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Abstract-There are two aspects in functional magnetic reso­
nance imaging (fMRI) data that make them awkward to analyse 
with traditional multivariate methods - high order and high 
dimension. The first of these refers to the tensorial nature 
of observations as array-valued elements instead of vectors. 
Although this can be circumvented by vectorizing the array, 
doing so simultaneously loses all the structural information in 
the original observations. The second aspect refers to the high 
dimensionality along each dimension making the concept of di­
mension reduction a valuable tool in the processing of fMRI data. 
Different methods of tensor dimension reduction are currently 
gaining popUlarity in literature, and in this paper we apply two 
recently proposed methods of tensorial independent component 
analysis to simulated task-based fMRI data. Additionally, as a 
preprocessing step we introduce a novel extension of PCA for 
tensors. The simulations show that when extracting a sufficiently 
large number of principal components, the tensor methods find 
the task signals very reliably, something the standard temporal 
independent component analysis (tICA) fails in. 

I. INTRODUCTION 

A. fMRl data as tensors 

Functional magnetic resonance imaging (fMRI) data are 
well-known for their large volume, both in size and in number 
of dimensions. Together these result in an enormous number 
of variables to deal with. For example, assuming 1000 three­
dimensional scans with 256 voxels per dimension means 
observing over 16 million variables and leading into a severe 
case of high dimension, low sample size data. Thus a first step 
in the analysis of fMRI data is often some form of dimension 
reduction. 

In order to apply standard multivariate methods in the 
analysis of fMRI data, the sample of observed scans is usually 
first vectorized. However, in doing so one also inadvertently 
discards all structural information in the observations. It seems 
natural to assume that, if almost all voxels in two layers 
of a scan correlate highly, then so do the rest of them. By 
intentionally losing the information on the spatial proximity 
of the voxels seems therefore counterintuitive. A more logical 
alternative is obtained by not vectorizing but instead keeping 
the data in the array, or tensor, form for the whole time. 
Various approaches for applying tensorial analysis methods 
to fMRI data are discussed in [1], [2], [3], for example. 

B. fMRl and lCA 

Independent component analysis (ICA) is a well-established 
analysis method for fMRI data. For some discussions on 

using ICA for fMRI data, see for example [4], [5]. When 
applied in the traditional way, ICA means that one first has to 
decide whether to perform the so-called spatial ICA (sICA) 
or temporal ICA (tlCA) , and then choose an ICA algorithm 
out of the many possibilities. To illustrate this, assume next 
that the vectorized tensors are contained in a T x p matrix X 
where T is the number of samples (time points) and p is the 
number of voxels. As T « p, the most common approach has 
been to apply ICA to the transpose of the data matrix, XT. 
The method, which is called spatial ICA, however makes no 
use of the spatial dependencies in the data. A more natural 
approach, temporal ICA, treats the data matrix X as such and 
thus accounts for the spatial aspect of the data. The drawback 
of tlCA, however, is that the temporal dependencies in the data 
are ignored. Notice also that a common preprocessing step for 
both sICA and tlCA is the reduction of the dimension by a 
singular value decomposition (SVD) or principal component 
analysis (PCA) on the vectorized tensors. 

As already stated, relying on vectorization means that 
neither of the two analysis approaches makes use of the 
tensorial structure of fMRI data, and thus ignore the Kronecker 
covariance structure of the data. See [6] for the benefits 
of the exploitation of Kronecker structure in the context of 
EEGIMEG data. Steps for bringing ICA to a tensorial form 
have been suggested already in [7], [8] but a fully tensorial 
ICA model and two appropriate methods (tensorial FOBI, 
TFOBI, and tensorial JADE, TJADE) have been suggested 
only recently in [9], [10]. In this paper we first introduce some 
relevant notation and tensor terminology in Section IT. Then, 
in Section rn, we review TFOBI and TJADE and propose 
a tensorial scheme for extending the tlCA method based on 
them. In Section IV we then compare the scheme to standard 
tlCA using simulated fMRI data, and finally we conclude 
the paper with some prospective ideas for further research in 
Section V. 

11. NOTATION 

We use lower-case letters for scalar constants, a, b, c, lower­
case boldface letters for vector constants, a, b, c, upper-case 
boldface letters for matrix constants, A, B, C and script letters 
for general tensor constants, A, H, C. The same convention is 
used with random elements but instead using letters from the 
end of the alphabet, e.g. x, x, X, X. 



By random tensor X we mean a random element taking val­
ues in ]RPl x .. · XPr and, although generally difficult to visualize, 
a mental image of a tensor can be formed by considering it as 
a collection of vectors. For a tensor of order r this can be done 
in a total of r ways giving us the concept of m-mode vectors or 
fibers. More formally, for a given mode m, the Pm := rr:;emPs 
m-mode vectors are obtained by varying the mth index while 
holding the others fixed. In a sense an opposite construct, the 
Pm m-mode faces or slices of a tensor are obtained by fixing 
the value of the mth index and varying the others. 

To manipulate tensors we introduce two forms of tensor 
contraction. The linear transformation X 8m Am of a tensor 
X = (Xil . .. iJ E ]RPlX"'Xp, by a matrix Am = (a;;nl) E 
]R q", Xp", from the mth mode produces a PI x . . . X qm X . . . X Pr' 
tensor with the elements 

The previous operation is most easily understood as applying 
the linear transformation given by Am separately to each m­
mode vector of X. For ease of reading we use in the following 
the shorthand notation X 8�=1 Am := ( - .. (X 81 Ad··· 8r 
Ar). Furthermore, for tensors of order r = 1, 2 we have the 
following connections to ordinary matrix multiplication: x 81 
Al = A1x, X 81 Al = A1X and X 82 A2 = XAr, 

The second form of tensor contraction takes a single tensor 
X E ]RPl x .. 

· XPr and returns the symmetric matrix X 8-m X E 
]RP", Xp", with the elements 

where the summing is over all indices expect the mth one. 
The above operation can be seen to be equivalent to the 
sum of outer products of all m-mode vectors of X with 
themselves. Thus, for tensors of order r = 1,2 we again have 
the connections x 8-1 x = XX

T
, X 8-1 X = XXT and 

X 8-2 X = XT X. For a comprehensive introduction to 
manipulating tensors, see e.g. [1 1]. 

Finally, denote the standard basis vectors of ]RP by e'i, i = 

1, ... ,p, and by Eij := eieJ the matrix with a single one as 
the (i, j )th element and rest of the entries zero. 

Ill. METHODS 

A. Independent component models 

We begin by shortly reviewing the tensorial independent 
component analysis framework along with two methods, 

TFOBI and TJADE. For the ease of understanding, several 
contrasting comparisons to the vector-based methods will be 
made. 

Recall that the traditional vector independent component 
model assumes that the sample of i.i.d. observations Xi E ]RP 
satisfies 

Xi = 7n + OZi, i = 1, . . . , T, 

where 7n E ]RP, the latent i.i.d p-vectors Zi have mutually 
independent components and the square P x P matrix 0 is 

invertible. An extension of the model for a sample of i.i.d. 
tensors Xi E ]RPl x .. · X Pr was constructed in [9] as 

Xi = M + Zi 8�n=1 Om, i = 1, . . . ,T, (1) 

where M E ]RPl x .. · XPr, the latent i.i.d. tensors Zi E 
]RPl x .. · Xp, have independent components, and the square 
matrices Om E ]RPm XPm , m = 1, ... , r, are invertible. To 
quarantee identifiability we set the following constraints for 
the corresponding population quantities: (i) E[vec (X) ] = 0, 
(ii) Cov [vec (X)] = I, and (iii) for each mode m = 1, ... ,r, at 
most one m-mode slice of Z has only Gaussian components. 
The operation "vec" stacks the elements of a tensor into a 
vector, the order it is done playing no role here. The first 
two constraints require the components of Z to be marginally 
standardized, and the third one fixes the issue with the 
orthogonal invariance of the standard multivariate Gaussian 
distribution, see [12], [9]. Note that while in the vector case 
the last assumption means that at most single component of Z 
can be Gaussian, in the general tensor case most components 
of Z can be Gaussian without violating constraint (iii) [10]. 

In the case of a single-subject fMRI data we thus have a 
sequence of 3-mode tensors and we assume that Zi is a latent 
tensor of independent signals where each activation signal 
resides only in a single voxel (unlike in Xi where the activation 
signal can cover multiple voxels with varying amplitudes) 
other voxels containing just noise. The mixing matrices Om, 
m = 1, ... , r then create dependencies in Zi from their 
respective modes/directions and produce the observed tensor 
Xi for the ith time point. The aim of ICA is to reverse this 
process so that we can pick the individual signals of interest 
from the estimated Zi. 

As in standard ICA, the first step in tensorial ICA is 
standardization. Assuming in the following centered random 
vectors, the standardization in vector ICA is performed as 

x f--t Xst := :E-1j2x, 

where :E := E[xxT] is the covariance matrix of the random 
vector x and the inverse square root is chosen to be symmetric. 
The standardized random vector then satisfies Xst = U z for 
some orthogonal U E ]Rpxp, reducing the problem of inverting 
an unknown full-rank matrix to that of inverting an unknown 
orthogonal matrix, see [13]. 

In [9] a tensorial extension of the above standardization is 
formulated as 

v v . _ v r.;r �-lj2 
"'- f--t "'-st .- "'- \,CJm=1 ""m , (2) 

where we again (from now on) assume that the tensor X is 
centered and the m-mode covariance matrices are computed as 
:Em := p;;-,lE[X 8-m X] , m = 1, ... ,r, their inverse square 
roots being chosen to be symmetric. [9] further show that the 
standardized tensor satisfies 

(3) 

for some orthogonal matrices U m E ]RP", x P"', m = 1, ... , r. 

The estimation of these unknown rotations is then what both 



TFOBI and TJADE aim to do. Note that having proportionality 
instead of equality in (3) is non-restrictive as the overall scale 
in (1) is not estimable due to multiple mixing matrices. 

B. TFOBI 

The standard FOBI [14] utilizes the matrix of fourth mo­
ments, B(x) := E[xxTxxT], which can be shown to satisfy 
B(xst) = U DUT for some diagonal matrix D. Assuming 
that the kurtoses of the components of z (that is, the diagonal 
elements of D) are distinct, the unknown rotation U is then 
directly estimable from the eigendecomposition of B(xst). 

[9] extended FOBI method to tensors with the product 
operation 8-m by defining the m-mode matrices of fourth 

moments as 

Bm(X) := p;,1E[(X 8-m X)2], m = 1, . . . , r, (4) 

which can be shown to satisfy Bm(Xst) = UmDmU;;', for 
some diagonal matrix D m E ]RPm XPm, for all m = 1, ... , r. 

Thus, the rotation matrices U m can be estimated from the 
eigendecompositions of Bm(Xsd, m = 1, ... , r, and they 
are identifiable (up to sign and permutation of their columns) 
if, for all m = 1, . . . , r , the average kurtoses of the m-mode 
slices are distinct. An alternative formulation (that is generally 
inferior in performance) for TFOBI also exists and can be 
found in [9]. 

C. TJADE 

JADE [13] is commonly considered as an improvement over 
FOBI. Instead of using the information contained in a single 
matrix of fourth moments, B, JADE uses all possible p4 joint 
fourth cumulants to estimate the orthogonal matrix U. These 
cumulants are conveniently contained in the following set of 
p2 matrices indexed by two indices: 

Cij E [ T T T ] s: I Eij Eji = ei x stxstej . XstXst - Uij - - , (5) 

with i, j = 1, . . . , p. It can be shown that the orthogonal matrix 
U diagonalizes the matrix C ij for all i, j = 1, . . . , p, but due 
to individual rank deficiencies we Jointly diagonalize them 
to estimate the unknown rotation. The joint (approximate) 
diagonalization is captured by the optimization problem 

P P 
U = argmax LL IIdiag(UCi.iuT) 112. (6) 

u: UTU=I i=1 j=l 

For a technique for solving (6) using Jacobi angles, see [13]. 

The statistical properties of FOB! and JADE are given in [15], 

and JADE is in general considered as the preferred method 
of these two. When comparing leA methods for !MRI data, 
JADE is also often included in comparisons. For recent papers, 
see for example [16], [17]. 

In [10] the matrices Cij are extended separately for all 
modes of a random tensor using again the operation 8-m to 
yield the following sets of matrices: 

Cij = Bij - S (8""p 1+ Eij + Eji) ST m m m �J m rn' 

where i,j = 1, . . . ,p and m = 1, ... , r . Here B� .­

p;,1 E [el{Xst 8-m Xst)ej . (Xst 8-m Xsd] , and Srn .-

p;;,.1 E [Xst 8-m Xst] is the m-mode covariance matrix of the 
standardized tensor which is needed to estimate the unknown 
constant of proportionality in (3). [10] then showed that 
the orthogonal matrix U m can be estimated by replacing 
the matrices Cij in (6) by CV and performing the joint 
diagonalization separately for all modes. For identifiability 
we must further assume that, for all m = 1, . . . , r, at most 
one of the average kurtoses of the m-mode slices is zero. 
An alternative, computationally more intensive but similar in 
performance, version of TJADE also exists, see [10]. 

D. The proposed method 

To provide a fully tensorial alternative for the temporal leA 
we still need a counterpart for the singular value decomposi­
tion used to reduce the dimension of the initial random vector. 
This is given by tensorPCA (TPCA), which is based on the 
use of the m-mode covariance matrices in a similar fashion 
as regular peA is based on the use of the covariance matrix. 
The TPCA transformation is given by 

(7) 

where the orthogonal matrices V m have the eigenvectors of 
the m-mode covariance matrices I:m = V mAm V;;' as their 
columns, m = 1, ... , r. It is easy to see that the diagonal 
matrices Am obtained as a side product contain the sums 
of variances of the components of the m-mode faces of the 
transformed tensors, m = 1, . . . , r. The diagonal elements can 
be used as in regular PCA to assess the importance of each 
column vector of V m in capturing the information content of 
X. For example, scree plots for choosing suitable numbers of 
components are easily generated. Denoting by V;" E ]RP", x d", 

the matrix that contains the chosen dm columns of V m, 
m = 1, . . . , r , a reduced d1 x . . . X dr tensor is obtained as 
XPCA := X 8;:;'=1 (V;'.)T and is analogous to using regular 
peA to reduce the dimension of a random vector. 

Our proposed regime for processing !MRI data uses TPCA 
to compress the observed random tensor prior to utilizing the 
ICA method, and is as follows: 

1) Use TPCA to obtain the transformed random tensor 
XPCA and for each mode m = 1, . . . , r retain the indices 
corresponding to the dm highest eigenvalues in Am, 
yielding the reduced tensor XPCA" 

2) Subject the reduced random tensor XpCA to either 
TFOBI or TJADE and based on a chosen criteria choose 
individual components of interest from the resulting ten­
sor of independent components Z. 

Although our approach to tensorial peA is original, several 
other formulations for extending PCA for tensor observations 
have been proposed. For approaches with a statistical view­
point, see e.g. [18], [19]. For more algorithmic approaches 
using various tensor decompositions such as the Tucker- and 
eP-decomposition, see e.g. the review in [20]. 

IV. SIMULATION 
The simulations were performed in R version 3.3.0 [21] 

using the packages ggplot2 [22], neuRosim [23] JADE [24] 
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Fig. 1. The activation signals in the simulated data. The upper plot shows 
the signals of the two activation regions when the option "gamma" is chosen 
and the lower plot when "double-gamma" is chosen, see Appendix. 

and tensorBSS [25], from which the implementation of the 
tensor regime discussed in Section III-D can be found. 

A. Simulation setting 

The R-package neuRosim [23] provides a tool for simulating 
realistic resting-state and task-based !MRI data, and allows 
one to control the sources of noise and many other effects. In 
order to compare the methods of interest we use the package 
to simulate 4-dimensional task-based !MRI data (3 spatial 
and 1 temporal dimensions) . The chosen dimensions for the 
voxels are PI = P2 = P3 = 64 and for the time T = 75 
or T = 100. In general we use mainly the default settings of 
neuRosim and consider two haemodynamic response functions 
(HRF) with which the stimulus function is convoluted to 
model the activation produced by the repetition of the task. 
The two HRFs under consideration are gamma HRF and 
double-gamma HRF. Furthermore, several noise sources are 
added to the observations, comprising of Rician system noise, 
temporal noise, low-frequency drift, physiological noise, task­
related noise and spatial noise, see [23]. The general code for 
simulating the data is given in the Appendix. The following 
results will be based on 1000 repetitions for the different 
settings. 

The generated datasets contain two separate activation re­
gions, see Appendix for more information and a visualization. 

In both of these regions a single signal is localized and the 
different signals that result from convoluting the stimulus with 
either the gamma HRF or double-gamma HRF are depicted 
in Figure 1. The goal in our simulation study is the accurate 
estimation of these signals from the observed tensors, and two 
different methods, a tensor-based and a vector-based, are used 
to carry this out. 

The first of the methods is the two-step tensor regime 
proposed in Section Ill-D. In step 1 we consider two reduced 
tensor sizes, namely 3 x 3 x 3 and 6 x 6 x 2. These represent 
respectively the ideas that most of the information can be 
contained in a small sub-tensor and that the height dimension 
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Fig. 2. The boxplots of the highest absolute correlations that any of the 
independent components had with the true signal of the first activation, The 
number of repetitions per setting is 1000. 

(the last one) contains little information as compared to the 
other two. The resulting reduced tensor is then subjected to 
either TFOBI or TJADE to obtain a tensor of independent 
components. 

The second method (tICA) starts by vectorizing the ob­
served tensors resulting in a sample of vectors of length 
P = 643. Then the singular value decomposition is used to 
reduce the size of the T x P data matrix to T x p* where the 
variable dimension p* is either 27 or 72 to correspond with 
the number of components retained in the tensor scheme. To 
obtain the vectors of p* independent component, FOBI and 
JADE are used. However, regular JADE has the disadvantage 
that its computational complexity increases dramatically with 
p. To overcome this issue, [26] introduced the so-called k­
JADE procedure. In k-JADE the whitening is performed using 
FOBI and the orthogonal matrix U is then found using only 
those matrices Cij in (5), where li - jl ::; k. The tuning 
parameter k can be seen as the upper limit of components 
with identical kurtosis values. As such we use k-JADE with 
k = 5 in place of JADE in the case p* = 72. 

B. Simulation results 

For each of the methods, the highest absolute correlations 
between the estimated individual independent components 
and the two true activation signals given in Figure 1 were 
recorded. As the absolute correlations measure the success 
of the estimation, the value of one means that the activation 
signal was captured perfectly. The boxplots of the values are 
shown individually for both activation signals in Figures 2 and 
3 under all combinations of the simulations settings . 

The upper rows of the figures correspond to using the 3 x 

3 x 3 reduced tensors (or the vectors of length 27) and the low 
correlations therein reveal that the reduced tensor is not large 
enough to contain the information on either of the activation 
signals. The vector methods perform slightly better, showing 
median absolute correlations of almost 0.5. However, the fact 
that the performance does not increase with sample size is also 



Fig. 3. The boxplots of the highest absolute correlations that any of the 
independent components had with the true signal of the second activation. 
The number of repetitions per setting is 1000. 

indicating that most of the signal information is not contained 
in the 27 components retained by SVD. 

Turning our attention to the lower row where the algorithm 
used the 6 x 6 x 2 reduced tensors (or the vectors of length 
72), we see the tensor methods outmatching their vector 
counterparts. Although the sample size T = 75 seems not to be 
high enough for the estimation of the signals, for T = 100 the 
first activation signal is consistently being perfectly estimated 
by both TFOBI and TJADE. Also the second signal is very 
nicely estimated by both tensorial methods for T = 100. 
Interestingly, the functional form of the signal, gamma HRF 
or double-gamma HRF, had overall very little effect on the 
results. 

Using the signal estimates one can also create recon­
structions of the original observations where the activation 
regions are clearly visible, see Figure 4 and compare it to the 
true regions in Figure 5. This is analogous to using regular 
PCA to recreate original images using only a few principal 
components and can be carried out in practice e.g. by setting 
all other elements but the one containing the signal in the 
tensors Zi to zero and carrying out the linear ICA and TPCA 
transformations backwards. 

V. DISCUSSION 

The standard way of treating fMRI data, vectonzmg and 
applying vector methods, has the drawbacks of being both 
computationally intensive and unaware of the tensorial struc­
ture of the observations. A more natural course of action 
should thus preserve the tensor form of the observations. Based 
on this paradigm, we proposed in this paper a fully tensorial 
alternative to the commonly used tlCA framework and showed 
that the former was superior in estimating the task signals in 
simulated fMRI data. 

Future work includes the extensions of various aspects of the 
current setting: The simulation setup could be made more com­
plex, e.g. by letting multiple activation regions overlap. The 
selection of the number of components in the PCA-step should 

Reconstructed activation region 1 Reconstructed activation region 2 

Fig. 4. Reconstructions of the first time point of the first height layer of 
the observations using only the estimated first signal (left-hand side) or the 
estimated second signal (right-hand side). The sample size was T = 100, the 
HRF double-gamma, the size of the reduced tensors 6 x 6 x 2 and the used 
ICA method TJADE. 

be investigated carefully while considering also alternative 
reduction methods, such as the various tensor decompositions. 
Other tensorial ICA methods such as the tensor versions of k­
JADE and FastlCA [27] will be developed and investigated. 
Tensorial blind source separation (BSS) methods, such as the 
tensorial SOBI (TSOBI) [28], that take into account both 
the spatial and temporal dependence will be considered. And 
finally, in future comparisons naturally also results for real 
fMRI data will be of interest as well as the extending of model 
(1) for the case of multisubject data. 
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ApPENDIX 

THE DATA GENERATING CODE 

The following wrapper function was used to generate the 
simulation data of Section Ill-D. The function takes as argu­
ments the length T of the series as n and the haemodynamic 
response function, either" gamma" or "double-gamma", 
as hrf. The output is a list containing the observation tensor 
and the true underlying activation signals. 

nsWrap <- function(n, hrf) { 

regions <- simprepSpatial(regions 2, 

coord = list (c (10, 15, 50), 
c(53, 29, 24)), radius = c(8, 5), 
form = "sphere") 

TR <- 2 

total <- TR * n 
osl <- seq(l, total, 40) 
os2 <- seq (15, total, 20) 
dur <- list(20, 7) 
os <- list(osl, os 2) 
effect <- list (7, 10) 

de sign <- simprepTemporal ( 

reg ions = 2, o nsets os, 
durations = dur, TR = TR, hrf hrf, 



Activation region 1 Activation region 2 

• 
Fig. 5. The left-hand side plot shows where the first activation region resides 
in the 50th height layer of the observations and the right-hand side plot does 
the likewise for the second activation region in the 24th height layer. 

effectsize = eff ect, 

totaltime = total) 

w <- c(0.3, 0.3, 0.01, 0.09, 0.1, 0.2 ) 
x <- simVOLfmri(dim = c(64, 64, 64), 

base = 100, design = design, 

image = regions, SNR = 10, 
noise = "mixture", type = "rician", 

weights = w, verbose = FALSE) 

S <- specifydesign (totaltime = total, 

onsets = list(osl, os2), 

durations = dur, effectsize = effect, 

TR = TR, conv = hrf) 

return (list (x = x, s = s)) 

THE AC TIVATION REGIONS 

The activation regions of the two signals in the simulated 
data are spheres with radii 8 and 5 and centers at coordinates 
(10,15,50) and (53,29,24), respectively. These two regions 
are depicted in Figure 5. 
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