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In the early stages of heavy-ion collisions, the hot QCD matter expands more longitudinally than
transversely. This imbalance causes the system to become rapidly colder in the longitudinal direction, and a
local momentum anisotropy appears. In this paper, we study the heavy-quarkonium spectrum in the
presence of a small plasma anisotropy. We work in the framework of potential nonrelativistic QCD at finite
temperature. We inspect arrangements of nonrelativistic and thermal scales complementary to those
considered in the literature. In particular, we consider temperatures larger and Debye masses smaller than
the binding energy, which is a temperature range relevant for presently running LHC experiments. In this
setting, we compute the leading thermal corrections to the binding energy and the thermal width induced by
quarkonium gluodissociation.

DOI: 10.1103/PhysRevD.95.074016

I. INTRODUCTION

In present day experiments at the LHC and at the
Relativistic Heavy Ion Collider, a rich and broad program
is ongoing to investigate QCD at finite temperature. The
establishment of a hot QCD medium, dubbed as quark-
gluon plasma (QGP), has been inferred thanks to the
observation of at least two striking signatures: jet quench-
ing and quarkonia suppression. In particular, the latter,
which has been proposed for a long time as a probe of the
QGP formation [1], will be the subject of the present
investigation.
Together with the experimental activity, also the theo-

retical understanding of heavy quarkonia in a medium has
progressed significantly in the last years. A key to it has
been the study of the heavy quark-antiquark potential in a
thermal environment. The heavy quark-antiquark potential
has been derived at high temperatures (T ≫ 1=r≳mD,
where r is the quark-antiquark distance and mD is the
Debye mass) in Refs. [2–4] and further computed in a wider
range of temperatures in an effective field theory frame-
work of QCD in the static limit [5] and for a large but finite
heavy-quark mass [6]. The real part of the potential shows
at high temperatures Debye screening, which is a source of
quarkonium dissociation. The potential has also an imagi-
nary part that stems from two further dissociation mech-
anisms: Landau damping [7,8] and gluodissociation [9,10].
A complete understanding of quarkonium in a medium

has to account for realistic QGP features. Among these is
the momentum anisotropy of the thermal medium con-
stituents. Indeed, highly Lorentz contracted nuclei collide

along the beam axis, so that the longitudinal expansion of
the hot QCD medium is more important than the radial
expansion perpendicular to the beam axis (see, e.g.,
Ref. [11]). At weak coupling, this longitudinal expansion
causes the system to quickly become much colder in the
longitudinal than in the transverse direction; moreover,
the anisotropy can persist for a long time [12–16]. Recently,
the properties of an anisotropic QGP have been the subject
of several investigations carried out in the framework of
viscous hydrodynamics [17–21].
So far, the effect of a local anisotropy on a quark-

antiquark bound state has been taken into account via hard
thermal loop (HTL) resummation of the gluon self-energy,
where a finite momentum anisotropy is assigned to the
degrees of freedom entering the loops [22–24]. Numerical
solutions of the Schrödinger equation for the bound state
show that the anisotropy tends to decrease the effect of
Landau damping and thus to increase the quarkonium
melting temperature [25,26], whereas analytical estimates
are found in Ref. [24].
In this work, we assume the quarkonium to be a

Coulombic system, so that its inverse size scales like
mαs and its typical binding energy scales like mα2s , where
m and αs are the heavy-quark mass and strong coupling
respectively. This is realized when mαs is much larger than
the temperature scale (moreover, we consider negligible the
effects of the hadronic scale ΛQCD). In particular, we aim to
investigate the heavy-quarkonium spectrum when the
relevant scales, the nonrelativistic and thermal ones, satisfy
the following hierarchy,
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m ≫ mαs ≫ πT ≫ mα2s ≫ mD;ΛQCD; ð1Þ

and in the presence of a finite momentum anisotropy of the
QGP constituents. In a weakly coupled QGP, the Debye
mass, mD, scales like mD ∼ gT and provides the inverse of
an electric screening length. The hierarchy of scales (1)
may be relevant for the ϒð1SÞ, of which the mass, inverse
radius and binding energy are respectively m ≈ 5 GeV,
mαs ≈ 1.5 GeV and mα2s ≈ 0.5 GeV [27]. In an expanding
and then cooling QGP, the regime (1) is met at some point,
say for T ≲ 2Tc ≈ 0.3 GeV for bottomonium. Note that
this temperature is below the bottomonium melting temper-
ature [28]. In doing so, we partly generalize the study
carried out in Ref. [6] for the isotropic case.
Since the quarkonium is assumed to be a Coulombic

system, we do not include in the real part of the potential
any term to model a (screened) long-range interaction
(as done, e.g., in Ref. [26]). Such an inclusion would not be
supported by the hierarchy of energy scales (1). The
spectrum has also an imaginary part that provides the
quarkonium width. In the situation of interest for this work,
mα2s ≫ mD, gluodissociation is the dominant mechanism
producing the thermal width. Such a mechanism has been
reinterpreted as and connected to the singlet-to-octet
breakup in potential nonrelativistic QCD (pNRQCD) at
finite temperature in Ref. [29].
Following a common choice in the literature, we imple-

ment a momentum anisotropy via distribution functions (B
for Bose-Einstein and F for Fermi-Dirac) that read [17,18]

fB;Fðq; ξÞ≡ NðξÞfB;Fiso

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ξðq · nÞ2

q �
; ð2Þ

where ξ is the anisotropy parameter, NðξÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p
is a

normalization factor that guarantees the same number of
particles for the anisotropic and isotropic distribution
functions and fB;Fiso ðqÞ is understood to be either a Bose-
Einstein or a Fermi-Dirac isotropic distribution for gluons
and quarks respectively. Hence, fB;Fðq; ξÞ is obtained
from the corresponding isotropic distribution by removing
particles with a large momentum component along the
anisotropy direction n, and accordingly ξ > 0 parametrizes
the anisotropy strength. The normalization factor NðξÞ is
often put to 1 in the literature, though its origin and impact
have been discussed in Ref. [30]. As far as the present work
is concerned, we keep the normalization factor in the
following calculations.
The distribution function (2) effectively introduces a

temperature, different from T, along the anisotropy direc-
tion. In order to deal just with temperatures of the same size
along all the momentum directions and to not jeopardize
the hierarchy (1), we require the anisotropy parameter to be
small: ξ ≤ 1.
The outline of the paper is as follows. In Sec. II,

we compute the thermal modification of pNRQCD,

pNRQCDHTL, by integrating out the scale πT in the
presence of a momentum anisotropy. At this stage and at
our accuracy, thermal effects are encoded in the singlet
potential. In Sec. III, we compute in pNRQCDHTL the
temperature-dependent real and imaginary parts of the
quarkonium spectrum. The latter corresponds to the quar-
konium thermal width. A conclusion and discussion are
found in Sec. IV.

II. MATCHING pNRQCD TO pNRQCDHTL

According to (1), one has to integrate out the heavy-
quark mass and the typical momentum transfer before
dealing with any thermal effect. Hence, our starting point is
pNRQCD, the coefficients of which can be obtained at zero
temperature. The corresponding Lagrangian density reads
as follows (we show only terms relevant for the present
work) [31–33],

LpNRQCD ¼ −
1

4
Fa
μνFaμν þ

Xnf
i¼1

q̄iiDqi

þ
Z

d3rTrfS†ði∂0 − hsÞSþ O†ðiD0 − hoÞOg

þ TrfO†r · gESþ S†r · EOg þ…; ð3Þ

where r is the heavy quark-antiquark distance vector,
S ¼ S1c=

ffiffiffiffiffiffi
Nc

p
and O ¼ OaTa=

ffiffiffiffiffiffi
TF

p
are the heavy

quark-antiquark color-singlet and color-octet fields respec-
tively, qi are nf light quark fields taken massless, Nc is
the number of colors, TF ¼ 1=2 and traces are understood
over color and spin indices. We have taken the matching
coefficients at leading order. The dots stand for higher-
order terms in the multiple expansion and for octet-octet
transitions that we do not need in the following. The singlet
and octet Hamiltonians read

hs;o ¼
p2

m
þ Vð0Þ

s;o þ…; ð4Þ

where p ¼ −i∇r and the dots stand for higher-order terms
in the 1=m expansion. The singlet and octet static potentials

are at leading order in αs: V
ð0Þ
s ¼ −CFαs=r and Vð0Þ

o ¼
αs=ð2NcrÞ respectively; CF ¼ ðN2

c − 1Þ=ð2NcÞ is the
Casimir of the fundamental representation of SUðNcÞ.
The computations that we are going to perform in this

and in the next section share similarities with the ones done
for quarkonium in a hot wind in the same temperature
regime [34,35]. In both cases, we are dealing with a
problem in which the distribution of particles in the
medium has a preferred direction.
Thermal contributions to the real and imaginary parts of

the heavy-quarkonium spectrum come from considering
self-energy diagrams in pNRQCD and integrating them
over momentum regions scaling respectively like the
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temperature and the binding energy. Integrating over
the momentum region scaling like the temperature amounts
at matching pNRQCD to another effective field theory,
dubbed pNRQCDHTL in Refs. [5,6], where only modes
with energy and momentum smaller than πT are dynamical.
Thermal contributions are then encoded in the color-singlet
potential of pNRQCDHTL. We will consider integrating
over the momentum region scaling like the binding energy
in the next section.
The leading thermal contribution to the color-singlet

potential comes from the self-energy diagram in Fig. 1,
where the loop momentum is set to be q ∼ πT. By using the
vertices and propagators of the pNRQCD Lagrangian, we
obtain

hΩjTSðt; r;RÞS†ð0; 0; 0ÞjΩi

¼ −4παsCF

Z
P
e−iP0tþiP·Rhrj

×
i

P0 − hs þ iϵ
riIijrj

i
P0 − hs þ iϵ

j0i; ð5Þ

where T stands for time ordering,
R
P ≡

R
d4P=ð2πÞ4, Pμ ¼

ðP0;PÞ and jΩi is the ground state of the theory. The thermal
part of the self-energy loop integral, Iij, is given by

Iij ¼
Z
q

iðq0Þ22πδðq2Þ
P0 − q0 − ho þ iϵ

�
δij −

qiqj
jqj2

�
fBðq; ξÞ: ð6Þ

We have to separate terms that go into the wave-
function renormalization from those that go into the
color-singlet potential of pNRQCDHTL. To this end, we
rewrite P0−ho¼P0−hs−ΔV, where ΔV ¼ ðho − hsÞ ¼
ðNcαsÞ=ð2rÞ þ…, and, due to the condition q ∼ πT that
sets the loopmomentum to bemuch larger than the energy of
the heavy quark-antiquark pair, we expand the octet propa-
gator in (6). After dropping terms that go into the wave-
function renormalization, the part of riIijrj that contributes
to the color-singlet potential of pNRQCDHTL reads

riIijrjjcontr to Vs
q∼πT ¼ i

�
2

m
þ ΔVr2

�Z
q
2πδðq2ÞfBðq; ξÞ

− iðΔVrirjÞ
Z
q
2πδðq2Þ qiqjjqj2 f

Bðq; ξÞ:

ð7Þ

To match onto pNRQCDHTL, we compute the correlator
hΩjTSðt; r;RÞS†ð0; 0; 0ÞjΩi in pNRQCDHTL and require
this expression to be equal to (5). The color-singlet
potential of pNRQCDHTL turns out to be the same as in
pNRQCD plus a thermal correction δVs that reads

δVs ¼ −i4παsCFriIijrjjcontr to Vs
q∼πT : ð8Þ

The integral can be easily evaluated, and the final result for
the anisotropic potential at finite temperature is

δVs ¼
2παsCFT2

3m
F 1ðξÞ þ

πα2sCFNcT2r
12

F 2ðξÞ

þ πα2sCFNcT2ðr · nÞ2
12r

F 3ðξÞ; ð9Þ

where the definitions of the functions embedding the
anisotropy parameter are

F 1ðξÞ ¼ NðξÞ arctan
ffiffiffi
ξ

p
ffiffiffi
ξ

p ; ð10Þ

F 2ðξÞ ¼ NðξÞ
�
arctan

ffiffiffi
ξ

p
ffiffiffi
ξ

p þ 1

ξ
−
arctan

ffiffiffi
ξ

p
ξ

ffiffiffi
ξ

p
�
; ð11Þ

F 3ðξÞ ¼ NðξÞ
�
arctan

ffiffiffi
ξ

p
ffiffiffi
ξ

p −
3

ξ
þ 3 arctan

ffiffiffi
ξ

p
ξ

ffiffiffi
ξ

p
�
: ð12Þ

We comment briefly about the result: first, at this order,
no imaginary part, and hence no thermal width, arises;
second, for ξ → 0, the result in (9) agrees with the isotropic
case derived in Ref. [6]. Finally, we notice that the term in
the second line in (9) is of order ξ when expanding for a
small anisotropy parameter, signaling that its origin is
entirely due to the breaking of the spherical symmetry of
the parton momentum distribution.

III. THERMAL CORRECTIONS
TO THE SPECTRUM

In our setting, the next relevant scale after the temper-
ature is the quarkonium binding energy. The process we are
looking at is again a singlet-to-octet transition, however,
with energy and momenta scaling like mα2s rather than πT.
This contribution is not part of the potential but comes as a
low-energy correction to the spectrum of pNRQCDHTL. It
may be computed at leading order from the one-loop
diagram in Fig. 1, where now, however, the typical loop
momentum is selected to be of ordermα2s. To ensure that we
are computing only contributions from the momentum
region q ∼mα2s ≪ πT, we need to expand the anisotropic
distribution function

FIG. 1. Color-singlet self-energy diagram in pNRQCD. Single
lines stand for quark-antiquark color-singlet propagators, double
lines for color-octet propagators, curly lines for gluons and a
circle with a cross for a chromoelectric dipole vertex.
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fBðq; ξÞ ¼
�
e
jqj
T

ffiffiffiffiffiffiffiffiffi
1þξλ2

p
− 1

�−1
≈

T

jqj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξλ2

p ; ð13Þ

where λ ¼ q · n=jqj is the cosine of the angle between the
gluon momentum and the anisotropy direction. We keep
only the leading term in the jqj=T expansion. Differently
from the calculation in Sec. II, we cannot expand the octet
propagator. Then, the contribution from the momentum
region q ∼mα2s to the self-energy diagram in Fig. 1 reads

δΣ ¼ −i4παsCFriIijrjjq∼mα2s
; ð14Þ

where

riIijrjjq∼mα2s
¼ Tri

Z
q

iðq0Þ22πδðq2Þ
P0 − q0 − ho þ iϵ

�
δij −

qiqj
jqj2

�

×
rj

jqj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξλ2

p : ð15Þ

The integral (15) has a vanishing imaginary part. This
means that there is no contribution coming from δΣ, as
defined in (14), to the real part of the spectrum. Hence, the
thermal shift in the binding energy is entirely due to the
shift in the singlet potential, δVs, computed previously in
(9). We can write it as

δEbind ¼ hnlmjδVsjnlmi; ð16Þ

where jnlmi are eigenstates of the singlet Hamiltonian hs,
with quantum numbers n, l (orbital angular momentum)
and m (orbital angular momentum along the z direction).
Since, according to our hierarchy of energy scales, the
potential entering hs is the Coulomb potential, the states
jnlmi are just Coulombic bound states. At leading accu-
racy, δEbind then reads

δEbind ¼
2παsCFT2

3m
F 1ðξÞ

þ παsNcT2

12m
½3n2 − lðlþ 1Þ�

�
F 2ðξÞ þ

F 3ðξÞ
3

þ 2

3
F 3ðξÞCl0

2l00C
lm
2l0m

�
; ð17Þ

where the Clebsch-Gordan coefficients are understood
with the notation CJM

j1j2m1m2
(CJM

j1j2m1m2
¼ 0 if J > j1 þ j2 or

J < jj1 − j2j).
The integral (15) has a nonvanishing real part that

contributes to the imaginary part of δΣ. The imaginary
part of the self-energy gives rise to a thermal width,

Γ ¼ −2hnlmjImðδΣÞjnlmi

¼ 8π2αsCFThnlmjri
Z
q

δðEn þ q0 − hoÞq20
jqj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξλ2

p

×

�
δij −

qiqj
jqj2

�
ð2πÞδðq2Þrjjnlmi; ð18Þ

where En ¼ −mðCFαsÞ2=ð4n2Þ is the energy of the bound
state. The final result reads

Γ ¼ 4

3
α3sT

�
CFN2

c

4
þ C2

FNc

n2
þ C3

F

n2

�
G1ðξÞ

þ α3sT

�
CFN2

c

4
−
C2
FNc

2n2
þ C3

F

n2

�
G2ðξÞCl0

2l00C
lm
2l0m; ð19Þ

where the anisotropy functions are in this case

G1ðξÞ ¼ NðξÞ arcsinhð
ffiffiffi
ξ

p Þffiffiffi
ξ

p ; ð20Þ

G2ðξÞ¼NðξÞð1þ2ξ=3Þarcsinhð ffiffiffi
ξ

p Þ− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξð1þξÞp

ffiffiffiffiffi
ξ3

p : ð21Þ

The appearance of a thermal width follows from the fact
that the singlet-to-octet transition becomes a real process
if the emitted gluon has an energy of the order of the
binding energy.
The limit ξ → 0 corresponds to the isotropic case. For

ξ → 0, we have that F 1ðξÞ → 1, F 2ðξÞ → 4=3, G1ðξÞ → 1,
whereas both F 3ðξÞ and G2ðξÞ vanish linearly in ξ. In this
limit both the binding energy (17) and the thermal width
(19) reduce to previously known expressions found in
Ref. [6].1 In Table I, we show some benchmark values of
the anisotropy functions.

TABLE I. The anisotropy functions defined in (10)–(12), (20)
and (21) for some values of ξ.

ξ F 1ðξÞ F 2ðξÞ F 3ðξÞ G1ðξÞ G2ðξÞ
0.1 1.016 1.346 0.026 1.032 0.009
0.3 1.043 1.367 0.072 1.089 0.026
0.5 1.067 1.383 0.114 1.141 0.041
1 1.110 1.414 0.200 1.246 0.077

1Note that the self-energy diagram of Fig. 1 contains only a
tree-level gluon propagator. In the simple case of a tree-level
gluon propagator, the relations between real time, advanced and
retarded propagators are the same as in Ref. [6] also in the
presence of a modified distribution function. For hard-thermal-
loop resummed propagators, needed to compute corrections of
higher order than those considered in this paper, these relations
get replaced by similar ones [36].
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IV. CONCLUSION AND DISCUSSION

In an early stage, heavy-ion collisions are characterized
by parton momentum anisotropies. Accordingly, the evo-
lution of the fireball is described in terms of viscous and
anisotropic hydrodynamical models. Because hard probes,
like heavy quarkonia, get formed in such an early stage of
the heavy-ion collisions and experience the medium until
late times, their dynamics has to account for an anisotropic
momentum distribution of the QGP constituents. In this
paper, we have derived for the hierarchy of scales (1) and at
leading order the real and imaginary thermal parts of the
quarkonium spectrum in an anisotropic QGP. The imagi-
nary part originates from the quarkonium gluodissociation
in the medium. Our result complements previous studies
for an anisotropic plasma where the real and imaginary
parts of the quark-antiquark potential were obtained for a
temperature scale larger than the inverse radius of the
bound state. In doing so, we extend the knowledge of a
weakly coupled quarkonium to temperature ranges that
may be reached during the QGP evolution at present day
colliders.
The real thermal part of the spectrum comes from

thermal corrections to the potential defined in the context
of pNRQCDHTL. They are encoded in the self-energy
diagram of Fig. 1 evaluated at the temperature scale.
The result is given in (9). Thermal corrections to the
potential are proportional to the square of the temperature
and, as discussed elsewhere, do not show Debye screening
[5,6]. The corresponding expectation value provides
the real part of the thermal corrections to the binding
energy. They are given in (17). In Fig. 2, we show the
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FIG. 2. Binding-energy shift of a 1S (n ¼ 1, l ¼ 0) bottomo-
nium state according to (17). We show the binding-energy shift
for the isotropic case, black solid line, and for two different values
of the anisotropy parameter ξ ¼ 0.5 and ξ ¼ 1 in orange and red
solid (dashed) lines respectively when the normalization factor is
NðξÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi

1þ ξ
p

(NðξÞ ¼ 1). For all the figures (here and in the
following), we have taken αsð2πTÞ and considered it running at
one loop with three quark flavors. The bottom-quark mass has
been chosen to be half of the ϒð1SÞ mass, i.e., 4730 MeV.
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FIG. 3. Thermal width of a 1S (n ¼ 1, l ¼ 0) bottomonium
state according to (19). The different curves are defined as in
Fig. 2.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

E
an

i
E

is
o

E
is

o

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

an
i

is
o

is
o

FIG. 4. Relative change in the binding energy (upper plot) and
thermal width (lower plot) due to the presence of a momentum
anisotropy. δEani is the binding-energy shift in (17) evaluated for
ξ ≠ 0, whereas δEiso is the binding-energy shift in (17) evaluated
at ξ ¼ 0, for a 1S bottomonium state. In a similar way, we have
defined the thermal widths, Γani and Γiso, taken from (19). For
solid (dashed) lines, the normalization has been taken NðξÞ ¼ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p
(NðξÞ ¼ 1).
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binding-energy shift for a 1S bottomonium state in the
isotropic case, ξ ¼ 0, and in the case of a finite momentum
anisotropy, ξ ¼ 0.5 and ξ ¼ 1. We see that the impact of an
anisotropic plasma crucially depends on the normalization
factor, either NðξÞ ¼ 1 or NðξÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi

1þ ξ
p

, respectively
shown in dashed and solid lines. For NðξÞ ¼ 1, the
anisotropy reduces the thermal correction to the binding
energy, whereas for NðξÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi

1þ ξ
p

, it increases it.
The computation of the spectrum in pNRQCDHTL leads

also to an imaginary part coming from the self-energy
diagram of Fig. 1 evaluated at the binding-energy scale.
The imaginary part may be understood as a thermal width,
the explicit expression of which is in (19). In Fig. 3, we
show the thermal width for a 1S bottomonium state in the
isotropic case, ξ ¼ 0, and in the case of a finite momentum
anisotropy, ξ ¼ 0.5 and ξ ¼ 1. Also, here, the size and sign
of the thermal corrections strongly depend on the normali-
zation factor, either NðξÞ ¼ 1 or NðξÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi

1þ ξ
p

, respec-
tively shown in dashed and solid lines. Although the
dependence on the anisotropy is qualitatively similar in
the binding energy and thermal width, we find that the
effect of the anisotropy is more important for the binding
energy with respect to the thermal width when NðξÞ ¼ 1
(see the dashed lines in Fig. 4), whereas the opposite is true
when NðξÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi

1þ ξ
p

(see the solid lines in Fig. 4).
Finally, we comment on the effect of an anisotropic QGP

on the bound-state polarization. In Fig. 5, we show the
differences between the thermal corrections to the widths of
1P and 2S bottomonium states. For ξ ≤ 1, such differences
are typically of the order of few per mill (at most 1%) with
respect to the corresponding 2S-state thermal width. This
suppression is due to various effects: the ratio between the
anisotropy functions G2 and G1 (see the benchmark values
in Table I), the combination involving the color factors Nc
and CF and the Clebsch-Gordan coefficients. We conclude

that for small anisotropies the effect of an anisotropic QGP
on the bound-state polarization is tiny and possibly
phenomenologically irrelevant.
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