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Abstract
The lattice Boltzmann method is a well-established numerical approach for complex fluid flow simulations. Recently
general-purpose graphics processing units have become available as high-performance computing resources at large-
scale. We report on designing and implementing a lattice Boltzmann solver for multi-GPU systems that achieves 1.79
PFLOPS performance on 16384 GPUs. To achieve this performance, we introduce a GPU compatible version of the
so-called bundle data layout and eliminate the halo sites in order to improve data access alignment. Furthermore,
we make use of the possibility to overlap data transfer between the host CPU and the device GPU with computing
on the GPU. As a benchmark case, we simulate flow in porous media and measure both strong and weak scaling
performance with the emphasis being on large scale simulations using realistic input data.
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Introduction

The lattice Boltzmann method (LBM) is a mesoscopic
approach for the numerical simulation of fluid
flow phenomena, for example single-phase flows in
capillaries or binary-fluid flows in porous media.
It is based on a statistical-mechanical modelling of
transport phenomena and it operates by evolving
discrete-velocity distribution functions in time via
alternating collision-propagation steps. For a general
introduction to LBM we refer to (Aidun and Clausen
2010, Benzi et al. 1992). The standard LBM is well
suited for parallel computing as it involves explicit
time stepping and local data dependencies. In the field
of high-performance computing, much research has
already been carried out where these properties have
been efficiently utilized on contemporary hardware
including CPUs as well as GPUs. In particular, the
weak scalability of LBM has been well demonstrated
both on modern CPUs (see e.g. (Godenschwager et al.
2013)) as well as on GPUs (Gray et al. 2011).

In this article we study the possibilities of
efficiently utilizing the computational resources of
multi-GPU systems for fluid flow simulations with
LBM. Specifically, we report on progress in optimizing
the run time of multi-GPU LBM simulations by

designing the GPU kernels to efficiently access global
memory on GPUs, and utilizing the bus between the
host and the GPU for asynchronous data transfer in
order to overlap communication with computation.
We begin by giving a brief introduction to the
lattice Boltzmann method. Section ”GPU solver
design” covers the memory addressing method used
as well as the different data layouts utilized. In
section ”Scalable multi-GPU design” we cover the
design choices affecting the parallel scalability of a
solver, we discuss the critical steps for implementing
asynchronous data communication between GPUs, and
we show how a scalable parallel I/O scheme can be
implemented and how the computational load can be
evenly distributed between the compute nodes. Finally,
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in section ”Results”, we report on the computational
performance resulting from the above design choices
as well as the parallel scalability on a multi-petaflop
machine.

This article is an extended version of Robertsén et al.
(2015). New contributions are the vectorized collision
and bundle data layouts, the comparison of two LBM
solvers (two-lattice and AA), and an extended set of
results with a new peak performance.

Lattice Boltzmann Method

The lattice Boltzmann method is a time-stepping
method typically operating on a regular 2D or
3D lattice. The computational geometry can be
represented by simply dividing the lattice sites into
fluid and solid phases. During each time step, the
single-particle distribution functions at a fluid site
undergo a collision procedure after which they are
propagated to the neighboring fluid sites. This ordering
of the collision and propagation steps corresponds to
the so-called push scheme (Wellein et al. 2006). Here
we implement the D3Q19 scheme (Qian et al. 1992)
with the two-relaxation-time (TRT) collision operator
(Ginzburg et al. 2008) and the halfway-bounce back
boundary condition (Cornubert et al. 1991).

Input data

As our input data we utilize synthetic X-ray
tomography images of a Fontainebleau sandstone
sample. These images are available from Institute for
Computational Physics at the University of Stuttgart
(Hilfer and Zauner 2011) in a range of resolutions from
1283 voxels to 327683 voxels. The sample has a porosity
around 13%. Overall the sample is very homogeneous,
i.e. the spatial distribution of pores in the sample is
uniform. Figure 1 shows a cross section of the sample
used: the gray color indicates solid phase (i.e. the
micrograins) of the geometry while black represents
pores.

GPU solver design

GPU Kernels

In general, a GPU kernel may be either computa-
tionally or memory bandwidth bound. For example,
the NVIDIA K20X (NVI 2013) is specified at a peak
double precision floating-point operation speed of 1.312
TFLOPS and 250 GB/s memory bandwidth. Assuming
no memory bandwidth overhead from error correcting
code memory we simply divide these two numbers
to obtain the estimate that roughly 40 floating-point
operations per double precision value are needed to

Figure 1. Cross sections of the input sample used.

reach equilibrium between peak performance and mem-
ory bandwidth.

The propagation part of an LBM implementation
contains essentially no arithmetic operations while the
collision part depends on the chosen collision scheme,
typically involving between 10 and 15 arithmetic
operations per distribution function. This simple
argument indicates that the main factor limiting the
performance is the available memory bandwidth on the
GPU. Hence, using two separate kernels, a propagation
kernel and a collision kernel, both accessing the same
data in turn, is not optimal from a performance
point of view. To get maximum performance from the
GPUs we therefore choose to do both the collision
and the propagation in the same kernel accessing fluid
data only once, with one thread of the kernel being
responsible for updating one lattice site.

In order to parallelize fused collision and propagation
on the GPU we chose to implement it in two different
ways: the two-lattice algorithm (Wittmann et al. 2013)
and the AA algorithm (Bailey et al. 2009). In the
first case two memory locations are allocated for each
distribution function: during one time step we read
from the first one and write to the second, then during
the next time step vice versa. In the AA algorithm
propagation is done only every other time step, and
on these occasions the propagation is done both
before and after the relaxation. During the other time
step only relaxations are performed. Both algorithms
are well-suited for GPU computing, or multithreaded
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computing in general, as they allow a random update
order for the lattice sites without data race conditions.

Memory Addressing

In a typical porous media fluid flow simulation, a
large fraction of the lattice sites belongs to the solid
phase where no computation takes place. Therefore, in
order to save memory, we choose to allocate memory
only for the fluid lattice sites. This implementation
choice can be realized with a fully indirect memory
addressing scheme (Schulz et al. 2002), where for each
distribution function we read a pre-calculated 32 bit
integer containing the address for the propagation of
the distribution function.

Additionally the indirect addressing scheme enables
us to do away with the halo sites often used to
encase the local computational domain. Instead of
propagating out into the halo sites we enforce the
bounce-back boundary conditions at the edges of
each local domain. The bounce-back will put the
outgoing distribution functions into memory locations
for incoming distribution functions but data races will
not occur as outgoing values are always communicated
before incoming values are stored. A benefit of this
scheme without the halo sites is that some of the
memory access operations can be orchestrated in a way
that are perfectly aligned and only usable data will
be read in. With the two lattice algorithm this means
we can have all read operations perfectly coalesced
but the write operations would still involve scattered
accesses, alternatively we can turn this around and
have coalesced writes but scattered reads. Using the
AA algorithm every other time step, the one not doing
propagation, will access perfectly aligned memory for
all read and write operations but for the other time
step, the one doing two propagations, all accesses will
be to scattered memory locations.

Data layouts The optimal data access patterns for
Nvidia GPUs is that the data access by the
computational kernels is done in a coalesced fashion:
threads within the same warp should access data
from the same cache line. This can be accomplished
for instance by adopting the propagation or stream
optimized data layout where values representing the
same velocity component for different lattice sites
are placed in contiguous memory locations. In the
collision optimized data layout, all velocity components
associated with a given lattice site are placed in
adjacent memory locations. This latter type of layout,
an array of structures, is the opposite layout to what
is optimal for the GPU. The array of structures access
pattern generally results in a warp of threads needing

one cache line to be fetched for each thread and only
one value from that cache line can be used.

We also tested the bundle layout proposed by
Mattila et al. (Mattila et al. 2008). While it is still
not optimal for the GPU there is some data within
a cache line that can be utilized by multiple threads
within a warp. Thus, from a performance point of
view, it should be more efficient than the collision
optimized layout while still being slower than the
stream optimized version.

However, with some modifications, both the collision
optimized as well as the bundle data layout can be
made compliant with the data access patterns of the
GPU. In the collision optimized layout we have a
structure for each lattice site. However, we can modify
the site structure such that instead of just containing
one lattice site we extend it to contain the values for 16
sites since 16 double precision values equals one cache
line on current Nvidia GPU architectures. We arrange
these values to create vectors of 16 elements where all
values represent the same velocity component for the
16 different lattice sites, as shown in figure 2. This way
we can still maintain data coalescing to the same degree
as in the stream optimized layout. The same techniques
can also be used to vectorize the bundle layout: when
creating the bundles, instead of using only values for a
single site, we use vectors with 16 values representing
the same fluid component for different lattice sites.
Figure 2 illustrates the modification to the bundle data
layout. This way we get the benefits from coalesced
data accesses but also the possibility for a lower cache
miss rate than the bundle layout can offer.

Scalable multi-GPU design

In a multi-GPU environment we divide the original
simulation domain into a set of local sub-domains and
arrange for the GPUs to communicate their edge layers
to their spatial neighbors through their host CPU
which, in turn, utilize e.g. Message Passing Interface
(MPI) to execute the data transfer. With the D3Q19
scheme the boundary layers are, in principle, only one
site deep. Our aim is to overlap communication with
computation as much as possible. This can be achieved
using asynchronous communication on two separate
levels: firstly between the compute nodes and secondly
between the host CPU and the device GPU.

Dividing the local computational domain for
asynchronous communication while Maintaining
Memory Alignment

Our asynchronous communication approach involves
dividing the computations on the GPU into two parts.
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Figure 2. D2Q9 visualization of the data layouts used. N is
the number of lattice sites.

First the edge sites of the local domain from which data
needs to be transferred to neighboring compute nodes
are updated. Then the communication is initiated,
after which the update of the lattice sites immediately
proceeds to the interior of the local domain. In the
LBM context this very general procedure has been
previously presented, e.g., in (Pohl et al. 2004, Schulz
et al. 2002).

The main task is to design the kernel that handles
the edge data to be communicated to other GPUs.
As the hardware architecture of modern GPUs is a
separate unit connected via a PCI-e bus (PCI-SIG
2009), we have to transfer communication data over
this bus, and the efficient use of this bus dictates that
data should be transferred in large blocks. The values
to be communicated are however scattered in the GPU
memory and must be packed before and unpacked after
transfers. A kernel executing this will have scattered
data access patterns. As the ratio of communication to
computation is proportional to the surface to volume
ratio of the local domain, the runtime of this edge value
gather kernel is expected to be relatively small (in our
measurements less than 0.1% of the total GPU run
time for a fully loaded GPU).

However, there is a performance issue with the
straightforward way of first handling the lattice sites
at the edge of the local domain and then handling
the interior sites of the local domain. The kernel
performing the collision and the propagation for the

edge sites will underutilize memory bandwidth since it
often ends up using only one or two values from each
memory segment fetched corresponding to the edge
sites. The problem will also affect the performance of
the kernel for the interior sites since now the memory
accesses for this kernel will be misaligned, too. In
order to maintain aligned memory accesses and to
fully utilize the available memory bandwidth, instead
of processing only one lattice site at the edge of the
domain, the edge kernel should process at least 128
bytes of lattice data, or 16 lattice sites in our case when
using double precision floating point values. This data
should be aligned in such a way that it all falls into
the same 128 byte cache line and accessed using only
one operation. Using aligned 16 lattice site segments
will then allow both the edge and the interior kernel to
maintain proper memory coalescing, every other time
step for the AA algorithm or all reads for the two lattice
algorithm.

Asynchronous Data Transfers

Within a compute node, the GPU and the CPU can
be occupied with different tasks at the same time. This
enables us to perform different tasks asynchronously
on the CPU and GPU. One use of this is to speed up
the communication part of the program, an example of
which is presented by Gray et al. (Gray et al. 2011).
Here we instead adopt the approach discussed in the
previous subsection. The local computational domains
are updated in two parts on the GPU. Technically
this is achieved by having two CUDA streams: the
edge site computations together with the memory
transfers and the interior site computations are carried
out by separate CUDA streams as shown in fig. 3.
The CUDA stream with the edge site computations
is first executed. Once the execution reaches the
memory transfers, the execution of the second CUDA
stream starts in parallel, that is, the communication
and the computation are overlapped. The host code
waits for the memory transfer to complete before
communicating the data values with the neighboring
hosts using MPI. Once the MPI communication is
completed the new values received are transferred to
the GPU; ideally the GPU is still performing the
computations for the interior sites.

Obviously the benefit of dividing the computational
domain into edge and interior sites is that the
communication between CPUs may finish before the
entire time step has been completed. Even if the
communication is not done when the computation for
the interior domain finishes, we still manage to hide a
part of the communication equal to the computation
time. Our approach to use aligned lattice site segments
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Figure 3. Asynchronous data transfer time line.

at the edges will of course somewhat diminish the
amount of computation that can be used to hide
communication.

Scalable I/O

In our simulation cases we utilize the 3D images coined
A16, A8, A4, A2, and A1 which contain 10243, 20483,
40963, 81923, and 163843 voxels, respectively. The
porosity of the sandstone is approximately 13 %. In the
simulations one voxel corresponds to a lattice site. The
voxels of an image are stored in a single file and each
process thus needs to find the values associated with its
own subdomain from the file. Our distribution schemes
are based on each compute node being given a unique
cuboid block of the larger input file and there are no
lattice sites associated with more than one compute
node. The file size for the largest image used (A1) is
4TB. In this case we were able to simulate flow in half
of the sample only due to memory constraints on the
GPU. The parallel input and output of files are carried
out using the MPI-I/O (Mes 2012). With MPI-I/O
one can use the built-in MPI data types to describe
the pattern with which an MPI rank will access data
from the input file. In particular, the access to cuboid
subdomains can be described with simple subarrays.
Each rank is then assigned a specific view into the given
input file by utilizing the above MPI data types, after
which the data can be accessed by reading the non-
contiguous data representing the cuboid in the file as
a single, apparently contiguous segment.

When using collective I/O operations MPI-IO may
optimize the file accesses. It can merge requests from
multiple compute nodes into bigger requests as well
as perform data sieving by reading large chunks of
data and extracting only what is needed. Finally it
can improve prefetching and caching behavior.
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Figure 4. Sorted load distribution of the A4 sample for
varying compute node counts.

Load balance

The internal load balance of the sample geometry we
use is such that the input data can easily be divided
into equally sized blocks and they will all contain
roughly the same number of fluid sites. However,
this only works as long as the number of domains is
relatively small. Problems arise when distributing the
same sample over thousands of compute nodes. The
green line in figure 4 illustrates the distribution of
the load when using this primitive scheme to divide
the computational domain over multiple compute
nodes. To address this issue we implemented a
simple recursive bisection method with cuboid shaped
domains. The load balancer works by considering only
the fluid sites within the simulation domain, then
dividing the domain into two parts with about equal
amounts of fluid sites and recursively repeating the
processes for the new domains. Furthermore, in order
to minimize the amount of communication data, we
maintained the domains as cubic shaped as possible.
As the aspect ratio of a cuboid gets larger, not
only the amount of data to be communicated but
also the number of compute nodes involved in the
communication per subdomain increase.

The load balance results for the recursive bisection
scheme are illustrated by the magenta line in figure
4. It is clear that the recursive bisection leads to
superior load balance but it is also clear that as we
scale up, even this method suffers from some imbalance
between the domains. For 16384 nodes we see a strong
reduction in the imbalance between the largest and
smallest workload, i.e. for the cartesian and recursive
bisection schemes the ratio between maximum and
minimum workload for subdomains is 3.12 and 1.06,
respectively. One downside of the recursive bisection
scheme compared to the cartesian scheme is that in
the cartesian scheme each compute node needs to
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communicate with at most 18 other compute nodes
whereas in the recursive bisection scheme there is no
fixed upper limit for the number of neighbors involved
in the communication.

Results

Our large-scale test machine was Titan (ORNL) with
18688 nodes, one AMD Opteron 6274 (AMD) and
one NVIDIA K20X GPU (NVI 2013) per node, and a
Gemini (Cra 2010) network by Cray. The interconnect
is laid out as a three dimensional torus. In each
intersection point in the torus, two compute nodes are
connected, and each torus node is connected to its
nearest neighbors with point to point links. In addition
to handling the data destined for the current node
the network also need to relay data destined for other
nodes whose communication is passing through the
current node. All links in the torus are however not
equal: the design of the network interface at each node
is such that there are two links in both the positive and
negative X and Z directions but only a single positive
and a single negative link in the Y direction. Effectively
there is only half the bandwidth available in the Y
direction.

Bland et al (Bland et al. 2012) ran tests on the
available MPI bandwidth per node, using XK6 nodes
on Jaguar, and showed that there is roughly half
the available bandwidth available for bidirectional
transfers in the Y direction compared to the X and
Z directions: 5.4 GB/s for the Y direction compared
to 10.6GB/s and 10.5GB/s in the X and Z direction.
The only difference between the XK6 nodes on Jaguar
compared to the XK7 nodes on Titan is that the GPU
in them has been upgraded to an Nvidia K20 series
GPU (Cra 2011). A downside of the torus interconnect
is that as the machine grows, the average number of
hops between two arbitrary points in the machine will
also increase. This in combination with the fact that we
have almost no control over where in the machine our
processes are spawned can create some extreme case
scenarios with respect to the communication.

On Titan we used the CUDA 5.5 toolkit and gcc
version 4.8.2 compiler to build the programs. All results
presented are the average of all the nodes in a run,
unless stated otherwise.

Previous work

Previous large scale lattice Boltzmann simulations
on Titan have been performed by among other
(Gray et al. 2015) and (McClure et al. 2014). In
both cases the simulations were multi-phase fluid
flows. Gray et al. reports a performance of about
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Figure 5. Performance of different data layouts using an AA
algorithm based solver.

0.37 PFLOP when using 8192 nodes on Titan:
these implementations utilized the shift algorithm
and asynchronous data communication. The method
we present for asynchronous communication is a
less complicated variant that achieves the same
goal. We also excluded the halo sites used for
communication which improves the memory alignment
of data accesses. McClure et al reports a total
performance of 244754 million fluid lattice site updates
per second (MFLUPS) using 4096 nodes. Their solver
implementation has no asynchronous communication
as well as wno load balancing between compute nodes.
Our solver implements a simple recursive bisection
load balancing scheme that significantly reduces the
imbalance of the workload between nodes.

Implementation details

Algorithm baseline performance We tested both the
two lattice and AA algorithm. From a memory usage
standpoint the AA algorithm is a better choice.
Comparing the performance, using the A4 sample and
running on 1024 nodes on Titan, we measured that
the AA algorithm is also 1.34 times faster than the
two lattice scheme. With this sample and node count
the AA algorithm runs at 384 MFLUPS per node while
the two lattice scheme only manages 286.4 MFLUPS
per node.

Data layout Figure 5 illustrates the performance
achieved with the different data layouts using 64
compute nodes and the A8 sample. As expected,
the collision optimized layout delivers the worst
performance since its access pattern does not conform
to the GPUs data access requirements. The bundle
layout is more than twice as fast as the collision layout
but as it still does not fully conform to the GPUs
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memory access requirements it falls behind the stream
layout.

The vectorized versions of both the collision and
bundle layout give a better performance than the
basic stream layout. Compared to the stream layout
both vectorized layouts perform fewer global memory
operations with the vectorized bundle performing the
fewest. This indicates that the vectorized layouts have
a lower cache miss rate than the basic stream layout.

Asynchronous Data Communication The asynchronous
data communication between the CPU and the GPU
was tested by comparing the observed performance
results against those obtained with synchronous
communication. For these tests the synchronous
version was set up to first complete all the computation
before the communication starts, and once the
communication has completed the solver proceeds to
the next time step. We ran these two cases using our
two lattice solver on 1024 Titan nodes using the A4
image and obtained a sustained performance of 255 and
289 MFLUPS for the synchronous and asynchronous
data transfer, respectively. The speed-up from using
asynchronous GPU memory transfers is thus 1.13.

Memory access alignment Our benchmarking with
the two-lattice based solver showed a speed-up in
performance by a factor of 1.14 when using aligned
segments around the edge sites, omitting the halo sites
and enforcing the bounce back boundary conditions
at the edges of the local domain as presented in
section ”Dividing the local computational domain
for asynchronous communication while Maintaining
Memory Alignment”.

I/O performance

The default setup of the Lustre file system (Ora
2011) on Titan uses a stripe count of four (ORLC
1), which implies that any file will be striped over
four Object Storage Targets (Ora 2011). Using this
configuration, a file I/O performance of 546 MB/s
and 274 MB/s were observed with 128 and 1024
nodes, respectively. By using a stripe count of 160,
initially the maximum value (ORLC 2), a file I/O
performance of 5507.2 MB/s with 1024 nodes and
6146.4 MB/s with 8192 nodes were measured. After
a system upgrade we were able to increase the stripe
count to 1008 which delivered a performance of 177
GB/s and 314 GB/s when reading the A2 sample
using 8192 and 16384 nodes, respectively. Reading the
A1 sample with this configuration and using 16384
nodes took 6.5 seconds. With the default settings this
operation would have taken about two hours based on
the speed from 1024 nodes. These results show how
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Figure 6. Strong scaling: runtime for implementations based
on the two-lattice algorithm and with load balanced and
non-load balanced domain decompositions.

things which might seem trivial at small scales can
become bottlenecks when scaling up. It should also
be noted that we experienced large fluctuations in
the achievable bandwidth with large files and a large
number of compute nodes participating.

Load balance

The impact of our load balance scheme is shown in
figure 6 where strong scaling results for the A4 sample
going from 1024 compute nodes to 16384 compute
nodes using our two lattice solver are plotted. Our
load balanced case follows the ideal scaling more closely
than the non-load balanced case up until 8192 compute
nodes at which point the load balanced solver is 1.18
times faster than the non-load balanced version.

At 16384 compute nodes the performance of the load
balanced solver drops off sharply, however, there is no
drop off in the performance of the non-load balanced.
The likely cause of the performance degradation
of the load balanced solver is that it is becoming
communication bound. The non-load balanced version
has a simpler communication pattern since each node
only needs to communicate with at most 18 other nodes
whereas the load balanced version has a higher number
of nodes that need to participate in the communication
for each subdomain.

Scaling

For all our remaining scaling runs we utilized the load
balancing scheme presented previously and the AA
algorithm solver with the vectorized bundle layout. The
results of these particular scaling runs have also been
discussed in ref (Mattila et al. 2016), but only in a
cursory manner.
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Starting with the weak scaling results, shown in
figure 7, these are run with the maximum subdomains
that we can fit on a single GPU. We see that overall a
near perfect weak scaling is achieved. For the runs with
half the A1 sample there is a slight drop compared to
the previous results. We also observe a slight increase
in the per node performance for each increase in the
sample resolution up to the A2 sample. This is due to
the fact that at higher resolutions the pores within the
sample contain more fluid sites and with more adjacent
fluid sites there is less divergence in the memory access
operations for a thread warp.

Moving to strong scaling, the results shown in figure
8, both the A8 and A4 samples run into problems
scaling past 4096 compute nodes. The A2 sample
fares slightly better and does not show as clear a
performance falloff as the A8 and A4 samples when
going past 4096 compute nodes, but still it is not able
to keep up to the ideal scaling for that sample. Scaling
the A16 sample past 512 compute nodes we run into
similar problems as with the A8 sample when going
past 4096 compute nodes.

Each sample run starts with roughly 1.7E+7 fluid
sites per GPU. As the number of compute nodes are
doubled, the number of fluid sites per GPU is halved.
In an ideal situation we expect the performance of
the code to stay the same up to the point when the
GPU becomes undersaturated. Based on performance
measurements for a single GPU, using the porous
media sample, we know that the GPU is capable of
maintaining the same performance achieved at 1.7e+7
when scaling down to 2.7e+5 fluid sites. In fact, going
to a domain with 3.4E+4 fluid sites, the performance
only drops to 84% of the peak.

The A16 sample clearly diverges from ideal scaling
when going below a per GPU domain size of roughly
2.7e+5 fluid sites. At 1.4E+5 fluid sites per GPU it is
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Figure 8. Strong scaling for different resolutions of input
sample using an implementation based on the AA algorithm.

only able to maintain 44% of the peak performance.
For the A8 sample the significant performance drop
appears when going below 5.5E+5 fluid sites, and
at 2.7E+5 the solver only manages 32% of the peak
performance. The A4 already sees a steep drop in the
performance when going below a per GPU domain size
of 2.2E+6 fluid sites, and at 1.1E+6 fluid sites per GPU
it only maintains 49% of its peak performance.

These performance drops encountered all happen at
significantly higher per GPU load compared to when
the single GPU starts to loose performance. The fact
that all samples encounter issues at different loads
also suggests that the performance issues do not stem
from the performance of the GPU kernel code. The
fact that the A8, A4 and, to some degree, the A2
samples all seem to encounter problems at the same
compute node counts further strengthens the view that
the performance issues are not due to the speed of
the GPUs. Combined with the behavior we saw when
comparing the load balanced to the non-load balanced
scaling, we believe that it is the communication that
is the cause of the scaling issues at and past 8192
compute nodes for the majority of the samples. Our
load balancing scheme does put more pressure on the
communication network since it does not guarantee
that the number of nodes any given node needs to
communicate with is fixed but varies from domain to
domain. The fact that we do not have any direct control
over where the processes are placed in the machine
further degrades the communication performance since
there is no guarantee that compute nodes that are
physically close get computational domains that are
logically close. Additional communication latency is
added due to the GPU being a separate part of the
system and all communication to and from it needs to
go over the PCI-e bus through the host systems CPU
to reach the network adapter.
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We see that the A2 sample fares better when
scaling up to 8192 nodes than the two smaller samples
indicating that the communication does not entirely
dictate the simulation speed for that case. Thus we
are able to weakly scale up to utilizing the entire
machine with our current solver code, but strongly
scaling anything but the largest samples yields very
small speedups when going past 4096 compute nodes.

At 16384 nodes using half the A1 sample, the total
amount of data moving between GPUs through host
and the network was 2.9 TB/s with each node sending
on average 8.2 MB per time step. It should be noted
that due to how the asynchronous communication
was implemented there are times during each time
step when no communication occurs. Due to the
load balancing scheme we applied, the worst case
scenario was that one node needed to communicate
with 24 of its neighbors. The load balancing scheme
in combination with the input data also caused the
amount of data transferred for each node to be
imbalanced. The worst case was a node sending a total
of 14 MB of data with the largest message sent over
4.5 MB but over 50% of all messages sent under 0.5
MB in size.

To calculate the floating point performance of our
code we took the MFLUPS performance we achieved
with 16384 nodes using the subsample of the A1
simulation geometry, 393.4 MFLUPS, and multiplied it
with the number of floating point operations required
per lattice site update which, according to the Nvidias
profiling tool (NVI 2014), is 279. For the fastest case
this gives a total performance of 1.79 PFLOPS running
on 16384 compute nodes. Thus our solver achieves
slightly over 10% of the linpack performance reported
for Titan (17.6 PFLOPS) when running on 87.7% of
the full machine.

The amount of memory bandwidth utilized was
measured using the Nvidia profiler to calculate the
bandwidth needed per site update. From the profiler we
get the total bandwidth per site update that includes
both read and write bandwidth as well as the overhead
caused by running with the ECC functionality enabled.
For the AA algorithm we measured 545 bytes per site
update as an average for odd and even time steps.
Using the performance we achieved when running on
16384 GPUs, 393.4 MFLUPS, we need 209.3 GB/s
of bandwidth from each GPU or around 84% of
the theoretical peak bandwidth from each GPU. The
profiler reported a 100% global load and store efficiency
for the even time steps and 70% efficiency for the odd
time steps.

Conclusions

We have shown that the lattice Boltzmann method
can efficiently utilize the computational resources
offered by general-purpose graphics processing units for
systems up to 16384 compute nodes. With the utilized
simulation geometries representing porous materials,
a sustained performance beyond 393 million lattice
site updates per second per GPU can be achieved
in multi-GPU computing using our biggest input
sample, leading to a floating point performance of
1.79 PFLOPS using double precision values. This
performance has been achieved by overlapping GPU-
to-GPU communication by computation on the GPU
using asynchronous data transfers between the CPU
and the GPU, and the compute nodes, as well as
adapting the data layout of the solver to fit the
GPUs memory access requirements. We identified the
bottleneck for the single GPU performance to be the
amount of memory bandwidth available on the GPU
card. For the strong scaling case the bottleneck became
the communication network of the machine.
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