimality via second variation for microphase

Using an argument similar to [1, Proof of Theorem 4.3, Step 1] we replace the contra-
dicting sequence ¹Ekºk by ¹Fkºk , were each Fk solves the minimization problem

J.F /Cƒ1jjF j � jEjj; F � U"k ;

where ƒ1 is sufficiently large. We will first show that when ƒ1 is large enough, the sets Fk
satisfy the volume constraint

(6.1) jFkj D jEj:

Then the minimality of Fk and (6.1) imply J.Fk/ < J.E/ for every k and obviously Fk ! E

in Hausdorff topology.
We argue by contradiction and assume that jFkj < jEj (in the case jFkj > jEj we argue

similarly). We may choose " � "k such that the set

QFk D Fk [ U"

satisfies j QFkj D jEj. The reduced boundary à� QFk can be decomposed in three disjoint parts,
one contained in à�Fk n àU", another contained in àU" n à�Fk , and the third one

¹x 2 à�Fk \ àU" j �Fk .x/ D �U".x/º:

Notice that
�U" D

rgM

jrgM j
on àU".

Therefore by choosing X WD rgM
jrgM j

we get

P. QFk; �/ � P.Fk; �/ �

Z
à� QFk\�

hX; � QFk
i dHn�1

�

Z
à�Fk\�

hX; �Fk i dHn�1:

Notice that it holds Fk � QFk . Hence, by the Lipschitz property (3.3) we have

J. QFk/ � J.Fk/ �ƒ1jjFkj � jEjj � P. QFk; �/ � P.Fk; �/C .C
 �ƒ1/j QFk n Fkj

�

Z
à� QFk\�

hX; � QFk
i dHn�1

�

Z
à�Fk\�

hX; �Fk i dHn�1

C .C
 �ƒ1/j QFk n Fkj

�

Z
QFknFk

jdivX j dx C .C
 �ƒ1/j QFk n Fkj:

Therefore (6.1) follows if
ƒ1 > C
 C kdivXkL1 :

Next we show that Fk areƒ-minimizers with a constantƒ, independent of k. LetG � �
be a set of finite perimeter. We divide G into two parts

G \ U"k and G n U"k :

By the minimality of Fk and by (3.3) we obtain

(6.2) P.Fk; �/ � P.G \ U"k ; �/C .C
 Cƒ1/j.G4Fk/ \ U"k j:
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Moreover, since U"k are uniformly C 2 regular and satisfy the orthogonality condition, they are
ƒ-minimizers, as we remarked after the proof of Lemma 6.1. Hence,

(6.3) P.U"k ; �/ � P.G [ U"k ; �/C C jG n U"k j

for some C > 0. Since

P.G [ U"k ; �/C P.G \ U"k ; �/ � P.G;�/C P.U"k ; �/;

the estimates (6.2) and (6.3) yield

P.Fk; �/ � P.G;�/CƒjFk4Gj

for some largeƒ. Thus we have theƒ-minimality. By theƒ-minimizing property of Fk and by
Theorem 3.3 we conclude that Fk ! E in C 1;˛ and that the sets Fk satisfy the orthogonality
condition (1.7).

Finally, we will use the Euler–Lagrange equation for Fk to conclude that

kFk; EkW 2;p ! 0:

The Euler–Lagrange equation for Fk reads as

(6.4)

´
HMk C 4
vFk D �k on Mk \ U"k ;

HMk C 4
vE C 
k D � on Mk n U"k ;

where 
k is some remainder term which converges uniformly to zero, and �k and � are the
Lagrange multipliers associated with the volume constraint. We remark that the proof of the
Theorem 3.2 implies that the mean curvatures of the relative boundaries of the sets Fk are
uniformly bounded, i.e., kHMkkL1 � ƒ. Moreover, equation (1.4) implies

(6.5) vFk ! vE in C 1.�/:

We can then show that

(6.6) HMk .‰k. � //! HM . � / in Lp.M/; for all p > n:

Indeed, consider the vector field X 2 C 1.�;Rn/ as in the proof of Lemma 6.1, i.e., X D �M
onM and hX; ��i D 0 on à�. We multiply equation (6.4) by hX; �Mk i, integrate overMk and
use integration by parts (recall that Mk satisfies the orthogonality condition (1.7)) to deduceZ

Mk\Uk

.�k � 4
vFk /hX; �Mk i dHn�1
C

Z
MknUk

.� � 4
vE � 
k/hX; �Mk i dHn�1

D

Z
Mk\�

HMk hX; �Fk i dHn�1

D

Z
Mk\�

div�k X dHn�1:

Moreover, using the C 1;˛-convergence we get

lim
k!1

Z
Mk\�

div�k X dHn�1
D

Z
M\�

div� X dHn�1

D

Z
M\�

.� � 4
vE / dHn�1;
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114 Julin and Pisante, Minimality via second variation for microphase

where the last equality follows from the Euler–Lagrange equation (1.6) and from the fact
that X D �E on àE \�. Therefore the C 1;˛-convergence of Fk and (6.5) imply that either
�k ! �, or Hn�1.Mk \ Uk/! 0. In either case we obtain (6.6) due to the fact that HMk are
uniformly bounded in L1.

From (6.6) and Lemma 6.2 we deduce kFk; EkW 2;p ! 0. Since Fk satisfy the orthogo-
nality condition, we may use Proposition 5.2 to conclude

J.Fk/ � J.E/

when k is large. This contradicts the minimality of Fk since, as we already observed, we have

J.Fk/ < J.E/:

Step 2. As in the previous step we argue by contradiction and assume that there exist
sets Ek � � such that jEkj D jEj, jEk4Ej ! 0 and

J.Ek/ < J.E/C
c1

4
jEk4Ej

2;

where the constant c1 is from Proposition 5.2. Denote "k WD jEk4Ej. We will replace the
contradicting sequence ¹Ekºk by ¹Fkºk , where each Fk solves the minimization problem

min
°
J.F /Cƒ1

q
.jF4Ej � "k/

2 C "k

ˇ̌̌
F � �with jF j D jEj

±
;

for some constant ƒ1 which will be chosen later. We may use the same argument as in the
proof of Proposition 3.4 to deduce that Fk minimizes the penalized problem

(6.7) J.F /Cƒ2jjF j � jEjj Cƒ1

q
.jF4Ej � "k/

2 C "k; F � �;

for large enough ƒ2, which is independent of k. By compactness we may assume that, up to
a subsequence, Fk ! F0 in L1, and that F0 minimizes

J.F /Cƒ2jjF j � jEjj Cƒ1jF4Ej; F � �:

By choosing ƒ1 large, but independent of ƒ2, it follows from Lemma 6.1 that F0 D E. In
particular, Fk ! E in L1.

As in Step 1 we observe that every Fk is aƒ-minimizer withƒ independent of k. In fact,
since there are no obstacle in (6.7), this observation follows exactly as in the proof of Proposi-
tion 6.1. Therefore Theorem 3.3 implies that Fk ! E in C 1;˛ and that Fk are C 1;˛-manifolds
with boundary for sufficiently large k and satisfy the orthogonality condition (1.7). Moreover,
since the mean curvatures HMk are bounded by ƒ, we conclude that Mk are W 2;p-regular for
every p > n.

We use the minimality of Fk , the contradiction assumption and Step 1 to obtain

J.Fk/Cƒ2

q
.jFk4Ej � "k/

2 C "k � J.Ek/Cƒ2
p
"k

� J.E/C
c0

8
"2k Cƒ2

p
"k

� J.Fk/C
c0

8
"2k Cƒ2

p
"k :
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The previous inequality yields

(6.8) lim
k!1

jFk4Ej � "k

"k
D 0:

In particular,

(6.9)
jFk4Ej � "kp

.jFk4Ej � "k/
2 C "k

�
p
"k;

for large k.
Arguing similarly as in the proof of [1, Theorem 1.1] we now show that Mk solves the

Euler–Lagrange equation

(6.10) HMk C 4
vFk Cƒ1fk D �k on Mk;

with kfkkL1 � C
p
"k . Fix a vector field X 2 C10 .�/ such that divX D 0, and let ˆ be the

associated flow. By (4.1) we have

jˆ.Fk; t /j D jFkj:

As in the proof of Theorem 3.2 we conclude that

jˆ.Fk; t /4Fkj � jt j

Z
Mk

jhX; �Mk ij dHn�1
C o.t/:

We then use (6.9) to estimate

lim
t!0

1

t

ˇ̌̌q
.jˆ.Fk; t /4Ej � "k/

2 C "k �

q
.jFk4Ej � "k/

2 C "k

ˇ̌̌
(6.11)

� C
p
"k

Z
Mk

jhX; �Mk ij dHn�1:

The minimality of Fk yields

J.ˆ.Fk; t //Cƒ1

q
.jˆ.Fk; t /4Ej � "k/

2 C "k

� J.Fk/Cƒ1

q
.jFk4Ej � "k/

2 C "k :

Hence, we have by the first variation formula of J.Fk/ and by (6.11) thatˇ̌̌̌Z
Mk

.HMk C 4
vFk /hX; �Mk i dHn�1

ˇ̌̌̌
� Cƒ1

p
"k

Z
Mk

jhX; �Mk ij dHn�1:

By a density argument (cf. [1, Corollary 3.4]) the previous estimate impliesˇ̌̌̌Z
Mk

.HMk C 4
vFk /' dHn�1

ˇ̌̌̌
� Cƒ1

p
"k

Z
Mk

j'j dHn�1

for all functions ' 2 C10 .Mk/ with
R
Mk

' dHn�1 D 0. By Riesz’ representation formula we
then obtain (6.10).
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We use equation (6.10) and argue exactly as in Step 1 to conclude that

kFk; EkW 2;p ! 0

for any p > n. Hence we may use Proposition 5.2 to conclude

J.Fk/ � J.E/C c1jFk4Ej
2

for large k. However, the minimality of Fk , the contradiction assumption and (6.8) yield

J.Fk/ � J.Ek/ � J.E/C
c1

4
"2k � J.E/C

c1

2
jFk4Ej

2

for large k, which is a contradiction.

Proof of Corollary 1.2. We obtain Corollary 1.2 immediately from Theorem 1.1 arguing
as in [1, Theorem 6.3].
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