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1 INTRODUCTION

1.1 Seeking for investment returns

The most recent significant stock market crash induced by the US subprime
mortgage crisis, which burst by the end of 2008, produced amongst investors
great distrust towards the sustainability of the financial markets around the
world. Although investor sentiment has recovered since then with robust bull
market development, the volatility of the markets has picked up pace with new
emerging threats like the European sovereign debt crisis and the fears of slowing
Chinese economy. The uncertainty is mirrored in the behavior of investors who
seem to be forced to either accept the rising risk levels of stocks or give up any
reasonable returns for their investments since the traditional safe heavens, such
as precious metals, seem to have lost their meaning during the recent turmoil
(see, e.g. Junttila and Raatikainen (2015)). Furthermore, exceptionally low
market interest rates, which have been introduced in practically all economies to
boost up the economic growth, narrow down the possibilities for viable returns
for the investments. Therefore the dilemma of optimizing the portfolio allocation
could not be more timely at the moment.

As a consequence, so called alternative asset classes, i.e. those which are not
part of the ”traditional” financial tools such as stocks, bonds and cash, have been
steadily increasing their popularity globally during the last few years. According
to Cumming et al. (2014), by the year 2011 the global market size of alternative
investments had increased to approximately 9 trillion US dollars, representing
10 % of the global total value of investor’s portfolios. Alternative investments
are loosely defined and include assets like real estates, commodities, timberland,
art, infrastructure and hedge funds, which typically are characterized by a
low correlation with the traditional financial markets (henceforth referred as
traditional investments). However, most of these alternative asset classes are
also associated with rather poor liquidity and high requirements for the initial
investment which are major drawbacks for an individual household investor.
Also additional costs are often introduced, related to e.g. the maintenance or
storage of holdings. To avoid these disadvantages, new types of open-ended funds
focusing solely on the alternative assets have been emerged at an increasing
pace. Through these funds the customers are offered access to the returns in the
alternative markets with comparable liquidity. In Finland already for a couple
of years the private investors have been able to invest into housing, public
health-care facilities, commercial estates and timberland through open-ended
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investment funds. Therefore it is of great interest whether these asset classes
offer real benefits as measured by the risk-adjusted returns when they are held
together with the traditional investment assets 1.

Due to the associated risks and volatility of the stock markets Finnish
household investors, who are typically extremely risk-aversive, have historically
allocated on average only a fraction of their available total assets into the
stock markets via direct stock purchases and investment funds (see Figure
1.1). Although the fraction has somewhat steadily increased between 1988
and 2013, only about 10 % of the total assets were allocated to the stock
markets. The fraction of bank account savings has remained relatively steady at
around 10% throughout the examined period. By far the biggest fraction of the
total assets is bound to owner-occupied apartments. Also forest investments
have increased steadily their share as an investment asset and combining all
alternative investment assets, i.e. real estates and forest, their total faction has
remained relatively steady at approximately 80 %. Two questions arise from these
observations. Firstly, is the high fraction of alternative investments rationale in
terms of expected return characteristics? On the other hand, if one chooses to
live in a rental apartment, should some fraction of the investment portfolio be
diversified into the alternative markets? This thesis aims to give some insight
into these questions focusing especially on real estate and timberland holdings.
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Figure 1.1. The average investment allocations of Finnish household
investors between years 1988 and 2013 (source: Official Statistics of
Finland (OSF), http://www.stat.fi/til/vtutk/index_en.html).

1.2 Characteristics of timberland and real estate assets

The attractiveness of the alternative investments can be often explained best
by non-financial properties. Especially timberland investments are different

1Discussions with Tero Wesanko and Teemu Hahl 22.1.2016, 7.4.2016, 26.8.2016 and
16.12.2016 in Helsinki

2



compared to the other investment classes based on a couple of crucial charac-
teristics. One of these features is the ability to add value through biological
growth regardless of the events in the financial markets and economy. This
feature is unique and can not be found in any alternative financial instruments
(Zinkhan and Mitchell, 1990). The owners may even improve the profitability of
their own holdings by own activities, which promote the growth. Of course, the
stumpage prices are not immune to fluctuations in response to any unfavorable
incidents in the economy. However, investors may raise or lower the rate of
harvests in response to timber price movements, effectively lowering the actual
volatility of the realized returns. When prices are down, the harvests may be
withhold and let the timber volume grow and add value until the stumpage
market price is higher. On the other hand, timberland investing is often not just
purchasing forest properties and occasionally selling timber. Instead, for many
non-industrial private investors the traditional ”soft” values associated with
forestland in general are as important as the pure financial factors. The possi-
bility for recreational activities, essential role in water resource management,
preservation of biodiversity and carbon sequestration are all goods and ser-
vices, which are not available in ordinary commodity markets and are therefore
impossible to appraise monetarily (Tyrväinen and Mäntymaa, 2010).

Real estate can be divided into many categories, such as residential homes,
vacation properties, storage facilities and commercial buildings, which all have
very different markets even within the same region, even though they share
many similar features (Eichholtz et al., 1995). Many of the features related to
timberland investments can be associated also with real estate investing. Just
like forest, real estates are tangible assets, i.e. they can be touched and felt,
which can be for many people very important psychologically. The property’s
land and its structure possess intrinsic hard value, and the regular income stream
provided by leases, which is typically significantly higher than the typical stock
market dividend yield, generally secure the investment value (Manganelli, 2015).
On the other hand, profit earning capacity of real estate investments is highly
dependent on the acquired cash flows, which therefore imposes great risks, if this
factor is not well understood by the investor. The initial capital requirements
are also often relatively high compared to other investment assets, although low
cost capital may be acquired through mortgage leverage.

1.3 About this study

The purpose of this thesis is to assess a rationale for real estate and timberland
diversification in a mixed-asset portfolio. This will be approached by the means
of portfolio diversification theory which will be utilized to construct the risk-
adjusted optimal portfolios. The backtesting optimization will be performed
using both the static and dynamic weight frameworks. In order to find the time-
varying optimized allocations, methods developed for multivariate time-series
analysis will be used. The objective is to find out, whether it has been beneficial
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for different kinds of investors to allocate some weight into the alternative
investment classes, and if so, how the optimal allocations have been varying
during the study period 1987-2014. Purely Finnish data are used to construct
the return series for timberland and real estate investments, more precisely for
non-subsidized housing.

The structure of the thesis is as follows. First, existing literature regarding
the timberland and real estate asset classes as a tool for investment portfolio
diversification will be reviewed and discussed. This section not only aims to
present the obtained results but also discusses the possible caveats and strengths
of the utilized methods. Also a brief comparison of the present work and the
earlier studies will be given. Chapter 3 focuses on the theoretical background
associated with portfolio management. In Chapter 4 the utilized data, methods,
assumptions and computer code developed for the portfolio simulations and
optimization routines are presented in more detail. Finally, Chapters 5 and 6
review the obtained results and the main conclusions.
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2 LITERATURE REVIEW

Most of the studies concentrating on asset portfolio diversification involving
alternative asset classes have used data only from the North-American markets.
However, during the last decade, the number of studies using data from the
Nordic countries has also increased. Like in financial research commonly, the
most frequently used models to study the feasibility of alternative assets as
part of an asset portfolio is a model based on modern portfolio theory (MPT)
and/or capital asset pricing model (CAPM). The theory under the models and
possible caveats are discussed in sections 3.1.1 and 3.1.2.

2.1 Securitized vs. direct investments

To private investors, the primary challenges to diversify their portfolio using real
estate and timberland assets are related to the imperfections of the corresponding
markets, like poor liquidity and relatively high transaction costs. As the demand
for alternative assets has been increasing rapidly amongst both retail and
institutional investors in recent years (Sun (2013)), markets for securitized real
investment class assets have developed to circumvent these challenges. This form
of investment instruments are commonly referred to Real Estate Investment
Trusts (REITs).

There are different types of REITs in the markets, differentiated by the
type of real estate they are build on. For example, an equity REIT builds
or manages properties, collects the rents or sells the equities forward, and
distributes the acquired income to the investors. The shares of the company
are traded commonly in the public stock markets and therefore the liquidity is
supreme compared to the direct investments. However, one major concern in
buying shares of REITs is that systematic market risk is introduced and therefore
the price movements do not necessarily follow the fundamental factors driving
specifically the real investment returns. Therefore, attractive diversification
properties of the direct real investment assets may be lost.

Studies focusing on the diversification benefits of REITs over corresponding
direct real investment assets are somewhat mixed in the sense of whether
these instruments can be considered as substitutes. On the other hand, the
contemporaneous correlation between direct and securitized returns seems to be
rather low (see Mueller and Mueller (2003), Brounen and Eichholtz (2003), Sun
(2013)). However, since in the long run both the direct and securitized markets
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should adjust to any shocks diminishing the impact of market noise, there
should be significant co-movement between these markets. Indeed, over long
horizons the linkages between the indirect and direct markets have been shown
to be significantly stronger than suggested by simple correlation coefficients,
at least in the case of real estates (Li et al. (2009), Oikarinen et al. (2011),
Hoesli and Oikarinen (2012)). This would indicate, that in the long run, the
direct and securitized real estate investments can be considered as substitutes,
at least to some extent. However, as timber REITs are not yet as developed
as their real estate counterparts, research about the long-term co-movements
between direct timber investments and corresponding REIT returns has not
been conducted to our knowledge. Previously, the diversification potential to
timber REITs in the U.S. markets has been shown to be rather limited (Sun,
2013) even though cointegration analyses indicate no general trends among,
for example, the timber REIT stock prices and the S&P500 index (La and
Mei, 2015). On the other hand, Piao et al. (2016) point out that the timber
REITs seem to be least sensitive to recessionary shocks, when compared to
other specialized REITs and common REITs. Also, timber REITs had regularly
the smallest unconditional variances as modeled by an EGARCH model.

Orava Residential REIT plc is currently the only actual REIT operating in
Finland. Since the markets of securitized real investment assets are very thin in
Finland, they will not be considered further in the empirical analysis of this
thesis.

2.2 Timberland assets

Diversification benefits of forestry-related assets have received very little aca-
demic attention until late 1990s. This can be based on the fact that the exploita-
tion of forestland assets is a rather recent phenomenon amongst the institutional
market-making investors, dating back to only 1980s in the U.S (Weyerhauser,
2005). Also, until then, forestry investments were considered to have low yields
when analyzed with traditional net present value or internal rate of return
analyses which is why they were not considered as attractive investments. Later,
however, also the high-profile institutional investors have expressed increasing
interest in timberland assets (Healey et al., 2005).

2.2.1 Different methods to approximate timberland returns

In previous research, many different methods to approximate the historical return
series on timberland have been used. The assumptions in different methods have
varied significantly depending on the available data, and therefore they should
be evaluated critically. However, all the described methods aim to describe the
returns for the direct timberland ownership.

Regarding timberland private equity investments, the set of noteworthy
ready-made indexes is small. However, some attempts to describe the timber
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returns have been made. In the USA basically only one index is available, i.e. the
National Council of Real Estate Investment Fiduciaries (NCREIF) Timberland
Index (NCREIF, p. 20). Until 1999 also Timberland Performance Index (TPI)
by Jon Caulfield at the Warnell School of Forestry at the University of Georgia
(Caulfield, 1998) was published until it was discontinued in 1999 while the
NCREIF index is still published.

The NCREIF Timberland Index is a quarterly return series measuring the
performance of several private timber management organizations (TIMOs) that
report both income and appreciation returns in addition to the total returns. It
covers three most important timber regions in the U.S.: the South, Northeast
and Pacific Northwest and is comprised of changing amount of different TIMOs.
The total market value of the approximately 55000 km2 timberland owned by
the included organizations in 2014 was $23.4 billion (Lutz, 2014). However,
compared to the total size of U.S. timberland, about 2 million square kilometers
available for timber production (Alvarez, 2007), the index is fairly limited
representation of the U.S. timberland returns as a whole. Another limitation
of the NCREIF index is that the appreciation returns are calculated based
on appraisal of the timberland each quarter and not on transactions. While
most of the land is appraised only on yearly basis, usually in the last quarter,
quarterly returns present biased figures of the true volatility associated with the
investment, and therefore any risk-based analysis should be interpreted with
care as it may give a too optimistic impression of the diversification benefits.
The annual series does not suffer from this problem.

Mills and Hoover (1982) used in their study very specific method by approx-
imating the returns of ten single U.S. hardwood forest investments located in
four separate sites within a 20-year time frame. The possibility of any catas-
trophic events, such as fire and tornadoes, was incorporated into the data by
the means of Monte Carlo simulations. The expected growth of timber was
assumed to be constant. Since the material used in this study was very local, it
is questionable, whether the results can be generalized into other markets. Also,
many uncertainties and assumed parameters, such as the rate of catastrophic
events and the timber growth, may hinder the reliability of the results.

For example, Washburn and Binkley (1993) used a more general approach by
assuming that the forestry returns are just the sum of relative stumpage price
changes and a constant, representing the timber growth, operating expenses
and changes in the value of the bare land and possible other determinants of
the returns. In this method the variation of the historical returns is a result
of solely the stumpage price variation, and therefore, other sources of possibly
significant fluctuation are completely omitted. Thomson (1991, 1997) included
the change of land appreciation, biological growth and the operational cash
flows into the studied return series. Since accurate data for the total returns
were not available, a theoretical timber return index was created, which was
shown to correlate significantly with historical timber prices. However, also this
model incorporated some constant values for the key variables, as the growth
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rate and the annual harvest volumes were assumed to be stable from year to
year. As Penttinen and Lausti (2009) note, the constant growth rate limitation
fits poorly to the empirical evidence from Finnish national forest inventory
data. In addition, the series constructed by Thomson does not capture e.g. the
possibility to withhold the harvests when the stumpage prices are low.

Later, Lundgren (2005) constructed a series taking accurately into account
the true time-varying sources of return (stumpage price changes, biological
growth, land price appreciation) by using national level annual data for Sweden.
The corresponding method has also been applied to Finnish timberland returns
by Hyytiäinen and Penttinen (2008), who constructed an annual return series
for a 120 ha case-study forest holding located in Southern Finland. In this
case the continuously compounded returns were calculated. The annual series
by Penttinen and Lausti (2009) was a more general representation of Finnish
timber markets as they used the national forest inventory data from all nineteen
(between years 1972-1981) and thirteen (1981-2008) Forest Centers in Finland.
These data were provided by Finnish Forest Research Institute (FFRI). The
returns were calculated as

rTCP,t = ln




N∑
x=1

s[Px,t(Vx,t−1 +Gx,t −Hx,t)] +
N∑
x=1

Px,tHx,t − Ct
N∑
x=1

sPx,t−1Vx,t−1


 , (2.1)

where

t =year
w =roundwood type
s =sensitivity parameter adjusting the felling value in relative to the

actual market prices, 0 < s ≤ 1
Px,t =average stumpage price of roundwood x at time t
Vx,t =volume of roundwood x at time t
Gx,t =typical growth of roundwood x during year t
Hx,t =harvests of roundwood x during year t
Ct =harvesting and improvement costs.

So far the approach by Penttinen and Lausti (2009) is perhaps the most accurate
proxy of returns faced by NIPF investors in Finland, if one assumes that the
variations in the value of bare land are negligible. This is indeed a reasonable
approximation (Caulfield (1998), Penttinen and Lausti (2009)). A similar method
to proxy the Finnish timberland returns between years 1987 and 2014 will be
utilized in this thesis. However, the time series will be extended to a quarterly
frequency. Due to the division of the data provided by FFRI down to local forest
district levels, it would be even possible to study local variations of returns
associated with timberland ownership. However, this was left out of the scope
in the work presented here.

8



2.2.2 Previously utilized models, obtained results and critique

Mills and Hoover (1982) were one of the first ones to reveal the low, or even
negative, correlation between timber and other, financial assets. This offered
a plausible rationale for investing in forestry when the benefits of portfolio
diversification (Markowitz (1952), Jensen (1968)) were considered. The study was
a case study of ten single U.S. hardwood forests for which a 20-year time series of
annual rates of returns was considered and compared with three more common
financial instruments (stocks, long-term government bonds and U.S. treasury
bills). Several investing strategies differing by the considered asset classes, were
studied and the risk was measured by the simple variance/covariance metrics.
While timberland investments were found to have relatively high variances
compared to the achieved returns, the correlation with common stocks and
bonds was found to be negative. Therefore, forestland is an effectively diversifying
asset and should be included in risk-efficient portfolios. On the other hand, the
data and the utilized methods were rather limited, but nevertheless, the study
established an interesting base to the further timberland investing studies.

Several studies (Thomson (1987), Conroy (1989), Zinkhan and Mitchell
(1990)) after Mills and Hoover (1982) used static weight portfolio models based
on the MPT and CAPM to demonstrate that including timber assets into
investing portfolio enhances the performance at least to some extent. The
typical finding with this kind of approach is that the beta of CAP-model does
not differ statistically significantly from zero for timber assets. Therefore they
are expected to be desirable components for an efficient portfolio. However, in
most of the above studies the optimal asset allocations were not considered.

The study by Thomson (1997) investigated the optimal allocations using
inflation adjusted returns from direct timberland real estate investments com-
bined with common stocks, corporate and government bonds and U.S. treasury
bills, for the period of 1937-1994. A portfolio optimization routine based on
modern portfolio theory was employed over multiple time periods with asset
allocation re-balancing between them. Over the whole period the timber assets
were commonly included in each of the optimized portfolios being in some cases
the only component in the portfolio. However, the risk-adjusted returns of the
timber alone were unfavorable, indicating that this asset class acts as an efficient
tool for diversification, but in the long run, the investors should invest in other
assets as well.

The results remained favorable despite different assumptions indicating that
the conclusions are robust. For example, a portfolio with timber share equal to
10% and yearly re-balancing of other assets showed an annual return of 6.8 %
with standard deviation of 11.8 %, which outperformed the common stocks
providing 6.4 % return with 13.8 % standard deviation over the same period.
When increasing the weight of timber to 50 %, the annual return was boosted
to 9.2 %, but the standard deviation of the return was also increased to 15.4 %.
However, these figures favor strongly allocating a significant amount of portfolio
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to timber assets.
Scholtens and Spierdijk (2010) used very similar approach to study the

diversification benefit of timberland investments compared to Thomson (1997).
However, instead of theoretically constructed return index they used a proxy of
total timberland returns, which is provided by National Council of Real Estate
Investment Fiduciaries (NCREIF) Timberland Index. The time period of the
analysis was 1994-2007 and portfolio optimization was performed without any
re-balancing. At first sight the results seemed favorable, since adding weight
to the NCREIF index increased the efficiency of the portfolio. However, when
taking into account so called appraisal smoothing bias1 timber assets become
less attractive in terms of the risk-adjusted returns. Scholtens and Spierdijk
(2010) used a theoretical unsmoothing approach to remove this bias from the
return index and as a result, no diversification benefits were found. However, this
approach is very theoretical in nature and is dependent on exogenous parameters,
which have to be estimated. On the other hand, Rubbaniy et al. (2014) used
exactly the same methodology and concluded that while the risk-adjusted
returns may seem unfavorable at first sight, timberland exhibits inflation hedging
properties in times of high overall market volatility. This was also found out
by Washburn and Binkley (1993). In the light of inflation hedging properties
timber assets definitely add value to any investing portfolio.

Wan et al. (2015) studied the same NCREIF index as a part of a mixed
portfolio from the risk perspective and took more carefully into account the
non-normality of the annual financial asset returns. They exploited both the
conventional standard deviation (SD) and mean-conditional value at risk (M-
CVaR) as the measures of risk levels and performed portfolio optimization
routine over multiple time periods between years 1987-2011. The approach was
therefore similar to the study by Thomson (1997) but using a more recent time
period and adding a more appropriate risk measure to the analysis.

The difference in the calculated efficient frontiers using either the SD or
M-CVaR measures is presented in Figure 2.1. As can be seen, the returns at
each risk level are significantly higher, when timberland assets are included
to the portfolio. However, by using M-CVaR method to measure the risk, the
increase in returns is more clear especially at low risk levels, and therefore, it
captures the benefits of timber assets better. This emphasizes the importance of
appropriate decision of risk measure for portfolio management. Wan et al. (2015)
calculated also the optimal asset allocations in portfolios following different
strategies, and found out that timberland assets maintain significant weights in
the optimized portfolios, as can be seen from Figure 2.2.

The CAPM studies conducted with Swedish (Lundgren (2005)) and Finnish
(Penttinen (2007), Penttinen and Lausti (2009)) data have yielded contradictory
results. Lundgren (2005) analyzed the inflation-adjusted returns for Swedish

1This bias arises when the appraised values of the properties insufficiently react to the
current market prices. For example Fisher et al. (1999) found out that the property sales
price tend to exceed the appraised values in up market, and vice versa in the down market.
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Figure 2.1. Comparison of the mean-variance and mean-CVaR efficient
frontiers before and after adding timberland assets to a mixed portfolio.
Source: Wan et al. (2015).

timberland using a simple stock index as a proxy for outlying market portfolio.
The results were favorable, as timberland assets expressed superior inflation
hedging properties. A statistically significant estimated inflation parameter was
found, indicating that if inflation increases by 1 %, the timberland returns will
go up by 1.44 %. Furthermore, in this case the estimated beta parameter was
found to be close to zero, while the excess returns were significantly positive
(6 %). However, the approximate nature of the return series construction and
choosing a market portfolio consisting solely of stocks, somewhat hampers the
solidity of the results.

Penttinen and Lausti (2009) studied carefully the effect of market portfolio
assumption in CAPM model applied to Finnish markets. The novel value-
weighted market wealth portfolio consisted of all major asset classes (NIPFs,
private housing, offices, stocks, bonds and debentures). The estimated systematic
risk coefficient (β) was unexpectedly high, 0.6 (p < 0.02), while the excess
return α was not significant (2.2 %, p > 0.2). However, using the stocks-
only proxy for the market portfolio resulted in severely underestimated beta
(0.12) and overestimated alpha (-0.29 %). Therefore it can be suspected, that
the corresponding measures in the analysis of Lundgren (2005) may give a
little too optimistic figure. Later, Yao and Mei (2015) utilized CAPM and its
extensions with both public- and private-equity U.S. timberland returns using
value-weighted index of NYSE, AMEX and NASDAQ stocks as a proxy for
market return portfolio. The authors found out that the basic CAPM and
one of its most commonly used extensions, Fama-French three-factor model,
are not adequate to explain the variations in cross-sectional returns in the
studied assets. However, more complicated but, in principle, more accurate
intertemporal CAPM (ICAPM) could not be rejected statistically. The results
suggested significant positive excess returns in the first sub-period of 1988/Q1-
1999/Q4 while in the second period of 2000/Q1-2011/Q4 the excess returns
were insignificant.
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Figure 2.2. Dynamic 10-year rolling optimal asset allocations in mixed-
asset portfolios utilizing varying strategies (different constraints for single
assets). The largest allocation for timberland is obtained in scenarios 1
and 2, where no constraint for timberland weight is set. In scenarios 3
and 4 the weight is constrained to a maximum of 10 %. Source: Wan
et al. (2015).

2.3 Real estate assets

Research regarding the portfolio diversification with real estate assets is more
voluminous than the corresponding research on timberland assets. The data
sets are more readily available also internationally, and e.g. Case et al. (1997)
studied the total returns on industrial, office, and rental property in 21 different
countries between the years 1986-1994. However, as in the case of timberland
returns, some attention to the methodology behind the return estimation has
to be paid. As stated earlier, the returns extracted from the REIT price series
suffer from the additional systematic market risk adding volatility to the returns,
which is unrelated to the underlying real estate market. On the other hand,
returns based on the appraisal-based values suffer potentially from the appraisal-
smoothing bias. To take this bias into account, many techniques to (arbitrarily)
amplify the measured volatility of the observations have been proposed, e.g. by
Geltner (1993). One method is based on a simple smoothing model

r∗t = ar∗t−1 + (1− a)rut , (2.2)

where r∗t is the observed return, rut is the ”true” unsmoothed return and a is a
smoothing parameter. However, the identification of an appropriate smoothing
parameter remains challenging and somewhat arbitrary according to Marcato
and Key (2007). In practice, the parameter is often chosen so, that the standard
deviation of the unsmoothed returns corresponds to a target volatility.
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The studies of mixed-asset portfolio diversification with real estate have, in
general, established ability to enhance the risk-adjusted returns regardless of
whether the return series have been for direct or indirect assets. The conclusions
seem to be rather unanimous finding that the contemporaneous correlation
between real estates and stocks or bonds is low (positive or negative) setting an
intriguing base for portfolio diversification benefits (Ibbotson and Siegel (1984),
Eichholtz (1996), Ziobrowski and Ziobrowski (1997), Hoesli et al. (2004)).

More recent research has also focused on the dynamics and long-term
relationships between different assets (Chaudhry et al. (1999), Lizieri (2013))
finding that the stock returns also seem to have inverse long-run relationship
with real estate returns. Case et al. (2012) studied the returns of U.K. based
FTSE NAREIT All-REIT Index utilizing DCC-GARCH methodology. Their
results indicate, that the correlation coefficient between the REIT and stock
market returns has fluctuated between 30-76 % throughout years 1976 to 2008.
Therefore, even though additional market risk is apparent when investing in
REIT stocks, also these securitized instruments appear to have a potential for
portfolio diversification. More recently, Lizieri (2013) used a monthly-based
index of commercial real-estate total returns in the U.K. and a simple rolling-
correlation framework to study the dynamics of the private real estate markets.
Time-varying bivariate correlation coefficients from that study are presented in
Figure 2.3 showing that the correlation between the traditional equity markets
and real estates has varied markedly (between -0.3 and 0.5 vs. stocks and from
-0.5 to 0.2 vs. bonds). However, poor performance of stock market returns and
the increase in the correlation coefficients appeared to be associated with each
other, indicating that diversification benefits tend to decay when they should
be most useful. However, at least in terms of mean-variance analysis, private
real estates seemed to offer significant advantages.

(a) Real estate vs. stocks (b) Real estate vs. bonds

Figure 2.3. Rolling correlation coefficient estimates between real estates
and (a) all-stocks index and (b) bonds in the U.K. Source: Lizieri (2013).

The low correlation between real estate and stock market returns over both
short and long time-frames may be somewhat surprising, since they both are
driven by both the interest rates and economic activity. Quan and Titman (1999)
analyzed real estate price changes, representing direct investments, alongside
with stock market indices and macroeconomic data from 17 different countries.
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Their result was that by pooling data, a significant positive relationship between
stock market returns and real estate values is evident. This relationship is
specifically based on the values of current economic factors. However, the country-
specific contemporaneous correlation coefficients are statistically insignificant.
The results would indicate that while portfolio diversification with domestic
real estate assets could be beneficial, international diversification would not
provide significant advantage. However, due to the quality of the used data,
e.g. the exclusion of the rental-rates, the performed regressions should be
interpreted with caution. Nevertheless, for example Eichholtz (1996) and Case
et al. (1997) find, that international diversification would have been beneficial
for U.S. investor. Moreover, international diversification was found to reduce
the variance of real estate portfolio more than that of portfolios consisting of
common stocks and bonds.

Figure 2.4. Efficient frontiers calculated by Ziobrowski and Ziobrowski
(1997) with and without direct investment on real estate assets.

Many studies have also addressed optimal asset allocation. Using un-smoothed
direct real estate returns Ziobrowski and Ziobrowski (1997) constructed full
efficient frontiers and found out the optimal allocations at various levels of risk
preference. Even when the un-smoothing procedure was applied, the efficient
frontier of portfolio returns was enhanced by diversifying into real estate assets
(see Figure 2.4). Moreover, the benefit appears to be most notable for moderately
risk-aversive investors. For these investors the optimal level of real estate assets
was found to be 20-30 %. Later, Hoesli et al. (2004) obtained very similar results
using direct real estate returns from the U.S., U.K., French, Dutch, Swedish,
Swiss and Australian markets for the period of 1987-2001. Also in this study
the returns were desmoothed by the procedure suggested by Geltner (1993)
adjusting the smoothing parameter so, that the volatility of real estate assets
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was on average the same as the volatility of stocks and bonds. Additionally,
the estimates for the next period returns were generated by the Bayes-Stein
shrinkage approach (see Jorion (1985)), in which a common mean across all
asset returns is imposed, rather than the individual estimates for each series.
Optimal allocations of minimum-variance portfolios were determined using four
levels of target standard deviation. Using currency hedged returns the optimal
allocation to real estate was 15-25 %, which reduced the portfolio’s risk by 10
to 20 %. The results were very similar across the different countries.

Lekander (2015) extended the analysis of Hoesli et al. (2004) by extending
the length of the time series and the depth of the methods. The same data from
six countries were used extending them to year 2011. In total, six different types
of real estate for each country were considered. Additionally, cost of managing
a real estate portfolio was taken into account by assuming an average annual
management fee of 0.5 %. The analysis was performed in a mean-variance
framework and portfolios were optimized using several different risk strategies.
Minimum variance strategy showed that the percentage risk reduction varied
from 3 to 12 %. The 10 percent risk strategy yield the highest level of allocation
(15 to 25 %) while increasing the risk level decreased correspondingly the degree
of real estate weight. These findings are in strong agreement with earlier results,
which reveal that investing on real estate offers significant diversification benefits
in a multi-asset portfolio.

2.4 This study in light of the previous studies

To conclude the earlier empirical findings, both the real estate and timberland
assets seem to offer substantial benefits as parts of an investment portfolio.
The advantages are argued to be based on relatively low correlations with the
other, financial market assets, inflation hedging properties and the increased
risk-adjusted returns of the overall portfolio. The results in the case of real
estate properties seem to be similar across different countries and international
diversification may provide some additional benefits. To our knowledge, similar
multinational studies considering timberland assets are not yet available.

The previously utilized models have mostly been based on the Markowitz
mean-variance framework and CAPM model. Using these methods, many studies
have also pursued towards finding the optimal allocations of different assets in
mixed-asset investment portfolios. However, in many cases the data have been
too confined for utilizing advanced methods of time-series analysis. Therefore
the time-varying properties of variables, like correlations and the persistence
of the risk-diversifying properties of the studied assets, have been unsolved.
In addition, the mean-variance framework is not able to capture the true
relationship between the returns and the risk, when the distributions of the
asset returns exhibit non-normality, such as skewness and kurtosis. This is
well-documented for financial assets as well as for timberland in Wan et al.
(2015). Therefore the results regarding the risk-adjusted returns may be biased.
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This work aims to extend the analysis of risk-diversifying properties of real
estate and timberland assets in an investment portfolio into the Finnish markets.
Our methodology regarding the risk measurement and time-varying optimal
portfolio allocations is somewhat similar to Wan et al. (2015). However, instead
of using a 10-year rolling period to determine the expected returns and risk
measures for the next period, univariate and multivariate GARCH modeling is
utilized on a quarterly basis. Furthermore, same restrictive scenarios are not
used to constraint asset allocations. This allows us to examine the composition
and the stability of the time-varying optimal allocations in much more detail. In
fact, to our knowledge this is the first time when such advanced methods have
been applied to alternative investment assets in case of the Finnish markets.
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3 THEORETICAL BACKGROUND

3.1 Portfolio management

3.1.1 Modern portfolio theory

The modern portfolio theory (MPT) introduced by Markowitz (1952) establishes
the foundation of portfolio optimization problem faced by any investor and is
therefore one of the most important financial economics theories. This mathe-
matical framework is based on the assumption that from two portfolios offering
the same expected returns, rational investors will prefer the one which has less
risk, i.e. the investors are risk-aversive. Therefore the optimization problem can
be formulated as defining the allocations of different assets, which maximize the
expected return for a given risk level. On the other hand, the problem can be
formulated by setting a required level of expected return and minimizing the
risk measure. The portfolios that meet this criterion, i.e. minimized risk with a
given expected return, form a so called efficient frontier.

Mathematically the theory can be presented as follows. Let there be N
different assets indexed by i (i = 1, . . . , N) with expected returns

E(r) = (E(r1), E(r2), . . . , E(rN))T . (3.1)

The portfolio is constructed by assigning the weights

w = (w1, w2, . . . , wN)T , (3.2)

where the weight of individual asset is often constrained by ∑N
i=1 wi = 1 (every-

thing is invested into something) and wi > 0 (no short selling is allowed) for all
i. The portfolio return can then be calculated as a weighted linear combination
of the individual asset returns

E(Rp) = wTE(r) =
N∑

i=1
wrE(ri). (3.3)

Let us then assume that the portfolio risk R is a function of w and E(r).
The optimized portfolio under the MPT is found from the solution of the
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optimization problem

MinR(w, r)
s.t. wTE(r) = u,

N∑

i=1
wi = 1,

wi > 0,

(3.4)

where u is the assigned target return. The above specification sets a general
framework for the portfolio optimization problem, which will be considered in
this work. In this form the theory is then very general since the way to measure
riskiness has been left open. In the next section some of the most common
measures of risk are briefly introduced.

When using the MPT approach one typically studies the efficient frontiers
(portfolios with the minimized risk measure at a given level of expected return)
of portfolios with or without the specific asset. Also a portfolio optimization
routine can be incorporated aiming to determine the optimal asset allocations
either in single or multiple time-periods. The studies are differentiated e.g. by
the outlying assumptions about the distributions of the considered assets and
the utilized risk measures. Also the estimates for the next period risk and
expected return measures can be determined by various methods.

3.1.2 Portfolio risk measures

Beta in CAPM model

One very commonly used measure of risk is the ”beta” based on the popu-
lar capital asset pricing model (CAPM, Sharpe (1970)). In this model it is
hypothesized that the risk of individual investment has two components:

1. Systematic risk: The market risk, which can not be diversified away and
is always present in ones portfolio

2. Unsystematic risk: The specific risk of an asset which can be removed
through diversification, i.e. adding more assets into ones portfolio.

According to Sharpe, the return of an individual asset, or a portfolio, should
be equal to its cost of capital. Standard CAPM describes the relationship
between risk and expected return ra as

ra = rf + βa(rM − rf ), (3.5)

where rf is the risk-free yield (typically short government bond yield), βa is the
beta of the security representing the tendency of security’s returns to respond
to fluctuations of the market portfolio, rM the expected market return and
(rM − rf ) the equity market premium. Here, rM represents the systematic risk
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component, and β measures the magnitude of this risk factor associated to
the portfolio. The expected returns for the next periods are unknown and are
often estimated as the mean of historical returns. β is in turn estimated as
the correlation coefficient of returns over the past performances. These kind of
definitions assume, that the relationship between the individual asset and the
market remains constant over time, which is of course a strong assumption and
is unlikely to hold over long periods of time. One way to avoid this is to use
time-varying estimates, estimated e.g. by the means of GARCH models (see
for example Ng (1991)). Alternatively, the equation can be represented (Jensen
(1969)) as

ra,t = rf + βa(rM,t − rf ) + εt, (3.6)

where ra,t and rM,t are realized nominal returns at time t and εt is a white noise
term.

The portfolio of all assets available has a beta of exactly one. A lower beta
could have two types of indications: either the investment has lower volatility
than the market, or the assets price movements are just weakly correlated with
the market. Portfolios having β > 1 in turn are considered as aggressive, since
they have above-average sensitivity to market returns and are therefore riskier.

As a side-note, equation 3.6 can be augmented by explaining the returns, in
addition to β and risk free rate, with Jensen’s alpha Jensen (1968), which is
used to determine the abnormal returns of an asset or a portfolio. Equation 3.5
becomes

ra,t = α + rf + βa(rM,t − rf ) + εt, (3.7)

Here the returns ra are thought to be risk-adjusted, i.e. the relative riskiness
of the asset is taken into account by α. A positive α means higher than
expected returns when adjusted to its riskiness (in relative to the overall
market). Therefore Jensen’s alpha is often used to measure the performance
of the considered asset(s) and therefore it should not be interpreted as a risk
measure.

Although equation 3.5 may seem simple, the definition of variables ra, rM and
βa is rather ambiguous and require major assumptions to be made. First, and
the most important is the assumption for the existence of an underlying market
portfolio. In fact, correct and unambiguous utilization of CAPM is impossible due
to the fact, that the exact composition of the true market portfolio is practically
non-observable and the broadness of the used approximative portfolio is a key
concern (see Roll (1977), Penttinen and Lausti (2009)). Brown and Brown (1987)
found that a variety of conclusions about the performance of any collection of
assets can be obtained by just creating successively broader series of indexes.
Therefore it is extremely important to choose a wide and relevant enough proxy
for the overall market in order to have comparable results.

However, more fundamental problem of the theory is the interpretation of
the evaluated β even if one assumes that a perfect market portfolio can be
constructed. Should the assets having high β be considered as riskier than
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the ones with low β, and therefore be avoided when constructing a portfolio?
As beta measures the correlation of an asset with the underlying index, all it
indicates is the relative expected performance rather than the absolute efficiency
of the asset. Since rational investors are expected to be concerned also about
the absolute risk associated with an asset, the next introduced measures of risk
are purely absolute in nature.

Standard deviation

Standard deviation (SD) σ, or variance σ2 is the risk measure, which was used
originally when MPT was introduced. Therefore it is also the most commonly
used way to define riskiness. Standard deviation is one of the key concepts in
probability theory and describes how far a set of random numbers are spread
out from their mean. The standard deviation of the investing portfolio is

SDp(w, r) =
√
wTHw =

N∑

i=1
w2
i σ

2
i +

N∑

i=1

N∑

j 6=j
wiwjσij, (3.8)

where H is the variance-covariance matrix (N ×N) and σij is the covariance
of assets i and j describing how returns on assets move together. Portfolio
optimization using SD as the risk measure is also referred as the mean-variance
(M-V) optimization approach.

While standard deviation is a measure, which is readily available in practically
all statistical software, there are however significant drawbacks. SD does not
capture all the risk when the returns are non-normally distributed, since for
the computation of H multivariate normality assumption has to be made.
Under these assumptions, the return distribution has the same probability of
returns being above and below the mean, which is often not the case when
financial assets are considered. When the tail of the negative returns are more
heavier than the normal distribution would indicate or the distribution is skewed
negatively, the risk measured by standard deviation is underestimated. Therefore
to take into account also these higher moments (skewness and kurtosis) other
risk measures have to be considered.

Value at risk

Value at risk (VaR) and conditional value at risk (CVaR) are two closely related
quantities, which have become increasingly popular risk measures in finance
because they take better into account the chances of extreme losses, compared
to SD. The definition of VaR is rather general: VaR estimates the potential loss
over the next period of time at a given probability α. For example if the loss is
greater than 5 % at 1 % probability over the next month, one month VaR0.01 is
said to be 5 %. This is also illustrated in the Figure 3.1. More formally we can
define

VaRα = qα(F ) =←−F (α), (3.9)
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Figure 3.1. General concept of value at risk (VaR) and conditional
value at risk (CVaR). Here, the confidence level α is set to 1 %.

where F denotes the cumulative distribution function of losses and ←−F (α) is the
α quantile of the left tail of the distribution.

In many ways, VaR is then more general way to measure risk when compared
to standard deviation, in which 1 σ represents ≈ 15.8 % VaR when the distri-
bution is assumed to be standard. Indeed, in this case a relationship between σ
and VaR is

VaR0.01 ≈ −µ+ 2.33 ·σ. (3.10)
However, in the definition of VaR one does not need to make any assumptions
for the distribution of returns making the measure more useful to true financial
applications.

There are several ways to calculate VaR. One method is to use historical
returns by arranging them in order and calculating the α quantile. However,
this method may not be very accurate if only few data points are available. On
the other hand, it has to be assumed that the potential risk remains constant
over the whole period of time, which may not be good approximation in the
case of long time series.

In the second method some probability distribution for the returns is assumed.
From the cumulative distribution function VaRα can then be determined. In most
cases, analytical solution can be found, e.g. in the case of normal (Equation 3.10).
For Student-t distribution the corresponding VaR can be derived (Alexander
(2009)) as

Student-t VaRν,α,h =
√
ν−1(ν − 2) t−1

ν (1− α)σ − hµ, (3.11)

where Γ is the gamma function, ν is the shape parameter, h is the number of
forward periods while µ and σ are the expectation value and standard deviation
fitted by normal distribution.

If an analytical solution for the α-quantile can not be found or the available
distributions do not characterize the return density particularly well, VaR can
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be estimated by the means of Monte Carlo simulations. These simulations refer
to any method that randomly draws multiple hypothetical trials of data. For
this, a model of the returns based on the observations has to be developed after
which random samples from the model are drawn. The α-quantile from these
samples can then be easily obtained.

Conditional Value at Risk

Although VaR is a very popular measure of risk, it has some undesirable
characteristics (Rockafellar and Uryasev (2000)). For example, the VaR of
portfolio consisting of two assets may be greater than the sum of the risks of
the individual assets, i.e. VaR is not sub-additive function. Furthermore, in
some cases portfolio VaR function may be difficult to optimize, due to the lack
of convexity and possibly multiple local extrema. Therefore the optimal mix of
positions in an investing portfolio may be challenging to determine.

Conditional Value at Risk (CVaR) is an alternative measure of risk, which
is closely related to VaR. However, it is more consistent risk measure due to its
sub-additivity and convexity. CVaR, also called expected shortfall, is defined as

CVaRα(r) = E[r|r < VaRα(r)], (3.12)

which is the expected return of the VaRα limited left tail of the return dis-
tribution. This is also illustrated in Figure 3.1. If the probability distribution
function of the returns p(x) is known, CVaR can be calculated as probability
weighted average of returns below VaR, i.e.

CVaRα(r) = (1− α)−1
VaRα(r)∫

−∞
xp(x)dx. (3.13)

Due to this definition, low CVaR portfolios must also have low VaR. However, low
VaR metrics does not automatically mean low CVaR, because CVaR focuses on
the shape of the tail, which is totally neglected by VaR. Experiments indicate,
that minimization of CVaR also results in (at least nearly) optimized VaR
measure Uryasev (2000).
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4 DATA AND METHODS

4.1 Return series construction

The goal in this study is to assess how the inclusion of alternative real assets
affects the efficient portfolio frontiers and time-varying risk-adjusted optimal
allocations when considered from the Finnish private investor’s point of view.
Two different kinds of investor portfolios are considered. The first type of port-
folio (Portfolio 1, P1) consists solely of domestic assets, i.e. Finnish stocks,
government bonds, real estate and timberland. In the second portfolio (Portfolio
2, P2) the domestic financial assets are replaced by their international counter-
parts, thus modeling an investor, who exploits also the benefits of international
diversification. The choice of these portfolio compositions allows to examine
whether the utility gain offered by Finnish alternative assets is similar for both
domestic and international investment portfolios.

To achieve the posed objectives, a reliable and meaningful proxy of return
series for each different asset classes need to be either collected or constructed
from primary data sources. To study the true investor portfolio performance, all
of the returns have to account the true total return, i.e. interest, capital gains
and dividends are taken into account.1. From now on, the assets will be referred
to using the abbreviations SW/SF (Stocks, World/Finland), BW/BF (Bonds,
World/Finland), RE (Real Estate) and TCP (Timberland Capital Productivity).
In the case of alternative assets class, data are unavailable as such like in the
case of financial markets. In this study, the timber and real estate asset classes
were represented by specifically constructed quarterly total return indexes. The
common time-frames for all of the above portfolio constituents are 1987/Q1-
2014/Q4 for Portfolio 1 and 1991/Q1-2014/Q4 for Portfolio 2. In the following
sections the data sources, calculations and approximations are presented in

1In this work, the returns on the international stock markets are proxied by the MSCI World
total return index measuring the stock price performance of large and mid cap companies
across 23 developed markets. For the corresponding bond market performance, Citi’s World
Government Bond Index (WGBI) was used. Both of these indexes are available e.g. from
Thomson Reuters DataStream on a monthly basis. The Finnish stock market returns were
proxied using the series constructed by Nyberg and Vaihekoski (2014). Correspondingly
Nordea Government Bond index, available in DataStream, was used to represent the Finnish
bond returns. All of the above series are value-weighted total return indexes and valued using
Euro as the base currency.
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detail.2

4.1.1 Non-industrial private forest investments (NIPF) in Finland

The Finnish NIPF investment total return series was constructed similarly as
Penttinen and Lausti (2009). However, instead of an annual series, a quarterly
index was constructed based on the roundwood stumpage prices Px,t provided
by FFRI in a monthly basis.

Return of roundwood type x at month t is calculated using the formula

rTCP,t = ln




N∑
x=1

s[Px,t(Vx,t−1 +Gx,t −Hx,t)] +
N∑
x=1

Px,tHx,t − Ct
N∑
x=1

sPx,t−1Vx,t−1


 , (4.1)

where

s = sensitivity parameter adjusting the felling value in relative to the
actual market prices, 0 < s ≤ 1

Px,t = average stumpage price of roundwood x at time t [e/m3]
Vx,t = volume of roundwood x at time t [m3/ha]
Gx,t = typical growth of roundwood x during month t [m3/ha]
Hx,t = harvests of roundwood x during time t [m3/ha]
Ct = Costs associated with care and management of forestland [e/ha].

The purpose of the sensitivity parameter s is to take into account that in
most cases the felling values of forest holdings have been locally higher when
compared to the realized market prices. According to Hannelius (2000) the value
of the parameter has been around 0.8 during the period. Therefore s = 0.8 was
chosen3.

There are three major types of commercially relevant roundwoods in Finland:
pine, spruce and broadleafs (dominantly birch, see Peltola (2003)), all of which
are monitored in NFIs. Additionally, the volumes have been systemically divided
into logs and pulpwood, for which the prices are reported separately. Therefore
there are in total six different roundwood types considered in the analysis
(N = 6). In Equation 4.1 variables Px,t and Hx,t are available on accurate
monthly basis in the freely accessible data sets provided by FFRI. However, the
variables associated with the volume of the standing roundwood (V and G) have
to be approximated from the national forestry inventory (NFI) data which are

2All of the returns analyzed in this work refer to continuously compounded nominal excess
returns, i.e. risk-free rate (3M Helibor/Euribor) has been subtracted from the calculated
nominal logarithmic returns. Transaction costs are neglected.

3All simulations were also tested using s = 1. The differences in the results were negligible
because the volume of harvests during one period is typically only a small fraction of the
total volume of standing timber.
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made regularly in 5-10 year cycles. The volumes of different roundwood types
reported in inventories NFI7 (carried out in 1977-1984), NFI8 (1986-1994), NFI9
(1996-2003), NFI10 (2004-2008) and NFI11 (2009-2013) were used to make the
appropriate approximations. The reported volumes from the five measurements
were interpolated into a quarterly time series. The obvious downside of this
approach is that it does not take into account the seasonal variations of the
tree growth (the rate of growth is highest during summer, while in the winter
it is typically negligible). However, it can be argued that the volatility of the
timber prices dominates the effect of seasonal variations in the rate of growth.

4.1.2 Real-estate investments in Finland

In this study Finnish non-subsidized apartments were analyzed. The total return
index representing the Finnish real-estate apartments was provided by Elias
Oikarinen from the Turku School of Economics. The index is based on the
series originally provided by Statistics Finland 4 taking into account the price
changes of the apartments, average rates of rents and costs of maintenance.
The price series of dwellings is based on the asset transfer tax data. Hence, the
index is (indirectly) transaction-based, rather than appraisal-based. Therefore,
appraisal-smoothing bias is not expected to be a problem. However, possible
market imperfections faced by the investors, such as poor liquidity and the
lag between bilateral agreement on price and the final settlement, may lead to
smoothing bias, which is not taken into account in this study.

4.2 Univariate conditional modeling of volatility

In regression models the variance of the model errors is often assumed to be
constant over time i.e. Var(ut) = σ2

u, known as homoscedasticity. However, in
many cases this assumption is too simplistic, especially when financial time
series are considered. Figure 4.1 shows an example of very typical asset return
series, which illustrates clear variation in the volatility over time. Therefore
models, which allow the modeling of time-varying volatility tend to perform
better compared to homoscedastic models. Understanding the nature of possible
time dependency of volatility is therefore very important for many financial and
macroeconomic applications. This section will introduce a series of models where
the variance is set to depend conditionally on the past observations leaving the
unconditional variance as constant.

4.2.1 ARCH

Let us consider a generic model

yt = µ+ β1x1,t + . . .+ βkxk,t + εt, (4.2)
4The relevant series are: ”Prices of dwellings in housing companies”, ”Rents of dwellings”

and ”Finance of housing companies” available in http://www.stat.fi/til/index_en.html.
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Figure 4.1. Typical time-series of financial asset return clearly showing
heterogeneity in the variance over time.

where εt ∼ N(0, σ2
t ), µ and βi are parameters. An autoregressive conditionally

heteroscedastic (ARCH) model with parameters α and ω for the variance of
the errors is

σ2
t = ω + α1ε

2
t−1. (4.3)

This is known as ARCH(1) model, introduced by Engle (1982), and is easily
generalized to the case where the error variance depends on q number of squared
error lags:

σ2
t = ω +

q∑

k=1
αkε

2
t−k, (4.4)

denominated as ARCH(q) model.
ARCH models have played unarguably an important role in financial econo-

metrics, such as in the analysis of term structure of interest rates, option pricing
and the presence of time varying risk premiums, as was summarized by Boller-
slev et al. (1994). For example, let yt = lnSt/St−1, t = 1, . . . , T be observations
of some asset returns, where St is the price of the asset at time t. The variance
of yt can be modeled by using an ARCH(q) model as

yt = µ+ εt, ε|Ft−1 ∼ N(0, σ2
t ),

σ2
t = ω +

q∑

k=1
αkε

2
t−k,

(4.5)

where Ft describes the information set available at time t. Note that some
constraints for the parameters have to be set for the conditional variance to be
well defined, i.e. σ2

t ≥ 0 ∀t. For the conditional variance to remain non-negative,
it is required that

ω ≥ 0 and αi ≥ 0 ∀i. (4.6)

26



4.2.2 GARCH

Standard GARCH

The ARCH model presented above can be extended by a moving average term
for the time-dependent variance, i.e.

yt = µ+ εt, ε|Ft−1 ∼ N(0, σ2
t ),

σ2
t = ω + αε2

t−1 + βσ2
t−1.

(4.7)

The model presented here is known as GARCH(1, 1) (generalized ARCH),
introduced by Bollerslev (1986), representing effectively an ARCH(∞) model.
When β = 0 the model collapses to ARCH(1). Again, the model can be
generalized as GARCH(q, p)

σ2
t = ω +

q∑

k=1
αkε

2
t−k +

p∑

l=1
βlσ

2
t−k. (4.8)

The necessary and sufficient conditions for the non-negativity of the variance
terms were formulated by Nelson and Charles (1992), and for example for the
most simple GARCH(1, 1) model the necessary and sufficient constraints are
ω ≥ 0, α1 ≥ 0 and β1 ≥ 0.

The stationarity of conditional variance needs to be addressed. For stationary
σ2
t the parameters fulfill condition

q∑

i=1
αi +

p∑

j=1
βj < 1. (4.9)

If the AR polynomial of the GARCH representation in Equation 4.8 has a unit
root, i.e. when

q∑

i=1
αi +

p∑

j=1
βj = 1 (4.10)

then we have an integrated GARCH model, denoted as IGARCH (Engle and
Bollerslev (1986)). Thus, IGARCH model is simply a standard unit-root GARCH
model. The key feature in this kind of models is that any shock in variance
persists in all the following variances and does not fade away. A number of
studies (e.g. Tang and Shieh (2006)) have shown that financial market volatilities
may be governed by long memory processes making IGARCH a viable choice of
model.

In general, even the simplest GARCH(1, 1) model offers a remarkably ac-
curate description of the volatility clustering despite its relative simplicity.
However, there are some limitations in regular GARCH models, in addition to
the possible violation of non-negativity constraints. The basic model, which is
symmetric in nature, does not account for typically observed leverage effects,
i.e. negative correlation between an asset return and its change in volatility
(Aït-Sahalia et al. (2013)). This arises from the fact that the model does not
allow any direct feedback between the conditional mean and variance.
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EGARCH

In order to avoid the violation of non-negativity constraints and other drawbacks,
an asymmetric exponential extension of GARCH may be used. The model was
introduced by Nelson (1991). The conditional variance is

ln(σ2
t ) = ω + βσ2

t−1 + γ
εt−1√
σ2
t−1

+ α


 |εt−1|√

σ2
t−1
− 2
π


 , (4.11)

where parameter γ describes the leverage effect and will be negative, if the
relationship between the volatility and returns is negative. This formulation also
ensures that even if the parameters are negative, the variance will be positive
and therefore no constraints are needed.

GJR-GARCH

Another route to introduce leverage effects, in addition to EGARCH, is to
use GJR-GARCH model (Glosten et al. (1993)), which is represented by the
expression

σ2
t = ω +

q∑

k=1
[αk + γkIt−k]ε2

t−k +
p∑

l=1
βlσ

2
t−l (4.12)

where the indicator function is

It−k =




1, if εt−k > 0
0, if εt−k ≤ 0

(4.13)

describing the response of volatility to news alongside with the corresponding
magnitude parameters γk. For the non-negativity of σ2 constraints ∑

α+ γ ≥ 0
and ∑

α ≥ 0 have to be fulfilled.

4.2.3 Extending GARCH-models with conditional mean
(ARMA(r, s) model)

Above, the conditional means have been presented simply using equation

yt = µ+ εt, (4.14)

known as the random walk model. Natural extension to this model is to use
additionally the autoregressive (AR), i.e. the lagged values of the variable, and
moving-average (MA) terms to explain the future values of yt. This model is
known as autoregressive moving-average (ARMA) model and was presented by
Whittle (1951). The conditional mean is now

E(yt) = µ+
r∑

i=1
φiyt−1 +

s∑

j=1
θjεt−j, (4.15)
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where r, s are the number of lags and φi, θj are the corresponding parameters.
For example, in the case of standard GARCH, this leads to the complete
specification of ARMA(r,s)-GARCH(p,q) model:

yt =µ+
r∑

i=1
φiyt−1 +

s∑

j=1
θjεt−j + εt,

εt|Ft−1 ∼ N(0, σ2
t )

σ2
t =ω +

q∑

k=1
αkε

2
t−k +

p∑

l=1
βlσ

2
t−k ∀t.

(4.16)

4.3 Multivariate conditional modeling of correlations

In numerous financial applications understanding and predicting the co-movement
of asset returns is in a central role. For example, in portfolio risk management,
prediction of the next period total volatility depends on the covariance of the
asset returns in the portfolio. Hence, accuracy of the risk measure predictions
is dependent on the models used to forecast the co-movements of assets. Since
financial volatilities across assets and markets tend to move more or less closely
over time, multivariate modeling becomes more relevant than working with
separate univariate models only. Next, the basic principles of such multivariate
dynamic modeling will be introduced.

4.3.1 Multivariate GARCH models in general

Multivariate GARCH (MGARCH) models are the most popular method to
estimate and to forecast covariances and correlations. The basic principle is
similar to the univariate model but the covariances are dynamic, i.e. time
varying, alongside with the variances. MGARCH models for N asset portfolios
are defined in general as

rt = µt + at (4.17)
at = H

1/2
t zt, (4.18)

where

rt =(N × 1) vector of (log) returns of N assets at time t
at =(N × 1) vector of mean-corrected returns of N assets at time t,

for which E[at] = 0 and Cov[at] = Ht

µt =(N × 1) time-varying vector of the expected values of rt
Ht =(N ×N) matrix of conditional covariances of at at time t

H
1/2
t =(N ×N) positive definite matrix, which is obtained e.g. from

Cholesky decomposition of Ht

zt =(N × 1) vector of independent and identically distributed random

29



variables.

This basically defines the whole multivariate GARCH framework. Here, the
expected value vector µt can be modeled e.g. as constant or by the means of
the univariate GARCH models. However, the specification of matrix process
Ht remains to be specified and various parametric formulations exist. What
complicates the definition of the conditional covariance matrices, is that the
parameters increase rapidly as the dimension of at increases. Therefore the
difficulty is to make the model parsimonious enough, but still maintaining the
flexibility in order to capture all the interesting phenomena of the co-movements.

As reviewed by Silvennoinen and Teräsvirta (2008), the models for Ht can
be divided into a total of four categories:

1. Models of the conditional covariance matrix: Straightforward gen-
eralizations of univariate GARCH. Includes VEC-GARCH and BEKK
models, which were among the first parametric MGARCH models

2. Factor models: Motivated by economic theory and assuming that the
observations are generated by GARCH-type structured unobserved factors.

3. Models of conditional variances and correlations: In models belong-
ing into this class the conditional variances and correlations are modeled
instead of modeling straightforwardly Ht. Includes e.g. DCC-GARCH,
which will be considered more in details in this thesis.

4. Nonparametric and semiparametric approaches: Alternative to
parametric estimation of the conditional covariance structure. These mod-
els do not impose any particular, possibly misspecified, density function
or functional form of the data, which is advantageous. However, when the
dimensionality of the problem increases, the performance of these models
tends to decrease rapidly leading to slower convergence rates.

As stated, models belonging to category 3 will be considered in more details
in this thesis, because they offer good flexibility with relatively parsimonious
structure. Next the common theory shared with these models will be given and
some specific models will be discussed more accurately.

4.3.2 Models of conditional variances and correlations

The conditional covariance matrix in this kind of models is decomposed into
conditional standard deviations and correlation matrix as

Ht = DtPtDt, (4.19)

where Dt = diag(h1/2
1,t , . . . , h

1/2
n,t ) is the diagonal matrix of conditional standard

deviations (hi = σ2
i ) and Pt is the (N × N) correlation matrix. The models

in this category can be further divided into two subgroups: those with either
constant or time-varying correlation matrix.
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CCC-GARCH

Constant Conditional Correlation (CCC) GARCH model, introduced by Boller-
slev (1990), and its extensions are examples of the first subgroup. The conditional
covariance matrix is now

Ht = DtP Dt, (4.20)

where the off-diagonal elements of Ht are given by covariances hi,t and correla-
tions ρij of assets i and j as

[Ht]ij = h
1/2
i,t h

1/2
j,t ρij, i 6= j. (4.21)

If a process ait is modeled with univariate GARCH, the conditional variances
can be written as

ht = ω +
q∑

j=1
Ajr

(2)
t−j +

p∑

j=1
Bjht−j, (4.22)

where ω is a constant vector (N ×1), Aj and Bj are diagonal matrices (N ×N),
and r(2)

i = ri � ri is the element-wise (Hadamart) product. An extension, where
the diagonality of matrices Aj and Bj is not required allowing much richer
autocorrelation structure for the squared returns was introduced by Jeantheau
(1998).

MGARCH models with constant correlation are computationally attractive
since the log-likelihood function has rather simple form. However, many empirical
studies have found that this critical assumption is too restrictive and the
forecast performance is poor with the actual data. Therefore the model may be
generalized by making the matrix P time-varying but maintaining the general
decomposition of the model.

DCC-GARCH

Many specifications for the time-varying conditional correlation matrix can be
formulated. One example of this second subgroup is DCC- (Dynamic Conditional
Correlation) GARCH model, formulated by Engle and Sheppard (2001), which
is defined as previously:

rt = µt + at (4.23)
at = H

1/2
t zt (4.24)

Ht = DtPtDt, (4.25)

where

Dt =




√
h1,t 0 . . . 0

0
√
h2,t

. . . ...
... . . . . . . 0
0 . . . 0

√
hn,t




(4.26)
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and variances hi,t are modeled as GARCH process

hi,t = αi,0 +
Qi∑

q=1
αiqa

2
i,t−q +

Pi∑

p=1
βiphi,t−p. (4.27)

Since Pt is a simple symmetric correlation matrix, the elements of Ht are now

[Ht]ij =
√
hi,thj,tρij, (4.28)

where ρii = 1.
When specifying the structure of Pt, one needs to consider two requirements

which have to be fulfilled:

1. The covariance matrix Ht has to be positive definite. This is fulfilled when
Pt is positive definite, since Dt is trivially positive definite;

2. ρij ≤ 1 ∀ i, j.

These requirements are actually fulfilled when Pt is decomposed into

Pt = Q?−1
t QtQ

?−1
t , (4.29)

Qt = (1− a− b)Q + aεt−1ε
ᵀ
t−1 + bQt−1, (4.30)

where a > 0 and b ≥ 0 are parameters such that a + b < 1, Q?
t is a diagonal

matrix composed of the elements of Qt as

Q?
t =




√
q11,t 0 . . . 0
0 √

q22,t
. . . ...

... . . . . . . 0
0 . . . 0 √

qnn,t




(4.31)

and Q = Cov[εtεᵀt ] is the unconditional covariance matrix of the standardized
errors. Here Q?

t is used to rescale the elements of Qt to ensure the requirement
2. In addition, to fulfill condition 1, Q0 has to be positive definite. These
definitions specify DCC-GARCH(1, 1) model, which can be easily generalized
as DCC-GARCH(M,N) by defining

Qt = (1−
M∑

m=1
am −

N∑

n=1
bn)Q +

M∑

m=1
amεt−1ε

ᵀ
t−1 +

N∑

n=1
bnQt−1. (4.32)

FDCC-GARCH

DCC-GARCH(1, 1) extends the CCC-GARCH model but does it only with two
parameters. However, the model imposes that the correlation processes between
all assets have the same dynamic structure, which can be a significant restriction,
if the number of assets is large or they represent different sectors. For example,
we cannot impose with good reasons that the European and US industry

32



sector stock indexes would have identical correlation dynamics. The model may
therefore be extended further to allow variation of correlation dynamics among
different groups of variables by the means of Flexible Dynamic Conditional
Correlation (FDCC), introduced by Billio et al. (2005). The correlation matrix
Pt is decomposed as above (Equation 4.29) but the matrix Qt is now

Qt = ccᵀ + aaᵀ � εεᵀ + bbᵀ �Qt−1, (4.33)

where c, a and b are vectors with structure

a = [a1 · iᵀm1a2 · iᵀm2 . . . aw · iᵀmw ]ᵀ, (4.34)

ih being an h-dimensional vector of ones and w the number of blocks (groups).
Therefore the co-movement dynamics are equal only for assets inside the same
block, and not for the whole correlation matrix. The downside with this model
compared to the conventional DCC model is that the variance targeting property
is lost, i.e. unconditional correlation is not included in the model. The model
introduces also several additional parameters.

ADCC-GARCH

As in the case of standard univariate GARCH, the DCC-GARCH model does
not account for typically observed leverage effects due to the symmetrical nature
of the model. However, to better capture such heterogeneity present in the data,
asymmetry can be introduced analogously compared to the univariate case.
Cappiello et al. (2006) generalize the DCC model defining the dynamics of Qt

as

Qt = (Q−AᵀQA−BᵀQB−GᵀQ
−

G)+Aᵀzt−1z
ᵀ
t−1A+BᵀQt−1B+Gᵀz−t z

ᵀ
t
−G,

(4.35)
where A, B and G are parameter matrices (N ×N), z−t are the zero-threshold
standardized errors

z−t =



εt, if εt < 0
0, otherwise

(4.36)

and Q and Q− are the unconditional covariance matrices corresponding to zt and
z−t , respectively. This specification is referred in the literature as Asymmetric
Generalized DCC (AG-DCC). To reduce the rather high dimensionality, a
restricted model, Asymmetric DCC (ADCC), may be used, where we substitute
the (N ×N) matrices G, A and B with scalars √q, √a and

√
b, respectively,

when
Qt = (1− a− b− g)Q + azt−1z

ᵀ
t−1 + bQt−1 + gz−t z

ᵀ
t
− (4.37)

4.4 Models

The tools to estimate the relevant univariate and multivariate GARCH models
are provided by rugarch and rmgarch packages, respectively, available for R
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statistical computing environment. For the portfolio optimization problem simi-
lar ready-made software is not available. Therefore for the portfolio simulations
and allocation optimizations various Python scripts were developed utilizing
the existing packages for basic statistics as well as both linear and non-linear
optimization.

Firstly, the single-variable case was studied for each asset separately by fitting
the standard GARCH, EGARCH and GJR-GARCH models (using ARMA(1,1)
extension for the conditional means) to the data sets. These models were used
to evaluate the estimates for the next period returns and standard deviations. In
practice, the choice of the best fitting model was based on the indicated Bayesian
and Akaike information criteria (IC) values. When the calculated IC-values did
not result in the same model in terms of the number of parameters, the deciding
criterion was Bayesian information criterion (BIC). Correspondingly, to estimate
the next period bivariate correlation coefficients in the next step, a multivariate
modeling procedure was utilized. The standard DCC-, asymmetric DCC and
exponential DCC-models were considered using the same IC conditions for the
best model as in the case of single-variable models.

4.5 Portfolio simulation and optimization routines

The investment portfolios were simulated and backtested given several different
kinds of portfolio management strategies and using the historical data sets for
the individual asset returns. Based on whether asset allocations were allowed
to be time-varying or not, the strategies were divided into static and dynamic
cases. In the static backtesting the asset weights were modeled to be constant
over time. Thus, this strategy models typical ”static target” investor who has
set some predefined weights to the assets, which are not changed over time.
Instead, in the dynamic strategy the asset weights were optimized in each
time step separately by using the information provided by ARMA-GARCH
models, i.e. estimates for the next period returns, standard deviations and
correlation coefficients. An investor following this type of strategy would exploit
new information continuously and actively attempt to optimize the risk-adjusted
returns.

In the optimization routines, both VaR and CVaR frameworks were utilized.
For the static portfolios these risk measures were calculated from the historical
returns by fitting a distribution function to the implied returns. The portfolio
returns were assumed to have a non-central Student-t distribution, which is
commonly used in financial applications due to its ability to take into account
existing heavy-tailedness (see Jorion (1996), Campbell et al. (2001), Ku (2008),
Hu and Kercheval (2010)). The expected return, 5 % VaR and corresponding
CVaR were determined numerically from the fitted probability density function.
The calculations were repeated using all different combinations (at around 2 %
accuracy) of weights.

The dynamic case is slightly more tedious since the distribution of overall

34



portfolio returns, given the asset weight vector, has to be estimated at each
time step individually. In order to take into account the non-normality of the
return distributions, additional skewness and kurtosis were considered. Since
these higher moments can not be estimated by using the conventional UV-
GARCH models, they were determined from the unconditional densities of
the returns5. In practice, a least-squares regression was performed utilizing
statsmodel Python-package with skewness and kurtosis of the error terms as
the free parameters. Of course, in this approach one has to assume that these
higher moments are time-invariant parameters during the study period.

After the higher moments were determined, a two-step procedure to simulate
the time-varying distributions was utilized. In the first step, random returns
were drawn from the conditional distributions of the individual assets6. However,
these returns do not necessarily fulfill the correlation structure estimated by the
multivariate GARCH model and therefore the returns have to be transformed
in the second step by using e.g. Cholesky decomposition (presented in detail
in the next subsection). Once the four vectors (1 × 500) of returns fulfilling
the desired correlation structure have been estimated, VaR and CVaR were
calculated from the overall distribution of the portfolio returns. To summarize,
the procedure followed in the dynamic backtesting is:

1. Estimate excess kurtosis and skewness of the returns;
2. Estimate the mean and Standard deviation by the UV-GARCH models;
3. Draw random returns from the distributions satisfying the determined

mean, standard deviation, skewness and kurtosis determined in steps 1
and 2;

4. Transform the drawn returns by using Cholesky decomposition in order to
fulfill the correlation structure predicted by the best-fitting MV-GARCH
model;

5. Calculate the resulting portfolio VaR/CVaR assuming some weight vector
(1× 4) for the returns of individual assets;

6. Optimize weights so that the risk measure is as low as possible, while the
expected return is above a target value.

4.5.1 Monte Carlo simulation of portfolio returns in practice

To estimate the conditional portfolio risk metrics with a given composition
of assets, the distribution of portfolio returns has to be constructed from the

5However, some packages to estimate conditional higher moments exists, most notably racd
for R (Ghalanos (2013)). While the package is developed to extend the rugarch (primarily used
in this work), only the simple GARCH is implemented. Thus it was found to be inadequate
tool in this work.

6For every asset 500 returns were drawn in order to simulate each portfolio in every time step.
Increasing the length of the random sample was not found to have an effect on the outcome.
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distributions of single assets. Once the distribution moments have been estimated
by univariate GARCH models, it is relatively easy to draw random return vectors
with any length desired. However, these samples have to additionally fulfill the
correlation structure modeled by the multivariate GARCH model. Therefore
some transformation to the uncorrelated random returns has to be performed
to achieve this requirement.

Cholesky decomposition is often used to generate samples of correlated
random numbers. For given correlation matrix P the decomposition is

P = LLᵀ, (4.38)

where L is a lower triangular matrix of the form

L =




l1,1 0 . . . 0
l2,1 l2,2

. . . ...
... . . . . . . 0
ln,1 . . . ln,n−1 ln,n



. (4.39)

Given a matrix of uncorrelated random variables, X, correlated variables Y
can be generated simply by operating with L as

LX = Y . (4.40)

Given the efficiency, this method is often used in the Monte Carlo simulations
for simulating systems with multiple correlated variables (Scheuer and Stoller,
1962). For example in the context of this work, once the return distributions
for single assets (obtained from the univariate GARCH models) alongside with
the correlation structure (from the multivariate GARCH) are known, random
correlated returns can easily be generated by this method.
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5 EMPIRICAL RESULTS AND
DISCUSSION

5.1 Descriptive analysis of the data
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Figure 5.1. Index values of analyzed asset prices. Note that for SF
and BF the index starts from 1991/Q1 while for the other series start
from 1987/Q2. The right axis is for SF only and the first values of all
time series have been scaled to 100. The notation is as follows: SW and
BW are Worlds aggregate stocks and bonds, SF and BF Finnish stocks
and government bonds, RE is Finnish real estates and TCP Finnish
timberland capital productivity

The nominal index values and simple descriptive statistics of the studied
assets have been presented in Figure 5.1 and Table 5.1. The common time-
frames for Portfolio 1 assets (all-domestic portfolio) is 1990/Q1-2014/Q4 and
correspondingly for Portfolio 2 (international portfolio) 1987/Q2-2014/Q4. As
can be seen, Finnish stocks (SF) have been the highest performing asset during
the study period despite two major corrections during 2000-2003 (tech-bubble
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Table 5.1. Descriptive statistics (mean, σ, VaR, CVaR, min, max, skew-
ness, kurtosis and the statistics of Jarque-Bera normality test) of the used
quarterly returns series. SW = World aggregate stocks, BW = World
bonds, SF = Finnish stocks, BF = Finnish government bonds, RE =
Finnish real estates and TCP = Finnish timberland capital productivity.
The values of skewness and kurtosis are unbiased and scaled by a factor
N − 1.

SF BF TCP (P1) RE (P1) SW BW RE (P2) TCP (P2)
N 100 100 100 100 111 111 111 111

Mean 0.0134 0.0066 0.0002 0.0056 0.0054 0.0026 0.0074 0.0009
Std. Dev. 0.1619 0.0266 0.0489 0.0344 0.0977 0.0372 0.0363 0.0474

VaR -0.2570 -0.0381 -0.0916 -0.0695 -0.2111 -0.0515 -0.0696 -0.0814
CVaR -0.3184 -0.0603 -0.1190 -0.0910 -0.2565 -0.0680 -0.0875 -0.1144
Min -0.4425 -0.0860 -0.1476 -0.1065 -0.3327 -0.1010 -0.1065 -0.1476
Max 0.6272 0.0975 0.1710 0.0972 0.2086 0.1005 0.1070 0.1710

Skewness 0.1025 -0.3746 -0.1019 -1.3370 -1.0673 0.1843 -0.9725 -0.1201
Kurtosis 1.4539 2.0753 2.0552 2.3662 1.8029 0.3003 2.0053 2.1785

J-B 7.46 (0.0240) 17.53 (0.0002) 15.12 (0.0005) 48.89 (0.0000) 33.39 (0.0000) 0.86 (0.6495) 33.07 (0.0000) 19.28 (0.0001)

burst) and 2008-2009 (financial crisis), which both hit the stock market very
severely. The recession caused by financial crisis resulted in a slight correction
also in real estate and timberland returns. Real estate investments were weakest
during the early 1990s depression in Finland, which was one of the most severe
financial crisis in Finland (Conesa et al., 2007). The overall performance of the
alternative assets seems to be twofold. Based on simple eyeballing of the return
series, real estates (RE) have offered solid returns yielding the second best
overall performance of the analyzed assets. On the other hand, the performance
of timber as an asset (TCP) seems to have lagged during the whole time frame
compared to the other assets. Additionally, the standard deviation of timber
returns is higher than for real estates. Therefore by looking solely these metrics
it is challenging to rationalize the inclusion of timberland as part of an efficient
investing portfolio, while on the other hand, real estate (housing) investments
seem very attractive.

The hypothesis of normally distributed returns was tested utilizing the
Jarque-Bera test. The null hypothesis (the skewness and kurtosis of the sample
data matches a normal distribution) is rejected for all assets expect for World
aggregate government bond returns (BW). All the other returns express positive
kurtosis (heavy-tails) and mainly negative skewness (the left tail is longer than
the right one). This is apparent also from the plotted return density distributions,
presented in Appendix 1 Figure 7.1, especially in the case of World stock
returns (SW). Therefore the probability of extreme losses is significantly higher
than predicted by the normal distribution, which emphasizes the importance
of appropriate assumptions for distributions and correct risk measures. This
is in line with several studies regarding the risk and return of investment
portfolios and statistical distributions of portfolios containing both traditional
and alternative asset classes (Sigmundsdottir and Hulda, 2012, Aronow and
Washburn, 2011, Rockafellar and Uryasev, 2002, Illikainen, 2013, Wan et al.,
2015).
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Table 5.2. Unconditional correlation matrix for the logarithmic returns
of the studied assets. The colors indicate the relevant portfolios: red/blue
refers to P1/P2 and green to both P1 & P2. The abbreviations are same
as in Table 5.1

SF BF SW BW RE TCP
SF 1 0.0948 0.7526 0.0741 0.2817 0.1680
BF 0.0948 1 0.1549 0.7074 0.1011 0.0142
SW 0.7526 0.1549 1 0.2880 0.2364 0.1187
BW 0.0741 0.7074 0.2880 1 0.1041 -0.0515
RE 0.2817 0.1011 0.2364 0.1041 1 0.4803

TCP 0.1680 0.0142 0.1187 -0.0515 0.4803 1

The unconditional correlations of the return series were studied by calculating
the simple correlation coefficients (presented in Table 5.2), and by plotting the
pairwise scatter plots (Figures 5.2 and 5.3). In P1 (the all domestic portfolio)
the correlation of the two financial assets, stocks and bonds, is rather low, only
0.1. However, in the international portfolio (P2) the corresponding coefficient is
significantly higher, 0.3. The correlation of RE with both stock returns (SW
and SF) is surprisingly similar (0.2-0.3) as well as with both bonds (BF and
BE, 0.1). The corresponding correlations of TCP with all financial assets are
uniformly slightly lower. Comparing the correlation coefficients of bonds and
timber with other assets in both portfolios would indicate, that bond class is
likely to have more important role in the risk-efficient construction of P1, while
in P2 timberland returns may offer more significant diversification benefits.

Note that all of the determined correlations are positive (with one exception,
TCP vs. BW), although the correlations of timber returns with all of the
financial assets seem to be very close to zero. This is in line with the majority
of earlier research regarding the investment potential of timberland reporting
low to negative correlations with other traditional asset classes. However, the
two alternative investment classes correlate rather significantly with each other
which raises a question, whether both of them should be included in an efficient
portfolio.

Table 5.3. Dickey-Fuller test statistics with optimum lag structures
obtained by BIC and AIC information criteria. See Table 5.1 for notations.

SW SF BW BF RE TCP
Autolag: BIC
Test Statistic -9.640901** -8.925141** -8.269697** -8.335802** -3.717304** -6.944713**

p-value 0.000000 0.000000 0.000000 0.000000 0.003876 0.000000
#Lags 0 0 0 0 0 0

Autolag: AIC
Test Statistic -9.6409** -8.925141** -8.26970** -6.096343** -3.41274* -6.94471**

p-value 0.000000 0.000000 0.000000 0.000000 0.01053 0.000000
#Lags 0 0 0 4 4 0

Before applying GARCH-models the stationarity of the return series was
confirmed utilizing Dickey-Fuller test. The test statistics and p-values have
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Figure 5.2. Portfolio 1: Scatterplot of SW, BW, RE and TCP (see
Figure 5.1 for abbreviations) monthly logarithmic returns showing the
unconditional correlation structures. The return densities are shown on
the diagonal.

been presented in Table 5.3. The test was conducted using both BIC and
AIC information criteria to select the appropriate number of lags. Using these
arguments the null hypothesis (one unit root is present) was rejected clearly
(p < 0.02) in each case, indicating that all time series are stationary. This is
crucial in order to apply any GARCH-models to the data set.

5.2 Static portfolio optimization

For static (unconditional) optimization the efficient frontiers were constructed
by simulating the performance of portfolios with varying static asset weights.
The expected returns determined for the simulated portfolios plotted against
the corresponding VaR/CVaR measures, alongside with the allocations in the
optimal portfolios at different target values for the expected return, have been
shown in Figures 5.4 (for P1) and 5.5 (for P2). To study the benefits of including
alternative assets to the portfolio, the performance was determined also for
portfolios with either RE or TCP dropped (black/yellow dots in the Figures).
The optimal allocations have been determined from the simulated portfolios,
which fulfill the condition Min(VaR/CVaR|E(r) > target) with given levels of

40



-0.3

-0.2

-0.1

0.0

0.1

0.2

SW

−0.10

−0.05

0.00

0.05

0.10

B
W

−0.10

−0.05

0.00

0.05

0.10

R
E

−
0
.3

−
0
.2

−
0
.1

0
.0

0
.1

0
.2

SW

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

T
C

P

−
0
.1

0

−
0
.0

5

0
.0

0

0
.0

5

0
.1

0
BW

−
0
.1

0

−
0
.0

5

0
.0

0

0
.0

5

0
.1

0

RE

−
0
.1

5

−
0
.1

0

−
0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

TCP

Figure 5.3. Portfolio 2: Scatterplot of SF, BF, RE and TCP monthly
logarithmic returns showing the unconditional correlation structures. The
return densities are shown on the diagonal. The notations are same as in
5.1

target mean returns1. The implied risk reduction capability of the two alternative
assets was determined directly from the efficient frontiers by comparing the
frontiers calculated with/without the studied asset.

5.2.1 Domestic portfolio

Amongst the assets in P1, timberland (TCP) asset has had clearly the lowest
mean return during the study period, while the risk levels are still higher
compared to bonds and real estate. Bonds have the lowest risk levels and indeed
their allocation share in the optimal portfolios is very high, ranging from 50 to
70 percent depending on the chosen target mean return for the portfolio. The
allocation share of stocks in the highest possible mean return portfolio is under
40 % despite the clearly greatest returns amongst the analyzed individual assets.
The rest of the weight is given to bonds in the highest return portfolio, while
real estate has significant weight in the low-risk portfolios.

The role of the two alternative assets (timberland and real estate) can be
studied by comparing the performance of portfolios without these assets to the

1In principle the determination of optimal portfolios, i.e. the efficient frontier, is just
a straightforward optimization problem, which could be solved by the means of linear
optimization and thus with fewer number of calculations. However, it was found that the
efficient frontier is not a strictly convex function of asset weights, which complicates the
calculations and may result in non-robust solutions for the optimal portfolios. Therefore, this
kind of raw method was utilized.
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Figure 5.4. Portfolio 1: Expected quarterly return plotted as the function
of risk measure (VaR/CVaR, (a) & (b)) for portfolios with varying allo-
cations. Grey dots represent portfolios with all assets while yellow (black)
dots with TCP (RE) omitted. Solid red line represents the allocations with
only bonds and stocks. The subplots show the implied risk reduction of
the two alternative assets with given levels of expected excess return. The
optimal asset allocations fulfilling the condition Min(risk|E(r) > target)
with varying levels of target returns are shown in figures (c)-(h). The
notations are explained in 5.1.

all-asset simulated portfolios. In the all-domestic portfolio the efficient frontiers
do not practically differ for simulated portfolios with/without timber using
both VaR and CVaR risk measures. Therefore the unconditional risk-reduction
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Figure 5.5. Portfolio 2: Expected quarterly return plotted as the function
of risk measure (VaR/CVaR) for portfolios with varying asset weights.
Grey dots represent portfolios with all assets and yellow (black) dots with
TCP (RE) omitted. Solid red line represents the allocations with only
bonds and stocks. The subplots show the implied risk reduction of the
two alternative assets with given levels of expected excess return. The
optimal asset allocations fulfilling the condition Min(risk|E(r) > target)
with varying levels of target returns are shown in figures (c)-(h). The
notations are explained in 5.1.

ability of TCP seems to be very modest and the optimal allocation to timber
at efficient portfolios stays very low within the whole range of achievable target
expected returns (Fig. 5.4(c) and 5.4(f)). Even when RE is not allowed to enter
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the portfolio, the relative weight of TCP does not increase as the RE share is
replaced practically solely by bonds (see Figures 5.4(d) and 5.4(g)). Therefore,
in the all-Finnish portfolio the role of timberland as a risk-diversifier does not
seem very significant according to the static weight backtesting. This is in line
with the earlier speculation based on the unconditional correlation coefficients,
which imply that diversification to bonds may be more efficient than to timber
for the all-Finnish portfolio.

In contrary to timber assets, real estates seems to have somewhat more
favorable risk-diversifying properties especially at the lowest risk levels. When
the target return is set to 0.8 %, RE accounts for around 0.7 % of the CVaR
reduction. The corresponding allocation to real estate is 20-30 %. The results do
not differ significantly when VaR is used as the risk measure. When portfolio’s
target quarterly return is set above 1.1 % RE does not have any weight in the
optimal portfolios, which consist solely of stocks and bonds. Our optimal real
estate asset allocation can be compared to e.g. Ziobrowski and Ziobrowski (1997),
who found a very similar optimal weight for moderately risk-aversive investors
(standard deviation of yearly normal return around 8 %). Direct comparison
between the overall asset allocations can also be made to the results obtained
by Hyytiäinen and Penttinen (2008), who analyzed historical data of Finnish
standing timber, apartment, stock and bond returns during period 1987-2005
utilizing the mean-variance framework. The timber returns were represented by
several case forest holdings in Southwest-Finland. The authors found, that the
risk-optimized portfolios allocate heavily (∼ 60 %) into bonds between annual
real risk-free target rates of 1 % to 5 %, while the weight of apartments was
25 %. At higher target returns the stocks were the only asset. The allocation to
standing timber was around 10 % but when the apartments were excluded, the
share of timber assets increased to 30 %. However, while the relative weights of
bonds and real estate are very similar to the allocations presented in Figures
5.4(c) and 5.4(f), the role of timber assets as a substitute for apartments can
not be established to such degree in our study. This is probably due to the
different risk measures and timber return calculations.

5.2.2 International portfolio

Moving on to the international portfolio, both alternative assets contribute
positively to the efficient frontiers of mixed-asset portfolios (see Figure 5.5(b)
and 5.5(a)). Since RE has had higher mean return during the analyzed period
than international stocks, even though the risk metrics are just about one third
of the corresponding risk related to stocks, the efficient frontiers are heavily
enhanced by including Finnish real estates into the portfolio. Therefore the
allocation to stocks is rather low in the efficient portfolios (Figures 5.5(f) and
5.5(c)), under 15 %, while the weight of RE is increasing steadily as the target
expected return is increased. At the highest, 0.8 % target level, the optimal
portfolio consists almost solely of the real estate asset. The total risk reduction
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capability of RE increases as a function of expected excess return, and at 0.8 %
target level, the total CVaR is reduced even 18 %. When RE is not allowed as
part of the portfolio, allocation to stocks increases correspondingly, increasing
the risk levels radically.

Note that the position of the lowest-risk efficient portfolio is entirely different
in VaR/CVaR plots. This is due to the relative risk levels of the two lowest-risk
assets, RE and BW. While VaR of these two assets is very similar, although real
estates offer significantly greater return, the lowest-risk portfolio as measured
by VaR consists largely of RE. However, CVaR of BW is clearly lower than of
RE. Thus, in the lowest-risk portfolio bonds are given more weight, while the
expected return is also lower. Therefore the shapes of the efficient frontiers differ
significantly between these two plots but nevertheless, including real estate into
investing portfolio adds great value due to the highest expected return with
only modest risk levels. The risk of TCP is similar in relative to real estates and
bonds in both VaR and CVaR frameworks. As a consequence, timber assets do
not have significant weight in the VaR-efficient portfolios, while under CVaR
framework TCP is given notable weight, 20-30 %, in the lowest risk portfolios.
The magnitude of corresponding CVaR reduction is around 0.5 %. When timber
is not allowed into the portfolio, real estates act as a substitute.

The benefits of having alternative assets in an investing portfolio are revealed
most clearly when the comparison is made against the portfolios consisting
only of financial assets (red solid lines in Figures 5.5(b) and 5.5(a)). As can
be seen, including TCP (black dots) reduces the risk measures by 2 % in the
lowest return risk-efficient portfolios. The results demonstrate that even though
the expected return of timber alone is relatively modest relative to its implied
risk level, it definitely adds value to a mixed-asset international portfolio, even
alongside with real estate assets. This can be reasoned by the low levels of
correlation between TCP and the two financial assets. The benefit is the clearest
for the most risk-aversive investors.

5.3 GARCH models

5.3.1 Univariate models

For each asset in both portfolios all different UV-GARCH(1, 1) models2 (GARCH,
EGARCH and GJR-GARCH) were fitted with an ARMA(1, 1) specification for
the conditional means3. The residuals were assumed to follow the Student-t

2The number of lags was tested with p = q = 1, 2. In all cases the models with one lag
were found superior in terms of the information criteria values.

3As it turns out, the order of ARMA terms can not be determined separately from the
corresponding GARCH terms. Therefore all of the different combinations of lags have to be
fitted resulting in huge number of calculations. In the previous literature rarely more than
one lags of the ARMA terms are considered in case of financial time series, and therefore,
only the ARMA(1, 1) model was considered also here.
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distribution4. The full rugarch summary outputs, including the used specifi-
cations and the parameter estimates, of the best-fitting 5 models are included
in the Appendix 2. The parameter estimates with the corresponding robust
standard errors and p-values are included in Tables 5.4 and 5.5.

The adequacy of the models was carefully studied by using several analyses.
First, the model standardized residuals should be well-behaving and not express
ARCH effect anymore. To test this, both Ljung-Box tests on normal and squared
standardized residuals (εit/

√
hit and ε2

it/hit) and ARCH Lagrange multiplier
test were performed (results presented in Appendix 2). To examine the behavior
of residuals, also graphical interpretation was used (plots are presented in
Figure 7.3). The Pearson Goodness-of-fit test results can be used to characterize
whether the empirical distribution of the standardized residuals matches with
the specified theoretical distribution. The graphical examination is performed
using quantile-quantile plots 7.2.

Portfolio 1 models

In the all-domestic portfolio the univariate GARCH model chosen by BIC
information criterion values is the standard GARCH specification for all assets,
expect RE, which was modeled by GJR-GARCH allowing the existence of
leverage effects. For each estimated model the weighted Ljung-Box tests on
squared residuals and ARCH Lagrange multiplier tests are statistically not
significant. Only in the case of RE, Ljung-Box test on standardized residuals
using lags longer than one would indicate presence of serial correlation. However,
other tests and graphical inspection are in contradiction with this conclusion.
Therefore the specified models can be interpreted to be adequate to remove any
autocorrelation from the residuals. Also, Pearson goodness-of-fit test results
indicate that the Student-t distribution describes the data well, since the null
hypothesis of correctly specified distribution is not rejected. Only in the case
of stock market returns the null is rejected, which would indicate e.g. that the
return distribution may not be adequately described.

Regarding the estimated standard GARCH models, the parameters α1 and
β1 referring to Equation 4.8 are all positive, thus fulfilling the first constraint.
Parameters α1 are not statistically significant in contrast to parameters β1,
which are all highly significant (βSF

1 = 0.71, βBF
1 = 0.78 and βTCP

1 = 0.67).
Therefore past observed volatilities are expected to have high explaining power
for the future innovations of the standard deviation. The sums of the two
parameters fulfill the second constraint, α1 + β1 < 1, although in the case of
TCP the sum is very close to one (0.999) and therefore the model is extremely

4The available multivariate distributions in the rmgarch-package are normal, t and laplace
from which Student-t was found to describe the data jointly best in the univariate cases.
Therefore in order to be consistent, Student-t error distributions were specified for each asset.

5The models were evaluated primarily using the available information criteria (AIC, BIC,
Shibata and Hannan-Quinn). Most weight was given to BIC.
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Table 5.4. Portfolio 1: Parameter estimates for best multivariate
GARCH model according to the Bayesian information criterion. The
model is standard DCC-GARCH(1, 1) with both univariate and multi-
variate Student-t distribution assumption for the residuals. See 5.1 for
notations.

No. Obs 100
Log-Likelihood 732.1625
Akaike -13.823
Bayes -12.755

Estimate Std. Error T-value Pr>|t|
SF: ARMA(1,1)-GARCH(1,1)
µ 0.023128 0.02053 1.126585 0.259918
φ1 0.623124 0.194528 3.203269 0.001359
θ1 -0.531723 0.195306 -2.722517 0.006479
ω 0.001769 0.001885 0.938452 0.348012
α1 0.236974 0.154939 1.529468 0.126149
β1 0.708265 0.089754 7.891195 0.000000
shape 11.185078 11.46361 0.975703 0.329212
BF: ARMA(1,1)-GARCH(1,1)
µ 0.007473 0.002852 2.620559 0.008779
φ1 -0.003855 0.312355 -0.012342 0.990152
θ1 0.280978 0.299245 0.938954 0.347754
ω 0.000038 0.000023 1.661749 0.096563
α1 0.127975 0.094512 1.354059 0.175718
β1 0.780757 0.101191 7.715672 0.000000
shape 11.975618 8.857707 1.352 0.176375
RE: ARMA(1,1)-GJR-GARCH(1,1)
µ 0.008719 0.007588 1.149056 0.250533
φ1 0.658048 0.355666 1.850186 0.064287
θ1 0.038129 0.335761 0.113561 0.909586
ω 0.000006 0.000048 0.135376 0.892315
α1 0.000000 0.131648 0.000000 1.000000
β1 0.858173 0.15065 5.696451 0.000000
γ 0.234603 0.148874 1.575851 0.11506
shape 7.688106 9.231854 0.83278 0.404969
TCP: ARMA(1,1)-GARCH(1,1)
µ 0.00499 0.003049 1.636626 0.101709
φ1 -0.024059 0.169895 -0.141608 0.88739
θ1 0.368758 0.125199 2.945368 0.003226
ω 0.000082 0.000078 1.04826 0.294519
α1 0.325343 0.170501 1.908158 0.056371
β1 0.673656 0.100889 6.677217 0.000000
shape 4.409851 1.229614 3.586369 0.000335
Joint parameters
a1 0.031074 0.02091 1.486034 0.13727
b1 0.846015 0.077524 10.912919 0.000000
mshape 10.581364 2.876582 3.67845 0.000235

close to being an IGARCH representation. This indicates that the persistence
of past shocks is very high. Also the stock and bond market returns exhibit
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high volatility persistence (> 0.9), which has previously been observed e.g. for
various market indexes (Tang and Shieh, 2006, Li, 2012), too.

The GARCH parameter β1 in GJR-GARCHmodel for RE is highly significant
and positive. This indicates that shocks to volatility result in increased variance
in the next period, which is typically observed in the financial markets. The
persistence in the case of GJR-GARCH(1,1) is defined as

P̂ = α1 + β1 + γ1κ, (5.1)

where parameter κ is the probability of standardized residuals being below zero
(Ghalanos, 2015), which in this case is very close to 0.5. Therefore the volatility
persistence for real estate returns is around 0.98 being therefore similar to the
corresponding value obtained for timberland returns. For both alternative assets
the persistence is high compared to stock and bond market returns, which could
be explained by e.g. the slow fluctuations in the timber and housing prices due
to possible inefficiencies, as shown by Cashin et al. (1999).

Portfolio 2 models

The univariate GARCH model specifications and corresponding parameter
estimates are reported in Table 5.5. The chosen model for stock returns was
EGARCH, while for other assets the standard specification was found to be
adequate. The Student-t distribution shape parameters are typically statistically
significant, null hypothesis (theoretical and the empirical distributions match)
in adjusted Pearson goodness-of-fit is not rejected and the QQ-plots are fairly
linear. Weighted ARCH-LM tests do not show any signs of serial correlation in
any of the models. In RE model the Ljung-Box test on standardized residuals
is not rejected in longer lags. However, the test statistics on squared residuals
is insignificant also when testing longer lags. Therefore all of the chosen models
can be considered as adequate.

Note that the model chosen by the information criteria for RE and the
parameter estimates for TCP are now different as above in the all-domestic
portfolio due to slightly longer time-frame. Both β parameters are statistically
significant, while also α is significant for TCP. Similarly as in P1, the sum in
both of the cases equals almost one indicating strong persistence of volatility
shocks, thus validating the deductions above.

For SW, an asymmetric EGARCH model was chosen. However, the asymme-
try parameter γ is not significant although it is slightly negative, implying typi-
cally observed leverage effect in the financial markets (Schwert, 1989, Christie,
1982, Albu et al., 2015). Therefore positive shocks (good news) tend to result in
lower volatility in the next period more likely than negative shocks (bad news).
On the contrary, for SW both the GARCH parameters α and β are clearly
significant. Moreover, the sign of α is negative indicating that the volatility
tends to decay towards its long-term mean. The parameter β in EGARCH
model can be directly interpreted as the persistence factor. Compared to other
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Table 5.5. Portfolio 2: Parameter estimates for best multivariate
GARCH model according to the Bayesian information criterion. The
model is standard DCC-GARCH(1, 1) with both univariate and multi-
variate Student-t distribution assumption for the residuals. See 5.1 for
notations.

No. Obs 111
Log-Likelihood 814.3847
Akaike -14.007
Bayes -13.104

Estimate Std. Error T-value Pr>|t|
SW: ARMA(1,1)-EGARCH(1,1)
µ 0.017204 0.009056 1.899820 0.057457
φ1 -0.385780 1.041966 -0.370240 0.711202
θ1 0.520067 0.933294 0.557240 0.577365
ω -2.508529 0.913888 -2.744900 0.006053
α1 -0.619759 0.202568 -3.059510 0.002217
β1 0.482328 0.198090 2.434890 0.014897
γ -0.033110 0.190054 -0.174210 0.861698
shape 3.512199 1.201788 2.922480 0.003473
BW: ARMA(1,1)-GARCH(1,1)
µ 0.004347 0.004153 1.046770 0.295207
φ1 0.097204 0.458031 0.212220 0.831934
θ1 0.118251 0.467226 0.253090 0.800198
ω 0.000104 0.000066 1.573800 0.115535
α1 0.118967 0.070208 1.694490 0.090173
β1 0.801713 0.069500 11.535470 0.000000
shape 99.999886 46.806530 2.136450 0.032643
RE: ARMA(1,1)-GARCH(1,1)
µ 0.012689 0.004381 2.896640 0.003772
φ1 0.622704 0.128015 4.864310 0.000001
θ1 0.083995 0.124500 0.674660 0.499892
ω 0.000012 0.000033 0.373380 0.708865
α1 0.188818 0.112193 1.682980 0.092378
β1 0.794791 0.168825 4.707770 0.000003
shape 5.323530 3.801734 1.400290 0.161427
TCP: ARMA(1,1)-GARCH(1,1)
µ 0.005335 0.002911 1.832670 0.066852
φ1 -0.077317 0.176292 -0.438570 0.660969
θ1 0.398249 0.126346 3.152050 0.001621
ω 0.000109 0.000106 1.033070 0.301571
α1 0.326706 0.140349 2.327820 0.019922
β1 0.672294 0.095081 7.070750 0.000000
shape 4.212926 1.421292 2.964150 0.003035
Joint parameters
a1 0.027452 0.015925 1.723760 0.084751
b1 0.911235 0.036740 24.802510 0.000000
mshape 7.542564 1.517113 4.971660 0.000001

assets the volatility persistence of stock returns is relatively low, which can also
be directly seen by comparing the standard deviation plots in Figure 7.4.
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Conditional standard deviations

The modeled conditional standard deviations are presented in Figure 7.4. Some
striking points can be seen by comparing the plots with each other. As expected,
the standard deviation of stocks clearly outweighs the deviation of other assets.
The persistence of volatility is weakest in SW, which is reflected by the relatively
low estimate for the GARCH parameter β. Although the corresponding per-
sistence of RE and TCP is according to the estimated parameters very strong,
there is clear tendency to revert back towards the long-term mean volatility. In
addition, as expected, the most volatile time-frames according to the modeled
standard deviations are observed during the crisis periods. The most recent
of them, the 2008 financial crisis, can clearly be seen in every asset volatility,
albeit relatively most notably in timber returns. Early 2000s technology bubble
hit especially the Finnish and international stocks but small rises in volatility
can also be seen in the other assets. Early 1990s recession was relatively the
most significant for real estate and timber returns.

5.3.2 Multivariate models

The hypothesis of constant correlations was first tested based on the method
proposed by Engle and Sheppard (2001). The test is implemented in rmgarch
package. The null hypothesis of constant correlations in P1 and P2 was clearly
rejected, which justifies the use of dynamic correlation models. For both portfo-
lios DCC, FDCC and ADCC-GARCH(M,N) models, with M,N = 1, 2, were
considered using t distributed multivariate residuals. One lag was found unam-
biguously better than two lags in each case. The selected model, as chosen by IC
values, for both portfolios was DCC-GARCH(1, 1) with multivariate Student-t
distributed residuals.

The multivariate model parameters estimated from Equation 4.32 are pre-
sented under Joint parameters in Tables 5.4 and 5.5. Both b1 parameters are
statistically clearly significant (p < 0.01), while a1 lacks significance. The
parameters fulfill the constraints a, b ≥ 0 and a+ b < 1.

Conditional correlations

The estimated conditional pairwise correlations are presented in Figures 5.6 (P1)
and 5.7 (P2). The plotted correlations show strikingly similar characteristics
between the two different portfolios. The correlation between real estate returns
and both stock return series is similar being around 0.2 during the whole samples.
During the financial crisis a sharp increase in correlation can be seen. With bond
returns the correlations are regularly lower, being around zero during the whole
period. However, during the financial crisis, the correlation with both bond
returns decreases notably. The results are therefore in good agreement with
Lizieri (2013) who found very similarly time-dependent correlation coefficients.

Similar behavior during the financial crisis period can also be seen in the
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Figure 5.6. Portfolio 1: Conditional correlation coefficients as modeled
by DCC-GARCH(1,1) for quarterly returns. See 5.1 for notations.

corresponding correlations between timber and financial returns, although
interestingly the changes are clearly not as sharp as with real estate returns.
Instead, the increase/decrease of correlations seems to have begun markedly
before the crisis period. Due to the unarguably harmful effects of such events,
an increasing amount of effort has been put to develop models to find potential
crisis indicators, aiming to predict the occurrences of market crashes, see e.g.
Sornette (2009), Jiang et al. (2010), Maltritz and Eichler (2010), Junttila and
Raatikainen (2015). For example, Junttila and Raatikainen (2015) found out
that the correlation between the VIX index return and the change in the TED
spread increased sharply prior to financial crisis. The observed behavior of
timber return correlations with financial market returns may be an example of
similar early indicator.

The correlation of TCP vs. stock returns is on average somewhat lower in
P2 than in P1, implying that the co-movements between Finnish stocks and
timber returns has been more notable than in an internationally diversified
portfolio. This can be argued to be related to the relatively large share of
lumber industry in Finnish gross domestic product (around 20 % (, OSF),
http://www.stat.fi/til/alyr/tau_en.html). However, since the correlation
coefficients of bonds vs. stocks are clearly lower in the domestic portfolio
compared to the international one, timber assets are expected to have poorer
diversification benefits in P1.
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Figure 5.7. Portfolio 2: Conditional correlation coefficients as modeled
by DCC-GARCH(1,1) for quarterly returns. See 5.1 for notations.

5.4 Dynamic portfolio optimization

5.4.1 Domestic portfolio

The aim of the dynamic portfolio optimization procedure presented here is to
construct time-varying optimal asset allocations by utilizing the information
obtained from the univariate and multivariate GARCH models. As in the
static backtesting, the portfolios were constructed either with or without the
alternative asset classes to study the possible drawbacks of not including them
into the investor’s portfolio. Furthermore, in order to avoid solutions where the
whole portfolio is just changed from one asset to another between consecutive
time steps, a 50 % constraint to a single asset weight was applied. In comparison
the runs were made also without any constraints. In scenarios, where one asset
was omitted, no constraints were applied.

The time-varying optimal asset allocations for P1 using 0.6 % target expected
return for the next period and CVaR optimization framework are shown in
Figure 5.86. The average weights under unconstrained simulation are similar
when compared to the lowest-risk efficient portfolio in static backtesting. Bonds

6The target level for the expected return was chosen based on the static optimization to
correspond to the minimum risk-efficient portfolio. Different target levels were tested and it
was found that the overall returns were not significantly affected but increasing the target
level resulted mainly in increased risk measures due to more unstable allocations. Examples
of the results with expected target returns corresponding to the maximum return static
portfolios are presented in Appendix 6.
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clearly constitute the basis of the portfolios, while the weight of stocks is rather
modest due to the unfavorable risk-return characteristics. When the 50 %
constraint for an individual asset is set (Figure 5.8(a)), allocation to bonds is
at maximum level during practically the whole study period. When constraints
are removed, bonds are heavily allocated especially during the crisis periods,
early 1990s depression, 2000s dot-com bubble and 2008-2009 financial crisis.

Interestingly, timber assets are given relatively more weight than was implied
by the static optimization (20 % vs. 5 %), especially when RE is not allowed into
the portfolio. This would indicate that while the unconditional mean return of
timber is rather low, it has potential to reduce risk of a portfolio, when dynamic
changes in the composition are allowed. However, the allocation seems to be
highest in between the crisis periods, specified above, while during these periods
of unrest the optimal weight tends to decrease. Before the 2008 financial crisis
the allocation drops steadily starting from approximately year 2005, which was
also implied by the conditional correlations (see Figure 5.6). However, timber
assets maintain a steady 5-10 % allocation throughout the financial crisis period.

The optimal weight of real estate seems to be rather constantly around 30 %,
especially after the tech bubble, even throughout the whole 2008 financial crisis.
However, in the early 1990s the allocation is practically zero, due to the recession
correction, lowering the mean weight to 26 %, which is very similar to the optimal
allocations found by several studies, e.g. Hoesli et al. (2004), Lekander (2015),
who utilized the mean-variance framework for domestic mixed-asset portfolios
across several markets. On the other hand, the decreased diversification benefits
of real estate assets, due to the sharply increased correlation between stock and
real estate markets (Lizieri (2013)), are not reflected in the results obtained
here. This is due to relatively low weight of stocks in the optimized portfolios.

The performance of the constructed dynamic portfolios has been studied in
Figure 5.8(e). For comparison, also the performance of an equal weight portfolio
has been plotted, showing that a strategy with the 50 % constraint for each
of the asset allocations underperforms relative to the other strategies, which
is expected given the heavy preference towards bonds.7 The unconstrained
portfolio has the most favorable risk-characteristics, although the return is only
somewhat weaker than for equally distributed portfolio. Leaving timber out of
the possible assets does not actually result in reduced return or increased risk,
although the weight in the optimal portfolios is substantial. This implies that
the real estate acts as an efficient substitute for timber, as was concluded also
earlier based on the static portfolio optimization. Without real estate the CVaR
increases, although the overall mean returns are not affected.

The implied time-varying CVaR reduction contributions of the two alter-
7Note that the returns at each time-step are calculated using the optimal weights deter-

mined one period earlier. Thus, the idea is that the best prediction for the next period return
distributions is determined using the current conditional distribution parameters. Therefore,
in principle, the portfolio performances presented here model realistic portfolio management
strategies where current information is used to predict the future optimal allocations.
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(c) CVaR, without RE, no constraints
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(d) CVaR, without TCP, no constraints
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Figure 5.8. Portfolio 1: Results of dynamic portfolio optimization rou-
tines using CVaR minimization criteria. Target excess return for the
next quarter is set to 0.6 %. The number on the right side of the plots
refers to the mean weights of each asset during the study period. The
series in figure (e) have been calculated assuming that the portfolio is
redistributed as suggested by the optimization routine every quarter.
Weights from the previous time step are used to calculate the returns.
See 5.1 for notations.
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(a) P1 (b) P2

Figure 5.9. Dynamic CVaR reduction effect of both alternative assets in
both domestic and international portfolios based on multivariate GARCH
models. The implied risk reduction has been determined by comparing the
dynamic CVaR calculated for the unconstrained portfolios with portfolios
where one alternative asset is omitted (e.g. 5.8(b) and 5.8(c) for P1).

native assets are presented in Figure 5.9(a) showing that the risk reduction
effect of TCP peaks at 1994, after which RE has regularly higher contribution.
Interestingly, the risk reduction contributions can be roughly divided into two
sub-periods, before and after year 2000. In the first sub-period the mean reduc-
tions are clearly higher than during the latter period. This can be linked to the
study by Yao and Mei (2015), who found utilizing ICAPM model significant
positive excess returns for U.S. timberland in the period of 1988-1999, while
during 2000-2011 the excess returns diminished. The mean reduction of CVaR
during the whole sample for RE is 1.0 %, while for TCP it is 0.6 %. Therefore it
can be concluded, that in the all-domestic asset investment portfolio real estate
acts as an efficient risk-diversifier, while the benefit of having timber assets may
not be as clear. This is due to the relatively low correlation between Finnish
bonds and stocks alongside with the high expected returns of bonds in relation
to the corresponding risk levels.

5.4.2 International portfolio

The CVaR efficient time-varying allocations are shown in Figure 5.10(a). In
this case the target expected return level was set to 0.3 % corresponding to
the minimum CVaR portfolio in Figure 5.5(b)8. Comparing the relative weights
with the optimal allocations suggested by the static optimization (leftmost
bar in Figure 5.5(f)) shows that the average weights of timber and stocks are
very similar. However, the relative share of bonds and real estate has turned
into favoring RE. In the constrained scenario the weight of real estate is 50 %

8Corresponding results using target return 0.8 % (the highest possible mean return amongst
static allocations) are presented in Figure 7.6 in the Appendix 6.
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practically during the whole study period, apart from the early 1990s. When
constraints are removed, the weight of RE is somewhat increased at the expense
of both bonds and timber.

As was observed earlier from the results for dynamic P1 modeling, the
allocation to bonds peaks around 1992 and 2009, i.e. during the crisis peri-
ods. These periods are associated with a decrease in both alternative asset
weights, although the weight of TCP is constantly over 15 %. The 2000s tech
bubble can not be seen clearly in the optimal compositions, due to relatively
low dependency on financial assets. However, the implied time-varying CVaR
reduction contributions (Figure 5.9(b)) show that the combined contribution
remains significant over time and notable peaks can be seen. The risk reduction
of TCP peaks strongly during 1991-1992 and around 2002, most probably due
to the burst of the technology bubble. Very similar peaks in the VaR and CVaR
reduction contribution in a mixed-asset portfolio were found for U.S. timber
assets by Wan et al. (2015). Therefore, holding timber has had potential to
reduce risk significantly during these crisis periods. In turn, the most notable
peak for RE contribution is at around year 2004-2005, which is associated with
a slight correction in the international bond markets (International Monetary
Fund, 2005). Significant contribution can also be seen throughout the period
2008-2011. On average both alternative assets have reduced around 2.2 to 2.4 %
of total mixed asset portfolio’s CVaR metrics, which is more significant than
in the case of all-domestic portfolio. This is expected given the results from
the static optimization routines, lower correlation of timber returns with the
financial asset returns and the most favorable risk-return characteristics of real
estate.

The performance of the constructed portfolios (see Figure 5.10(e)) show
that the strategies have performed particularly well against the equal weight
reference portfolio9. Dynamic modeling of both risk and return is able to both
increase returns as well as reduce the risk level of an investment portfolio.
The unconstrained portfolio, such as the portfolio without TCP, performs
rather similarly to the constrained one, although the corresponding risk metrics
are increased. However, excluding real estate, the performance of portfolio
drops dramatically. Therefore it can be concluded that in an internationally
diversified mixed-asset portfolio both alternative assets have demonstrated
favorable features in terms of achieved total returns when CVaR risk levels are
also considered. Especially including real estates have been beneficial due to
the high mean returns with relatively low risk measures. The advantages of
having timber assets are on the other hand stemming from the low conditional
correlations with the traditional financial assets.

9In fact, the performance of equal weight portfolio is in this case also close to the highest
mean-return portfolio.
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(c) CVaR, without RE, no constraints
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(d) CVaR, without TCP, no constraints
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Figure 5.10. Portfolio 2: Results of dynamic portfolio optimization
routines using CVaR minimization criteria. Target excess return for the
next quarter is set to 0.3 %. The number on the right side of the plots
refers to the mean weights of each asset during the study period. The
series in figure (e) have been calculated assuming that the portfolio is
redistributed as suggested by the optimization routine every quarter.
Weights from the previous time step are used to calculate the returns.
See 5.1 for notations.

57



6 CONCLUSIONS

The purpose of this study was to examine the potential benefits of including
Finnish real estate and forest assets into a mixed-asset portfolio. In addition,
the optimal allocations with given risk levels and their time-dependency during
the period of 1988-2014 were pursued. These questions were approached by
the means of portfolio diversification theory utilizing both static and dynamic
backtesting optimization frameworks, where allocations were either constant
over time or time-varying. VaR and CVaR risk metrics were used to take
the possible non-normality of the asset returns into account. Univariate and
multivariate GARCH models were utilized to find the time-dependency of the
expected returns, volatilities and correlations across the assets, and thus, the
optimized allocations.

Two different portfolios were constructed which consisted of traditional
financial assets, i.e., stocks and bonds, and the two alternative assets. The first
portfolio was purely domestic, i.e. Finnish market stock and government bond
total returns were used. In the second portfolio the financial assets were replaced
by their international counterparts. Real estate and timber total returns were
constructed from the available national-level data sets taking into account also
the associated costs of having direct ownership in these assets.

According to the static optimization routine, in the all-domestic portfolio
the benefits of including alternative assets are found to be limited, especially
regarding timber. The risk-optimal portfolios allocate over 50 % into bonds,
while the rest of the portfolio is diversified either into real estate or stocks.
The weight of real estate, alongside with the corresponding risk-reduction
contribution decreases steadily as a function of the target expected return
level. CVaR reduction of real estate is 0.7 % at highest. Therefore while the
benefit of having timber in the domestic portfolio may be limited, real estate
demonstrates potential to add value by reducing the implied risk levels especially
for the most risk-aversive investors. However, in the international portfolio both
alternatives are given significant weight in the risk-optimal portfolios. Timber
is an efficient risk-diversifier for the most risk-aversive investors and CVaR
optimization suggests around 25 % allocation. The corresponding reduction in
portfolio CVaR is around 2 % when compared to portfolios consisting solely of
bonds and stocks. Real estate is weighted heavily in the highest mean-return
portfolios due to the higher expected return and significantly lower risk metrics
compared to stocks. Therefore the implied CVaR reduction contribution rises
up to 20 % as a function of expected excess return.
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Dynamic optimization routine reveals that the optimal allocations are clearly
time-dependent. Especially the weight of timber tends to be negatively affected
by the three most significant crisis timeperiods during the sample: early 1990s
recession, 2000s technology bubble and 2008 financial crisis. However, the
optimal allocation stays within 5 to 15 % also during these periods in both
portfolios. Also, in the international portfolio the implied CVaR reduction
contribution peaks strongly during 1991-1992 and around 2002 suggesting that
timber has potential to reduce risk levels also through crisis periods. The
optimal weight of real estate is rather persistent, often being over 50 % in both
portfolios, except during early 1990s, when the weight approaches practically
zero. Correspondingly real estate accounts for a significant CVaR reduction
contribution, averaging to 1.0 % and 2.4 % in the domestic and international
portfolios, respectively. The corresponding contributions of timber are 0.6 %
and 2.2 %. The values are significant given that the order of magnitude for the
optimized portfolio’s CVaR is around 4 %. It can be concluded, that in view
of the calculated optimal weights, the current average allocations of Finnish
household investors (see Figure 1.1), consisting mainly on real estate assets,
are indeed justifiable when analyzed from the financial point of view. The
results indicate that investing in these assets has great potential to enhance the
risk-return characteristics of an investment portfolio.

Comparing the results from the portfolio optimization routines to the earlier
literature shows some similarities. The results from the static domestic portfolio
can be directly compared to the study by Hyytiäinen and Penttinen (2008), who
analyzed both Finnish standing timber and apartment total returns utilizing
the mean-variance framework. Their high allocation to bonds and around 25 %
weight of real estate between annual real risk-free target rates of 1 % to 5 %
are very similar to the results obtained in this study. However, their analyses
indicate that timber assets have ability to act as an efficient substitute for
apartments, which can not be established based on the analysis made here,
probably due to different risk measures and timber returns. For the international
portfolio such a direct comparison can not be found. However, Hoesli et al. (2004)
find out similar benefit of including assets across different markets. Optimal
domestic-only mixed-asset allocations allocated to real estate assets was 5-15 %,
while in international portfolios the corresponding weight was 10-20 %. Similarly
in this study it was found that the benefits of having both the Finnish real
estate and timber assets in an international portfolio are much clearer than in
all-domestic portfolio.

For time-varying allocations direct comparisons to earlier studies are not
possible. Wan et al. (2015) studied time-dependent optimal allocations in the
U.S. markets using timberland, T-bill, bond and stock returns. Even though
their scenarios for the different allocation constraints are much more restrictive
than the ones in this work, the average dynamic CVaR reduction contribution
of timber was very similar to found in this study(0.6-2.2 %). Also, their results
indicated that the optimal allocation to timber drops dramatically between
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years 2000-2004, which is also suggested by P1 dynamic allocations. The results
can be also linked to the study by Yao and Mei (2015), who found utilizing
ICAPM model significant positive excess returns for the U.S. timberland in
the period of 1988-1999, while during 2000-2011 the excess returns diminished.
The implied CVaR reduction contributions in domestic portfolio can be roughly
divided into the same sub-periods so that, in the first sub-period the mean
CVaR reduction of both the real estate and timber are clearly higher than in
the latter period.

The results presented here imply that for both types of investors including
alternative assets into an investing portfolio would have been beneficial during
the study period. However, a couple of points regarding the results should
be raised. The performance, when measured by the achieved returns and the
corresponding risk levels, of dynamically modeled optimal portfolio allocations
is very different between the all-domestic and international portfolios. In the
domestic portfolio the use of dynamic modeling for expected returns, standard
deviations and correlation coefficients enables to decrease the overall riskiness
of a portfolio, but fails to beat the returns of a simple equal-weight portfolio
regardless of the chosen target level for the expected return. This is peculiar,
since in the international portfolio dynamic modeling leads to clearly higher
returns with decreased CVaR, even when compared to the highest-mean return
static allocation. This would imply e.g. that the chosen GARCH models fail to
represent the current expected returns and volatilities properly. Most likely this
is due to improper assumption for the return distribution for Finnish stocks,
which was also suggested by Pearson goodness-of-fit tests. Therefore to validate
the results, e.g. distributions with excess skewness and kurtosis could be used
in future research.

Another limitation regarding the methodology used in this work is the
difficulty to model reliably the fluctuation in returns faced by alternative market
instruments. The issues are related to factors, such as poor liquidity, lag between
bilateral agreement on price and the final settlement and high transaction costs.
The nature of these market imperfections is an area that would need further
research. Also, the changes in the valuation of the bare land was neglected when
timber returns were determined, which could have some effect on the results. On
the other hand, since for most investors the public funds are the only viable way
to enter the alternative asset markets due to high initial capital requirements of
direct ownership of assets, the performance of the available alternative funds
could be analyzed comparing them to the traditional market counterparts.
However, since the available time-series from the currently marketed open-ended
funds in Finland are rather limited, extensive analysis using methods, as the
ones in this thesis, are not yet possible. It would be also interesting to expand
the portfolio of analyzed assets by including e.g. commodities or farmland to it.
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7 APPENDIXES

1. Figure 7.1: Unconditional log-return densities of the studied assets
2. rugarch summary outputs obtained from the best-fitting UV-GARCH

models
3. Figure 7.2: QQ plots
4. Figure 7.3: Residual plots
5. Figure 7.4: Conditional standard deviations
6. Figures 7.5 and 7.6: Results from dynamic optimization routines with

target expected returns corresponding to the maximum return static
portfolios
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Figure 7.1. Unconditional Logarithmic quarterly return distributions
of the studied assets. The red line is the least squares fit of a normal dis-
tribution with excess skewness and kurtosis. The corresponding estimates
for µ, σ, excess skewness and kurtosis are shown in the annotation.
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UV-GARCH models:
PORTFOLIO 1
PORTFOLIO 1: SF
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*
Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(1 1)
Mean Model : ARFIMA(1 0 1)
Distribution : std

Optimal Parameters
------------------------------------

Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 0.023128 0.022140 1.04464 0.296189
ar1 0.623126 0.167745 3.71472 0.000203
ma1 -0.531724 0.196620 -2.70432 0.006844
omega 0.001769 0.002104 0.84078 0.400470
alpha1 0.236977 0.147559 1.60598 0.108278
beta1 0.708263 0.104247 6.79410 0.000000
shape 11.185930 12.681810 0.88204 0.377752

LogLikelihood : 46.43161

Information Criteria
------------------------------------

Akaike -0.78863
Bayes -0.60627
Shibata -0.79760
Hannan-Quinn -0.71483

Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
statistic p-value
Lag[1] 0.03205 0.8579
Lag[2*(p+q)+(p+q)-1][5] 2.60541 0.7199
Lag[4*(p+q)+(p+q)-1][9] 4.93885 0.4676
d.o.f=2
H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared
Residuals
------------------------------------
statistic p-value
Lag[1] 0.5206 0.4706
Lag[2*(p+q)+(p+q)-1][5] 1.9804 0.6231
Lag[4*(p+q)+(p+q)-1][9] 5.7757 0.3248
d.o.f=2

Weighted ARCH LM Tests
------------------------------------
Statistic Shape Scale P-Value
ARCH Lag[3] 0.0295 0.500 2.000 0.8636
ARCH Lag[5] 3.2886 1.440 1.667 0.2506
ARCH Lag[7] 5.6044 2.315 1.543 0.1702

Nyblom stability test
------------------------------------
Joint Statistic: 1.0717
Individual Statistics:
mu 0.06781

ar1 0.05983
ma1 0.05934
omega 0.41228
alpha1 0.14975
beta1 0.29625
shape 0.10611

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 1.69 1.9 2.35
Individual Statistic: 0.35 0.47 0.75

Sign Bias Test
------------------------------------
t-value prob sig
Sign Bias 2.6361 0.009795 ***
Negative Sign Bias 1.7269 0.087441 *
Positive Sign Bias 0.4329 0.666099
Joint Effect 11.0840 0.011280 **

Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
group statistic p-value(g-1)
1 20 34.0 0.01838
2 30 48.2 0.01401
3 40 60.8 0.01427
4 50 70.0 0.02605

--------- PORTFOLIO 1: BF ----------
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*

Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(1 1)
Mean Model : ARFIMA(1 0 1)
Distribution : std

Optimal Parameters
------------------------------------

Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 0.007472 0.002867 2.606344 0.009151
ar1 -0.003896 0.311049 -0.012526 0.990006
ma1 0.281014 0.298502 0.941416 0.346492
omega 0.000038 0.000023 1.630229 0.103053
alpha1 0.127930 0.063768 2.006168 0.044838
beta1 0.780862 0.085030 9.183370 0.000000
shape 11.978626 8.398032 1.426361 0.153764

LogLikelihood : 236.1564

Information Criteria
------------------------------------

Akaike -4.5831
Bayes -4.4008
Shibata -4.5921
Hannan-Quinn -4.5093
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Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
statistic p-value

Lag[1] 0.2049 0.6508
Lag[2*(p+q)+(p+q)-1][5] 0.6537 1.0000
Lag[4*(p+q)+(p+q)-1][9] 1.5649 0.9962
d.o.f=2
H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared
Residuals
------------------------------------
statistic p-value
Lag[1] 0.01709 0.8960
Lag[2*(p+q)+(p+q)-1][5] 1.77608 0.6722
Lag[4*(p+q)+(p+q)-1][9] 2.38965 0.8538
d.o.f=2

Weighted ARCH LM Tests
------------------------------------
Statistic Shape Scale P-Value
ARCH Lag[3] 1.187 0.500 2.000 0.2759
ARCH Lag[5] 1.287 1.440 1.667 0.6499
ARCH Lag[7] 1.298 2.315 1.543 0.8609

Nyblom stability test
------------------------------------
Joint Statistic: 1.1
Individual Statistics:
mu 0.10044
ar1 0.05773
ma1 0.07745
omega 0.05489
alpha1 0.12756
beta1 0.09975
shape 0.20903

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 1.69 1.9 2.35
Individual Statistic: 0.35 0.47 0.75

Sign Bias Test
------------------------------------
t-value prob sig
Sign Bias 0.7005 0.4853
Negative Sign Bias 1.1385 0.2578
Positive Sign Bias 0.4949 0.6218
Joint Effect 1.5993 0.6595

Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
group statistic p-value(g-1)
1 20 18.4 0.4959
2 30 28.4 0.4966
3 40 32.0 0.7790
4 50 30.0 0.9852

--------- PORTFOLIO 1: RE ----------
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*
*---------------------------------*
* GARCH Model Fit *

*---------------------------------*

Conditional Variance Dynamics
-----------------------------------
GARCH Model : gjrGARCH(1 1)
Mean Model : ARFIMA(1 0 1)
Distribution : std

Optimal Parameters
------------------------------------

Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 0.008717 0.009712 0.897521 0.36944
ar1 0.658142 0.472852 1.391856 0.16397
ma1 0.038052 0.452447 0.084103 0.93297
omega 0.000006 0.000063 0.102143 0.91864
alpha1 0.000000 0.106368 0.000000 1.00000
beta1 0.858251 0.149525 5.739855 0.00000
gamma1 0.234557 0.152629 1.536780 0.12435
shape 7.688707 8.221242 0.935225 0.34967

LogLikelihood : 258.9739

Information Criteria
------------------------------------

Akaike -5.0195
Bayes -4.8111
Shibata -5.0311
Hannan-Quinn -4.9351

Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
statistic p-value
Lag[1] 0.0169 8.966e-01
Lag[2*(p+q)+(p+q)-1][5] 6.0900 5.396e-05
Lag[4*(p+q)+(p+q)-1][9] 12.1864 9.487e-04
d.o.f=2
H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared
Residuals
------------------------------------
statistic p-value
Lag[1] 2.576 0.1085
Lag[2*(p+q)+(p+q)-1][5] 3.269 0.3601
Lag[4*(p+q)+(p+q)-1][9] 4.483 0.5090
d.o.f=2

Weighted ARCH LM Tests
------------------------------------
Statistic Shape Scale P-Value
ARCH Lag[3] 0.7242 0.500 2.000 0.3948
ARCH Lag[5] 1.3330 1.440 1.667 0.6373
ARCH Lag[7] 2.0362 2.315 1.543 0.7096

Nyblom stability test
------------------------------------
Joint Statistic: 1.8663
Individual Statistics:
mu 0.12984
ar1 0.27364
ma1 0.04967
omega 0.07885
alpha1 0.05406
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beta1 0.08900
gamma1 0.06305
shape 0.03614

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 1.89 2.11 2.59
Individual Statistic: 0.35 0.47 0.75

Sign Bias Test
------------------------------------
t-value prob sig
Sign Bias 1.6407 0.1042
Negative Sign Bias 0.6259 0.5329
Positive Sign Bias 0.9332 0.3531
Joint Effect 2.7528 0.4313

Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
group statistic p-value(g-1)
1 20 13.2 0.8282
2 30 21.8 0.8284
3 40 26.4 0.9382
4 50 53.0 0.3226

----------- PORTFOLIO 1: TCP -------
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*

*---------------------------------*
* GARCH Model Fit *
*---------------------------------*

Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(1 1)
Mean Model : ARFIMA(1 0 1)
Distribution : std

Optimal Parameters
------------------------------------

Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 0.004990 0.002718 1.83579 0.066389
ar1 -0.024060 0.207829 -0.11577 0.907836
ma1 0.368759 0.128223 2.87593 0.004028
omega 0.000082 0.000081 1.01780 0.308774
alpha1 0.325337 0.197363 1.64842 0.099266
beta1 0.673663 0.128812 5.22982 0.000000
shape 4.409903 1.093292 4.03360 0.000055

LogLikelihood : 183.5143

Information Criteria
------------------------------------

Akaike -3.5303
Bayes -3.3479
Shibata -3.5393
Hannan-Quinn -3.4565

Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
statistic p-value
Lag[1] 1.792 0.1807
Lag[2*(p+q)+(p+q)-1][5] 3.669 0.1451
Lag[4*(p+q)+(p+q)-1][9] 4.725 0.5174
d.o.f=2
H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared
Residuals
------------------------------------
statistic p-value
Lag[1] 0.02563 0.8728
Lag[2*(p+q)+(p+q)-1][5] 0.46570 0.9628
Lag[4*(p+q)+(p+q)-1][9] 1.21074 0.9758
d.o.f=2

Weighted ARCH LM Tests
------------------------------------
Statistic Shape Scale P-Value
ARCH Lag[3] 0.3891 0.500 2.000 0.5328
ARCH Lag[5] 0.8091 1.440 1.667 0.7903
ARCH Lag[7] 1.1228 2.315 1.543 0.8928

Nyblom stability test
------------------------------------
Joint Statistic: 0.9922
Individual Statistics:
mu 0.07240
ar1 0.10775
ma1 0.07974
omega 0.13182
alpha1 0.13683
beta1 0.24415
shape 0.10509

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 1.69 1.9 2.35
Individual Statistic: 0.35 0.47 0.75

Sign Bias Test
------------------------------------
t-value prob sig
Sign Bias 1.5797 0.1175
Negative Sign Bias 1.3513 0.1798
Positive Sign Bias 0.6971 0.4875
Joint Effect 2.8276 0.4190

Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
group statistic p-value(g-1)
1 20 14.8 0.7352
2 30 25.4 0.6573
3 40 41.6 0.3582
4 50 44.0 0.6756

PORTFOLIO 2
--------- PORTFOLIO 2: SW ---------
*---------------------------------*
* GARCH Model Fit *
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*---------------------------------*

*---------------------------------*

* GARCH Model Fit *
*---------------------------------*

Conditional Variance Dynamics
-----------------------------------
GARCH Model : eGARCH(1 1)
Mean Model : ARFIMA(1 0 1)
Distribution : std

Optimal Parameters
------------------------------------

Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 0.017204 0.010334 1.66478 0.095956
ar1 -0.385777 1.076088 -0.35850 0.719969
ma1 0.520064 0.958599 0.54253 0.587457
omega -2.508506 0.905964 -2.76888 0.005625
alpha1 -0.619767 0.199656 -3.10417 0.001908
beta1 0.482331 0.205862 2.34298 0.019130
gamma1 -0.033112 0.213569 -0.15504 0.876788
shape 3.512164 1.582093 2.21995 0.026422

LogLikelihood : 116.194

Information Criteria
------------------------------------

Akaike -1.9494
Bayes -1.7542
Shibata -1.9589
Hannan-Quinn -1.8702

Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
statistic p-value
Lag[1] 0.1105 0.7396
Lag[2*(p+q)+(p+q)-1][5] 2.0705 0.9434
Lag[4*(p+q)+(p+q)-1][9] 3.2511 0.8490
d.o.f=2
H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared
Residuals
------------------------------------
statistic p-value
Lag[1] 0.5063 0.4767
Lag[2*(p+q)+(p+q)-1][5] 1.1922 0.8149
Lag[4*(p+q)+(p+q)-1][9] 1.5080 0.9549
d.o.f=2

Weighted ARCH LM Tests
------------------------------------
Statistic Shape Scale P-Value
ARCH Lag[3] 0.8537 0.500 2.000 0.3555
ARCH Lag[5] 0.9736 1.440 1.667 0.7408
ARCH Lag[7] 1.0434 2.315 1.543 0.9064

Nyblom stability test
------------------------------------
Joint Statistic: 1.4948
Individual Statistics:
mu 0.05391

ar1 0.02434
ma1 0.02668
omega 0.14271
alpha1 0.13933
beta1 0.16975
gamma1 0.34216
shape 0.14238

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 1.89 2.11 2.59
Individual Statistic: 0.35 0.47 0.75

Sign Bias Test
------------------------------------
t-value prob sig
Sign Bias 1.147 0.2541
Negative Sign Bias 0.341 0.7338
Positive Sign Bias 1.389 0.1676
Joint Effect 2.693 0.4414

Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
group statistic p-value(g-1)
1 20 18.91 0.4626
2 30 27.11 0.5659
3 40 34.95 0.6553
4 50 39.00 0.8461

--------- PORTFOLIO 2: BW ----------
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*

*---------------------------------*
* GARCH Model Fit *
*---------------------------------*

Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(1 1)
Mean Model : ARFIMA(1 0 1)
Distribution : std

Optimal Parameters
------------------------------------

Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 0.004346 0.004184 1.03869 0.298948
ar1 0.097218 0.514690 0.18889 0.850182
ma1 0.118252 0.534149 0.22138 0.824794
omega 0.000104 0.000070 1.48396 0.137820
alpha1 0.119013 0.053627 2.21927 0.026468
beta1 0.801635 0.072982 10.98398 0.000000
shape 99.966035 32.079186 3.11623 0.001832

LogLikelihood : 213.5455

Information Criteria
------------------------------------

Akaike -3.7215
Bayes -3.5507
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Shibata -3.7289
Hannan-Quinn -3.6522

Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
statistic p-value
Lag[1] 0.01045 0.9186
Lag[2*(p+q)+(p+q)-1][5] 0.29579 1.0000
Lag[4*(p+q)+(p+q)-1][9] 0.98499 0.9998
d.o.f=2
H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared
Residuals
------------------------------------
statistic p-value
Lag[1] 0.8924 0.3448
Lag[2*(p+q)+(p+q)-1][5] 3.6976 0.2943
Lag[4*(p+q)+(p+q)-1][9] 8.1184 0.1222
d.o.f=2

Weighted ARCH LM Tests
------------------------------------
Statistic Shape Scale P-Value
ARCH Lag[3] 2.034 0.500 2.000 0.15385
ARCH Lag[5] 5.155 1.440 1.667 0.09463
ARCH Lag[7] 8.230 2.315 1.543 0.04663

Nyblom stability test
------------------------------------
Joint Statistic: 1.4563
Individual Statistics:
mu 0.11222
ar1 0.36644
ma1 0.39821
omega 0.14871
alpha1 0.08959
beta1 0.13284
shape 0.28894

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 1.69 1.9 2.35
Individual Statistic: 0.35 0.47 0.75

Sign Bias Test
------------------------------------
t-value prob sig
Sign Bias 1.3430 0.1821
Negative Sign Bias 0.4561 0.6493
Positive Sign Bias 0.7640 0.4466
Joint Effect 2.1700 0.5379

Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
group statistic p-value(g-1)
1 20 29.00 0.065985
2 30 36.30 0.165063
3 40 65.22 0.005311
4 50 81.34 0.002522

--------- PORTFOLIO 2: RE ----------
*---------------------------------*
* GARCH Model Fit *

*---------------------------------*

*---------------------------------*
* GARCH Model Fit *
*---------------------------------*

Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(1 1)
Mean Model : ARFIMA(1 0 1)
Distribution : std

Optimal Parameters
------------------------------------

Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 0.012688 0.004365 2.90673 0.003652
ar1 0.622704 0.141854 4.38976 0.000011
ma1 0.083990 0.124886 0.67254 0.501243
omega 0.000012 0.000025 0.49316 0.621903
alpha1 0.188720 0.102881 1.83435 0.066602
beta1 0.794916 0.142805 5.56642 0.000000
shape 5.323549 2.878993 1.84910 0.064443

LogLikelihood : 276.7544

Information Criteria
------------------------------------

Akaike -4.8604
Bayes -4.6896
Shibata -4.8678
Hannan-Quinn -4.7911

Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
statistic p-value
Lag[1] 0.408 5.230e-01
Lag[2*(p+q)+(p+q)-1][5] 6.239 2.918e-05
Lag[4*(p+q)+(p+q)-1][9] 12.714 5.306e-04
d.o.f=2
H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared
Residuals
------------------------------------
statistic p-value
Lag[1] 1.863 0.1723
Lag[2*(p+q)+(p+q)-1][5] 3.375 0.3428
Lag[4*(p+q)+(p+q)-1][9] 4.142 0.5651
d.o.f=2

Weighted ARCH LM Tests
------------------------------------
Statistic Shape Scale P-Value
ARCH Lag[3] 1.679 0.500 2.000 0.1951
ARCH Lag[5] 1.693 1.440 1.667 0.5431
ARCH Lag[7] 1.835 2.315 1.543 0.7522

Nyblom stability test
------------------------------------
Joint Statistic: 1.3709
Individual Statistics:
mu 0.08311
ar1 0.48182
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ma1 0.10610
omega 0.13467
alpha1 0.27157

beta1 0.25295
shape 0.23405

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 1.69 1.9 2.35
Individual Statistic: 0.35 0.47 0.75

Sign Bias Test
------------------------------------
t-value prob sig
Sign Bias 0.48458 0.6290
Negative Sign Bias 0.06167 0.9509
Positive Sign Bias 0.86706 0.3879
Joint Effect 0.77513 0.8554

Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
group statistic p-value(g-1)
1 20 15.31 0.7029
2 30 28.73 0.4792
3 40 35.67 0.6227
4 50 46.21 0.5870

------ PORTFOLIO 2: TCP ------------
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*

*---------------------------------*
* GARCH Model Fit *
*---------------------------------*

Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(1 1)
Mean Model : ARFIMA(1 0 1)
Distribution : std

Optimal Parameters
------------------------------------

Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 0.005335 0.002582 2.06661 0.038771
ar1 -0.077318 0.213841 -0.36157 0.717675
ma1 0.398249 0.131670 3.02461 0.002490
omega 0.000109 0.000106 1.02863 0.303652
alpha1 0.326700 0.152321 2.14481 0.031968
beta1 0.672300 0.112679 5.96649 0.000000
shape 4.212978 1.331060 3.16513 0.001550

LogLikelihood : 204.6936

Information Criteria
------------------------------------

Akaike -3.5620

Bayes -3.3912
Shibata -3.5694
Hannan-Quinn -3.4927

Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
statistic p-value
Lag[1] 1.121 0.2896
Lag[2*(p+q)+(p+q)-1][5] 2.932 0.5149
Lag[4*(p+q)+(p+q)-1][9] 4.106 0.6660
d.o.f=2
H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared
Residuals
------------------------------------
statistic p-value
Lag[1] 0.0007309 0.9784
Lag[2*(p+q)+(p+q)-1][5] 0.7069737 0.9216
Lag[4*(p+q)+(p+q)-1][9] 1.6915880 0.9384
d.o.f=2

Weighted ARCH LM Tests
------------------------------------
Statistic Shape Scale P-Value
ARCH Lag[3] 0.6854 0.500 2.000 0.4077
ARCH Lag[5] 1.3023 1.440 1.667 0.6458
ARCH Lag[7] 1.7802 2.315 1.543 0.7637

Nyblom stability test
------------------------------------
Joint Statistic: 0.8908
Individual Statistics:
mu 0.04478
ar1 0.09018
ma1 0.07295
omega 0.24281
alpha1 0.25025
beta1 0.36819
shape 0.11339

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 1.69 1.9 2.35
Individual Statistic: 0.35 0.47 0.75

Sign Bias Test
------------------------------------
t-value prob sig
Sign Bias 1.6389 0.1042
Negative Sign Bias 1.2418 0.2171
Positive Sign Bias 0.9772 0.3307
Joint Effect 3.0192 0.3887

Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
group statistic p-value(g-1)
1 20 12.78 0.8495
2 30 32.51 0.2978
3 40 40.71 0.3950
4 50 45.31 0.6237
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Figure 7.2. QQ plots
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(a) CVaR, constraint 0.5
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(b) CVaR, no constraints
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(c) CVaR, without RE, no constraints
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(d) CVaR, without TCP, no constraints
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(e) Conditional portfolio values

Figure 7.5. Portfolio 1: Results of dynamic portfolio optimization rou-
tines for quarterly returns using either VaR or CVaR criteria. Target
excess return for the next quarter is set to 1.2 %. With constraint=0.5
weight of any single asset was not allowed to be greater than 50 %.
The number on the right side of the plots refer to the mean weights of
each asset during the study period. The series in figure (e) have been
calculated assuming that the portfolio is redistributed as suggested by
the optimization routine every quarter. Equal weight static portfolio is
also shown for a comparison.
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(a) CVaR, constraint 0.5
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(b) CVaR, no constraints
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(c) CVaR, without RE, no constraints
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(d) CVaR, without TCP, no constraints
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(e) Conditional portfolio values

Figure 7.6. Portfolio 2: Results of dynamic portfolio optimization rou-
tines for quarterly returns using either VaR or CVaR criteria. Target
excess return for the next quarter is set to 0.8 %. With constraint=0.5
weight of any single asset was not allowed to be greater than 50 %.
The number on the right side of the plots refer to the mean weights of
each asset during the study period. The series in figure (e) have been
calculated assuming that the portfolio is redistributed as suggested by
the optimization routine every quarter. Equal weight static portfolio is
also shown for a comparison.
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