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We consider an analytically solvable model of two interacting electrons that allows for the calculation of
the exact exchange-correlation kernel of time-dependent density functional theory. This kernel, as well as the
corresponding density response function, is studied in the limit of large repulsive interactions between the electrons
and we give analytical results for these quantities as an asymptotic expansion in powers of the square root of
the interaction strength. We find that in the strong interaction limit the three leading terms in the expansion
of the kernel act instantaneously while memory terms only appear in the next orders. We further derive an
alternative expansion for the kernel in the strong interaction limit on the basis of the theory developed previously
[Phys. Chem. Chem. Phys. 18, 21092 (2016)] using the formalism of strictly correlated electrons in the adiabatic
approximation. We find that the first two leading terms in this series, corresponding to the strictly correlated limit
and its zero-point vibration correction, coincide with the two leading terms of the exact expansion. We finally
analyze the spatial nonlocality of these terms and show when the adiabatic approximation breaks down. The
ability to reproduce the exact kernel in the strong interaction limit indicates that the adiabatic strictly correlated
electron formalism is useful for studying the density response and excitation properties of other systems with
strong electronic interactions.

DOI: 10.1103/PhysRevA.95.042505

I. INTRODUCTION

Time-dependent density functional theory (TDDFT) [1–7]
is a well-established approach to study the time-dependent
and excitation properties of many-electron systems. One of the
main reasons for its popularity is that within this formalism the
time-dependent interacting many-body problem can be recast
exactly into an equivalent one-particle framework, which
is advantageous for numerical implementations. The corre-
sponding one-particle equations, called the time-dependent
Kohn-Sham equations, contain an effective potential, known
as the Kohn-Sham potential, which is defined in such a way
that the noninteracting system has the same time-dependent
density as the original interacting many-body system. The
Kohn-Sham potential is typically written as the sum of the
external potential of the interacting system and of the Hartree
and the exchange-correlation (xc) potential.

In practical applications of TDDFT, the xc potential
vxc is approximated. The type of approximation employed
crucially determines the quality of the results, and therefore
a considerable amount of research has gone into the difficult
task of finding reliable and accurate approximations for this
quantity. This task is simpler in the linear response regime
where we consider small variations in the density caused
by applied perturbations. This regime is of interest as the
knowledge of the density response function is sufficient to
calculate the excitation energies and the absorption spectrum
of the system [8]. For this purpose, it is enough to know vxc

and its functional derivative δvxc/δn = fxc with respect to the
density n, evaluated at the ground-state density. The quantity
fxc is called the xc kernel and has been the subject of intense
investigations.

The simplest possible approximation is the adiabatic
local-density approximation (ALDA) in which the xc kernel
is local in space and time. The ALDA has, however, a

number of deficiencies [4] such as, for example, the in-
ability to produce correct charge transfer excitations [9–12],
Born-Oppenheimer surfaces of excited states in dissociating
molecules [13–15] and semiconductor band gaps [16]. Some
improvements have been made using hybrid functionals which
contain mixtures of exact exchange and traditional local
functionals. These methods are nonlocal in space but still
adiabatic. However, they are not systematic and the optimal
mixture of exact exchange is often system dependent [17–20].
Other, more systematic, approximations for fxc beyond the
ALDA often rely on perturbative expansions [21–30] and many
of them are restricted to the exchange-only approximation.
Their perturbative nature makes these approaches questionable
in the strong correlation regime which is relevant in various
physical situations, notably the case of molecular dissociation,
and hence it is highly desirable to develop new techniques to
tackle this regime.

In a recent work [31], the so-called strictly correlated elec-
trons (SCE) framework [32–34], a formalism well suited for
the description of strong interactions, has been applied within
the time-dependent domain. The authors derived an expression
for the xc kernel in the so-called adiabatic approximation and
established that the adiabatic SCE (ASCE) kernel satisfies
the zero-force theorem [35], an exact property related to
generalized translational invariance [36,37]. The kernel was
furthermore studied for finite one-dimensional systems with
different density profiles, some of which are prototypical of the
dissociation of two-electron homonuclear molecules. It was
found that the ASCE kernel is spatially nonlocal and exhibits
a divergent behavior as the molecular bond is stretched. For
adiabatic kernels, this diverging behavior is crucial [13] for
describing bond-breaking excitations, which is a notoriously
challenging problem in linear response TDDFT. Since the
kernel was derived in the adiabatic approximation, not much
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could be concluded about the limitations of its adiabatic nature
in the context of the physics of strong static correlation. The
case of infinitely strong electron-electron correlation is quite
peculiar and to date it is not known how accurate the adiabatic
approximation can be in such a regime.

One way to shed light on this issue is to benchmark the
ASCE kernel against an exact expression for fxc obtained
from a model system where the density response function and
thus the xc kernel can be calculated analytically. In this work,
we consider such a model, namely two interacting electrons on
a quantum ring [6,38–40], for which we not only compute the
exact density response function and xc kernel but also obtain
these quantities for various two-body interaction strengths,
including the infinitely strong one, and we compare these
results with those given by the SCE theory in the adiabatic
approximation. The leading order of the asymptotic expansion
for the exact fxc and the expression for the ASCE kernel are
found to be identical. We also derive the next-order correction
term beyond the ASCE, called the adiabatic zero-point-energy
approximation (AZPE), and show that also this adiabatic term
is the same as the next order from the asymptotic expansion.
The third order in the expansion for the kernel is still adiabatic,
while a frequency dependence appears in the fourth order. In
this order, an adiabatic approximation would break down. This
is one of the central results of the paper and elucidates both the
strengths and the weaknesses of the adiabatic approximation
in the limit of strong electron-electron interaction.

The paper is organized as follows. In Sec. II we introduce
the quantum ring model and, after computing the full spectrum
of its Hamiltonian, we discuss asymptotic expansions for its
eigenenergies and eigenstates in the case of strong interactions
and analyze them. In Sec. III we study the density response
function of strongly interacting systems, while in Sec. IV we
focus on TDDFT in the same regime and give an asymptotic
expansion for the xc kernel. Our conclusions are finally
presented in Sec. V.

II. AN EXACTLY SOLVABLE SYSTEM

A. Two interacting electrons on a quantum ring

For our study of electron correlations, we consider an
analytically solvable model, which we will refer to as the
quantum ring model, of two electrons on a ring of length
L which repel each other with a two-body interaction. The
interaction strength can be adjusted using a parameter, which
allows us to study the exact properties of the system ranging
from weak to very strong interactions. The explicit form of the
Hamiltonian of the quantum ring is given by

Ĥ = −1

2

(
∂2
x1

+ ∂2
x2

) + λV0 cos2

[
π

L
(x1 − x2)

]
, (1)

where λ � 0 is a dimensionless parameter and V0 has units
of energy. The coordinates x1 and x2 are the coordinates of
the electrons on the ring which run from 0 to L. The ground-
state density n0 = 2/L is spatially constant and independent
of λ; for this reason the model can be used to illustrate
several features of the coupling strength dependence in density
functional theory.

In order to calculate the properties of the system we have
to determine the eigenfunctions � which satisfy the stationary

Schrödinger equation Ĥ� = E�, where E are the energy
eigenvalues. For our two-particle system, these eigenfunctions
can be written as a product of a spatial wave function and a
spin function as follows:

�(x1σ1,x2σ2) = ψ±(x1,x2) 	±(σ1,σ2).

For the singlet case (which we will focus on), the normalized
spin function is given by

	+(σ1,σ2) = 1√
2

(
δσ1↑δσ2↓ − δσ1↓δσ2↑

)
and is antisymmetric in the spin variables. For the triplet,
there are three linearly independent symmetric spin functions
which we, for simplicity, all denote by 	−(σ1,σ2). Since
the two-electron wave function � is antisymmetric under
the simultaneous interchange of space and spin variables,
it follows that the spatial wave functions ψ± satisfy the
symmetry relation

ψ±(x1,x2) = ±ψ±(x2,x1).

Apart from these symmetry conditions, the Schrödinger
equation needs to be solved with periodic boundary conditions
on the variables x1 and x2; i.e., the wave function and its first
spatial derivatives are invariant under the substitution xi →
xi + L for i = 1,2. Using these conditions, we can solve the
Schrödinger equation by a suitable coordinate transformation.
Since these steps are carried out in detail in Ref. [41], here we
just outline the main steps relevant for this work.

The Hamiltonian (1) becomes separable in the terms R =
(x1 + x2)/2, the center-of-mass coordinate, and z = π (x1 −
x2)/L, the dimensionless relative coordinate. This variable
transformation gives

Ĥ = −1

4
∂2
R − π2

L2
∂2
z + λV0 cos2(z).

By inserting a product ansatz of the form ψ(R,z) = f (R)M(z)
into the Schrödinger equation, we find that the spatial two-
particle eigenfunctions are of the form

ψ(R,z) = exp

(
2πikR

L

)
M(z), (2)

where k is an integer and the function M(z) satisfies the
Mathieu equation, which we write in its standard form as
[42,43] [−∂2

z + 2q cos(2z)
]
M(z) = a M(z), (3)

where the constants q and a are given by

q = λV0

(
L

2π

)2

, (4)

a = −k2 − 2q + EL2

π2
. (5)

For a given value of q, the Mathieu equation (3) has only
periodic solutions for particular values a(q), which are called
the Mathieu characteristic values. Moreover, this equation
has either even or odd periodic solutions, which are called
the Mathieu cosine and Mathieu sine functions respectively.
Both sets of functions form a countable set; therefore its
members can be labeled by a non-negative integer l. For
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the Mathieu cosines, this label starts at l = 0 and for the
Mathieu sines at l = 1. The even Mathieu cosine function
is denoted by Cl(z; q) and its characteristic value by a+

l (q),
while the odd Mathieu sine function is denoted by Sl(z; q)
and its characteristic value by a−

l (q). Since the center-of-mass
wave functions are symmetric under the interchange of the
spatial coordinates of the electrons, we see from Eq. (2) that
the singlet wave functions must be described by even Mathieu
functions whereas the triplet ones must be described by odd
Mathieu functions. The final form of the normalized singlet
and triplet wave functions therefore is

ψ+
kl (R,z; q) =

√
2

L
exp

(
2πikR

L

)
Cl(z; q), (6)

ψ−
kl (R,z; q) =

√
2

L
exp

(
2πikR

L

)
Sl(z; q), (7)

in which the normalization of the Mathieu functions is chosen
such that∫ π

0
dz|Cl(z; q)|2 =

∫ π

0
dz|Sl(z; q)|2 = π

2
. (8)

The Mathieu functions further have the periodicity property
Ml(z + π ) = (−1)lMl(z); i.e., they are periodic in π for even
values of l and antiperiodic for odd values of l. Furthermore,
the center-of-mass wave function in Eq. (2) changes with a
prefactor (−1)k when xi → xi + L, for i = 1,2. Therefore,
for the wave functions in Eqs. (6) and (7) to satisfy periodic
boundary conditions, the labels k and l must be both even or
both odd. Note that k runs over all integers while l only runs
over the non-negative integers. From Eq. (5) we see that the
energy eigenvalues are given by

E±
kl(q) =

(
π

L

)2

[k2 + a±
l (q) + 2q]. (9)

Since in the subsequent discussion of the density response
function we focus on the singlet excitations in particular, we
write the singlet wave functions in a slightly different form
for the purpose of a better interpretation. By multiplying the
spatial wave function of Eq. (6) with its singlet spin function,
the full space-spin function can be written as

�kl(x1σ1,x2σ2) = 
k(x1σ1,x2σ2)
√

2 Cl

[
π

L
(x1 − x2)

]
, (10)

where we defined the Slater determinant


k(x1σ1,x2σ2) = 1√
2

∣∣∣∣φk/2(x1)δσ1↑ φk/2(x1)δσ1↓
φk/2(x2)δσ2↑ φk/2(x2)δσ2↓

∣∣∣∣
and we further defined the spatial normalized orbital by
φk(x) = e2πikx/L/

√
L which corresponds to a periodic single-

particle wave function of a free particle on the quantum ring.
Let us consider the excitation from the ground state to another
singlet state with l = 0, which requires that the excited state
is characterized by an even k value. In that case, φk/2 in the
Slater determinant above is a proper periodic wave function as
k/2 is an integer. According to Eq. (9) the excitation energy is

�E+
k0 = E+

k0 − E+
00 =

(
πk

L

)2

, (11)

which is independent of the interaction strength q as the
excited state has the same relative wave function as the ground
state. For the case that q = 0, we have C0(z; q = 0) = 1/

√
2

and the ground and excited states both become pure Slater
determinants. The excitation then represents a promotion of
two electrons from a doubly occupied k = 0 state to a doubly
occupied state with a one-particle quantum number k/2, which
is commonly called a double excitation. When q is nonzero,
this language is not accurate anymore as also the relative wave
function becomes relevant. If the interaction strength becomes
very large, the energy required to excite to a state with nonzero
l becomes very large too and the excitations with energy
�E+

k0 give the dominant contribution to the density response
function, as we will see later.

B. The strong interaction expansion of the exact solution

As the interaction strength q increases, the electronic
repulsion becomes more important and the electrons tend to
stay in opposite positions on the ring. This physically intuitive
picture can be analyzed in more detail using the Mathieu
equation. According to Eqs. (6) and (7), the square of the
spatial wave function is given by

|ψ±
kl (R,z; q)|2 = 2

L2
M2

l (z; q),

where Ml(z; q) is either a Mathieu cosine Cl or a Mathieu
sine Sl depending on whether the wave function is a singlet
or a triplet one. We therefore see that the probability to find a
given electron at x2 given an electron at x1 only depends on the
relative coordinate x1 − x2, as one would expect on the basis
of the symmetry of the system. This probability distribution is
given by the square of the Mathieu function Ml .

Let us analyze the properties of this function in the large
interaction limit which according to Eq. (3) satisfies a single-
particle Schrödinger type of equation in a potential of the form
V (z) = 2q cos(2z). For large values of q, we can see that the
relative wave function described by Ml becomes localized in
the minimum of the potential at z = π/2, which corresponds
to a relative distance of the particles of L/2. We can expand
the potential around this minimum to obtain

2q cos(2z) = −2q + 4q

(
z − π

2

)2

+ · · · .

This potential describes (apart from a shift of the minimum)
a harmonic oscillator with frequency 
 = 2

√
q. The eigen-

functions of the harmonic oscillator are well known to consist
of Gaussians of width proportional to 1/

√

 = 1/(

√
2 q1/4).

In the limit of large q, the harmonic frequency increases
and the wave functions become localized around z = π/2.
This behavior is illustrated in Fig. 1. The eigenenergies εl

of the harmonic oscillator are well known and given by εl =
−q + 
(l + 1/2) = a/2. This also immediately provides an
asymptotic formula for the characteristic value of the Mathieu
equation for large values of q:

a±
l (q) = −2q + 2

√
q (2l + 1) + · · ·

and consequently also an asymptotic expansion for the
eigenenergies of the quantum ring from Eq. (9).
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FIG. 1. The squared ground-state wave function |ψ00|2 for two
values of the interaction strength q, and the interaction cos2 z using a
suitable scaling for showing it in the same plot. For large q, the wave
function localizes around z = π/2 where cos2 z is almost parabolic
and |ψ00|2 then tends to a sharp Gaussian.

A more rigorous connection to the harmonic oscillator
wave functions can be made on the basis of the substitution
u(z) = √

2 q1/4 cos z which transforms the Mathieu equa-
tion (3) to the new form[

−1

2

(
1 − u2

2
√

q

)
d2

du2
+ u

4
√

q

d

du
+ u2

2

]
M(u) = ε M(u),

where we defined ε = (a + 2q)/(4
√

q) and M(u(z)) =
M(z; q). In the large q limit, this equation attains the form of
the Schrödinger equation for the harmonic oscillator. Its eigen-
functions are well known and, apart from a normalization, are
given by the parabolic cylinder functions Dm(u) defined by

Dm(u) = (−1)m

2m/2
eu2/2 dm

dum
e−u2

= 1

2m/2
e−u2/2Hm(u), (12)

where Hm(u) are the Hermite polynomials. On the basis of
this analysis, we may suspect that it is possible to find an
asymptotic large-q expansion of the Mathieu functions in
terms of harmonic oscillator functions Dm of argument u.
Sips [44–47] already derived such an expansion on the basis
of the transformed Mathieu equation. For reference, in the
next section we briefly outline its main features for the case
of the Mathieu cosine, which is relevant for the discussion
of singlet states. The general form of the Sips expansion is
given by

Cl(z; q) =
∞∑

n=−∞
c2n,l(q)Dl+2n[u(z)], (13)

in which we defined Dm<0 = 0. The specific form of the
coefficients c2n,l(q) is given in the work of Sips [44–46], who
outlined a systematic procedure to obtain them. In general they
can be obtained from a recursion relation [47] and we refer to
Appendix B for a more detailed discussion.

In Eq. (13) we see that for odd values of l the Mathieu
cosine is expanded in functions Dm with only odd values of
m while for even l it is expanded in functions Dm with only

FIG. 2. The ground-state (l = 0) and excited-state (l = 1,2,3)
energies divided by

√
q for k = 0 as function of the interaction

strength q in units of L−2. We plot the exact energies (solid lines)
vs the approximate energies (dashed lines) from the expansion in
Eq. (14).

even values of m. This follows directly from the derivation
by Sips [44] but we see with hindsight that this condition is
necessary to make the Mathieu cosine satisfy Cl(z + π ; q) =
(−1)lCl(z; q). Namely, if we replace z by z + π then the
variable u changes to −u, yielding this desired property for
a series of the form (13) since Dm(−u) = (−1)mDm(u). The
Sips expansion, Eq. (13), will be used in the next section to de-
termine the large interaction expansion of the density response
function.

We conclude the section with a remark on the eigenenergies
of the quantum ring. We can obtain an asymptotic expansion
for them as the work of Sips also derives the large q behavior
of the Mathieu characteristic values in terms of an asymptotic
series expansion in power of q1/2 (see Appendix B). Taking
the first few leading orders, we obtain the following expression
for the eigenenergies of the quantum ring:

E±
kl =

(
π

L

)2[
k2 + 2

√
q (2l + 1) − 1

4
(2l2 + 2l + 1)

+ (2l + 1)

128
√

q
[(2l + 1)2 + 3]

]
+ O(q−1). (14)

The asymptotic expansion is the same for the singlet and triplet
energies as their difference becomes exponentially small in the
large q limit (see Appendix B). To illustrate the q dependence
of the eigenenergies, we present in Fig. 2 some of the lowest
eigenvalues and their asymptotic expansion from Eq. (14) as a
function of q. We see that the asymptotic expansion converges
more slowly for higher values of l, and for these l we need
high values of q in order to have a reliable estimate.

III. DENSITY RESPONSE OF STRONGLY
INTERACTING ELECTRONS

After having discussed the two-particle wave function and
energy spectrum of the system, let us now move to its response
properties. Particularly relevant to TDDFT is the induced
density change δn(r,t) when a small time-dependent external
potential δv(r,t) is applied. They are related by the retarded

042505-4



TIME-DEPENDENT DENSITY-FUNCTIONAL THEORY FOR . . . PHYSICAL REVIEW A 95, 042505 (2017)

density response function χ (rt,r′t ′) as follows:

δn(r,t) =
∫

dr′
∫

dt ′ χ (rt,r′t ′)δv(r′,t ′), (15)

where χ is defined via

χ (rt,r′t ′) = δn(r,t)
δv(r′,t ′)

= −iθ (t − t ′)〈�0|[n̂H (r,t),n̂H (r′,t ′)]|�0〉, (16)

where n̂H is the density operator in the Heisenberg picture and
�0 is the ground state of the system. Since the unperturbed
system is time independent, the density response function is a
function of the relative time τ = t − t ′ only and we can Fourier
transform it with respect to τ :

χ (r,r′,ω) =
∫

dτ χ (r,r′,τ ) eiωτ .

Before addressing in greater detail the properties of χ of the
quantum ring in the large interaction limit, let us first make
some considerations about the static density response function
in a more general context.

A. Static density response in the strong interaction limit

Let us consider an interacting many-electron system in its
ground state. The Hamiltonian consists of a kinetic energy
operator, an external potential v(r), and a two-body interaction.
If we consider a small variation δv(r) in the static external
potential, the ground-state density will vary by an amount
δn(r), which can be expressed as

δn(r) =
∫

dr′ χ (r,r′) δv(r′), (17)

where χ (r,r′) = χ (r,r′,ω = 0) is the static density response
function. Let us now consider a shifted potential v′(r) =
v(r + R). The ground-state density for this new potential
is given by n′(r) = n(r + R). For small translations, we
can write that δn(r) = n′(r) − n(r) = R · ∇n(r) and similarly
δv(r) = v′(r) − v(r) = R · ∇v(r). Since this is valid for all
small vectors R, we find from Eq. (17) that

∇n(r) =
∫

dr′ χ (r,r′) ∇′v(r′). (18)

This equation relates the gradient of the external potential to
the gradient of the ground-state density, and amounts to the
static limit of an equation derived for the dynamic density
response function by Vignale [48].

Let us now consider a system in which we scale the two-
body interaction with a parameter λ and let us choose the
external potential vλ(r) in such a way that the density n(r) is
the same for all values of λ. According to the Hohenberg-Kohn
theorem [49], such a potential is unique when it exists. For such
a system, the density response function will depend on λ as
well and Eq. (18) becomes

∇n(r) =
∫

dr′ χλ(r,r′) ∇′vλ(r′). (19)

Let us now consider the limit of very large values of λ.
One can show, for a general inhomogeneous system, that

asymptotically vλ(r) = λu(r) + · · · , where u(r) is the so-
called strictly correlated electron potential [32,33,50]. The
result is intuitively clear as the linearly growing repulsive two-
body interaction must be compensated by a linearly growing
attractive one-body potential in order to keep the density profile
constant. This has consequences for the behavior of χλ. We
consider two cases. Let us first assume that for λ → ∞ the
response function χλ attains a finite value α(r,r′). Because the
left-hand side of Eq. (19) is independent of λ, this implies that

0 =
∫

dr′ α(r,r′) ∇′u(r′), (20)

which means that the three vector components of ∇u must be
eigenfunctions of α with zero eigenvalue. Since the density
response function reaches a finite limit, the system does not
become rigid even when the interaction becomes infinitely
large. This is a possible situation in systems in which the
Hamiltonian by a coordinate transformation can be separated
in two parts, in which one of the parts is weakly dependent
on the interaction strength. That such inhomogeneous systems
exist is demonstrated for the harmonic model system described
in Appendix A and for which we demonstrate that Eq. (20) is
indeed valid.

A probably more common situation is that such a separation
is either not possible or that both parts of such a Hamiltonian
are still strongly λ dependent. In this case, one would expect
that the energy required to excite the system grows with λ, and
as such the density response function would vanish for large
λ. If this is the case, it is to be expected that χλ in Eq. (19)
asymptotically behaves as

χλ(r,r′) = 1

λ
β(r,r′) + · · · , (21)

where β is a λ-independent function and the terms that
follow decay faster than 1/λ. This means that for a given
perturbation δv(r), the density response δn(r) decays as 1/λ

and therefore the strong interaction makes the system more
rigid and suppresses density variations. In such a case, Eq. (19)
reduces to

∇n(r) =
∫

dr′ β(r,r′) ∇′u(r′), (22)

which is an exact equation for the leading order in λ.
When we finally consider systems in which the ground-

state density and external potential are spatially constant, the
reasoning that we carried out does not apply anymore since
the gradients in Eq. (19) are identically zero. However, such
systems are homogeneous, which implies that the center of
mass can be separated off and we can therefore expect the
response function to attain a finite value in the large interaction
limit. This is exactly the case of our quantum ring model.
Indeed, we saw in Eq. (11) that the quantum ring admits
excitation energies that are independent of the interaction
strength and these correspond to excitations that only change
the center-of-mass wave function and do not affect the relative
probability distribution of the particles. As we will see in
more detail below, such excitations give a contribution to the
density response function that survives in the large interaction
limit, while the remaining excitations give a contribution which
behaves as in Eq. (21).
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It is interesting to connect this analysis to the f -sum rule
for the dynamic density response function. In a system where
the density is kept independent of λ with vλ(r), the f -sum rule
attains the form [51]

1

π

∫
dω ω χλ(r,r′,ω) = ∇[n(r)∇δ(r − r′)]. (23)

We therefore see that the frequency integration removes the
λ dependence. This is not in contradiction with Eq. (21).
Although the density response function itself can become
very small for large λ, the integrand in Eq. (23) can remain
finite as it is weighted by the frequency ω. As a consequence
the integral gets contributions proportional to the excitation
energies, which grow with increasing interaction strength.

B. Exact density response of the quantum ring

After having discussed the general static case, we now turn
our attention to the exact dynamical density response function
of the quantum ring. Inserting a complete set of eigenstates
of the Hamiltonian Ĥ from Eq. (1) into the one-dimensional
analog of Eq. (16), we find the Lehmann representation [51]
of the retarded response function

χ (x,x ′,ω) =
∑

k,l,p=±

[
〈�+

00|n̂(x)
∣∣�p

kl

〉〈
�

p

kl

∣∣n̂(x ′)|�+
00〉

ω − �E
p

kl(q) + iη

− 〈�+
00|n̂(x ′)

∣∣�p

kl

〉〈
�

p

kl

∣∣n̂(x)|�+
00〉

ω + �E
p

kl(q) + iη

]
, (24)

where we defined the excitation energies as �E
p

kl(q) =
E

p

kl(q) − E+
00(q). The expression contains an infinitesimal

parameter η > 0 that arises from the Fourier transform of
the Heaviside function and the limit η → 0 is implied after
the evaluation of all terms. Furthermore, n̂(x) is the density
operator in the Schrödinger picture and p = ± labels the
singlet or triplet eigenstates. The label k runs over all positive
and negative integers while l runs over non-negative integers,
with the condition that both are even or both are odd. The
expression in Eq. (24) is simplified by the fact that the triplet
terms vanish because the triplet spin function is orthogonal to
the singlet spin function of the ground state, which yields
〈�+

00|n̂(x)|�−
kl 〉 = 0. The remaining nonzero terms can be

evaluated as

〈�+
00|n̂(x1)|�+

kl 〉 = 2
∫ L

0
dx2 ψ+∗

00 (x1,x2)ψ+
kl (x1,x2)

= 2

L
e2πikx1/LDkl(q), (25)

where ψ+
kl denotes the spatial part of the singlet wave function

of Eq. (6) expressed in the original coordinates and the
excitation amplitudes Dkl(q) read

Dkl(q) = 2

π

∫ π

0
dz C0(z; q)Cl(z; q)e−ikz. (26)

The amplitude Dkl(q) has a number of properties directly
related to properties of the Mathieu functions. Since Cl(z; q) is
real, D∗

kl(q) = D(−k)l(q), and as a consequence of the orthog-
onality of the Mathieu functions, D0l(q) = δl0. Moreover, the
fact that Cl(z + π ; q) = (−1)lCl(z; q) and that these functions

are even in z leads to Dkl(q) = (−1)k+lD∗
kl(q). Making use of

the symmetry properties of Dkl(q) described, combined with
�E+

kl(q) = �E+
(−k)l(q), yields the following expansion of the

response function:

χ (x,x ′,ω) = 1

L

∞∑
k=−∞

χ (k,ω) e2πik(x−x ′)/L, (27)

where

χ (k,ω) = 4

L

∑
l

[ |Dkl(q)|2
ω − �E+

kl(q) + iη
− |Dkl(q)|2

ω + �E+
kl(q) + iη

]

= 8

L

∑
l

�E+
kl(q) |Dkl(q)|2

(ω + iη)2 − [�E+
kl(q)]2

, (28)

in which the sum runs over even values of l for k even and over
odd values of l for k odd. We see from Eq. (27) that χ (k,ω)
can be regarded as the discrete Fourier transform of χ (x,x ′,ω)
with respect to the relative spatial coordinate x − x ′ as was
to be expected on the basis of the symmetry of the system.
It will be now convenient to define the spatially discrete and
temporally continuous Fourier transform of a function f (x,t)
and its inverse as

f (k,ω) =
∫ L

0
dx e− 2πik

L
x

∫ ∞

−∞
dt eiωtf (x,t), (29)

f (x,t) = 1

L

∞∑
k=−∞

e
2πik

L
x

∫ ∞

−∞

dω

2π
e−iωtf (k,ω). (30)

By using this Fourier transformation in Eq. (15) we rewrite the
density response as

δn(k,ω) = χ (k,ω)δv(k,ω), (31)

in which k is an integer and ω is a continuous variable. We
will make use of this relation below. We have now obtained an
explicit form of the density response function that allows for
an analytical analysis in the strong interaction limit.

However, before moving to that, we briefly give the form
of the response function for the noninteracting system, i.e.,
q = 0, which in the density functional context will be the
same as the Kohn-Sham response function, since the system
has the same density for all values of q. For the noninteracting
case, the Mathieu characteristic value is a+

l (0) = l2 and the
Mathieu cosine functions are given by C0(z; 0) = 1/

√
2 and

Cl(z; 0) = cos(lz) for l � 1. The excitation energies are given
by Eq. (9),

E+
kl(0) =

(
π

L

)2

[k2 + l2],

while the eigenstates are given by Eq. (6) as

ψ+
kl (x1,x2) = 1√

2

[
φk+l

2
(x1)φk−l

2
(x2) + φk+l

2
(x2)φk−l

2
(x1)

]
, (32)

in which k ± l is always even. Note that l �= |k| yields a
doubly excited state. The corresponding excitation amplitude
can be calculated from Eq. (26). Apart from the amplitude
D00(0) = 1, which does not contribute to the Lehmann sum

042505-6



TIME-DEPENDENT DENSITY-FUNCTIONAL THEORY FOR . . . PHYSICAL REVIEW A 95, 042505 (2017)

since �E+
00 = 0, for (kl) �= (00) we have that

Dkl(0) =
{

1/
√

2 if l = |k|√
2

π
ik

k2−l2 [(−1)k+l − 1] if l �= |k|. (33)

Since only terms where k + l is even contribute, we see that the
only nonzero excitation amplitudes are the ones with l = |k|.
This implies the absence of double excitations in the density-
response function, a well-known property of noninteracting
systems [4,52]. Inserting Eq. (33) into Eq. (28) we find that
the noninteracting response function χs(k,ω) is given by

χs(k,ω) = 4

L

�E+
kk(0)

(ω + iη)2 − [�E+
kk(0)]2

(34)

with �E+
kk(0) = 2(πk/L)2. We note that in k space, χs has

only a single pole for ω > 0 and no zeros.
Having determined the noninteracting response function,

it now remains to study the density response function in
the complementary limit of very strong interactions. For this
purpose, we need to study the excitation energies �E+

kl(q) and
excitation amplitudes Dkl(q) in the limit of large q. This is the
topic of the next section.

C. Strong interaction expansion of the dynamic density
response function

Let us focus on the excitation energies �E+
kl(q) and the

excitation amplitudes Dkl(q) for large q. Because for �Ekl(q),
explicit asymptotic expansions are known (see Appendix B),
and this leaves us with the determination of Dkl(q) defined by
Eq. (26). We start by inserting the Sips expansion of Eq. (13)
into Eq. (26), which gives

Dkl(q) = 2

π

∞∑
n1,n2=−∞

c2n1,0(q)c2n2,l(q)J n1n2
kl (q), (35)

where we defined

J n1n2
kl (q) =

∫ π

0
dz e−ikzD2n1 (u)D2n2+l(u), (36)

where u(z) = √
2 q1/4 cos z. Since the coefficents c2n,l(q) are

known (see Appendix B for explicit expressions), it remains to
evaluate J n1n2

kl (q). Changing the integration variable to u and

defining b = √
2q1/4 gives the expression

J n1n2
kl (q) = 1

b

∫ b

−b

du fk

(
u

b

)
D2n1 (u)D2n2+l(u), (37)

where we defined the function

fk(x) = e−ik arccos(x)

√
1 − x2

=
∞∑

r=0

ar (k) xr (38)

and its Taylor coefficients ar (k). Inserting this Taylor series
into Eq. (37) then gives the expansion

J n1n2
kl (q) =

∞∑
r=0

ar (k)

br+1

∫ b

−b

du ur D2n1 (u)D2n2+l(u),

where the interchange of integral and sum is allowed as we
have an absolutely convergent series. Due to the Gaussian
decay of the functions Dn(u), in the limit q → ∞, we make
an error which, as a function of q, decays faster than any
polynomial function if we replace b in the limits of the integral
by infinity. We therefore obtain the asymptotic expansion

J n1n2
kl (q) =

∞∑
r=0

ar (k)I l
n1n2,r

(
√

2q1/4)r+1
, (39)

where we introduced coefficients of the form

I l
n1n2,r

=
∫ ∞

−∞
du ur D2n1 (u)D2n2+l(u). (40)

This integral can be computed analytically, and the explicit
expression is given in Appendix C. Also note that due to the
parity properties of the integrand I l

n1n2,r
vanishes unless r and

l are both even or both odd. Therefore, depending on whether
l is even or odd, the summation index r in Eq. (39) can be
taken to run only over even or only over odd values.

Expression (39) together with Eq. (35) gives an explicit
procedure to calculate the large q expansion of the excitation
amplitudes. The asymptotic expansions of Dkl(q) and of
|Dkl(q)|2 are given in Appendix C in Eqs. (C5) and (C6)
respectively. Together with the asymptotic expansion for the
excitation energies, Eq. (B4), inserted into Eq. (28), we find
that the asymptotic expansion of the density response function
is given by

χ (k,ω) =
⎧⎨
⎩

8
L

(πk/L)2

(ω+iη)2−( πk
L )4

[
1 − k2

4
√

q
+ k2(k2−2)

32q

] + O(q−3/2) if k is even

L
2π2

{− k2

q
+ k2(k2−1)

2q3/2 − k2

q2

[
368k4−928k2+947

2304 + 1
16

(
L
π

)4
ω2

]} + O(q−5/2) if k is odd.
(41)

From this expression, we can draw a number of interesting
conclusions. We find that the response function behaves quite
differently for even and odd Fourier coefficients in the strong
interaction regime. If we apply a potential with general
coefficients δv(k,ω) to the system, the density change δn(k,ω)
is strongly suppressed for odd k as χ (k,ω) becomes very
small. In this limit it will therefore mainly have even Fourier
coefficients, which implies that δn(x,t) = δn(x + L

2 ,t), i.e.,
the density change at antipodal points of the ring is the
same. If we, however, apply a potential with only odd Fourier
coefficients, the density change has the symmetry δn(x,t) =

−δn(x + L
2 ,t) and is therefore opposite in antipodal points of

the ring. From Eq. (41) we find that the leading term in real
space in this case is given by

δn(x,t) = n0

q

(
L

2π

)4

∂2
x δv(x,t). (42)

We can understand the dependence on q as follows. The
generation of an antisymmetric antipodal density requires
excitation to states with an odd number of nodes in the
relative wave function, which requires a large energy in the
strong interaction limit and therefore the density response is
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FIG. 3. The real part of χ (k = 2,ω) in units of L (top) and fHxc(k = 2,ω) in units of L−1 (bottom) for different values of the interaction
strength q. The exact results are obtained by numerical integration, and the expansion of χ and fHxc is taken up to the same order as shown in
Eqs. (41) and (52).

suppressed for large interaction strength. From Eq. (42) we
also see that the density increases instantaneously around
the points where the potential has positive curvature. The
instantaneous nature of the response has a simple explanation.
If we perturb the system with a potential δv(k,ω) which is
only nonzero for frequencies ω well below the first excitation
energy, the temporal variation of the perturbation is much
slower than a typical time scale of the free evolution of
the system and the density response can be regarded as
instantaneous. Since the excitation energies �E+

kl for odd k

(which must have odd l as well) increase proportionally to
√

q,
the density response function in this case is well approximated
by a frequency-independent function for ω � √

q, which
explains the instantaneous dependence of the density variation
on the perturbation in Eq. (42).

For even values of k, the density response function has
a more interesting frequency dependence. In the strong
interaction limit

lim
q→∞ χ (k,ω) = 8

L

(πk/L)2

(ω + iη)2 − (
πk
L

)4 . (43)

The poles of this response function correspond to the
center-of-mass excitations of Eq. (11). Being independent of
q, they are not shifted towards infinity when we increase the
interaction strength. This is a peculiarity of the quantum ring
system as the Hamiltonian is separable in a λ-dependent and a
λ-independent part. This happens also for some other homoge-
neous systems such as the three-dimensional electron gas with
periodic boundary conditions or for electrons restricted to the
surface of a sphere [53]. The analysis based on Eq. (19) shows
that such a separation is usually not possible in inhomogeneous
systems. When it is possible, both parts will generally still
depend on λ (see Appendix A for an example).

To illustrate the accuracy of the expansion in Eq. (41) we
display the exact response function and the expanded one in
the top panels of Fig. 3 for k = 2 and for some values of
the interaction strength. For small interactions (q = 1/3), the

exact response function has two poles; one is approximately
at the same location as the Kohn-Sham response function
(ω = 2(πk/L)2), while a new pole with a small weight appears
at the center-of-mass excitation energy at ω = (πk/L)2. The
expansion captures this pole, albeit with a very different
weight. When we increase the interaction strength, the pole
originally at the Kohn-Sham energy will shift to higher
energies to a position proportional to

√
q, while the pole

corresponding to the center-of-mass excitation stays fixed
and increases in weight. Already at q = 5, the asymptotic
expansion yields good results for this k value. We thus see
that the expansion is accurate for frequencies that are small
compared to

√
q. This result was to be expected since in the

expansion of Eq. (41) we treated the frequency ω as a constant
that is small compared

√
q.

Having obtained the exact response function, we have
obtained all information needed to study the xc kernel of
TDDFT, which will be the topic of the next section.

IV. TDDFT IN THE STRONG INTERACTION LIMIT

A. The exchange-correlation kernel

In TDDFT an effective noninteracting system, known as
the Kohn-Sham system, is constructed in such a way as to
have exactly the same density as the interacting many-particle
system of interest. The external potential in this system,
vs([n]; rt), is a functional of the density [6,41] and is often
written as follows

vs(rt) = v(rt) +
∫

dr′ w(r,r′)n(r′,t) + vxc(rt). (44)

Here v(rt) is the external potential of the interacting system
of interest and w(r,r′) is the two-particle interaction of that
system. The second term in Eq. (44) is the Hartree potential
and the last one is the exchange-correlation (xc) potential.
Taking the functional derivative of Eq. (44) with respect to the
density, one obtains

χ−1
s (rt,r′t ′) = χ−1(rt,r′t ′) + fHxc(rt,r′t ′). (45)
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Here χ−1
s is the inverse of the Kohn-Sham density response

function whereas χ−1 is the inverse of the density response
function of the interacting system and fHxc, the Hartree-xc
kernel, is defined as

fHxc(rt,r′t ′) = δvHxc(rt)
δn(r′t ′)

, (46)

where vHxc is the sum of the Hartree and the xc potential.
Equation (45) is commonly used to calculate χ from the
knowledge of χs at the price of approximating fHxc.

For the discussion in the next section, it is important to
note that the functional derivative is not a uniquely defined
function [41,54] due to the fact that for a system with a fixed
number of particles the density change must integrate to zero
at any time, i.e.,

0 =
∫

dr δn(rt). (47)

Let us define a new function

f̃Hxc(rt,r′t ′) = fHxc(rt,r′t ′) + g(r,t,t ′) + h(r′,t,t ′) (48)

with g and h arbitrary functions. The change in the Hartree-xc
potential produced by the kernel of Eq. (48) due to a density
change δn is given by

δṽHxc(rt) =
∫

dr′dt ′f̃Hxc(rt,r′t ′)δn(r′t ′)

=
∫

dr′dt ′fHxc(rt,r′t ′)δn(r′t ′)

+
∫

dr′dt ′[g(r,t,t ′) + h(r′,t,t ′)]δn(r′t ′)

= δvHxc(rt) + C(t), (49)

where the integral over g integrates to zero as a consequence
of Eq. (47) and the integral over h yields a function C(t)
of time t only, which is merely a gauge of the potential.
We therefore see that f̃Hxc and fHxc are physically equivalent
integral kernels. The quantity that is defined unambiguously1

is the mixed spatial derivative

∇r∇r′ f̃Hxc(rt,r′t ′) = ∇r∇r′fHxc(rt,r′t ′), (50)

a property that will be used below.
Let us turn to the specific case of the quantum ring. The

density response function is diagonal in the momentum-energy
representation and for the Fourier components the following
relation holds:

fHxc(k,ω) = 1

χs(k,ω)
− 1

χ (k,ω)
. (51)

By Fourier transforming the kernel fHxc we impose a depen-
dence on the relative coordinate in real space, which reduces
the ambiguity of Eq. (48) to that of adding an arbitrary spatially
constant function. In Eq. (51) this freedom is reflected in the
fact that the kernel is well defined for all k values except
for k = 0, since in this case both the response functions
vanish. For the homogeneous quantum ring, the Kohn-Sham
response function coincides with the response function of
truly noninteracting electrons of Eq. (34). Using this equation,
together with the expansion of Eq. (41), we obtain an explicit
expression for fHxc in the strong interaction limit:

fHxc(k,ω) =
⎧⎨
⎩

− 3π2k2

8L
− 1√

λ

L2√
V0

1
16π

[
ω2 − (

πk
L

)4] + 1
λ

L
V0

k2+2
64

[
ω2 − (

πk
L

)4] + O(λ−3/2) if k is even

λ V0L

2k2 + √
λ

√
V0π(k2−1)

2k2 − π2(368k4+224k2+371)
1152k2L

+ O(λ−1/2) if k is odd
(52)

where we have reintroduced the variable λ rather than q as the
λ notation is commonly used in the density functional context,
which will be central for the discussion in the next section.
Since these quantities only differ by a numerical prefactor [see
Eq. (4)] we will refer to the large interaction regime as the
regime in which either of these two variables tends to infinity.

To illustrate the accuracy of the expansion in Eq. (52) we
display the exact fHxc kernel and the expanded one in the
bottom panels of Fig. 3 for k = 2 and some values of the
interaction strength. We see that the corresponding asymptotic
expansion for fHxc is accurate up to the lowest excitation
energy corresponding to a change in the relative wave function.
In this energy region fHxc has a pole at an energy corresponding
to a zero in χ , as a consequence of Eq. (51). It is worth
noticing that since the noninteracting response function has no
zeros, there is no pole in fHxc originating from the first term
in Eq. (51). This is peculiar to our quantum ring system for
which the noninteracting response function has only a single
pole for ω > 0. Instead, for a general system, the Kohn-Sham
response function will have multiple poles and zeros which
implies that, to order λ0, fHxc is frequency dependent, causing
the adiabatic approximation to fail in this order. In our system,

fHxc for even k tends to a frequency-independent function
for all ω when the interaction strength approaches infinity. Its
static value, given by fHxc = − 3L

8 (πk
L

)
2 = χ−1

s [k,ω = (πk
L

)
2
],

is the value needed to shift the Kohn-Sham pole to the q → ∞
pole.

For the odd k values (not shown here), all poles in the
response function shift to infinity as q → ∞. The asymptotic
expansion for fHxc captures this, and the kernel becomes
frequency independent in this limit. In fact, for odd values
of k in Eq. (52), all the leading terms up to order λ0 are
frequency independent. However, frequency-dependent terms
will appear to order λ−1/2 (not presented here) as is also the
case for even k.

For the discussion in the next section it is useful to recast the
kernel in real space. The expressions in Eq. (52) are sufficient
to calculate this quantity to order λ0 in real space using the

1Note that Ref. [31] did not discuss the possible addition of arbitrary
functions of one spatial variable to the kernel.
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Fourier transform of Eq. (53)

fHxc(r,ω) = 1

L

∞∑
k=−∞

fHxc(k,ω)e
2πikr

L (53)

and r = x − x ′ is the relative distance between the points x and
x ′, which are the one-dimensional counterparts of the spatial
points in Eq. (46). Since x and x ′ are both in the interval from
0 to L we have that r ∈ [−L,L]. We find that

fHxc(r,ω) = λf1(r) +
√

λf2(r) + f3(r) + O(λ−1/2). (54)

The leading term is given explicitly by

f1(r) = V0π
2

2L

[
−|r| +

∣∣∣∣r + L

2

∣∣∣∣ +
∣∣∣∣r − L

2

∣∣∣∣ − 3L

4

]
(55)

in which we choose the arbitrary constant function [see the
discussion below Eq. (51)] such that the Fourier coefficient of
f1 becomes zero for k = 0. For f2 we find (up to a constant)
that

f2(r) =
√

V0π

4

[
δ(r) − δ

(
r + L

2

)
− δ

(
r − L

2

)]

−
√

V0π
3

2L2

[
−|r| +

∣∣∣∣r + L

2

∣∣∣∣ +
∣∣∣∣r − L

2

∣∣∣∣ − 3L

4

]
. (56)

Since in the next section we will focus mostly on f1 and f2,
we do not report here the real space representation of f3. In
the next section, we will show how f1 and f2 can be calculated
in an alternative manner using the SCE theory in the adiabatic
approximation.

B. Expanding the xc kernel in the theory of strictly
correlated electrons

To date, no good and reliable approximations for electrons
in the strong correlation regime have been developed within
TDDFT. A ground-state theory of so-called strictly correlated
electrons (SCE) [32,50] has been constructed and applied
within the adiabatic approximation to calculate the xc kernel
to the leading order in the interaction strength. In this section,
we will first benchmark this approximation against the exact
solution for the quantum ring model and then derive and
compare the next order.

Let us begin with a brief overview of the ingredients of SCE
theory that we will use. The Hartree-xc energy for a system
with interaction strength λ can be written as [55]

Eλ
Hxc =

∫ λ

0
dλ′ Wλ′[n], (57)

where we defined

Wλ[n] = 〈�λ[n]|Ŵ |�λ[n]〉. (58)

In this expression, Ŵ is the two-particle interaction and �λ[n]
is the ground-state wave function of a system with a local
external potential, interaction λŴ , and ground-state density n.

In the strong interaction limit, Wλ[n] can be expanded as [33]2

Wλ[n] = VSCE[n] + VZPE[n]√
λ

+ O(λ−3/2), (59)

where the first term is the SCE energy, which has the explicit
form

VSCE[n] = 1

2

N∑
i=2

∫
dr n(r)w(|r − fi([n]; r)|), (60)

where w is the two-particle interaction which we assume
to depend only on the distance between the particles. The
functions fi([n]; r) are the so-called comotion functions, which
specify the position of N − 1 electrons given the position
of one electron at r. The second term in Eq. (59) contains
the so-called zero-point energy (ZPE), which describes the
vibrations of the electrons around their equilibrium positions
and is given explicitly as

VZPE[n] = 1

2

∫
dr

n(r)

N

D(N−1)∑
n=1

ωn(r)

2
, (61)

where D is the spatial dimensionality of the system and ωn are
the harmonic frequencies. Inserting Eq. (59) into Eq. (57), we
find the large λ expansion of the Hartree-xc energy to be

Eλ
Hxc = λVSCE[n] + 2

√
λVZPE[n] + O(λ0). (62)

The ground-state theory can be used in the adiabatic ap-
proximation [31] to find an approximate exchange-correlation
kernel from

f A
Hxc(rt,r′t ′) = δ2Eλ

Hxc

δn(r)δn(r′)
δ(t − t ′), (63)

where we added the superscript A to indicate that we make
the adiabatic approximation. This approximation yields a
frequency-independent Hartree-xc kernel when transformed
to frequency space, which we denote as f A

Hxc(r,r′). The
second-order variation of Eq. (62) with respect to the density
gives an expansion in orders of

√
λ for the Hartree-xc kernel:

f A
Hxc(r,r′) = λ f ASCE(r,r′) +

√
λ f AZPE(r,r′) + O(λ0), (64)

where we defined the adiabatic SCE and ZPE kernels as

f ASCE(r,r′) = δ2VSCE

δn(r)δn(r′)
, (65)

f AZPE(r,r′) = 2
δ2VZPE

δn(r)δn(r′)
. (66)

Let us now turn again to the case of the quantum ring. In this
case, there are two electrons and just one simple comotion

2Strictly speaking, the absence of a term of order λ−1 in this
expansion has only been shown for a Coulomb system but we find it
to be true in our model as well.
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function f : [0,L] → [0,L] given by

f(x) =
{

x + L
2 if x ∈ [

0,L
2

)
x − L

2 if x ∈ [
L
2 ,L

]
.

(67)

If one electron is at x, this function simply puts the
other electron at the antipodal point of the quantum ring.
From this comotion function, it is straightforward to calculate
the SCE energy. Since |x − f(x)| = L/2, we have from our
interaction w(x) = V0 cos2(πx/L) in Hamiltonian (1) that
w(|x − f(x)|) = 0 and therefore VSCE = 0 for our density.
Physically this means that the electrons are simply localized
at the bottom of a potential well with zero energy.

To next order, oscillations around these equilibrium po-
sitions start to appear. These zero-point oscillations give an
energy contribution which can be calculated using Eq. (61).
For a one-dimensional two-electron system there is only one
nonzero harmonic frequency given by [56]

ω1(x) =
√

w′′(|x − f(x)|)
(

n(x)

n[f(x)]
+ n[f(x)]

n(x)

)
, (68)

where w′′(x) = ∂2
xw(x). If we calculate this frequency for

our quantum ring, we find ω1(x) = 2π
√

V0/L and VZPE =
π

√
V0/(2L). We can verify that this is in accordance with the

exact strong interaction expansion of the Hartree-xc energy.
Since the Kohn-Sham kinetic energy as well as the external
potential is zero for the quantum ring system, Eλ

Hxc simply
coincides with the total energy, which is known in the strong
interaction limit from the large-q expansion of the lowest
Mathieu characteristic value (see Appendix B). This gives

Eλ
Hxc = π

√
V0

L

√
λ − π2

4L2
− π3

16L3
√

V0

1√
λ

+ O(λ−1), (69)

where the leading coefficient indeed exactly gives 2VZPE. The
expansion of Wλ can be calculated from Eq. (57) to give

Wλ = dEλ
Hxc

dλ
= π

√
V0

2L

1√
λ

+ π3

32L3
√

V0

1

λ3/2
+ O(λ−2).

(70)

This result agrees with a direct calculation of Wλ using
the Sips expansion of the Mathieu functions and indeed has
the structure of the expansion in Eq. (59) in which we also
included the term to order λ−3/2.

Let us turn to the calculation of the kernels of Eqs. (65)
and (66).

The ASCE kernel is obtained from the expression derived
in Ref. [31] and reads

f ASCE(x,x ′) = −
∫ x

0
dy

w′′(|y − f(y)|)
n[f(y)]

× [θ (y − x ′) − θ (f(y) − x ′)]

= f1(x − x ′) − f1(x) − f1(x ′) + f1(0), (71)

where f1 is the function given in Eq. (55). Because of the
freedom in Eq. (48) f ASCE is physically equivalent to the kernel
f1(x − x ′) and agrees with the leading term in the expansion
of Eq. (54) in the strong interaction limit. Both kernels are
shown in Fig. 4. Since f1(x − x ′) has a simpler shape, we will
restrict ourselves to this function. The kernel describes how a

FIG. 4. Top: The Hxc kernel f ASCE(x,x ′) of Eq. (71). Bottom:
The physically equivalent Hxc kernel f1(x − x ′) of Eq. (55). The x

and x ′ axes are in units of L and fHxc is given in arbitrary units.

density variation induces a change in vHxc. To leading order in
λ we have

δvHxc(x,t) = λ

∫
dx ′f1(x − x ′)δn(x ′,t).

By taking the second derivative of this equation, we obtain

∂2
x δvHxc(x,t) = λ

V0π
2

L
[−δn(x,t) + δn(x + L/2,t)

+ δn(x − L/2,t)], (72)

where we stress that δn(x,t) is periodic with L. Since f1(x −
x ′) is linear everywhere except at the kinks at x − x ′ = 0,

± L/2, the second derivatives yield δ functions at these points.
Also note that the sign of the density change yields the
curvature of the induced potential. Equation (72) has some
interesting consequences. If we make a localized density
variation δn(x,t) in a very small interval of the ring, there
will not only be a change δvHxc in the same interval, but at
the same time a similar change in the potential with opposite
sign in an antipodal interval. This shows very clearly that
the Hxc-potential depends nonlocally, but instantaneously, on
the density.

Let us analyze the next orders in the strong interaction
expansion. The calculation of f AZPE allows for a comparison
with the next leading term in Eq. (54), which is proportional
to

√
λ. The kernel f AZPE was obtained by taking the second

functional derivative of the one-dimensional counterpart of
Eq. (61), using Eq. (68) and the functional derivative of the
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FIG. 5. The static fHxc(k,ω = 0)/q as function of q, for k = 3
(solid lines) and k = 5 (dashed lines) in units of L−1. We show the
exact kernel obtained by numerical integration, and compare ASCE,
ASCE+AZPE, and ASCE+AZPE+f3 (denoted by f3 in the figure)
coming from Eq. (54). Note that we plot the kernel as function of q

instead of λ [see Eq. (4)] in order to be consistent with the previous
figures.

comotion functions (derived already in Ref. [31]). We also find
agreement between this expression and that of the next leading
term in Eq. (56), i.e., f AZPE(x,x ′) = f2(x − x ′) modulo the
addition of arbitrary functions of x and x ′ separately [see
again Eq. (48)]. We observe that the first two leading terms of
the expansion of the Hartree-xc kernel from the adiabatic SCE
theory agree with the exact results for the quantum ring. An
interpretation of this fact will be presented below.

We have thus seen that, in this model, the ASCE and AZPE
terms agree with the terms f1 and f2 respectively of the exact
asymptotic expansion. To better elucidate their role in the
strong interaction limit, we show in Fig. 5 the first three terms
contributing to fHxc, all scaled by λ, and compare them with
the expression for the exact kernel, in Fourier space for k = 3
and k = 5. As was pointed out earlier, the accuracy of the
expansion depends on the value of k: high k values require
higher λ values to achieve better accuracy. The first term, that
is the ASCE, is constant, while the second one, that is the
AZPE, only improves on it for large λ values and worsens
it for smaller ones, as one would expect for an asymptotic
expansion. The third term, beyond the AZPE, also exhibits a
non-negligible contribution in the small-λ regime.

We will now offer a physical interpretation of the above
terms and make some considerations about their properties
in the case of more general systems than the quantum
ring model. In the (infinitely) strong interaction limit, a
given system behaves very rigidly, since the position of the
reference electron determines the positions of all the remaining
electrons. Upon application of a perturbation, the response of
the system is instantaneous, or adiabatic, while maintaining its
rigidity, unless special symmetries are present. This behavior is
likely to apply to a wider class of systems, both with a uniform
(such as the quantum ring) and a nonuniform density. On the
other hand, it is unclear whether the frequency independence of
f2 is equally general as we already move away from the strictly
correlated electron limit by introducing zero-point vibrations:
Thus the adiabaticity of f2 for general systems is still an open

issue. Finally, as already noted before, the third term f3 of the
expansion will be nonadiabatic for general systems.

V. CONCLUSIONS

In this work, we have considered an exactly solvable
model consisting of two interacting electrons on a quantum
ring. We focused on the response properties and calculated
the energy spectrum, the excitation amplitudes, the density
response function, and the exchange-correlation kernel of
time-dependent density functional theory. In the limit of strong
interaction, we derived the asymptotic expansion in powers of
the square root of the interaction strength for the response
function and kernel. For the kernel, we found that its leading
terms are local in time but nonlocal in space. This already
shows that the commonly used adiabatic local-density, or
semilocal, approximations will fail for such strongly correlated
systems, since they are local both in time and space. We
compared the expansion for the kernel to a similar one obtained
from the adiabatic-SCE formalism [31] which has the spatial
nonlocality built in. The leading term of the exact expansion
was found to coincide with the adiabatic-SCE kernel derived
in Ref. [31]. After working out the next order term, the
so-called zero-point energy contribution, we found that it also
coincided with the exact next-to-leading term. For our model,
the subsequent term in the expansion is still adiabatic, but we
showed that in general systems this term will be nonadiabatic.

The agreement with our exact results puts the adiabatic-
SCE and the adiabatic-ZPE approximations on firmer ground
and gives confidence in employing the formalism of strictly
correlated electrons in the adiabatic approximation for calcu-
lating response properties of strongly correlated systems.
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APPENDIX A: RESPONSE FUNCTION OF
A HARMONIC MODEL SYSTEM

To illustrate some properties of the response function in
the large interaction limit for an inhomogeneous system, let
us analyze a model system of two harmonically confined
electrons in three dimensions with a harmonic repulsion [57].
The Hamiltonian of the system is given by

Ĥ = −1

2

(∇2
1 + ∇2

2

) + 1

2
ω2

λ(|r1|2 + |r2|2) − λ

2
|r1 − r2|2,

(A1)

in which the harmonic frequency ωλ is chosen in such a way
that the density is independent of λ. Using the coordinate
transformation s = (r1 + r2)/

√
2 and r = (r1 − r2)/

√
2, the

Hamiltonian can be written as that of two independent
harmonic oscillators

Ĥ = − 1
2

(∇2
s + ∇2

r

) + 1
2ω2

λ|s|2 + 1
2ν2

λ|r|2, (A2)
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where ν2
λ = ω2

λ − 2λ. The eigenfunctions and eigenvalues of
this Hamiltonian are well known. The normalized eigenfunc-
tions are given by

�nm(s,r) = (ωλνλ)3/4
n(
√

ωλ s)
m(
√

νλ r), (A3)

where we defined the triplet of non-negative integers n =
(n1,n2,n3) and m = (m1,m2,m3) and the functions


n(x) = Hn(x)
e−|x|2/2

π3/4

in which we denoted

Hn(x) = Hn1 (x1)Hn2 (x2)Hn3 (x3)√
2|n|n1!n2!n3!

, (A4)

where |n| = n1 + n2 + n3 and Hn(x) is the Hermite polyno-
mial of order n. The energy eigenvalues are given by

Enm = ωλ

(|n| + 3
2

) + νλ

(|m| + 3
2

)
. (A5)

The ground-state wave function �0 = �00 has the explicit
form

�0(s,r) =
[
ωλνλ

π2

]3/4

e−ωλ|s|2/2−νλ|r|2/2. (A6)

From this function, the density is readily obtained as

n(x) = 2

[
β

π

]3/2

e−β|x|2 , (A7)

where we defined

β = 2ωλνλ

ωλ + νλ

. (A8)

If we insert νλ =
√

ω2
λ − 2λ into this relation, we can deter-

mine the λ dependence of ωλ as β is independent of λ. We
find

ωλ =
√

λ

2

(
y + 1

y

)
, (A9)

νλ =
√

λ

2

(
y − 1

y

)
, (A10)

where y solves the quartic equation

y4 − β

√
2

λ
y3 − 1 = 0. (A11)

In the limit of large interaction, we find that y = 1 +
β/(2

√
2λ) + O(λ−1) such that

ωλ =
√

2λ + O(1) (A12)

νλ = β/2 + O(λ−1). (A13)

We see that the harmonic frequency of the center-of-mass
mode approaches infinity, whereas the one of the relative mode
approaches a finite value. This has interesting consequences
for the excitation spectrum. For the excitation energies of the
relative mode, it implies that

lim
λ→∞

(E0m − E00) = β

2
|m| (A14)

while all other excitation energies diverge to infinite values at
large interaction strength. The latter correspond to excitations
of the center-of-mass mode. In contrast to the quantum ring,
only the excitation energies of the relative mode remain finite
in the large interaction limit, which is due to the very different
nature of the two-body interaction.

Let us turn our attention to the density response function. In
the response function, only the singlet excitations contribute.
This means that the spatial wave functions that we need to
consider are symmetric in the interchange of the particle
positions. For this to be true, the relative wave functions need
to be even and we have to require that |m| only attains even
values. The response function therefore has the form

χ (r1,r2,ω) =
∑
n,m

[
Dnm(r1)D∗

nm(r2)

ω − �Enm + iη
− Dnm(r2)D∗

nm(r1)

ω + �Enm + iη

]
,

(A15)

where �Enm = Enm − E00 are the excitation energies and we
further put the restriction that we sum over all m such that
|m| is even. The excitation amplitudes corresponding to these
excitations are given by

Dnm(r1) = 〈�0|n̂(r1)|�nm〉

= 2
∫

dr2�
∗
00(r1,r2)�nm(r1,r2), (A16)

where we rewrote the eigenfunctions in terms of the original
coordinates. Let us now consider the large interaction limit
λ → ∞ of the response function. Since only the excitation
energies of the form �E0m remain finite in this limit, we only
need to consider the excitation amplitudes of the form

D0m(r1) = 2

[
ωλνλ

π2

]3/2 ∫
dr2 Hm(

√
νλ/2(r1 − r2))

× e− ωλ
2 (r1+r2)2− νλ

2 (r1−r2)2
. (A17)

If we now use that

lim
λ→∞

[
ωλ

2π

]3/2

e− ωλ
2 (r1+r2)2 = δ(r1 + r2) (A18)

is a limit representation for the delta distribution and the fact
that νλ → β/2 in the large interaction limit, we find that

lim
λ→∞

D0m(r1) = 2

(
β

π

)3/2

Hm(
√

β r1)e−β|r1|2 . (A19)

For the response function in the large interaction limit, we
therefore obtain

α(r1,r2,ω) = lim
λ→∞

χ (r1,r2,ω)

= n(r1)n(r2)
∑

m

Hm(
√

β r1)Hm(
√

β r2)

×
[

1

ω − β

2 |m| + iη
− 1

ω + β

2 |m| + iη

]
,

(A20)

where the sum runs over m values such that |m| is even. We
see that in the large interaction limit it is still possible to excite
the relative modes of the system.
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Let us now have a look at the external potential in the strong
interaction limit

vλ(r) = 1
2ω2

λ|r|2 = λ|r|2 + O(
√

λ), (A21)

which implies ∇vλ(r) = 2λr + O(
√

λ). Since the response
function does not vanish in the large interaction limit, Eq. (20)
tells us that

0 =
∫

dr2 α(r1,r2; ω = 0) r2

must hold, where we took the static limit of the response
function of Eq. (A20). Since the polynomial functions in
Eq. (A20) are all even (since |m| is even), and r2 is an odd
function, we find that this relation is indeed satisfied.

APPENDIX B: SIPS’S EXPANSION
OF THE MATHIEU FUNCTION

In this appendix we describe the details of the expansion of
the Mathieu functions for large q. A recent general discussion
is given by Frenkel and Portugal [47], who give an overview
of various expansions for the Mathieu functions for large and
small values of q in different regions of their domain and
recursion formulas to determine the expansion coefficients.
The expansion that we are interested in for this work is the
large q expansion for the Mathieu cosine function Cl(z; q) in
the region enclosing the value z = π/2. Such an expansion
was derived originally by Sips [43–46], who developed a
systematic theory. For the Mathieu cosine, this expansion is
of the form of Eq. (13). We here give the explicit expressions
for the coefficients c2n,l(q) in Eq. (13), and for this it will be
convenient to define new coefficients g2n,l(q)

c2n,l(q) = Cl(q) g2n,l(q), (B1)

which only differ from the coefficients c2n,l(q) by a prefactor
Cl(q). This is done to ensure that g0,l(q) = 1, which is conve-
nient for a recursive calculation of the remaining coefficients
g2n,l(q) as is done in Refs. [46,47]. The prefactor Cl(q) is
chosen such that the Mathieu cosine satisfies the normalization
of Eq. (8). It has the explicit asymptotic expansion [44,46,47]

Cl(q) =
(

π
√

q

2(l!)2

)1/4(
1 + 2l + 1

8
√

q

+ l4 + 2l3 + 263l2 + 262l + 108

2048q
+ · · ·

)−1/2

.

(B2)

In terms of the new coefficients g2n,l(q), the Sips expansion of
Eq. (13) becomes [46]

Cl(z; q) = Cl(q)
∞∑

n=−∞
g2n,l(q)D2n+l(u), (B3)

where the functions Dl(u) are defined in Eq. (12) and u =√
2 q1/4 cos z. Note that the expansion here differs in the choice

of argument u compared to that of Ref. [43] by a factor
of

√
2 as we preferred to use the physicists’ convention for

the Hermite polynomials appearing in the harmonic oscillator
functions Dl . We prefer here to avoid a general discussion on

the determination of g2n,l(q) and refer the interested reader to
Refs. [46,47] for details. Instead, we give the explicit forms of
the coefficients g2n,l(q) up to order 1/q, which is sufficient for
this work:

g−8,l(q) = 1

213q
8!

(
l

8

)
,

g−6,l(q) = − 1

210q
6!

(
l

6

)
,

g−4,l(q) =
[

1

26√q
+ (l − 1)

28q

]
4!

(
l

4

)
,

g−2,l(q) = −
[

1

24√q
+ (l2 + 27l − 10)

210q

]
l(l − 1),

g0,l(q) = 1,

g2,l(q) =
[
− 1

24√q
+ (l2 − 25l − 36)

210q

]
,

g4,l(q) =
[
− 1

26√q
− (l + 2)

28q

]
,

g6,l(q) = 1

210q
, g8,l(q) = 1

213q
,

where we define ( n

m
) = 0 if n < m. From the formulas given

in Ref. [47], it is readily seen that to know the Sips expansion
to order q−k/2 we need to know the coefficients g2n,l(q) for
n ∈ {−2k, . . . ,2k}. For example, the knowledge of the next
order q−3/2 would need the knowledge of the coefficients from
g−12,l(q) up to g12,l(q); see, for example, Ref. [46].

To show the accuracy of the Sips expansion we display
in Fig. 6 the Mathieu cosine Cl(q; z) for l = 0 and l = 3 for
q = 1 and q = 10 and compare them to the Sips expansion
using the coefficients g2n,l(q) given explicitly above. We see
that already at q = 10 the Sips expansion performs very well.
In general, we find that for higher values of l more terms in
the expansion need to be taken into account for high accuracy.

FIG. 6. Comparison of the exact Mathieu functions to the
expansion Eq. (B3) for the large q limit in which the expansion
coefficients g2n,l(q) that contain terms up to order 1/q were used.
The upper (lower) panels have q = 1 (q = 10), while the left (right)
panels have l = 0 (l = 3). The accuracy of the expansion converges
to the exact case more quickly for lower values of l.
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It remains to give the asymptotic values of the Mathieu
characteristic value. The characteristic values a+

l (q) and a−
l (q)

have the same asymptotic expansion of the form [47]

a±
l (q) = −2q + 2(2l + 1)

√
q − 1

4
(2l2 + 2l + 1)

− (2l + 1)

128
√

q
[(2l + 1)2 + 3] + O(q−1), (B4)

while the difference a+
l (q) − a−

l (q) is exponentially small in
the large q limit [43].

APPENDIX C: EXPANSION OF
THE EXCITATION AMPLITUDES

Here we further outline some general features of the
expansion of the excitation amplitudes Dkl(q). If we rewrite
the expansion of Eq. (35) using the coefficients of Eq. (B1),
we have the expression

Dkl(q) = 2

π
C0(q) Cl(q)

∞∑
n1,n2=−∞

g2n1,0(q)

× g2n2,l(q)J n1n2
kl (q). (C1)

For the products of the prefactors we can write

C0(q)Cl(q) = q1/4 Fl(q), (C2)

where Fl(q) has an expansion in powers of q−1/2, i.e.,

Fl(q) = 1

l!

√
π

2

[
1 − l + 1

8
√

q
+ O(q−1)

]
(C3)

and higher powers can be calculated from expression (B2).
With these definitions and Eq. (39) we can rewrite the
expansion of Eq. (C1) as

Dkl(q) = 2

π
Fl(q)

∞∑
n1,n2=−∞

g2n1,0(q)g2n2,l(q)

×
∞∑

r=0

ar (k)I l
n1n2,r

(
√

2)r+1qr/4
, (C4)

where the factor q1/4 from Eq. (C2) has been absorbed in the
last sum. The function Fl(q) and the coefficients g2n,l(q) have
an expansion in powers of q−1/2. Now since the coefficients
I l
n1n2,r

vanish unless k and l are both even or both odd, we
conclude that Dkl(q) has an expansion only in odd powers of
q−1/4 if l is odd and only in even powers of q−1/4 otherwise.
The explicit expression for I l

n1n2,r
is given by

I l
n1n2,r

=
∫ ∞

−∞
du ur D2n1 (u)D2n2+l(u) =

{
0 If r + l odd
r!
2r

√
π 2n1+n2+ l

2
∑min(2n1,2n2+l)

p=max (0,−s)

(2n1

p

)(2n2+l

p

)
p!

2p(s+p)! otherwise

where we defined s = r/2 − n1 − n2 − l/2 [58]. Finally the coefficients ar (k) can be obtained from a Taylor expansion of the
function fk(x) defined in Eq. (38). Taking all these terms together, we find the following expansion of the excitation amplitude:

Dkl(q) = (−i)k
[

1 − k2

8
√

q
+ k2(k2 − 4)

128 q
− k2(k4 − 14k2 + 46)

3072 q3/2
+ O(q−2)

]
δl0

+ (−i)k+1

[
− k

2q1/4
+ k(k2 − 1)

16 q3/4
− k(2k4 − 16k2 + 13)

512 q5/4
+ O(q−7/4)

]
δl1

+ (−i)k
[
− k2

4
√

2
√

q
+ k2(2k2 − 5)

64
√

2 q
+ O(q−3/2)

]
δl2 + (−i)k+1

[
k(2k2 + 1)

16
√

6 q3/4
+ O(q−5/4)

]
δl3. (C5)

The excitation amplitude indeed has an expansion in odd powers of q−1/4 for odd l and in even powers of q−1/4 for even
l, as we demonstrated above. This implies that |Dkl(q)|2 has an expansion in powers of q−1/2. The expansion derived here has
been checked numerically to ensure the correctness of the derivations. As a further check on the result, we see that the excitation
amplitude satisfies Dkl(q) = (−1)k+lD∗

kl(q) as well as D0l(q) = δl0.
The order for Dkl(q) given in Eq. (C5) is enough to yield the following asymptotic expansion for the absolute value squared

of the excitation amplitudes to order q−3/2:

|Dkl(q)|2 =
[

1 − k2

4
√

q
+ k2(k2 − 2)

32 q
− k2(2k4 − 13k2 + 23)

768 q3/2

]
δl0 +

[
k2

4
√

q
+ k2(1 − k2)

16 q
+ k2(4k4 − 20k2 + 15)

512 q3/2

]
δl1

+
[

k4

32 q
− k4(2k2 − 5)

256 q3/2

]
δl2 +

[
k2(4k4 + 4k2 + 1)

1536 q3/2

]
δl3 + O(q−2). (C6)

We compare the expansion of |Dkl(q)|2 to the exact values
obtained by numerically integrating Eq. (26) in Fig. 7. We see
from this figure that higher values of k require higher values

of q to make the expansion accurate. This was to be expected
since larger k values imply a more oscillatory integrand in
Eq. (26), while a larger value of q makes the Mathieu functions
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FIG. 7. Square |Dkl(q)|2 of the excitation amplitudes for l = 0
(top) and l = 1 (bottom) for k = 3 (left) and k = 5 (right) as function
of q. We compare the square of Eq. (26) (denoted by Exact) to the
expansion of Eq. (C6) (denoted by Exp.).

more localized and thereby makes the expansion of Eq. (38)
used in the integrand more accurate.

We finally note that the frequency-sum rule, Eq. (23), can be
used to check the validity of some of the terms of Eq. (C6). If
we insert the explicit form of Eq. (28) into the one-dimensional
equivalent of Eq. (23) for the frequency sum rule, we can derive
that

∑
l

(k2 + [a+
l (q) − a+

0 (q)])|Dkl(q)|2 = k2, (C7)

where the sum runs over even l if k is even and over odd
l when k is odd. The right-hand side is independent of the
interaction strength q; thus in the sum on the left-hand side
the q dependence in the excitation amplitudes has to be
compensated by the q dependence of the Mathieu charac-
teristic values to give a result independent of the interaction
strength.
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