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Abstract
In this work we present methods for automatic estimation of non-manual gestures in sign language videos. More specifically, we

study the estimation of three head pose angles (yaw, pitch, roll) and the state of facial elements (eyebrow position, eye openness, and

mouth state). This kind of estimation facilitates automatic annotation of sign language videos and promotes more prolific production

of annotated sign language corpora. The proposed estimation methods are incorporated in our publicly available SLMotion software

package for sign language video processing and analysis. Our method implements a model-based approach: for head pose we employ

facial landmarks and skins masks as features, and estimate yaw and pitch angles by regression and roll using a geometric measure; for

the state of facial elements we use the geometric information of facial elements of the face as features, and estimate quantized states

using a classification algorithm. We evaluate the results of our proposed methods in quantitative and qualitative experiments.

Keywords: head pose estimation, facial state recognition, sign language analysis

1. Introduction

Currently there is an increasing need of automatic video

analysis and annotation tools to support linguists in their

studies of sign language (SL). Henceforth, studies focusing

on automatic annotation of SL videos and non-manual ges-

tures are continuously developing. In this work we study

methods for automatic estimation of three head pose angles

(yaw, pitch, and roll) and the state of facial elements (eye-

brow position, eye openness, and mouth state). Our main

motivation is to facilitate automatic annotation of SL videos

and promote more prolific production of annotated SL cor-

pora. The estimation methods proposed in this work are

incorporated in the SLMotion software package (Karppa et

al., 2014) for SL video processing and analysis.

We propose an approach for head pose estimation from im-

ages based on two kinds of visual features. The first group

of features is formed by facial landmarks extracted using

the flandmark software library (Uřičář et al., 2012). Sec-

ondly, as novel additional features we use tonal segmen-

tation masks of skin-like colors within the face area. The

yaw and pitch angles are estimated using separate Support

Vector Regressors (Smola and Schölkopf, 2004). The roll

angle is estimated using a geometric approach based on the

location of the eye landmarks.

Our method for estimating eyebrow position, eye openness,

and mouth state is based on the construction of an extended

set of facial landmarks that are not part of the flandmark

output. The proposed landmark detection algorithm em-

ploys different techniques designed for each facial element.

For comparison, we also consider landmarks detected using

the Supervised Descent Method (Xiong and De la Torre,

2013). The extended landmarks are used to compute a set

of geometric features which are further post-processed us-

ing Principal Component Analysis. The processed features

function as input for the Naive Bayes and Support Vector

Machine classifiers in order to produce quantized estimates

of the state of facial elements.

The estimation performance of the head pose and the state

of facial elements are evaluated quantitatively and qualita-

tively. Motion capture data from a SL recording session is

used for quantitative evaluation of the head pose. The state

of facial elements uses manually annotated data from SL

video sequences. In both cases the qualitative evaluation is

performed from a linguistic point of view.

The rest of the paper is arranged as follows: in Section 2 the

state of recent research in estimation of head pose and state

of facial elements is presented. In Section 3 details of the

head pose estimation method are presented. The estima-

tion of states of facial elements is elaborated in Section 4.

Conclusions drawn from this work are summarized in Sec-

tion 5.

2. Related work
In addition to the activity of the hands, an important part

of signing is the layered activity of the non-manual (NM)

articulators such as the head and its components: eye-

brows, eyes, and mouth. In signing, the activities of these

articulators express various linguistically significant func-

tions (Pfau and Quer, 2010). For example, a head shake

is the primary means through which SLs mark sentence-

level negation; head nods, in turn, are used in SLs to sig-

nal, for instance, affirmation, existence, and emphasis. The

functions of the activities of eyebrows, eyes, and the mouth

are equally important. For example, the various states of

eyebrows and eyes mark both domains and boundaries of

syntactic constituents. The activity of the mouth, on the

other hand, is often used morphologically to modify the ba-

sic meaning of signs.
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2.1. Head pose estimation in sign language
Head pose is determined by three angles: horizontal move-

ment or yaw, vertical movement or pitch, and rotational

movement or roll (Figure 1a). The angles can be estimated

with either model-based approaches using a number of fa-

cial features, or with appearance model approaches that use

the entire image of the face. While several methods have

reported good results using appearance-based approaches,

more advanced model-based methods use appearance mod-

els to learn shape variations.

A popular approach has been to interpret pose detection

as a classification problem and train a set of pose-specific

classifiers for recognizing pose angle ranges (Whitehill and

Movellan, 2008). The opposite approach has been to di-

rectly estimate the pose angles, e.g. with methods such as

regression in combination with dimensionality reduction

techniques. We are not aware of any previous SL studies

where visually estimated pose would have been compared

with a ground truth obtained from motion capture.

2.2. State of facial elements estimation in sign
language

Studies in the state identification and tracking of individ-

ual facial elements are strongly related to facial expression

analysis. The use of facial expression analysis for NM

marker estimation has been reported for a defined set of

facial movements (Metaxas et al., 2012). Research on com-

prehensive sign-to-text/speech translation system have also

incorporated NM marker estimation (Dreuw et al., 2010;

Campr et al., 2010). However, the maturity of these sys-

tems is still low.

Isolated studies for eyebrow estimation are scarce; early

studies in eyebrow movement demonstrated that some fa-

cial expressions can be identified by the eyebrow position

alone. Recently, a method trained to detect eyebrow artic-

ulations and other NM facial gestures for American Sign

Language (ASL) was reported in (Liu et al., 2013) with

promising results. Eye openness and blinking estimation

has been of special interest for hypo-vigilance detection

in a varying range of applications (Hansen and Ji, 2010).

Blink detection from video sources has been benchmarked

against electrooculography (EOG) approaches, where it has

been demonstrated that robust results can be achieved (Pi-

cot et al., 2012). Estimation of mouth shapes has been done

primarily for gesture recognition, lip reading, and for hypo-

vigilance. Estimation methods aimed at aiding lip read-

ing typically extract the shape produced by the lips’ outer

boundaries to improve detection rates in speech recognition

tasks (Gómez-Mendoza, 2012).

3. Head pose estimation
In this section we present a method for automatic estima-

tion of head pose from images. Head pose is defined here

as having three angles of movement: yaw, pitch, and roll.

We follow a model-based approach to estimate the three

head pose angles. Facial landmarks and a skin mask are ex-

tracted from a set of training images and combined to form

a feature vector. The resulting features are used as input

data to estimate pitch and yaw using Support Vectors Re-

(a) (b)

Figure 1: (a) Degrees of freedom of the human head de-

scribed by rotation angles (Murphy-Chutorian and Trivedi,

2009). (b) Facial landmarks for geometric feature extrac-

tion. The eyebrow and eye landmarks have the same left-

to-right numerical ordering on both sides.

gression (SVR) (Smola and Schölkopf, 2004) with radial

basis functions as kernels.

We estimate roll angles by a geometric approach using the

image plane with the assumption that the facial landmarks

have been correctly approximated and the camera is aligned

at zero degrees. The roll angle is determined by simple

trigonometry from the angle between the image axis and an

imaginary line drawn connecting the eye centers.

The Pointing04 image database (Gourier et al., 2004) is

used for training the SVRs, the selected images are within

near frontal angles. The different combinations of fa-

cial landmark points, their normalizations and combination

with facial skin area information are tested to find an op-

timal set of features that can provide reliable pose angle

information. Finally, the model is used to estimate head

pose from a SL video where the ground truth pose angles

are available from a motion capture recording.

3.1. Feature extraction
This section details the different features employed for head

pose estimation. The (x0, y0), (x1, y1) coordinates that de-

fine the face area bounding box are also included as part of

the features.

3.1.1. Landmark detection
Facial landmarks are extracted using the flandmark pack-

age (Uřičář et al., 2012). The package is based on De-

formable Part Models: given an appearance fit and defor-

mation cost functions, the facial points are constrained to

fit within a structured component graph. The flandmark

output is composed of 8× (x, y) coordinates points. Since

face location and size vary across images, the landmarks

are normalized into the range of (x, y) ∈ [0, 1]× [0, 1] with

respect to the bounding box.

3.1.2. Skin mask
As a novel technique for aiding the identification of the

head pose, a skin-tone mask was extracted from each im-

age. The skin mask consists of tonal segmentation of skin-

like colors images. The binary mask is used to calculate

four additional values for regression: the fractional areas of
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non-skin pixels on the left and right side of the face bound-

ing box, L and R, respectively, and similarly the top and

bottom areas T and B, all in the range [0, 1].
In the evaluation, we have used the four fractional non-skin

areas as such, but also considered coordinate normalization

by offsetting the point coordinates with respect to the mask

areas. For yaw and pitch angle estimation, we displace the

landmark (x, y) coordinates independently in proportion to

the left/right (yaw) and top/bottom (pitch) mask areas to get

the offset normalized coordinates (x′, y′) as

x′ = x− L+R , (1)

y′ = y − T +B . (2)

3.2. Experiments
The performance of the proposed head pose estimation

method was evaluated in two experimental settings. In the

first series of experiments a subset of the Pointing04 data

was used to measure the accuracy of the trained yaw and

pitch regressors. In the second experiment head pose was

estimated from a video of continuous signing during a mo-

tion capture session and the estimates compared with the

ground truth values from the motion capture recording.

3.2.1. Data
The selected images from the Pointing04 database have an-

gles in the ranges ±45◦ in yaw, and ±30◦ in pitch. The

Pointing04 data used for training does not include non-zero

roll angles. The angle differences are 15◦ from one pose to

the other. Two sets of feature vectors with different angular

distributions were selected for training the regressors. The

first set, A, results from 684 images for which the landmark

detection had been successful and consecutively has an em-

phasis on the near frontal poses. The second set, B, contains

29 × 7 × 5 = 1015 feature vectors equally distributed in

all poses. This set was generated by adding 366 synthetic

samples based on pose-specific pixel location means and

variances from set A. The synthetic samples were created

as x = μ + rσ with mean μ, standard deviation σ and a

random factor r in the range ±0.75, and similarly for y.

3.2.2. Classification experiment
Sixteen experiments were performed for both data sets A

and B to find the best combination of facial features, and

to determine the usefulness of the skin masks. All SVRs

were evaluated independently for yaw and pitch for both

data sets with leave-one-sample-out cross validation. We

quantized the regressors outputs to the nearest values in

0,±15,±30,±45 degrees for yaw and 0,±15,±30 de-

grees for pitch.

The results (Table 1) indicate that for yaw, ignoring the face

center landmark increases the accuracy whereas for pitch it

provides important reference information. The results also

show that it is always better to use both coordinates for es-

timating the angles. It is clearly beneficial to use the offset

normalized coordinates (x′, y′) for yaw, but not so much for

pitch. The best results were, however, obtained when the

skin area pixel counts are used as such in the feature vector.

It seems that, for yaw, training with the set A mostly pro-

duces better results whereas, for pitch, the additional syn-

thetic values in set B bring improvement.

Point set YawA YawB PitchA PitchB

8× x, y 50.29 49.71 45.18 46.35

8× x, y + L,R, T,B 66.81 66.96 51.75 52.63

8× x′, y′ 68.28 67.69 47.66 45.76

8× x′, y′ + L,R, T,B 68.72 64.91 47.22 48.25

7× x, y 48.98 48.83 44.74 45.61

7× x, y + L,R, T,B 68.86 69.29 49.56 54.24
7× x′, y′ 69.15 67.69 44.44 46.78

7× x′, y′ + L,R, T,B 69.15 66.08 44.15 47.81

8× x (y) 49.71 46.49 44.15 45.76

8× x (y) + L,R (T,B) 64.47 61.55 45.76 46.93

8× x′ (y′) 63.89 60.38 45.76 44.74

8× x′ (y′) + L,R (T,B) 63.60 63.74 47.81 45.91

7× x (y) 47.52 42.84 44.01 45.18

7× x (y) + L,R (T,B) 62.87 59.06 45.91 46.49

7× x′ (y′) 64.62 62.43 42.84 45.91

7× x′ (y′) + L,R (T,B) 63.74 63.74 46.20 46.78

Table 1: Classification accuracy with different feature vec-

tors and training data. In the third and fourth vertical blocks

only the x coordinates were used for yaw, and only the y
coordinates for pitch. In training set A the images had a

stronger distribution near the central poses, in set B poses

were equally distributed. All values are percentages.

MAE Classification

Model Yaw Pitch Accuracy %

FL+SVR A 6.2◦ 8.8◦ {69.2, 51.8}
FL+SVR B 6.2◦ 8.8◦ {69.3, 54.2}

Table 2: Performance of fine pose estimation and pose an-

gle classification. Listed methods use 13 discrete poses for

yaw and 9 for pitch. Our work uses 7 discrete poses for yaw

and 5 for pitch.

The angle classification errors and mean absolute errors

(MAE) were calculated for our best methods (Table 2)

using the Pointing04 data set as similar studies have

done (Murphy-Chutorian and Trivedi, 2009). The results

are not directly comparable as our method has been lim-

ited to near frontal angles only. Nevertheless, the proposed

method shows improved classification accuracy for the yaw

angle and similar accuracy for the pitch angle, compared to

previously reported studies.

3.2.3. Sign language video experiment
In our final head pose experiment, the best regressors were

used to estimate the yaw and pitch angles in a SL video.

The roll angles were obtained using the previously de-

scribed geometric approach. The video was obtained dur-

ing a motion capture recording session and comprises con-

tinuous signing with a variety of naturally occurring head

movements and poses. The estimated angles were visual-

ized using a gyroscope plot to aid the interpretation of the

results (Figure 2).

The estimated angles were low-pass filtered using a FIR

filter of order five to reduce the observed noise. These

smoothed values are compared (Figure 3) with the ground

truth obtained from the recorded motion capture data (Jan-
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Figure 3: Left: Estimated pose angles from a sign language video in blue and ground truth angles from motion capture in

red. Right: Absolute difference between the visually estimated angles and the motion capture ground truth.

yw: −18.7
pt: 7.6
rl: 9.9

Figure 2: A frame from the motion capture video experi-

ment with the estimated head pose angles yaw, pitch and

roll. In this frame, the landmark points from flandmark are

super-imposed on the signer. The headband ball markers

are used in the motion capture system. Top right: Gyro-

scope visualization of the estimated pose.

Correlation Difference σ
Model Yaw Pitch Roll Yaw Pitch Roll

FL+SVR A 0.92 0.72 0.95 4.29 4.30 2.19
FL+SVR B 0.85 0.74 0.95 5.55 4.17 2.19

Table 3: Correlation and standard deviation σ of the signal

difference for angle estimation and motion capture data for

the best trained models.

tunen et al., 2012). We considered only the four markers

attached roughly symmetrically to the signer’s head with

a headband. The locations of these markers were used to

infer ground truth values by computing the corresponding

roll, pitch, and yaw angles trigonometrically.

The selected SVRs trained with data set A (FL+SVR A)

had a strong correlation with the motion capture data es-

pecially for yaw (Table 3). For the pitch angle estimation,

regressors trained with data set B had a slight improvement

over those of set A. Roll angles show the highest correlation

with the motion capture data, demonstrating the strength of

the geometric approach.

In the results of Figure 3, around frames 490–510 there is

a very subtle negative head shake which is captured per-

fectly by the yaw angle. Moreover, between frames 385–

400 and 460–470 there are boundary-marking head nods,

the latter of which has also an affirmative function, that

are clearly identified by the pitch angle of the pose esti-

mate. Approximately between frames 930–1150 there are

several linguistically significant roll movements captured.

Roll movements, together with simultaneous yaw and pitch

movements, serve here to demonstrate changes in perspec-

tive from which the signer narrates the actions of the char-

acters in the story.

4. Estimating state of facial elements
In this section, we present details of the proposed method

for estimating eyebrow position, eye openness, and mouth

state. The method is based on the construction of geo-

metric features computed from an extended set of facial

landmarks. The landmark detection algorithm employs an

ensemble of techniques for each facial element. The ex-

tended set of landmarks is intended to determine the posi-

tion of eyebrows, eyelids, and upper and lower lip bound-

aries which are not part of the flandmark output. For com-

parison we also consider landmarks detected using the Su-

pervised Descent Method (SDM) implemented in the In-

traFace library (Xiong and De la Torre, 2013). The best

landmark algorithms are combined into a model, and quali-

tative analysis of the annotations produced by the system is

performed on randomly selected videos.

The proposed facial state categorization utilizes quantized

states for eyebrow position, eye openness, and mouth state.

The states are categorized in absolute or progressive types:

absolute states are binary and can be defined as either open

or closed whereas progressive states include intermediate

steps between the open and closed states (Table 4).

4.1. Landmark detection
In this section we detail the two different methods for land-

mark detection: the first is the proposed Landmark Ensem-

ble Method (LEM), and the second is SDM. In both cases

the extended landmark set consists of 22 points (Figure 1b).
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Eyebrow Eye V Mouth H Mouth

Absolute 0:neutral 0:closed 0:closed 1:neutral

1:shifted 1:open 1:open 2:shifted

Progressive 0:down 0:closed 0:closed 0:relaxed

1:neutral 1:squint 1:open 1:narrow

2:raised 2:open 2:wide 2:wide

3:wide

Table 4: Categorization values for each facial element.

4.1.1. Ensemble method
The LEM algorithm requires an initial estimate of the facial

element area to compute the landmarks. This area estimate

does not need to be exact, but it must contain the facial ele-

ment studied. The approximate location of facial elements

is obtained from the area surrounding the geometric cen-

ter of the right and left eye landmarks from the flandmark

detector, and similarly for the mouth.

To minimize the influence of shadows, the gray-scale eye

image area is processed with an illumination invariant fil-

ter, in this case Single-Scale Retinex (SSR) (Jobson et al.,

1997). Non-skin pixels are eliminated with a simple skin

color filter model.

Eyebrow landmarks The horizontal separation limit of

eyebrow and eye is the global maximum between the two

lower local minimums of the vertical projection of the ob-

tained image. Given the separation limit, the eye area is

divided in two parts: the eyebrow RoI and the eye RoI. The

darkest eyebrow pixel is obtained from the global maxi-

mum of the horizontal projection of the eyebrow RoI. From

the estimated eyebrow seed location, a 1×3 window is used

to form a path of pixels with the lowest intensity difference

towards the left and right edges of the image. A cumulative

sum of the intensity values in the estimated eyebrow path is

computed towards both edges and scaled to the [0, 1] range.

Based on the available training data the center-most land-

mark point of the eyebrow resides where the cumulative

sum exceeds 0.35. The outermost eyebrow point is simi-

larly found at the cumulative sum value of 0.45.

Eye landmarks The eye landmark estimation starts by

using a radial symmetry transform (Timm and Barth, 2011)

to identify the pupil. The transform takes an image as input,

computes the vertical gradients, and evaluates all pixels as

potential centers of radial shapes. The output of the trans-

form consists of a matrix of values indicating how likely

each pixel is of being surrounded by a radial pattern.

Iris and pupil pixels appear darker and show narrower in-

tensity value distribution than skin pixels. Our interest is

then only the intensity changes from low to high to focus

on dark radial patterns. Therefore, we threshold the search

space to the lowest 10% pixel intensities of the image.

Following the location of the pupil, eye corners are com-

puted using oriented projections. The eye RoI is divided in

two subregions delimited by the horizontal location of the

pupil. Within each of the subregions, the eye corner is esti-

mated as the global maximum of the oriented projections.

Mouth landmarks Mouth landmark estimation is based

on a color transformation by means of pseudo hue varia-

tions. All mouth RoIs are preprocessed with the gray world

algorithm (Finlayson et al., 1998) for color normalization.

Two color components are used: the pseudo hue component

H , and the luminance component L.

The luminance component L from the LUX color

space (Liévin and Luthon, 2004) is used in order to take

advantage of the shadows produced by the mouth and im-

prove estimated lip boundaries. The relative luminance in

the image can be computed from the RGB channels as:

L = (R+ 1)0.6(G+ 1)0.3(B + 1)0.1 − 1. (3)

The component H takes advantage of the red and green

pixel value difference between lip and skin colors. H is

computed by an approximation of the component U from

the LUX color space such that H ≈ U :

H =

{
G/R if R > G,

1 otherwise.
(4)

Following (Stillittano et al., 2013) we combine the infor-

mation of the vertical gradients of H and L as follows (H
and L are scaled to the [0, 1] range):

Rtop = ∇y (H − L) (5)

Rmid = (∇yH)L (6)

Rlow = ∇yH (7)

In the mid and low image gradients we ignore values greater

than zero (changes from dark to light), this is represented

as R∗. A combined edge image R is constructed from the

set of gradient images and scaled to the [0, 1] range as:

R = Rtop −R∗
mid −R∗

low (8)

A lip mask is computed from H , and a second one from

R. In both masks, post-processing steps are applied. Mor-

phological closing of disk of size 3×3 is used to connect

marginally separated regions. An oval mask with its axes

aligned to the mouth RoI edges is used; pixels outside the

oval mask are eliminated as lip pixel candidates. Connected

components with size less than 10% of the total lip candi-

date pixels are ruled out, as well as those connected to the

image border. Landmarks are finally estimated from the

horizontal and vertical projections of the lip masks from R
and H respectively.

4.1.2. Appearance-based method
The appearance based method used in this work is the Su-
pervised Descent Method (SDM) (Xiong and De la Torre,

2013), a face alignment algorithm provided by the In-

traFace software package. During training the SDM algo-

rithm learns a sequence of optimal descent directions with

a supervised approach. The optimal descent directions are

computed using SIFT features (Lowe, 1999) extracted from

known landmark locations at sampled images. We use only

a subset of the landmarks available in IntraFace.

4.2. Geometric features
In this section a geometric feature set is proposed for es-

timating the facial states from previously detected facial

landmarks. The features describe several geometrical prop-

erties of the eyebrow, eye, and mouth. These features are
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post-processed to reduce the observed noise using PCA.

The PCA-processed feature vector has the dimensionality

of 10: 4 for the eyebrow, 2 for the eyes, 1 for the vertical

mouth, and 3 for the horizontal mouth.

Eyebrow features For eyebrow position we use features

oB0 to oB4 from (Araujo et al., 2012). The features measure

the distance between eyebrows, distance between eyebrow

corners and eye corners, eyebrow slope, and area of the eye-

brow region. Additionally, we propose the eyebrow feature

oB5 that uses the eye center as a reference point. Features

oB1 to oB5 are computed for both left and right eyebrows,

leading to a total of 11 eyebrow features. With wlb (wrb ) the

width and hlb (hrb) the height of the left (right) eyebrow, the

features are computed for the left eyebrow as:

oB0 = ||br5 − bl1|| (9)

oB1 = ||bl1 − el1|| (10)

oB2 = ||bl5 − el2|| (11)

oB3 = (bl5y − bl1y)/(b
l
5x − bl1x) (12)

oB4 = wlbh
l
b (13)

oB5 =
‖elμy − ρelμx − (blμy − ρblμx)‖√

ρ2 + 1
(14)

here ρ is the slope of the face with respect to the horizon,

points elμ and blμ are the mean of the landmark coordinates

of the left eye corners and eyebrow respectively. The slope

ρ is estimated using the mouth corners. Features oB1, oB2,

and oB5 are scaled according to the average feature value

of the first five video frames.

Eye features Using the extended landmarks (Figure 1b)

the eye openness feature is defined as (independently for

each eye):

oE = he/we (15)

where he = ||e4 − e3||, we = ||e2 − e1|| and || · || stands

for the Euclidean distance.

Mouth features The mouth features use the landmarks

that define the lip shape as:

oMw = wm/wm0 (16)

oM1 = hm1/wm (17)

oM2 = hm2/wm (18)

with wm = ||m2−m1||, hm1 = ||m3−μwm
|| and hm2 =

||m4 − μwm ||, where μwm is the geometric center of the

two landmarks describing the mouth corners. Here wm0

represents the average wm of the first five video frames.

We also include features from (Tang and Deng, 2007):

oM3 = wm/(hm1 + hm2) (19)

oM4 = hm1/hm2 (20)

4.3. Experiments
The performance of our facial element state estimators is

evaluated in a quantitative and qualitative type of experi-

ments. In the first experiment we manually annotated the

facial states in videos taken from the SUVI dictionary of

Finnish Sign Language (Suvi, 2003). The annotations were

Eyebrow Eye

0 1 2 0 1 2 3

Train 39 258 41 26 50 229 33

Test 42 1275 365 135 280 1079 188

Table 5: Distribution of annotated video frames for eye-

brow and eye states. See Table 4 for the explanation of the

states

V Mouth H Mouth

0 1 2 0 1 2

Train 228 77 33 240 14 84

Test 1034 487 161 1191 137 273

Table 6: Distribution of annotated video frames for mouth

states. See Table 4 for the explanation of the states

performed frame-by-frame on basis of the visual appear-

ance of the isolated frame. For the qualitative experiments

we compare our results with linguistic annotations prepared

for a subset of the SUVI material.

We use the Naive Bayes (NB) probabilistic classifier and

the Support Vector Machine (SVM) classifier for the exper-

iments. The NB classifier uses the Gaussian density func-

tion for the likelihood estimation, while a Gaussian radial

basis function (RBF) is used as the kernel for the SVM. The

SVM implementation used for the experiments is provided

in the LIBSVM package (Chang and Lin, 2011).

4.3.1. Data
The video data used consists of a set of selected video

captures of signed sentences from SUVI, where linguis-

tic analysis is available for the selected videos (Jantunen,

2007). Three video sequences were used for training, and

twelve were used for testing (Tables 5 and 6).

4.3.2. Performance measure
The performance of the classifiers is evaluated using the

Matthew’s Correlation Coefficient (MCC) (Powers, 2011).

MCC provides a good single measurable result whereas

using other performance metrics would have required per-

class analysis of each test. We take into consideration the

distribution of the MCC coefficients, as well as their vari-

ances. This is achieved using box-and-whisker diagrams

with median, 25th and 75th percentiles and 99.3% bound-

aries for graphic evaluation.

4.3.3. Results
The MCC box and whiskers plots (Figure 4) show that the

performance difference of the classifiers between the LEM

and SDM algorithms is small for all the facial elements.

The eye and vertical mouth annotations display strong re-

sults while eyebrow and horizontal mouth are relatively

weak, nevertheless the correlation is above 0.25 in most

measurements. The variation of the results between the test

videos suggests that the estimates are noisy.

For the qualitative evaluation, the SDM landmarks and best

classifiers (NB for eyebrow and vertical mouth, and SVM

for eye and horizontal mouth) were used. A timeline plot

was generated to show each facial element’s activity in the
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Figure 4: Classification performance: MCC distributions in (left) multiclass and (right) two-class configurations.

(a)

20 40 60 80 100 120

Eyebrow − 0.62

Eye − 0.79

V Mouth − 0.8

H Mouth − 0.59

20 40 60 80 100 120

Eyebrow

Eye

V Mouth

H Mouth

Gloss

OWN MOTHERTONGUE SIGN-LANGUAGE

(b)

Figure 5: SUVI video 051703 ‘My mother tongue is sign

language’ with SDM landmarks. (a) Frame 51 with over-

imposed symbols representing estimated states. (b) Top:

timeline representation of estimations. Bottom: ground

truth annotations. Colors as in Table 7. Gray=sign gloss.

Eyebrow Eye V Mouth H Mouth

Red lowered closed

Yellow squint wide narrow

White neutral open closed relaxed

Green raised wide open wide

Table 7: Color coding of quantized facial states.

tested videos. A median filter of 5 frames of length has

been applied to remove noisy detections.

In the included example (Figure 5), the eyebrow estima-

tions coincided with the linguistic annotations except in the

non-linguistic visual changes or perspective illusions (head

tilting) visible in frames 103–117. The fading-out phase of

the raised eyebrows in frames 72–88 is not deemed linguis-

tically significant, but is still detected. For the eye open-

ness estimations, the blinks are correctly detected around

frames 38, 64 and 102, and the same holds for the widen-

ing of the eyes in frames 56–62. The mouth MCC is high

in the vertical movements, activity was detected from frame

37 to 63, but the section in frames 83–98 showing open lips

with closed jaw was only partially detected. The horizon-

tal mouth movement estimation detected activity in frames

39–43, however latter frames were not detected.

5. Conclusions
In this work, head pose estimation was proposed using a

model-based approach aiming at analysis and interpreta-

tion of SL videos. Facial landmark locations, face bound-

ing box coordinates, and skin mask areas were used as fea-

tures. Head pose estimation was applied in an experiment

showing strong correlation of the estimated angles with

SL motion capture ground truth data. We also considered

a classification scheme for the position of the eyebrows,

openness of the eyes, and mouth state. Geometric prop-

erties of facial landmarks were used as features. Our al-

gorithm showed comparable results against the SDM land-

mark detector. The facial state estimates can be regarded

useful enough for linguistic studies of eye and mouth verti-

cal openness, further work is required for eyebrow estima-

tion.

Our results suggest that, in the future, these methods may

be used, for example, for quantitative studies of phonet-

ics of sign languages and to aid annotation of non-manual

activity in videos containing natural signing. Future work

will be focused on increasing the estimation range for head

pose, and the performance of eyebrow position estimates.

6. Acknowledgment
This work has been funded by the following grants of the

Academy of Finland: 140245, Content-based video analy-

sis and annotation of Finnish Sign Language (CoBaSiL),

251170, Finnish Centre of Excellence in Computational

Inference Research (COIN), 34433, Signs, Syllables, and

Sentences (3BatS), and 269089, The aspects of the Gram-

mar and Prosody of FinSL (ProGram).

7. References
Araujo, R., Miao, Y.-Q., Kamel, M. S., and Cheriet, M.

(2012). A fast and robust feature set for cross individual

111



facial expression recognition. In Computer Vision and
Graphics, pages 272–279. Springer.

Campr, P., Dikici, E., Hruz, M., Kindiroglu, A., Krnoul, Z.,

Ronzhin, A., Sak, H., Schorno, D., Akarun, L., Aran, O.,

et al. (2010). Automatic fingersign to speech translator.

Proceedings of eNTERFACE.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: a library for

support vector machines. ACM Transactions on Intelli-
gent Systems and Technology (TIST), 2(3):27.

Dreuw, P., Forster, J., Gweth, Y., Stein, D., Ney, H., Mar-

tinez, G., Llahi, J. V., Crasborn, O., Ormel, E., Du,

W., et al. (2010). Signspeak–understanding, recogni-

tion, and translation of sign languages. In Proceedings
of 4th Workshop on the Representation and Processing
of Sign Languages: Corpora and Sign Language Tech-
nologies, pages 22–23.

Finlayson, G. D., Schiele, B., and Crowley, J. L. (1998).

Comprehensive colour image normalization. In Com-
puter VisionECCV’98, pages 475–490. Springer.
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Uřičář, M., Franc, V., and Hlaváč, V. (2012). Detector of
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