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Abstract

European options can be priced by solving parabolic partial(-integro) di�er-
ential equations under stochastic volatility and jump-di�usion models like the
Heston, Merton, and Bates models. American option prices can be obtained
by solving linear complementary problems (LCPs) with the same operators.
A �nite di�erence discretization leads to a so-called full order model (FOM).
Reduced order models (ROMs) are derived employing proper orthogonal decom-
position (POD). The early exercise constraint of American options is enforced
by a penalty on subset of grid points. The presented numerical experiments
demonstrate that pricing with ROMs can be orders of magnitude faster within
a given model parameter variation range.

Keywords: reduced order model, option pricing, European option, American
option, linear complementary problem

1. Introduction

European options can be exercised only at expiry while American options
can be exercised anytime until expiry. Due to this additional 
exibility the
American options can be more valuable. In order to avoid arbitrage the price
must be always at least the same as the available payo�. A put option gives the
right to sell the underlying asset for a speci�ed strike price while a call option
gives the right to buy the asset for a strike price. The seminal paper [1] by Black
and Scholes employs a geometrical Brownian motion with a constant volatility
as a model for the price of the underlying asset. The market prices of options
show that the implied volatility varies depending on the strike price and expiry
of option. Several more generic models for the asset prices have been developed
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which are more consistent with market prices. Merton proposed adding log-
normally distributed jumps to this model [2]. Heston [3] made the instantaneous
variance to be a mean reverting stochastic process. Bates [4] combined the
Heston stochastic volatility model and Merton jump-di�usion model.

There are many methods for pricing options. The Monte Carlo method sim-
ulates asset price paths to compute the option price. This is an intuitive and

exible method. For many high dimensional models, it is the only available
method. For low dimensional models, it can be slow when high precision is
required and it is more complicated and less e�cient for American options. In-
stead in this paper, the pricing is based on partial(-integro) di�erential equation
(P(I)DE) formulations. Another approach is based on numerical integration
techniques. One bene�t of these formulations is that for many options they
can provide a highly accurate price much faster than the Monte Carlo method.
Here the European options are priced by solving a P(I)DE and the American
options by solving an LCP with the same operator. These operators are two-
dimensional with a stochastic volatility and one-dimensional otherwise. The
potential integral part of the model results from the jumps.

The most common way to discretize the di�erential operators is the �nite
di�erence method. For European and American options the discrization leads to
a system of linear equations and an LCP, respectively, at each time step. Under
stochastic volatility models e�cient PDE based methods for American options
have been considered in [5, 6, 7, 8], for example. A penalty approximation
is employed for the resulting LCPs in [8] and an operator splitting method
in [6, 7]. An alternating direction implicit (ADI) method is used in [6] while
iterative methods are used for resulting linear systems in [5, 7, 8]. Under jump-
di�usion models PIDE methods lead to a system with a full matrix at each
time step and their e�cient solution for American options has been considered
in [9, 10, 11, 12, 13], for example. A penalty method together with an FFT-
based fast method for evaluating the jump integral was used in [9]. An iterative
method was proposed for LCPs with full matrices in [11]. An implicit-explicit
(IMEX) method was proposed in [10] to treat the integral term explicitly and the
same approach was studied in [13]. Generalizations of the above methods for the
combined Bates model have been developed and studied in [14, 15, 16, 17, 18].

Unfortunately, such high-�delity simulations are still too expensive for many
practical applications. Reduced order modeling (ROM) is a promising tool for
signi�cantly alleviating computational costs [19, 20]. Most existing ROM ap-
proaches are based on projection. In projection-based reduced order modeling
the state variables are approximated in a low-dimensional subspace. Bases for
this subspace are typically constructed by Proper Orthogonal Decomposition
(POD) [21] of a set of high-�delity solution snapshots. While many approaches
have already been developed for the e�cient reduction of linear computational
models three main strategies have been explored so far for e�ciently reduc-
ing nonlinear computational models. The �rst one is based on linearization
techniques [22, 23]. The second one is based on the notion of precomputa-
tions [24, 25, 26, 27, 28], but is limited to polynomial nonlinearities. The
third strategy relies on the concept of hyper-reduction | that is, the approx-
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imation of the reduced operators underlying a nonlinear reduced-order model
(ROM) by a scalable numerical technique based on a reduced computational
domain [29, 30, 31, 32, 33, 34, 35, 36].

In the case where the governing equations include a constraint equation it is
often bene�cial to construct a basis that satis�es these constraints a priori [37].
For example, in the case of non-negativity constraints, a non-negative basis
can be constructed via non-negative matrix factorization (NNMF) [38]. This
approach was employed for option pricing in [39].

For pricing European options ROMs have been developed in [40, 41]. Only
recently ROMs have been applied for pricing American options in [37, 42]. A
common problem associated with option pricing is the calibration of model
parameters to correspond to the market prices of options. This is typically
formulated as a least squares -type optimization problem. The calibration is
computationally expensive as it requires pricing a large number of options with
varying parameters. The use of ROMs to reduce this computational cost has
been studied in [43, 44, 45].

The main contribution of the present work is the development of a cheap and
accurate hyper-reduction approach for the early exercise constraint of Ameri-
can options. Our proposed approach is based on the fact that accurate price
predictions do not necessarily require accurate approximations of the Lagrange
multipliers. This has been observed in practice for the reduction of structural
contact problems [38]. Our numerical experiments summarized in this paper
suggest that using the binary matrix as the basis for the Lagrange multipliers
performs remarkably well for all reproductive and predictive simulations consid-
ered. This approach is simpler, faster, and comparable in accuracy to previous
approaches based on the NNMF [39].

This paper is organized as follows. In Section 2, the full order models consid-
ered in this work are overviewed. In Section 3 the proposed new ROM approach
is laid out. In Section 4 the proposed approach is applied to several problems.
Finally in Section 5, conclusions are o�ered and prospects for future work are
summarized.

2. Full Order Models

Merton [2] proposed the price s � 0 of an underlying asset to follow the
stochastic di�erential equation

ds = (g � ��)sdt+ �ssdws + sdJ; (1)

where t is the time, g is the growth rate of the asset price, �s is its volatility, ws

is the Wiener process, and J is the compound Poisson process with the jump
intensity � and the log-normal jump distribution

p(y) =
1

y�
p
2�

exp

�
� (log y � 
)2

2�2

�
: (2)
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The relative expected jump is � = exp
�

 + 1

2
�2
�� 1. The Black{Scholes model

is obtained by setting the jump intensity � to zero. Under the Merton model
the price u(s; �) of a European option can be obtained by solving the one-
dimensional PIDE

@u

@�
=

1

2
�2ss

2 @
2u

@s2
+(r���)s

@u

@s
� (r+�)u+�

Z
1

0

u(sy; �)p(y)dy =: LMu; (3)

where � = T � t is the time until expiry, T is the expiry time, r is the interest
rate.

Bates [4] proposed the price s and its instantaneous variance v � 0 to follow
the stochastic di�erential equations

ds = (g � ��)sdt+
p
vsdws + sdJ

dv = �(� � v)dt+ �v
p
vdwv;

(4)

where � is the mean level of v, � is the rate of the mean-reversion, �v is the
volatility of

p
v, and wv is the Wiener process. The Wiener process ws and wv

have the correlation �. Under the Bates model the price u(s; v; �) of a European
option can be obtained by solving the two-dimensional PIDE

@u

@�
=

1

2
vs2

@2u

@s2
+ ��vvs

@2u

@s@v
+
1

2
�2vv

@2u

@v2
+ (r � ��)s

@u

@s
+ �(� � v)

@u

@v

� (r + �)u+ �

Z
1

0

u(sy; v; �)p(y)dy =: LBu;

(5)

The Heston model is obtained by setting the jump intensity � to zero.
In the following, put options are considered. Their price at the expiry is

given by the pay-o� function g(s) = maxfK � s; 0g. As the equations are
solved backward in time, this leads to the initial condition

u(s; 0) = g(s) and u(s; v; 0) = g(s) (6)

for one-dimensional and two-dimensional models, respectively.
For computing an approximate solution the in�nite domain is truncated at

s = smax and v = vmax, where smax and vmax are su�ciently large so that the
error due to the truncation is negligible. The price u of a European put option
satis�es the Dirichlet boundary conditions

u = Ke�r� at s = 0 and u = 0 at s = smax: (7)

For a non-negative interest rate r � 0, the price u of an American put option
satis�es the Dirichlet boundary conditions

u = K at s = 0 and u = 0 at s = smax: (8)

Under the stochastic volatility models, the Neumann boundary condition @u
@v

= 0
is posed at v = vmax. The coe�cients of the second derivatives in (5) vanish on

4
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the boundary v = 0. It is shown in [46] that this degenerated form de�nes an
appropriate boundary condition at v = 0.

Due to early exercise possibility the price u of an American option satis�es
the LCP

@u
@�
� Lu = �; u � g; � � 0; �(u� g) = 0; (9)

where the operator L is either LM or LB depending on the model and � is a
Lagrange multiplier; see [47], for example.

For an easier numerical solution, the P(I)DE for European options and the
LCP for American options are reformulated for w which satis�es the homo-
geneous Dirichlet boundary condition w = 0 at s = 0. Furthermore, w for
American options is chosen so that it satis�es the positivity constraint w � 0
instead of the more complicated constraint u � g. For European options w

is chosen to be w = u � e�r�g while for American options it is chosen to be
w = u� g.

For European options the choice w = u� e�r�g leads to the P(I)DE

@w
@�
� Lw = e�r� (L+ r)g: (10)

For American options the choice w = u� g leads to the LCP

@w
@�
� Lw = �+ Lg; w � 0; � � 0; �w = 0: (11)

For American options a quadratic penalty formulation is obtained by choos-
ing the Lagrange multiplier to be

� = � 1
"
max f�w; 0gw: (12)

This leads to the nonlinear P(I)DE

@w
@�
� Lw + 1

"
max f�w; 0gw = Lg: (13)

For the �nite di�erence discretization, a grid is de�ned by si, i = 0; 1; 2; : : : ; Ns,
for the interval [0; smax]. The spatial partial derivatives with respect to s are
discretized using central �nite di�erence

@w

@s
(si) � 1

�si�1+�si

h
� �si

�si�1
wi�1 +

�
�si

�si�1
� �si�1

�si

�
wi +

�si�1
�si

wi+1

i
(14)

and

@2w

@s2
(si) � 2

�si�1+�si

h
1

�si�1
wi�1 �

�
1

�si�1
+ 1

�si

�
wi +

1
�si

wi+1

i
; (15)

where �si = si+1�si. Similarly for the interval [0; vmax], a grid is de�ned vj , j =
0; 1; 2; : : : ; Nv. The spatial partial derivatives with respect to v are discretized
using the above central �nite di�erences. A nine-point �nite di�erence stencil

for @2w
@s@v

is obtained by employing the central �nite di�erences in both directions.
While this approximation can be unstable with high correlations � it is stable
for numerical experiments presented in Section 4. On the boundary v = 0, a
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one-sided �nite di�erence approximation is used for @w
@v
. The integrals can be

discretized using a second-order accurate quadrature formula. Here the linear
interpolation is used for w between grid points and exact integration; see [11],
for details. Under the Merton model the discretization of the integral leads to
a full matrix while under the Bates model it leads to full diagonal blocks.

Under models without jumps the time discretization is performed by taking
the �rst time steps using the implicit Euler method and after using the second-
order accurate BDF2 method. Under jump models the integral is treated explic-
itly. In the �rst time step using the explicit Euler method and in the following
time steps using the linear extrapolation based on the two previous time steps.
This IMEX-BDF2 method is described in [13]. With the explicit treatment of
the integral it is not necessary to solve systems with dense matrices. At the
time (k+1)�� , the grid point values contained in the vector wk+1 are obtained
by solving the system�

I+ 2
3
��D

�
wk+1 =

�
4
3
wk � 1

3
wk�1

�
+��J

�
4
3
wk � 2

3
wk�1

�
+ 2

3
�� f (16)

for European options and�
I+ 2

3
��D+ 1

"
diag

�
max

��wk+1; 0
	��

wk+1

=
�
4
3
wk � 1

3
wk�1

�
+��J

�
4
3
wk � 2

3
wk�1

�
+ 2

3
�� f

(17)

for American options, where the matrices J and D corresponds to the terms due
to the jumps and the rest, respectively. The vector f contains the grid point
values of e�r� (L+r)g and Lg. The operator diag(�) gives a diagonal matrix with
the diagonal entries de�ned by the argument vector. The maximum is taken
componentwise. The systems (16) and (17) can be expressed more compactly
as

Awk+1 = rk+1 (18)

and �
A+ 1

"
diag

�
max

��wk+1; 0
	��

wk+1 = rk+1 (19)

with suitably de�ned A and rk+1. The discrete counterpart of the Lagrange
multiplier � in (12) reads

�
k+1 = � 1

"
diag

�
max

��wk+1; 0
	�
wk+1: (20)

3. Reduced Order Models

Let U 2 RN�n be the basis for w with n� N . These basis are constructed
by applying POD to a collection of solution snapshots. A solution snapshot,
or simply a snapshot, is de�ned as a state vector wk computed as the solution
of (17) for some instance of its parameters. A solution matrix is de�ned as a
matrix whose columns are individual snapshots.

To construct U, the following optimization problem is solved

minimize
U2RN�n;V2Rn�K

kX�UVk2F ; (21)

6
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where K is the number of solution snapshots. Hence, the basis U is comprised
of the �rst n left singular vectors of the snapshot matrix X and V = �WT ,
where � is the diagonal matrix of the �rst n singular values of �, andW is the
matrix of its �rst n right singular vectors.

For European options the reduced solution w = Uwr is governed by

UTAUwk+1
r = UT rk+1: (22)

This ROM has the form
Arw

k+1
r = rk+1r ; (23)

where Ar = UTAU is precomputed o�ine while the right-hand side rk+1r =
UT r can be computed e�ciently online with the number of operations depending
on n. Thus, the online computational cost of forming and solving the problems
(23) scales with the size n of the reduced basis and it does not depend on the
size N of FOM.

For American options the reduced solution w = Uwr is governed by�
UTAU+ 1

"
UT diag

�
max

��Uwk+1
r ; 0

	�
U
�
wk+1
r = UT rk+1: (24)

The product UT diag
�
max

��Uwk+1
r ; 0

	�
U is the only product in (24) that

cannot be precomputed o�ine. Since the cost of evaluating this product scales
with the size of the full order model, Eq. (24) does not o�er major computational
savings.

To attain computational savings, the traditional approach involves including
a second layer of approximation, sometimes called \hyper-reduction". One of
the most popular hyper-reduction approaches is the Discrete Empirical Inter-
polation Method (DEIM) [31]. We recapitulate the traditional DEIM algorithm
as a starting point for our innovation.

Let U� 2 RN�n� be basis for max
��Uwk+1

r ; 0
	
, thus

U�hr � max
��Uwk+1

r ; 0
	
; (25)

where hr is the corresponding coe�cient vector. The vector hr can be deter-
mined by selecting m unique rows from the overdetermined system U�hr �
max

��Uwk+1
r ; 0

	
. Speci�cally, consider a binary matrix P 2 f0; 1gN�n� sat-

isfying PTP = In� . Assuming PTU is nonsingular, the coe�cient vector hr
can be determined uniquely from

PT max
��Uwk+1

r ; 0
	
= (PTU�)hr (26)

and the �nal approximation is

max
��Uwk+1

r ; 0
	 � U�hr = U�(P

TU�)
�1PT max

��Uwk+1
r ; 0

	
(27)

= eU�max
��Cwk+1

r ; 0
	
; (28)

where eU� = U�(P
TU�)

�1, and C = PTU.
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Thus, the product UT diag
�
max

��Uwk+1
r ; 0

	�
U in Eq. (24) is approxi-

mated by UT diag
�eU�max

��Cwk+1
r ; 0

	�
U that, unlike its predecessor, can

be computed e�ciently online. In particular

UT diag
�eU�max

��Cwk+1
r ; 0

	�
U =

n�X
i=1

Kimax
�� �

Cwk+1
r

�
i
; 0
	
; (29)

where Ki = UT diag

�heU�

i
:;i

�
U and

h eU�

i
:;i

refers to the ith-column of

eU�. The matrices Ki can be computed o�ine, once and for all, while
max

�� �
Cwk+1

r

�
i
; 0
	
can be computed e�ciently online since C 2 Rn��n does

not scale with the size of the full order model.
Although this straightforward implementation of DEIM succeeds in reducing

the computational complexity of the ROM, this approach cannot be expected to
yield accurate price predictions because DEIM does not enforce non-negativity.
Even if the basisU� are constructed to be non-negative a priori, using, for exam-
ple, NNMF, non-negativity is still not guaranteed because eU� = U�(P

TU�)
�1

is not guaranteed to be non-negative. One possible remedy is use instead a
non-negative variation of the DEIM, called NNDEIM [48]. Yet another remedy
involves an angle-greedy procedure for constructing the non-negative bases [37].
In this work, we introduce an alternative approach that does not require com-
putation of non-negative basis for the Lagrange multipliers.

Our proposed approach is based on the fact that accurate price predictions
do not necessarily require accurate approximations of the Lagrange multipli-
ers. In particular, requiring that U�hr � max

��Uwk+1
r ; 0

	
may not be

necessary. This has been observed in practice for the reduction of structural
contact problems [38]. Our numerical experiments summarized in this paper
suggest that using the binary matrix P as the basis for the Lagrange mul-
tipliers performs remarkably well for all reproductive and predictive simula-
tions considered. With this approximation, the reduced order model simpli�es
considerably. In particular, with U� = P, eU� = P and thus, the product
UT diag

�
max

��Uwk+1
r ; 0

	�
U in Eq. (24) is approximated by the relatively

simple product CT diag
�
max

��Cwk+1
r ; 0

	�
C. Thus, the �nal form of the

ROM is as follows�
Ar +

1
"
CT diag

�
max

��Cwk+1
r ; 0

	�
C
�
wk+1
r = rk+1r ; (30)

where Ar = UTAU, and rr = UT r. All components in Equation (30) scale
with the size of the reduced order model.

Finally, to construct the selection matrix P, the standard DEIM algorithm
for selecting the interpolation indices is utilized [31]. However, in our proposed
approach, the DEIM algorithm is applied to m�U:;i, for i = 1; 2; : : : ; n, where
m 2 f0; 1gN�1 is a binary mask vector. The non-zero elements of the mask
vector m, correspond to elements in the snapshots where early exercise has
occurred at least once, that is, elements j such that Uj;i � 0 for any i. The
binary mask vector ensures consistency with the nonlinear function that is being
approximated, i.e. max

��Uwk+1
r ; 0

	
.
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4. Numerical Experiments

All numerical examples considered here price a European put option and an
American put option with the strike price K = 100 and the expiry T = 0:5.
Only at the money options are considered, that is, the value of u at s = K

is sought. Under the stochastic volatility models the value of u is computed
at the instantaneous variance v = �. The full order models are discretized
using quadratically re�ned spatial grids similar to ones employed by the FD-

NU method in [49]. The s-grid is de�ned by si =
h�

i
�Ns

� 1
� ��� i

�Ns

� 1
���+ 1

i
K,

i = 0; 1; : : : ; Ns with � = 3
8
. For the stochastic volatility models the variance

grid is de�ned by vj =
�

j
Nv

�2
vmax with vmax = 1. The uniform time steps are

given by �� = 1
N�

T . In the experiments the number of spatial and temporal
steps are chosen to be Ns = 128, Nv = 64, and N� = 32. With this choice and
the employed parameter ranges the absolute discretization error is about 10�2

or less. In the case of the American option, an iteration reduces the penalty
parameter " with the �ve values 10�1, 10�2, 10�3, 10�4, and 10�5. This is the
main reason for higher run times with the American option.

The snapshot matrix X is given by all vectors wk, k = 1; 2; : : : ; N� , in all
training runs. For these training runs each model parameter is sampled at its
extreme values and at the midpoint between them. Thus, with two, �ve, and
eight model parameters there are 32 = 9, 35 = 243, and 38 = 6561 training
runs, respectively. In the predictive ROM simulations, each parameter has two
values which are the midpoint values between the values used in the training.
Thus, with two, �ve, and eight model parameters there are 22 = 4, 35 = 32, and
28 = 256 prediction runs, respectively. The sizes of the two reduced basis given
by n and n� are chosen to be the same. The measured error is the absolute
di�erence between the prices given by the reduced order model and the full
order model.

All errors shown in Figures 1{ 4 are computed for the predictive simulations.
That is, for simulations with parameters not included in the training simulations
used to generate the ROMs.

4.1. Black{Scholes Model

The model parameters for the Black{Scholes model are varied in the range:

(r; �s) 2 [0:025; 0:035]� [0:35; 0:45]: (31)

The price of the European and American options vary roughly in the ranges
[8:91; 11:94] and [9:06; 12:04], respectively. Figure 1 shows the reduction of the
maximum and mean errors of the price of these options with the growth of the
reduced basis sizes n = n�.

9
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Figure 1: Under the Black{Scholes model the error with respect to the the reduced basis size
n = n�

4.2. Merton Model

The model parameters for the Merton model are varied in the range:

(r; �s; �; �; 
) 2 [0:025; 0:035]�[0:35; 0:45]�[0:15; 0:25]�[0:3; 0:5]�[�0:7; �0:3]:
(32)

The price of the European and American options vary roughly in the ranges
[9:50; 13:97] and [9:65; 14:08], respectively. Figure 2 shows the reduction of the
maximum and mean errors of the price of these options with the growth of the
reduced basis sizes n = n�.

4.3. Heston Model

The model parameters for the Heston model are varied in the range:

(r; �; �; �v; �) 2 [0:025; 0:035]�[3; 5]�[0:352; 0:452]�[0:35; 0:45]�[�0:75; �0:25]:
(33)

The price of the European and American options vary roughly in the ranges
[8:72; 11:88] and [8:87; 11:98], respectively. Figure 3 shows the reduction of the
maximum and mean errors of the price of these options with the growth of the
reduced basis sizes n = n�.
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Figure 2: Under the Merton model the error with respect to the the reduced basis size n = n�

4.4. Bates Model

The model parameters for the Bates model are varied in the range:

(r; �; �; �v; �; �; �; 
) 2 [0:025; 0:035]� [3; 5]� [0:352; 0:452]� [0:35; 0:45]�
[�0:75; �0:25]� [0:15; 0:25]� [0:3; 0:5]� [�0:7; �0:3]:

(34)

The price of the European and American options vary roughly in the ranges
[9:38; 13:95] and [9:53; 14:07], respectively. Figure 4 shows the reduction of the
maximum and mean errors the price of these options with the growth of the
reduced basis sizes n = n�. We note that for this model essentially the same
errors can be obtained based only on 28 = 256 training runs sampling the
extreme values of the model parameters.

4.5. Computational Speed-up

For each problem considered, the speed-up factor delivered by its ROM for
the online computations is reported in Table 1 for the European option and
in Table 2 for the American option. All models are solved in MATLAB on a
Intel Xeon 2.6GHz CPU and all CPU times were measured using the tic-toc

function on a single computational thread via the -singleCompThread start-up
option. A ROM is integrated in time using the same scheme and time-step used
to solve its corresponding FOM; see Section 2 for details. The online speed-up
is calculated by evaluating the ratio between the time-integration of the FOM
and the time-integration of the ROM.

11
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Figure 3: Under the Heston model the error with respect to the the reduced basis size n = n�

Table 1: For the European option CPU times in seconds for online computations.

FOM ROM
Model unknowns CPU time unknowns CPU time speed-up
Black{Scholes 127 0.0011 16 0.00064 1.7
Merton 127 0.0022 16 0.00084 2.6
Heston 8255 0.16 40 0.0011 145
Bates 8255 0.36 40 0.0015 240

4.6. Summary

In numerical experiments, from two to eight model parameters are varied in
a given range. For the one-dimensional Black{Scholes and Merton models about
16 ROM basis vectors were enough to reach 0.1% accuracy for the considered
American option. For the European option about 8 basis vectors lead to this
accuracy. For the two-dimensional Heston and Bates models about 40 basis vec-
tors were needed to reach the same accuracy for the American option. Slightly
less basis vectors lead to the same accuracy for the European option. For these
two-dimensional models the computational speed-up was over 200 when the full
order model (FOM) and ROM have roughly the same 0.1% accuracy level for
the American option. For the European option the solution of the FOM and
the ROM under the Bates model required about 0.36 and 0.0015 seconds, re-
spectively. For the American option the solution of the FOM and the ROM for
two-dimensional models required about 8 and 0.034 seconds, respectively.

Performance of the proposed ROM approach is quite similar to previous

12
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Figure 4: Under the Bates model the error with respect to the the reduced basis size n = n�

Table 2: For the American option CPU times in seconds for online computations.

FOM ROM
Model unknowns CPU time unknowns CPU time speed-up
Black{Scholes 127 0.026 16 0.025 1.0
Merton 127 0.027 16 0.026 1.0
Heston 8255 7.9 40 0.034 232
Bates 8255 8.0 40 0.034 235

approaches based on the NNMF. For example, the maximum ROM price error
using 40 basis vectors under the Heston model using the proposed approach
and the previous approach based on NNMF is 2:9 � 10�3, and 4:2 � 10�3,
respectively. While for the Bates model, the maximum ROM price error using
40 basis vectors using the proposed approach and the previous approach based
on NNMF is 6:8� 10�3, and 4:0� 10�3 respectively.

5. Conclusions

Reduced order models (ROMs) were constructed for pricing European and
American options under jump-di�usion and stochastic volatility models. For
American options they are based on a penalty formulation of the linear com-
plementarity problem. The �nite di�erence discretized di�erential operator is
projected using basis resulting from a proper orthogonal decomposition. The
grid points for the penalty term are chosen using the discrete empirical inter-
polation method. For the two-dimensional Heston and Bates models for pricing

13
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American options, a computational speed-up of over 200 was demonstrated. The
performance of the proposed ROM approach is also quite similar to previous
approaches based on the NNMF. A potential application for these ROMs is the
calibration of the model parameters based on market data. With a least squares
calibration formulation, option prices and their sensitivities can be computed
quickly and accurately for varying parameters by employing ROMs.
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High-fidelity options simulations are still too expensive for many practi-
cal applications and reduced order modeling (ROM) is a promising tool
for significantly alleviating computational costs. Most existing ROM
approaches are based on projection. In projection-based reduced or-
der modeling the state variables are approximated in a low-dimensional
subspace. Basis for this subspace are typically constructed by proper
orthogonal decomposition (POD). Straightforward projection however
cannot be expected to reduce American options accurately because these
equations include inequality constraints. Inequality constraints can be
reduced by constructing basis that satisfy these constraints a priori. This
can be accomplished using non-negative matrix factorization (NNMF),
a non-negative variation of the discrete empirical interpolation method
(NNDEIM), or via an angle-greedy procedure. In this manuscript, we in-
troduce an alternative approach for reducing inequality constraints that
does not require computation of non-negative basis for the Lagrange
multipliers. We have successfully applied this approach to the reduction
of several one and two-dimensional models. For the two-dimensional
models the computational speed-up was over 200.
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