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A lattice-Boltzmann equation (LBE) is the discre 0‘0}1 t of a continuous
| 1

terp
kinetic model. It can be derived using a Hermite vhiomial expansion for the
velocity distribution function. Since LBEs are clifaracterized by discrete, finite rep-
resentations of the microscopic velocity space, the expangion‘must be truncated and
the appropriate order of truncation depends.on the hydrodynamic problem under
investigation. Here we consider a particuldr trunca where the non-equilibrium
distribution is expanded on a par with t equiﬂi‘ri\um distribution, except that
the diffusive parts of high-order non-equilibrium mements are filtered, i.e. only the
er“E given rank. The decomposition
is based directly on analytical re-
lations between Hermite polynomial*gns The resulting, refined regularization
procedure leads to recurrence tien.s\helfe high-order non-equilibrium moments
are expressed in terms of low-ordemones. The procedure is appealing in the sense
that stability can be enha ed}\yith t local variation of transport parameters,
like viscosity, or without tuning the‘simulation parameters based on embedded op-
timization steps. The i ovedistability properties are here demonstrated using
1

the perturbed doubkp< shear layer flow and the Sod shock tube problem as
benchmark cases. \

I. INTRODUCTI \
: £ o .
When a fvlyl’ flo mol;f:ular properties (like momentum and kinetic energy) are trans-
1d o

ferred by t i echanisms: diffusion and advection. Diffusion is related to the
random %ﬁl} of'molecules and is responsible for entropy growth. In the reverse sense,

advectiod means organization: molecular properties are transferred with the bulk flow, i.e.
amlines. Diffusion is dominant in the small Reynolds number (Re) regime, but
es, diffusion becomes less effective and properties are mainly transferred by
Morgeover, from a statistical point of view, fast relaxation to an equilibrium state

Pg a low kinematic viscosity. So, in low-viscous fluids the interactions between
1e particles*are so numerous or effective that momentum and energy between neighboring
pacticles is quickly balanced; the system remains close to the equilibrium state. As a result,
o ux of momentum is small in the moving frame of reference or, in other words,

the
trar?port of momentum is sustained mainly by advection rather than by diffusion, which
:onforms to a high Re flow. This aspect is used here as the guiding principle when designing
particular lattice-Boltzmann (LB) schemes for the numerical simulation of fluid flows with
}nproved stability properties.
The lattice-Boltzmann method was introduced by McNamara et al.!, first as an improve-
ment to the lattice-gas automata. Soon after, Higuera et al.? considered stability properties
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of a novel collision operator involving a set of relaxation parameters. Since then improving
stability of LB schemes has been addressed by several authors and various solutions have
been proposed. For recent reviews, see e.g. Refs. 3 and 4, and the references therein. The
first solutions were based on the use of multiple relaxation times (MRT) tuned with the
help of a linear stability analysis®®. The entropic LBGK scheme!® appears as a second so-
lution and was conceived based on the maximization of entropy by locallytuning the single
relaxation time of the BGK collision model'!. Recently, a new extensio(y’ B schemes was
proposed, namely the entropic stabilizer'2. Unlike the entropic LBG SCN entropic
stabilizer does not locally alter the viscosity, but rather relies on mbodifying the'relaxation
time for the higher-order moments (i.e. the moments beyond the stres
contribute to the viscosity. In this respect, this extension is akin
relaxation parameter tuning for MRT schemes.

efisor) which do not
ready mentioned

Stability of LB schemes can also be improved by adopti 1;} - discrete velocity sets.
This option was investigated by Siebert et al.'®. Anoth r.alternative 15 to add high-order
Hermite polynomial tensors to the equilibrium distribution, tryén to reduce the effect of

their related moments on stability. This approach is commnonly used in MRT and entropic
models and was utilized by Ref. 13 for improvidg-stabi of the usual D2Q9 lattice-
Boltzmann equation (LBE). One can also resort to%ula ized LBEs, i.e. rewrite a LBE in
such a manner as to filter the undesirable ghos Hﬁom the numerical scheme (see
e.g. Ref. 14 for a further discussion on the ghost mgmeénts). This choice was investigated
by Ladd'®, Chen et al.'®, Zhang et al.'”, and 1d Chopard!® for the D2Q9 model;
very recently Mattila et al.'® compared ‘&Ki arization with the entropic stabilizer.
Here we propose a method for dealing with general flow problems which require utilization
of high-order LBEs: the method is base h.(%ystematic improvement of the standard

regularization.

Namely, both the equilibrium 4f€? aho‘mequilibrium fme? distributions are expanded
on a finite Hermitian basis in thisunethed: the non-equilibrium distribution is expanded
in terms of non-equilibrium onveN raw) moments which can be decomposed, each
separately, into advective an sive parts. The diffusive parts are defined as the peculiar
uilibrium distribution and hence they are related to the

e polymomials of local flow velocities with non-equilibrium moments
ignts. They do not have any contribution to the flow when the local
important in high Mach number (Ma) flows.

The advective parts
of lower order as ¢
velocity is null,

carried out par he equilibrium distribution, but the diffusive parts are retained
only up to_the Wsi ally relevant non-equilibrium moment. Beyond that, only the ad-
vective ﬁ() maintained while the diffusive parts are filtered out which leads to specific
recurr elations expressing the high-order non-equilibrium moments in terms of the local
flow #elocity ‘and lower rank non-equilibrium moments. Technically the above procedure
gularization in the peculiar (or central) moment space. The procedure
conveni and efficiently implemented using the recurrence relations here derived.
e usual regularization procedure operates with the convective moments and,
refore) filters both the diffusive and advective parts of the high-order non-equilibrium

Then com%es(bu ivotal/proposal: the expansion of the non-equilibrium distribution is
igth’t

e proposed procedure is motivated by the essential role of advective transport when

oth Ma and Re have large enough values. The procedure is general, directly applicable
to high-order velocity sets, and relies purely on Hermite polynomial expansions of the
“distribution function. Thus, there is no need to tailor a moment space representation for
the populations f; related to a particular discrete velocity set by, e.g., resorting to the
Gram-Schmidt orthogonalization procedure. This advantage is already recognized (see e.g.
Refs. 17, 20-23). Moreover, Dubois et al.?*25 recently showed that the choice of moments
does influence the stability properties of a LB scheme: a poor choice of moments can lead
to suboptimal stability ranges. Therefore tailoring moments in an ad-hoc manner, or even
arbitrarily, seems problematic, especially in the case of large discrete velocity sets; we pursue
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High-order regularization in LBEs 3

a general solution for improving the stability of LB schemes.

We start by presenting the fundamentals of kinetic models and Hermite polynomial ex-
pansions of the velocity distribution in Sec. II. Particularly, we consider finite Hermite-
polynomial expansion of distributions using central moments: the decomposition of mo-
ments into advective and diffusive parts is presented together with a relation expressing the
raw (or convective) Hermite moments in terms of the diffusive parts. Th elation is critical
for the regularization procedure here proposed. Section III establishes eneral principle
for representing non-equilibrium moments in a subspace H, — an i oMect when
considering a general regularization procedure for high-order LBEs. ttice-Boltzmann
schemes are then considered in Sec. IV: the standard or original regulatization procedure
is first reviewed, from the high-order LBE perspective, after w
ularization procedure, where only the diffusive parts are filt
experiments, using the perturbed double periodic shear layér flo and t Sod shock tube
as benchmark cases, are reported in Sec. V. Conclusions gLe Sentodeat the end.

Il. KINETIC PROJECTION 3

We consider the Boltzmann equation or, mor

distribution f(z,¢,t),
ouf + ﬂ\’\ﬂ ®

which admits an equilibrium solution, namely theMaxwell-Boltzmann (MB) distribution26-28,
I Ny S lig —
f 27 (O + exp [ S

where p is the mass density artieles;«D 1s the Euclidean dimension of the velocity space,
&0 = /kTo/m is a thermal re Kﬂﬁg@geed k is the Boltzmann constant, T} is a reference
temperature, m is the mass of eachyparticle, and || -|| denotes the length (or Euclidean norm)

of a vector. Furtherméres@ = u /&) and £ = ¢/& are dimensionless flow and molecular
vj}':i% = T/Ty — 1 is the relative deviation from the reference

velocities, respective
temperature. The ionless mass density o = p/po is defined using the reference mass
density pg. Fin di sionless distribution function is defined as f = f¢P/po.

In its simplest . thefinteraction term Q in Eq. (1) is specified by the BGK single-
relaxation tuheycollisi odel''; Q = —(f — f9)/7, where 7 is a relaxation time. The
kinetic eq autioNl)7 can then be written as

Ouf + e Vof =~ 1, e

where fl€? = represents the non-equilibrium part of the distribution function.
h €4 rep ts th quilib part of the distribution functi

A yd))dynamlc variables
Kwe single-relaxation time BGK collision model, Eq. (2), describes dynamics of fluids

X

ing the ideal gas equation of state. Specifically, let & = /kT/m, which implies

& = 50 @ + 1 Furthermore, the mass, momentum, energy, and internal energy densities

are defined as moments of the dlstrlbutlon function:

:/fdc7 pu:/cqu

1 1
=5 el rde. pei=3 [ lle-ulrde
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FIG. 1. The Hilbert space solution of the Boltzmanif‘equation.

Then, according to the equipartition theorem, the internal € gmunit mass is e,y =
D¢ (@ + 1) /2 which relates the relative deviation fromf the refexgnce temperature to the
internal energy. The ideal gas equation of state can be e 51 the form p = p€2 (@+1).
The momentum flux tensor as well as the energy a ctors are also moments of
the distribution function:

_1/
=35

B. Hermite polynomial expansion of

For a given space-time point (€% )ythe distribution f(x, ¢,t) may be considered as a map
from the continuous velocit, ce eonte,the space R of real numbers (see Fig. 1). In fact,
the distribution belongs to theWHi space H of square integrable functions f : ¢ - R
and may be written in terms of orthogonal basis of H that will be considered as the
infinite set of Hermit mial tensors, i.e.

GGk (g ) FGED
—w(E) Y = (?’!2!1! £, )

/ 4.k, 1=0
— exp(—||&[%/2)(2m) P/ A component of a rank r = j + k + [ Hermite
sor is denoted with HU*1  where j, k, and [ indicate the number of

dinate direction z,y, and z appears in the component index, respectively.
000 = f1,, 209 = H,,, and HOYY) = [, ..
ermite polynomial tensors are

HO(&) =1, Ha(&) =&a, Haﬁ(ﬁ) = fagﬂ - 5a6>
Haﬁw(é) = fafﬂfv - (504657 + fﬂéav + 5’76045)7
Haopys(€) = €abpéyés — (£a€p0ys + EayOss + Eabslpy
+ 5557506 + 53565cw + ﬁwfﬁfsaﬁ) + (5a55’ﬂ5
+ 0ay0p5 + 5a5(5,37),

when 0,4 is the Kronecker delta. Furthermore, the following recurrence relation can be
derived for the components of the Hermite polynomial tensors:

H(j+1,k,l)(£> _ ng(j,k,l)(g) —jx H(j—l,k,l)(g)7 j >0,

and similarly for £ and [.
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FIG. 2. Subspace Hq—10 of H generated by a finite set of 10 Hermite“polynomials and the con-
forming D2V 17 discrete velocity set. )7
'M\

The Hermite polynomial tensors are orthogonal with réspeet to aweighted inner product:

/ w(&HHD (EH) (€) dtjm 511,)! R (4)

This orthogonality property, together with Eq.

. P Vié-e)a definition for the dimension-
less expansion coefficient, ? S

a0 (a1 =§§‘&

ie. almmP) is a Hermite moment of the dlnm%ss distribution function.

<

ite Hermite expansion

(€) de, (5)

C. Projection onto a subspace:

Consider now the subspace"d,, generated by a finite set of ¢ Hermite polynomials
(see Fig. 2). The subspace H, i1l
Projection of the equilibriwin soluti

subspace results in

, i.e. the Maxwell-Boltzmann distribution, onto this

5 0RO
[T Y L @IS (6)

/ y. = RN

In oth ds, < s unambiguously determined by the equilibrium moments agjk’l)
given b, . (8) when evaluated with TMB. The first few dimensionless equilibrium moments
are

ag! =0, ayl = 0Ua, agly =000+ 0UaTig,

/ o _
4

. eq _ B _ o
Uy = 0O(Waldpy + Uplay + Urybap) + 0 TUalislly
-~ 5 sl s = 007 (8ap0ys + 6ary0ps + 0as0y) + 0O(UaTipdys
5 + ﬂaﬂ’ya[% + ﬁaﬂéaﬁfy + ﬂgﬁpy(saé + ﬂgﬂgéa,y
+ H'yaéfsa,@) + QU UBU~LUs. (7)

S ““. The subspace H, is directly related to the set of n; discrete velocities ¢;,7 =0, ...,np —1,
used to represent the microscopic velocity space. This formal relationship was found by
Philippi and co-workers??3? and is based on the requirement that a discrete Hermitian
representation respects the orthogonality described by Eq. (4) up to a given order, i.e.

nb—l

> wi HORD (&) H™™P) (&) = 65 0kndip §1 K11, (8)
=0
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for all H € H,, where w; are the discrete weight coefficients (see e.g. Refs. 21, 31, and 32 for
further details). Therefore, LBEs with increasing order of approximation to a given kinetic
model can be rigorously derived by adopting increasingly larger sets of Hermite polynomials
leading to larger discrete velocity sets.

D. Finite Hermite expansion with central moments /

iarovements in the

transport mechanism in flows where both Ma and Re have largevalu spect suggests
e part is naturally

thenoment in a moving
the kinetic theory and

In addition to targeting high-order LBEs, we also pursue stabil

defined as a central moment of the distribution, since it repre
frame of reference. Central moments are a standard gomeept
have been utilized, e.g., by Ruggeri®® and Torrilhonet
thermodynamics.

First we note that the orthogonality of Hermite @mmia +Eq. (4), holds also with the
relative or peculiar velocity & — u, i.e.

.
[ute-anor @
« Hmn)( %m&m&p UKL (9)

‘S lies on central moments,
(5.

GURD (@, 1) HGHD (¢ — )
RN :

‘%Sp) (z,t) = /jH(mm@ (€ —u) dé. (11)

re{ents he diffusive part of a moment and is defined as the peculiar (or
momentOf the distribution. The advective part is defined simply as

An alternative expansion of the dis

(10)

where

That is, a2
central) Hermite
5\6(’”’”4’) (z,1) == a\™™P) (x,t) — TP (). (12)

Thé diffusive parts of equilibrium moments are given by Eq. (11) evaluated with the
olt?ann distribution ?MB. The first few are

Maxwell 45
ﬂ
3 ay" =0, ayh=000das,
— Eiqﬁw =002 (5043575 + day0s5 + 5@557). (13)

Diffbsive parts of equilibrium moments of odd rank are all identically zero. Furthermore,

\ othermal flows, where © = 0, diffusive parts of all equilibrium moments vanish except
~e
o

4. Finally, the advective parts of first equilibrium moments are

a1 = 0o, Agf = 0UaTg, (14)
Al = QUaTpTy + 0O (Uadpy + Ugdary + Tydags),
a;‘;m = 0UaTUBTU~Ts + 0 O(TUaTslys + UaTiy0ps

+ UaTUs08y + UpliyOas + UslUsOary + TUylUsbag)-
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More generally, the relation

meoie=3253 (7)) ()

x wjural Hm kel (¢ — ), { (15)
r convecti

N{ermite mo-

together with the relation in Eq. (15), expansion in Eqf (@,Na‘nii he orthogonality
property, Eq. (9), gives

a(m’"’p)(m,t)iléi(ak )

written using binomial coefficients, allows to express the raw (o
ments in terms of the diffusive parts. Namely,

~

amn) (g, 1) = /?H(m’n’p)(ﬁ) dg,

). (16)

=
=
@
=
[¢)
0w
=
=
=
o
(e}
P
e
=
a@
195}
@,
o
=
wn
g
=
ot
=
[¢)
=
=
v X
&
s g
< x~
|
o N~
=
('D —~
=1
3 |
r\;i:)
8

Gafy = Gopy + Ua Gpy Uy Gap + 0 UaUpUy,

Gapys = Gagys + ii%f Gays + Ty Gags + U Gapy
+ uu 575 U, L@-Zig(; + UnUs 557 + Uply Aos
+ ugu. + U s aag + 0 UL UBU~US, (17)

where we have already utili

It is immediately confirmed that, in“the case of equilibrium moments, these expressions
agree with Egs. (13) lIso worth noting that, in general, the advective parts
depend on strictly loger-rank moments multiplied by powers of the local flow velocity (i.e.
the advective partsevanigh with w). The relation in Eq. (16), and the expressions in (17),

posing a regularization procedure where the diffusive parts
of the high-order*nonfequilibrium moments are filtered. In the next section, however, we
first establis?/?}fe ge
Hq.

—% and a, = 0.

t

al principle for representing non-equilibrium moments in a subspace

PROVING THE HERMITIAN REPRESENTATION

£

Agco ing p6 the usual multiple-scale Chapman-Enskog analysis, the leading-order of the
on-equilibrium distribution in the BGK model, Eq. (2), is given by

)

- S 70 == (8,50 + ducaf?).
re we have assumed f(°) = f¢4. The leading order of the viscous stress tensor Tap 18
\ “ebtained by computing the second-order (central) moment of f():

Tap :/f(l)(ca_Ua)(cﬁ_uﬁ)dc:/f(l)cacﬁdc

after enforcing the usual solvability conditions.
From these two expressions it becomes apparent that in order to properly capture the
leading order of the viscous stress tensor, the Hermitian basis of a subspace H, should
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/Ho\ /Ho\
Moo H Moo H
Ha ny Hyy H,x /ny\ Hyy
HXXy Hny

HXny /
(@) (b) \
FIG. 3. Hermitian basis of the Hilbert subspaces (a) Hq=¢ and (b) _gyated to"the D2Q9

LBE. Arrows from the components of rank r Hermite polynomial tensers point to the components
of rank r + 1 Hermite polynomials tensors that are necessary to be in Hermitian basis for the
correct retrieval of the corresponding non-equilibrium moment. F ample, in representation (b)

\
(a) i\ (b)
FIG. 4. Third-order Hermitian basis o Fh&iubs e Hq=10 and the conforming D2V17 discrete

=

velocity set.

include full Hermite polynom ﬁ&) to rank 3 (because 7,3 depends on 87affﬁ 'y)' This
is clearly not the case for secondsorder representations. For concreteness, let us consider
the usual Hermitian d-order basis of the D2Q9 LBE, composed of the 6 Hermite
polynomials Hy, H, oy, and Hy, (see Fig. 3). In fact, it turns out that the

Eq. (8) even wien the ite polynomials Hyyy, Hyzyy, and Hggy, are included into
the basis. Thus, subspace Hq=9 can be adopted equally well (see Fig. 3)1329 This

Hermitian basis for gfcan be obtained directly via Cartesian product between the two
one-dimen ionNo,HmHm, and Ho, H,, H,, (see e.g. Ref. 35).

pi% in 3, with the H,—¢ subspace 7, is the only second-order non-

ment that is retrieved without errors (up to first-order in the usual multiple-

t theé same time, the moments 7., and 7,, depend also on the equilibrium
?.‘;jand agl,, i.e. the basis should also include Hy., and Hy,y, (which is not
the D2Q9 velocity set). In the case of Hy=¢, obviously none of the viscous
&or components is retrieved without errors. Both with H,—¢ and H,—9, the above
sted as O(u?) errors in the macroscopic momentum balance equations — a recent
invégtigation on the topic was presented by Dellar3®. These errors can be avoided by using
at least third-order representations like D2V17 (see Figs. 2 and 4).
imilarly, when modeling compressible and thermal flows, in order to correctly capture
“the third-order non-equilibrium moments with LBE, in particular the heat flux vector qq,

a full fourth-order Hermitian representation for the basis of a subspace H, is required.

Generally speaking, rank r non-equilibrium moments depend on the equilibrium moments

up to rank 7 + 1 and hence, in order to properly represent them in a subspace H,, the

Hermitian basis of the subspace must include full Hermite polynomial tensors up to rank

r 4+ 1. Or conversely, if a Hermitian basis includes full tensors up to rank r, the subspace

‘H, can maintain full non-equilibrium moments up to rank r — 1: in this case we say that
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rank 7 non-equilibrium moments are not supported by the H, subspace or, alternatively,
that they do not fit into the Hermitian representation.

Note that the advective part of a rank r non-equilibrium moment in fact fits into the
Hermitian representation when the basis includes full tensors up to rank r (see the end of
Sec. IID). This is not the case with the corresponding diffusive part, however, because it
depends on the rank r 4+ 1 equilibrium moments. To comply with the siftiation, an option
is to expand the diffusive part only up to rank r — 1 (or to the las sically relevant
non-equilibrium moment) while the advective part is still fully expa: edN with the
equilibrium distribution. As a matter of fact, this is the essence of tlie r@ed regularization
procedure presented below. Here is also the point of departure,betweeh the current and
previously published, related approaches where also the diffusive*part 1S¢expanded all the
way up to rank r (see e.g. Refs. 17, 20, and 37). -)

—~
—

IV. LATTICE-BOLTZMANN SCHEMES

Let us consider a discrete version of Eq. (2), nanfely the an}ard lattice-BGK (LBGK)

equation:
fila + hew, t + 1) = £ tN\@ £ 1), (13)

where f"“? = f; — f79, h is the lattice spacingt t iscrete time step, e; = £;/as denote
the lattice vectors, as is the dimensionles ing factor associated with a given discrete
velocity set, and i = 0, ..., n, — 1. Eér example, a, = v/3 in the D2Q9, D3Q19, and D3Q27
discrete velocity sets. Note that th rete ‘distribution functions are here considered
dimensionless by default in ordér to lﬂ? the notation (i.e. the overline notation is
dropped for discrete distribution

Accordingly, the discrete @nction is defined as

(4,80 17(,k,0) (£,
e ae HY &
f‘ q _ 3 § q ( ) ,

L ? Ve
\ Hen, JrEN
ilibrium moments correspond with Eq. (7) and

/ / n}_-,*l nbfl
o= Y_fi, ow:=)Y_ fi&,

3 i=0 i=0

£
Note ‘that )‘é isothermal flows © = 0 is used, and that here all discrete moments are
ing &;, i.e. not using e;. Furthermore, the scaling factor is related to the
ference speed, i.e. £ = ¢./as, where ¢, = h/At is the lattice reference velocity
iginates from the relation e; = ¢;/c,). The speed of sound with the LBGK scheme
i r:b: Y. &0(O + 1) and ¢ = /&, for thermal and isothermal flows, respectively: the

hea

capacity ratio is 7. = (D 4 2)/D in the case of monoatomic fluids with an ideal gas

equation of state.
T

&

where the dimensionless

nbfl 2

_ 1 9 _
0€int = 5 g fZHSZ _u” 5 0= Beint -1

A. Regularization

Broadly speaking, regularization is a procedure applied with many numerical CFD meth-
ods in order to soothe the effect of errors that are produced in the course of a simulation.
In the LB context, regularization is considered as a method for filtering the high-order
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non-equilibrium moments that do not fit into the Hermitian representation (or are beyond
the macroscopic balance equations targeted). More specifically, in the standard LBGK
scheme the equilibrium part is projected onto the subspace H,, but the non-equilibrium
part is not: the distribution f; evolves according to Eq. (18) which allows the high-order
non-equilibrium moments to persist in an unspecified manner. The regularization procedure
addresses this issue by projecting also the relevant, low-order non—equilil?ﬁm moments onto

‘H, while filtering the high-order non-equilibrium moments which are peyend the targeted
hydrodynamics. \

This is accomplished by replacing f;"“? in Eq. (18) with a finite rrr% expansion of the
non-equilibrium distribution,

Gk 7, k,0) (¢
neq . asieq HUFD (€,)0 \
fit =i Y SR ) (19)
ﬁ\
-~

HEH,
where afzjé]; D = 0 is enforced for j+k+1> R with a given rank % In1 the case of isothermal
flows, R =2 and Eq. (19) reduces to

L

with ayg' = Top, and where Einstein sumitagion comvention is implied by the repeated

indexes. The dimensionless non-equilibri moments, which fulfill m +n +p < R, are

computed at the pre-collision state (i.e gimmediately after the propagation step) using
almmp)

neq

H ),

This regularization was investigated by Latt and Chopard!® for the second-order D2Q9
LBE: they observed that tlie regularization improved the stability range of the LBGK
scheme by a factor of 7.7 in the.c f a lid-driven cavity flow. Montessori et al.?® applied
the second-order regularized LB%scheme for the three-dimensional lid-driven cavity flow
(isothermal case) and gbseryed that an order of magnitude reduction in CPU time could be
dard LBGK scheme, due to the improved stability range.
estigated the regularization, again for the D2Q9 LBE, by
e periodic shear layer flow as a benchmark case. In this
kind of problem, a%simall vélocity perturbation, perpendicular to the shear flow direction,

initiates a i-He tz instability and causes roll-up of the anti-parallel shear layers
that is dis i;%‘:c&q&;i the time. They compared the regularized scheme with the standard
and t

em LBGK entropic stabilizer scheme!? (see Ref. 19 for details of the

FufthemoréyZhang et al.'”, Niu et al.??, and Montessori et al.?3 investigated simulation

n channel flows, i.e. Couette and Poiseuille flows, both in 2D and 3D, using
Es together with the regularization: they projected also the rank 3 non-
quilibrium“moments onto the subspaces #, which, however, does not comply with the
eral principle established in Sec. III for representing non-equilibrium moments in terms
ite Hermitian basis.

\ . Refined regularization: Filtering central moments
T

The regularization procedure presented above filters the raw or convective high-order
non-equilibrium moments that are beyond the macroscopic balance equations targeted (or
do not fit into the Hermitian representation). For isothermal and thermal models this means
that all raw or convective non-equilibrium moments higher than rank 2 and 3, respectively,
are filtered. A more refined approach is also possible, where only selective parts of the high-
order non-equilibrium moments are filtered. Such a procedure will be presented below.
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Equations (13), (14), and (17) clearly illustrate how the diffusive part is a representation
of a moment in the moving frame of reference, while the advective part accounts for the bulk
flow contribution to a moment (i.e. the part remaining after the diffusive part is subtracted
from a convective moment). We therefore have an opportunity to acknowledge the essential
role of advective transport in high Ma and Re flows. Namely, instead of filtering the con-
vective high-order non-equilibrium moments, like in the original regulci?éation procedure,

we propose to filter only the diffusive parts; the aim is to retain the a ive parts to the
fullest extent possible with the adopted decomposition.

To begin with, the discrete counterpart of Eq. (11) is 3
agemr =y [fi - fieq} HU™mP) (€ — ), (20)

%

which is to be evaluated at the pre-collision state. Then the refined f?gn'}arization procedure
for filtering only the diffusive parts is very simple: o

1. expand the non-equilibrium distribution still is‘ipg . (1&, but now

2. the (convective) non-equilibrium moments, ar

iverf'ay the relation Eq. (16), or Eq.
(17), where

diffusive parts are computed using E

3. all the diffusive parts are omitted, and%ng else, after a given rank R; the remaining
0

Note the crucial differences to the origi 1 re rization procedure. For example, in the
case of isothermal flows, where all uga paits are filtered after rank 2, Eq. (17) gives

&' _ _
UBT oy + UyT afs (21)

where we have used
negligible in creepin

= Tqap. The resulting non-equilibrium moments are
t on the other hand, can be significant in high Re flows.

Finally, in therma 1e heat flux vector is related to the diffusive parts of rank 3 non-
equilibrium mo ents /1 .e. = 153;"5, where the repeated indexes again imply Einstein

summation comvention.
The expregstons in (21) agree with the expressions derived by Malaspinas®? from
eNoreover, Malaspinas restricted his analysis to isothermal flows and
egeén'essio for the specific, second-order LBEs using D2Q9 and D3Q27 veloc-
efestingly, Malaspinas carried out a linear stability analysis for the resulting
nalysis revealed that the new schemes indeed exhibit improved stability
pears to verify that the rationale behind filtering only the diffusive parts,
d«thus'retaining the advective parts, is both reasonable and useful as a guiding principle
hen coumstructing stable LB schemes.
n the other hand, the refined regularization procedure presented here, and the related
ions, rely purely on Hermite polynomial expansions of the distribution function.
Thﬁconsequence of this systematic approach is that moment space representations of the
istfibutions are immediately available (defined by the coefficients of the expansion). Recent
studies highlight the importance of this aspect: Dubois et al.2%2> showed that the choice
moments does influence the stability properties of a LB scheme (e.g. a poor choice of
moments can lead to suboptimal stability ranges). Therefore the alternative approach of
tailoring moment space representations in an ad-hoc manner, or even arbitrarily, seems
problematic when considering a general solution for improving the stability of LB schemes.
To summarize, the above presented regularization procedure can be used both in 2D and

3D, it is not restricted to a specific discrete velocity set, and, in particular, it can be used
both with high-order LBEs and thermal flows.



http://dx.doi.org/10.1063/1.4981227

AllP

Publishing

| This manuscript was accepted by Phys. Fluids. Click here to see the version of record.

High-order regularization in LBEs 12

V. NUMERICAL EXPERIMENTS

To demonstrate the improved stability properties of the refined regularization procedure,
we present simulation results for two benchmark cases: the perturbed double periodic shear
layer flow and the Sod shock tube flow are simulated using the second-order D2Q9 and
fourth-order D2V37 discrete velocity sets, respectively. These benchmark cases are chosen
because they allow investigation of stability properties without the influémngce of particular
fluid-solid or inlet/outlet boundary conditions, i.e. the two cases provi eaitl%ttings for
observing the effect of the collision operator alone. Moreover, the tWo casés are appropriate
benchmark cases for stability as they involve significant, suddeny variations in density and
velocity fields (both in time and space).

D

In this two-dimensional flow configuration, periodic ingboth %rections, two antiparallel
shear layers are set up. Then, a small velocity pertgb.ation infroduced, perpendicular to
el

A. Perturbed double periodic shear layer flow —

the shear flow directions, which causes roll up of the antiparallel shear layers and leads to
spiral-like vorticity patterns. The initial velocit, , VE includes the shear layers and

the perturbation, is given by

N |

Uy =

e
<
m
Sf s
3
S8 A
+ \
= =
~— N
— ~——
<
Vv
0| b

Uy defines the amplitude of the i
index coordinates whi is_the number of nodes in both x- and y-direction. Parameters A
of the'shear layer and the initial velocity perturbation, respectively.

The initial préssurgf fieldi conforming with the above initial velocity field, is solved
from the presgtire- isson/équation (for an incompressible fluid). Furthermore, the non-
equilibrium distgibutions are initialized as described in Ref. 19, i.e. the initial stress tensor
is first de Mm the strain rate tensor and then projected onto the kinetic space
of the velocity field are estimated using isotropic, second-order accurate
finite-differences. Finally, when utilizing the refined regularization procedure, the recur-

relationsiare enforced already at the initialization of the distributions. Figure 5
S nag?m s of the vorticity field simulated using the recurrence relations and the
et velocity set: in this simulation A = 80 and € = 0.05, called a thin layer case

' to'Refs. 40 and 41, while L = 1024, Uy = 64/1024, and Re = 150000.
Zsout to compare stability properties of three LB relaxation procedures, namely
, standard regularization, and refined regularization with recurrence relations, by
searghing for the maximum attainable Reynolds number for a given resolution and initial
velotity Uy (or Mach number defined as Ma = Uy/&p). Each relaxation procedure is used
together with the D2Q9 discrete velocity set and the full H,—9 Hermite moment space
%presentation (see Appendix for detailed descriptions of the LB schemes). Moreover, the
maximum Reynolds numbers are searched for a thick layer case specified by A = 30 and

e = 0.05. A simulation is considered stable if it reaches ¢ = 107" without breaching the

stability criteria.

Instead of simply waiting for a catastrophic divergence of a simulated solution, we adopt

a more stringent interpretation of stability and impose two stability criteria: 1. the kinetic

energy in the system must decrease every discrete time step and 2. the pressure (or density)
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t=075T t=10T

FIG. 5. Snapshots of the vorticity field in a perturbe :
(A =80 and € = 0.05, i.e. a so-called thin layer cage according to Refs. 40 and 41). The simulation
was executed using the recurrence relations h the D2Q9 discrete velocity set: L = 1024, Uy =
64/1024, and Re = 150000. “\

field must remain relatively smooth 1\,‘h§}t artificial fluctuations or oscillations. The first
criteria is not imposed during thefinitia gesof the simulation, specifically when t < T'/10,
because of the inevitable disturba: caused by the start-up. The second criteria is enforced
by counting the number of local extrema in the simulated density field (i.e. the sites where
the density is either strictly N smaller than in all the neighboring lattice sites).
After a visual inspection of numerous density fields simulated with various resolutions and

Re, we determined th local density extrema count must be less or equal to 50 at all
times.

The final hurdlefin strugting stability maps for the three relaxation procedures is
related to their Hehavyior e incompressible limit (the Mach number decreases for a
fixed L and R¢). Pﬁﬂ nsidered convergence of the simulated solutions at the incom-

pressible limi d ob d that solutions computed with the BGK relaxation term indeed
converge. OWM}I particular MRT schemes, essentially corresponding to the regular-
ization re, thewsolutions diverge after Ma attains small enough values (the specific
on the resolution and Re). We repeated this experiment and the results are
ig. 6: initially, starting form high Ma, the solution converges for all schemes
ut when reaching smaller Ma, the divergence of solutions computed with
refined regularization procedures is evident.
ing into the reasons leading to the divergence, we simply acknowledge the
and gonsider the point of divergence, dependent on both L and Re, as an operational
imit for Uy when utilizing a regularization procedure. Also an upper limit for Uy can
bejnsidered. Namely, at large enough Ma the compressibility effects start to influence
nd{eventually dominate the solutions (see e.g. Fig. 1 in Ref. 42). A limiting value
corresponding to Uy = 0.1 is commonly presented in the literature (see e.g. Ref. 43 and
“Feferences therein). Interestingly, when approaching large values for Uj in our search for
maximum attainable Re, we observe a point after which the results coincide for the BGK
relaxation term and the refined regularization with recurrence relations (see Figs. 7 and 8).
We attribute this behavior to the compressibility effects and consider this particular point
as an operational upper limit for Up.
The shaded regions in Figs. 7 and 8 indicate the operational domains of regularization
procedures (specified by the above discussed lower and upper limits for Up). Furthermore,
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FIG. 6. Convergence of the relative L2-error n in the incompressible limit, i.e. the Mach number
is decreased for a fixed L and Re. The error is c u or the local speed normalized with Uy,
and the results are shown for three relaxati res utilized together with the D2Q9 velocity

eference solutions for L = 128 and Re = 4000,

set and the full H4—9 Hermite representation.
L = 384 and Re = 4000, as well as for %L and, Re = 24000, are all computed using the BGK
relaxation term and Up = 1/1024 < 1 4\

‘\ Stability map (N = 128
256000 T T Fy ap$ \)

- -1
/ 128000 | - O(U3) 10
/ 0 — BGK, MaxRe 2 ""@/@
O — Regul., Max.Re " £
© & — Recurr., Max.Re 1% g
x ®.. 5
..... -~ P
32000 ) EE,
O s
2 [~ BGK, Rel.L2-rr. @ q0° g
s ® - Regul,, Rel.L2-er. o >
O - Recurr,,Rel.L2-er. .~ ®
16000 T
£ &
10*
— / 8000
i 10°
4000 m L L L L L 1
— 9.8x10" 2.0x10° 3.9x10° 7.8x10° 1.6x10° 3.1x107 6.3x10° 1.3x10™

\ e

Uy (dimensionless)

. 7. The maximum attainable Reynolds numbers for three relaxation procedures utilized to-
ether with the D2Q9 velocity set and the full H,—9 Hermite representation. The maximum Re
is reported (left axis) as a function of Up and L = 128. Also plotted is the relative L2-error norm
(right axis; incompressible limit with L = 128 and Re = 4000, further details are explained in the
caption of Fig. 6). The shaded region indicates the operational domain of regularization procedures
(specified in the text). The recurrence relations provide a clear stability improvement across this
Uy range.
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FIG. 8. The maximum attainable Reynolds numbers or three r tion procedures utilized to-
gether with the D2Q9 velocity set and the full Hq—9 Hermite Tepresentation. The maximum Re
is reported (left axis) as a function of Uy and L = 384. Also plotted is the relative L2-error norm
(right axis; incompressible limit with L = 384 and Re =24000;further details are explained in the
caption of Fig. 6). The shaded region indicates,th erational domain of regularization procedures
(specified in the text). The recurrence relationSyprovide adclear stability improvement across this

Uy range.
\

as presented in Figs. 7 and 8, the rec “e e.;;eilatlons provide a clear stability improvement
across the operational Uy rangef The stability maps also confirm that the advective parts
of high-order non-equilibrium m%\d essential when Ma and Re attain large enough
values: the standard regula: ure filters these advective parts and, at the same
time, presents low stability at values, i.e. towards the right border of the shaded
area in Figs. 7 and 8. On the otherhand, the dlﬁuswe parts of high-order non-equilibrium
moments indeed app r‘t'd*he responsible for stability problems: only the BGK relaxation
term does not filter, diffus e parts and presents low stability at low Ma values (when
diffusive parts do dvective parts).

The fact tha Qﬁeratlo al upper limit for Uy has a smaller value with a better reso-
lution is consistent with t}(e compressibility effects??. Finally, the operational Uy range for
regularlzatl Cedur appears to widen when resolution is improved. Our implemen-
tations o hre 2laxation procedures are computationally equally efficient, practically
speaking§ devi tlng in efficiency no more than 10-15%.

hoc tube flow

n thlS etup, a compressible fluid with a discontinuity in density is considered. Initially
is at rest, but the discontinuity gives rise to a shock and rarefaction waves propagat-
1ng§l o the left and right, respectively. Therefore, in despite of its apparent one-dimensional
icity, the shock tube case involves dynamlcs of a thermal, intrinsically compressible
uid flow. Namely, a shock wave increases the temperature of the medium through which it
ﬁ's traveling and, consequently, the speed of sound increases. Thus, information travels faster
and this causes the signals in the region behind a shock to have a tendency to approach
the shock. We simulate the problem using the fourth-order, thermal LBE together with the
D2V37 velocity set (see Fig. 9 as well as Refs. 20 and 29).
The fluid dynamics related to the Sod shock tube case is described by non-linear hyper-
bolic equations and their numerical solution continues to be a challenge, especially with a
large density step. Numerous computational methods have been proposed for the solution


http://dx.doi.org/10.1063/1.4981227

| This manuscript was accepted by Phys. Fluids. Click here to see the version of record.
AI P High-order regularization in LBEs 16

Publishing

XXXX X0y XXyy

(a)

FIG. 9. Fourth-order Hermitian basis of the subspace Hq—15 and thedcon ing D2V37 discrete
velocity set.

5
500 1000 1500

FIG. 10 Density profile in a S be fter 200 time steps using the standard LBGK scheme
with 7% = 0.6. The simulation is alega nstable the high-frequency oscillations are evident.

oscillations w
tinuities.

The So sho\:)ro lem was also treated by Ansumali and Karlin*® using the entropic

LBGK s em with an initial density ratio of 2:1. Although the entropic scheme was more
stable jin atlons than the standard LBGK scheme, notable smoothing of the density
and ofiles was observed. In fact, the entropic scheme used by Ansumali and

tended for isothermal flows. Subsequently, Chikatamarla and Karlin*® used
nsgnal, 5-velocity thermal entropic scheme for simulating a shock tube with a
:1 density Step: the sharp density profiles were now reproduced with a better accuracy; no
régults ware presented for the temperature and velocity profiles. Philippi et al.46 simulated
tube problem using a 2D thermal LBE with 81 discrete velocities. After 2000

tim!steps, they observed no oscillations or smoothing with an initial density ratio of 4:1
re the shock tube problem is simulated using D2V37 with three different LB schemes:
S the standard LBGK, LBGK supplemented with the original regularization, and LBGK
mlpplemented with the new, refined regularization. Simulations are started with a density
discontinuity at the middle of the domain, = 1000 (the width of the domain is 2000 lattice
spacings), in such a manner that ¢ = g, = 4 for < 1000 and ¢ = gr = 1 for > 1000
(the initial density ratio is thus 4: 1). Several dimensionless relaxation times, 7* = 7/At,
were tested. Figure 10 shows the density profile for the standard LBGK scheme with
7* = 0.6 after 200 time steps. High frequency oscillations are evident and the simulation is
obviously compromised due to stability issues. Figures 11-13 compare the results obtained
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FIG. 11. Density profile in a Sod Shock tube after 200 titjfp 'ingble (a) original regularization

and (b) refined regularization.
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FIG. 12. Température’ pro in a Sod Shock tube after 200 time steps using the (a) original
regularizatior%d (b) refined regularization.

,ﬁ
. CO§ SIONS

e considered LBEs as discrete counterparts to continuous kinetic model equations

ﬁ
projected onto a given subspace. The corresponding Hermitian basis, a finite set of Hermite
olynomials, can be systematically linked to discrete velocity sets suitable for simulating a

\J

specific flow problem. In other words, LBEs with increasing order of approximation to a
ﬁven kinetic model can be rigorously derived by adopting increasingly larger sets of Hermite
polynomials leading, ultimately, to larger discrete velocity sets.

Accordingly, Hermite polynomial expansions of the distribution functions have been here
strictly utilized. The important consequence of this systematic approach is that moment
space representations of the distributions are immediately available (defined by the coef-
ficients of the expansion). Alternative, particular moment space representations can be
constructed by resorting to, e.g., the Gram-Schmidt orthogonalization procedure. Such
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FIG. 13. Velocity profile in a Sod Shock tube after 200 timé steps using the (a) original regular-

ization and (b) refined regularization.
\\ L

an approach, however, does not provide awuniform or generic solution for improving the
stability of LBEs. Constructing tai mo t spaces, that conform with large discrete
velocity sets, is problematic espe ially%lsgthe choice of moments does influence the sta-
bility properties of a LB scheme! oor ‘¢hoice of moments can lead to suboptimal stability
ranges.

Regularization, a procedure m‘mg the high-order non-equilibrium moments that do

flows. A new, re
of non-equilibri

as peculiar ({(Jmtal
thermal fluid*flo

recurrence relations and to the expression of high-order non-equilibrium
of low-order ones. These recurrence relations provide a convenient way to
thé proposed regularization, and incur only a minor overhead in computational
equirements. Using a linear stability analysis, it can be shown that in the special case of
ond-onder LBEs, used together with the D2Q9 and D3Q27 velocity sets, the particular

merr;‘}s are filtered after a given rank: the diffusive parts are defined
ite moments of the distributions. In the case of isothermal and
iffusive parts are filtered after rank 2 and 3, respectively.

“exp ns emerging from the general recurrence relations here presented indeed lead to

\

improved stability ranges. Here numerical experiments with the perturbed double periodic

shear layer flow (isothermal) and Sod shock tube problem, involving a compressible and ther-

mal fluid flow, further demonstrate that the new, refined regularization procedure improves
“he stability of LB schemes without distinct optimization steps or ad-hoc assumptions.

Here the main focus has been on theoretical aspects of the regularization procedure, and
its application to LBEs in general. Finally we want to emphasize that although here the
treatment was limited to the kinetic BGK model equation, application of the regularization
to other kinetic models is certainly possible, including models for multiphase and non-ideal
multicomponent systems.
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Appendix: LB schemes for the D2Q9 velocity set 3\

For a given discrete velocity set, let e; denote dimensionless lattice vectors (with strictly
integer components on square and cubic lattices). These la 1c§e tors are related to the
S

C
dimensionless velocity vectors, i.e. & = ase;, where ag is a&'mgvf/actor of a discrete
velocity set (e.g. a, = /3 for D2Q9, D3Q15, D3Q19, 7). We then specify the

tsrs.

first few Hermite polynomial tensors in terms of the latfice vec
Ho(ei) =

H,(e;) = —

Hoc,B (el) = a—

Hopy (&) ==

(e, 806~ }ei,ﬁéa'y + €i,v0a8),

~

Hupys(€i)% i) = €i.0€i 8€i~Eis

a2
€i,5€iy0as T €i,5€i,50a~y + €i i 60ap)

1
/ + g(fsaﬁ%s + bar0p5 + 0as0py)-

/ E
Moreove ,@Wa ve definitions, we specify kinetic projectors as
) 20tk

K(j’k’l)(ei) = w;
£

low 2 dinyf,(nsionless moments of the (dimensionless) distribution function are computed
sing e;,.not &;. In particular,

Py = Zei,afi’ Tap = Ze@aei,a (fZ N fieq)’
p i

WHéj’k’l)(ei)-

)

re T is evaluated after streaming, i.e. before collision. A finite Hermite expansion of
S “the distribution can now be written in a very simple form,

fi = Z aWRD R (g,

HeH,

Utilizing these notations, specific LB schemes together with the D2Q9 velocity set are listed
in Table I.
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TABLE 1. List of LB schemes for the D2Q9 discrete velocity set: f2*' = f77 + (1

order regularization in LBEs

_7)

20

ot

fe
nea,

Hermitian representation

Distributions

Note

4

H, Fo1 = wlp[l + a2Uneia + uqug (e — € » ] The most widely used LBE both in
£ N 2 a3 2 2D and 3D: a 2nd-order approxima-
/HX\ PN tion to the MB equilibrium distri-
Hi Hy  Hy £ = fi — £7% (BGK) bution and a BGK relaxation term.
o The standard regularization: Latt
H, fE9 = wip [1 + a2uaei o + uaufz (€s,a6s, and Chopard'®reported an increase
H & \H : in the stability range by a factor
LN B a 1 \ |7 in the lid-driven cavity problem.
Hu Hyy Hyy fi9 = w; 5 Tap (ei,aei,ﬁ - aﬁ&xﬁ) ‘) Comparison with entropic stabilizer
s — by Mattila et al.'®.
eq __ 2 a . .
H, [t =wip [1 + a5UCia T - Ua This LBE was used by Siebert
H £ N a® ) 1 et al.'® showing improved stabil-
hog ol +?uwuy (Q‘,x - ?)ei ity results when compared to the
Ha /ny\ Hyy ° MRT scheme used by Lallemand
H H 47
xxy xyy fr€0— f, — §°9 (BAK) and Luo
&
4
€ aS 1
fea = wip[l + a?uy N?ug (ei,aei,ﬁ — 7(%3)] . .
H, ; 6 af The BGK relaxation term with
£ as 2 as 2 2 a full Hermitian expansion of the
+—uzuy (€ m— iy T —Uyuz(e;, — —)e
Mol Hy 2 A& \%)'ﬂw 2 (el %) i equilibrium distribution. Used in
Ha /ny\ Hyy _'_CLSUQ (62 i)] Sec.V A for the simulation of per-
wy  Hay 4. " ~g2 “Yoa? turbed double periodic shear layer
H &
XXyY flow.
= N e twn
&\ - 1
fea = 02Uation + Suaus (61 0€ig — 7(50‘5)] The standard regularization scheme
s 6 i 2 6 als with a full Hermitian expansion of
H v \H +%uiuy (2, — ;)ei,y +a?su§uz (e2, - —)ei the equilibrium  distribution, but
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