

This is an electronic reprint of the original article. This reprint *may differ* from the original in pagination and typographic detail.

Author(s): Brett, Michael T.; Bunn, Stuart E.; Chandra, Sudeep; Galloway, Aaron W. E.; Guo, Fen;

Kainz, Martin J.; Kankaala, Paula; Lau, Danny C. P.; Moulton, Timothy P.; Power, Mary

E.; Rasmussen, Joseph B.; Taipale, Sami; Thorp, James H.; Wehr, John D.

Title: How important are terrestrial organic carbon inputs for secondary production in

freshwater ecosystems?

Year: 2017

Version:

Please cite the original version:

Brett, M. T., Bunn, S. E., Chandra, S., Galloway, A. W. E., Guo, F., Kainz, M. J., Kankaala, P., Lau, D. C. P., Moulton, T. P., Power, M. E., Rasmussen, J. B., Taipale, S., Thorp, J. H., & Wehr, J. D. (2017). How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems?. Freshwater Biology, 62(5), 833-853. https://doi.org/10.1111/fwb.12909

All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.

1	
2	How important are terrestrial organic carbon inputs for secondary
3	production in freshwater ecosystems?
4	
5	MICHAEL T. BRETT*, STUART E. BUNN†, SUDEEP CHANDRA‡,
6	AARON W.E. GALLOWAY§, FEN GUO†, MARTIN J. KAINZ¶,
7	PAULA KANKAALA**, DANNY C.P. LAU ^{††} , TIMOTHY P. MOULTON ^{‡‡} ,
8	MARY E. POWER§§, JOSEPH B. RASMUSSEN¶, SAMI J. TAIPALE***,
9	JAMES H. THORP ^{†††} , AND JOHN D. WEHR ^{‡‡‡}
10	
11	*Department of Civil & Environmental Engineering, University of Washington, Seattle, WA, U.S.A.
12	[†] Australian Rivers Institute, Griffith University, Brisbane, QLD, Australia
13	[‡] Global Water Center and Biology Department, University of Nevada, Reno, NV, U.S.A.
14	§Oregon Institute of Marine Biology, University of Oregon, Charleston, OR, U.S.A.
15	¶WasserCluster Lunz-Biological Station, Donau-Universität Krems, Lunz am See, Austria
16	**Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu,
17	Finland
18	††Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
19	^{‡‡} Departamento de Ecologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
20	§§ Department of Integrative Biology, University of California Berkeley, Berkeley, CA, U.S.A.
21	¶Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada.
22	***Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
23	††† Kansas Biological Survey, Lawrence, KS, U.S.A. and Department of Ecology and Evolutionary
24	Biology, University of Kansas, Lawrence, KS, U.S.A.
25	‡‡‡Louis Calder Center – Biological Field Station, Fordham University, Armonk, NY, U.S.A.
26	
27	Correspondence: Michael T. Brett, Department of Civil and Environmental Engineering, University
28	of Washington, Seattle, WA, U.S.A. E-mail: mtbrett@uw.edu
29	

SUMMARY

- 1. Many freshwater systems receive substantial inputs of terrestrial organic matter. Terrestrially derived dissolved organic carbon (t-DOC) inputs can modify light availability, the spatial distribution of primary production, heat and oxygen in aquatic systems, as well as inorganic nutrient bioavailability. It is also well established that some terrestrial inputs (such as invertebrates and fruits) provide high quality food resources for consumers in some systems.
- 2. In small to moderate-sized streams, leaf litter inputs average \approx 3X greater than autochthonous production. Conversely, in oligo/mesotrophic lakes algal production is typically \approx 5X greater than the available flux of allochthonous basal resources.
- 3. Terrestrial particulate organic matter (t-POC) inputs to lakes and rivers are comprised of 80-90% biochemically recalcitrant lignocellulose, which is highly resistant to enzymatic breakdown by animal consumers. Further, t-POC and heterotrophic bacteria lack essential biochemical compounds that are critical for rapid growth and reproduction in aquatic invertebrates and fishes. Several studies have shown that these resources have very low food quality for herbivorous zooplankton and benthic invertebrates.
- 4. Much of the nitrogen assimilated by stream consumers is likely to be of algal origin, even in systems where there appears to be a significant terrestrial carbon contribution. Amino acid stable isotope analyses for large river food webs indicate that most upper trophic level essential amino acids are derived from algae. Similarly, profiles of essential fatty acids in consumers show a strong dependence on algal food resources.
- 5. Primary production to respiration ratios are not a meaningful index to assess consumer allochthony because respiration represents an oxidized carbon flux that cannot be utilized by animal consumers. Rather, the relative importance of allochthonous subsidies for upper trophic level production should be addressed by considering the rates at which

- terrestrial and autochthonous resources are consumed and the growth efficiency supported by this food.
 - 6. Ultimately, the biochemical composition of a particular basal resource, and not just its quantity or origin, determines how readily this material is incorporated into upper trophic level consumers. Because of its highly favorable biochemical composition and greater availability, we conclude that microalgal production supports most animal production in freshwater ecosystems.

Introduction

62

63

64

65

66 67

68 69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88 89

90

Ecologists have long been fascinated by interfaces and the exchange of materials across aquatic-terrestrial boundaries (Summerhayes & Elton, 1923; Polis et al., 1997). The stream ecology community has classically considered allochthonous inputs to be the key basal resource because of their quantitative dominance over in-stream primary production in low-order systems and larger, turbid, heterotrophic rivers (Vannote et al., 1980). However, more recently there has been a shift in emphasis to the disproportionate importance of autotrophic producers to animal consumer production in streams and larger rivers (Lewis et al., 2001; Thorp & Delong, 2002; Bunn et al., 2003; Brito et al., 2006; Lau et al., 2009a,b; Jardine et al., 2015; Hayden et al., 2016; Neres-Lima et al., 2016, Thorp & Bowes, 2017). Conversely, lakes have classically been thought to be driven by autochthonous production (Carpenter et al., 1985), but recent studies have suggested terrestrial carbon inputs support \approx 30-70% of zooplankton as well as zoobenthos and fish production (Grey et al., 2001; Karlsson et al., 2003; Pace et al., 2004; Carpenter et al., 2005; Cole et al., 2006; Jansson et al., 2007; Pace et al., 2007; Berggren et al., 2010; Cole et al., 2011; Berggren et al., 2014; Tanentzap et al., 2014). The following analysis explores these paradoxical viewpoints in the literature from the perspective of the mass fluxes of allochthonous and autochthonous carbon to and within aquatic systems, resource energetics and enzyme kinetics, and nutritional constraints on animal consumer growth and reproduction by examining the empirical evidence of

allochthonous and autochthonous subsidies to animal consumers in lakes and rivers. This analysis will also address whether systems characterized by high terrestrial carbon inputs are conducive to high rates of invertebrate and fish production.

949596

97

98

99

100

101

102

103

104

105

106107

108

109

110

111112

113114

115

116

117

118

119

120

121

91

92

93

Why does allochthony matter?

A better understanding of where and how allochthony modifies aquatic food web processes will improve our ability to predict how land-use and climate change affect organic carbon export from watersheds to lakes and rivers and how this matter influences upper trophic level production in aquatic systems. If invertebrate and fish consumers in rivers and lakes are strongly subsidized by allochthonous carbon inputs, then watersheds and especially riparian zone management will potentially have as much influence on lake and river food webs as nutrient inputs or within system processes.

Anthropogenic activities greatly modify watershed characteristics, which can affect the fluxes of nutrients and organic carbon to rivers and lakes (Dillon & Kirchner, 1975; Hopkinson & Vallino, 1995; Gergel et al., 1999). For example, France et al. (1996) calculated t-DOC export to the nearshore of oligotrophic forest lakes was reduced by a factor of 40 following riparian deforestation. Conversely, Webster et al. (1990) reported that the loading of particulate organic matter to small streams increased somewhat, and the transport of this matter within streams increased greatly, after logging. Watershed disturbance, such as forest fires and logging, can result in considerable additions of carbon and nutrients to streams (Skyllberg et al., 2009) and lakes (Garcia & Carignan, 1999). Monteith et al. (2007) concluded recent increases in surface water DOC concentrations in glaciated regions of North America and Europe are a soilmediated response to reduced atmospheric sulfate loading and recovery from acidification. Conversely, Schindler et al. (1997) showed a combination of forest fires, experimental acidification and especially drought reduced watershed t-DOC export to Canadian boreal lakes. Lepistö et al. (2014) stated watershed DOC export was most closely related to seasonal and inter-annual variation in soil frost cycles, precipitation, runoff and drought. It has also been shown that glacial melt due to climate change in montane regions may be releasing stored t-DOC to aquatic ecosystems (Hood et al. 2015). Recent evidence from subalpine lakes of northern California suggests that elevation and resulting vegetation dominance may play an important role in governing the inputs of t-DOC into aquatic ecosystems (Piovia-Scott *et al.*, 2016). These at times contradictory studies indicate it is unclear whether the export of terrestrial organic matter to aquatic ecosystems will increase or decrease in the future due to land-use and climate change, and this remains an important area for subsequent research.

Terrestrial carbon influences on lake processes

It is well established that the chemical properties and production in lakes are directly tied to terrestrial inputs. In fact, with the exception some aeolian inputs, virtually all inorganic constituents in lakes originate from watershed export. In a chronosequence of lakes formed by glacial retreat 10 to 10,000 years ago, Engstrom *et al.* (2000) found dramatic changes in lake water chemistry in response to natural soil weathering and successional changes in watershed vegetation. Watershed vegetation has also been shown to affect the balance between macro- and micro-nutrient limitation of phytoplankton (Goldman, 1960) and bacterial (Wehr *et al.*, 1999) production in lakes.

Terrestrial carbon inputs, and especially t-DOC, can influence the chemical and physical properties of lakes and rivers in a myriad of ways. For example, DOC dramatically affects the attenuation of visible and ultraviolet radiation (UVR) in surface waters, as well as which photosynthetically active radiation (PAR) wavelengths are available at depth (Jones, 1992; Morris *et al.*, 1995; Schindler *et al.*, 1997; von Einem & Granéli, 2010). As such, t-DOC affects where and how much primary production occurs (Jones, 1992; Vadeboncoeur *et al.*, 2008; Karlsson *et al.*, 2009) and whether UVR will damage flora and fauna (Williamson & Rose, 2010). Similarly, t-DOC modifies heat retention, thermal stratification regimes and oxygen availability within stratified water columns (Schindler *et al.*, 1997; Prairie, 2008; von Einem & Granéli, 2010). t-DOC also exerts strong

control over the speciation and bioavailability of nutrients, in particular 153 154 phosphorus (P) and to a lesser extent ammonium (Jones, 1992; Steinberg et al., 155 2006; Li & Brett, 2013), and it is common for much of the P within humic waters 156 to be bound within only marginally bioavailable humic-iron complexes (Jones et al., 1993). Due to PAR attenuation and P sequestration, it is typical for high t-157 158 DOC lakes to have much less phytoplankton and benthic algal biomass and 159 production than would be expected in clearwater lakes with corresponding P 160 concentrations (Jones, 1992; Wehr et al., 1998; Vadeboncoeur et al., 2008; 161 Karlsson et al., 2009; Thrane et al., 2014). 162

For reasons that are not entirely clear, humic substances seem to inhibit the growth of some cyanobacteria (Steinberg et al., 2006) and certain chrysophyte species (Wehr et al., 1998) perhaps because the humic matter sequesters iron. Conversely, cryptomonads are characteristically abundant in humic lakes (Klaveness, 1988), and it has been speculated that their ability to consume bacteria confers an advantage in regards to both direct nutrient and energy uptake (Tranvik et al., 1989; Rothhaupt, 1996). The flagellated raphidophyte phytoplankter Gonyostomum semen is also characteristic of high DOC lakes, especially in Scandinavia where in some lakes it comprises pprox 95% of total phytoplankton biomass (Johansson et al., 2013a). It has been hypothesized that Gonyostomum is favored in humic lakes because it is particularly tolerant of low pH and weak light (Rengefors et al., 2008). Having a mixotrophic feeding mode might also confer an advantage for Gonyostomum in light limited systems relative to purely autotrophic algae (Berggren et al., 2010). However, due to its large size and defense system against grazing (e.g., expulsion of mucilaginous trichocysts), Gonyostomum is also not commonly consumed by metazoan zooplankton (Lebret et al., 2012; but see Johansson et al., 2013b).

178 179 180

181 182

183

163

164

165166

167

168

169170

171172

173

174

175

176

177

Terrestrial organic matter loading to lakes

Much of the research suggesting allochthony as an important subsidy for animal consumers in lakes is based on the premise that terrestrial carbon inputs are often much larger than primary production in oligo/mesotrophic systems

(France et al., 1996; Wetzel, 2001; Cole et al., 2002; Jansson et al., 2007; 184 Prairie, 2008; Cole et al., 2011). Despite the centrality of this assumption, it is not 185 186 borne out by mass flux data for lakes. Brett et al. (2012) carried out a meta-187 analysis of studies that reported terrestrial carbon mass influx and algal primary production data for lakes with total phosphorus ≤ 20 µg L⁻¹ (Fig. 1). This analysis 188 189 showed the median (interquartile range) terrestrial particulate organic carbon (t-190 POC), available dissolved organic carbon (t-DOC) inputs, and in-lake bacterial and algal production were 11 (8-17), 34 (11-78), 74 (37-165), and 253 (115-546) 191 mg carbon m⁻² d⁻¹, respectively (Fig. 1). These results indicate autochthonous 192 production is 4 to 7 times greater than the flux of terrestrial basal resources that 193 194 is available to consumers in oligo/mesotrophic lakes (Brett et al., 2012). Lakes 195 with high hydraulic flushing rates can also have very high loading of t-DOC. However, in lakes with the highest t-DOC inputs (i.e., 1000 mg C m⁻² d⁻¹), ≥ 98% 196 197 of the t-DOC flux is advected because t-DOC is processed at only $\approx 0.1\%~d^{\text{-}1}$ 198 (Hanson et al., 2011; Brett et al., 2012). Because of this very low degradation 199 rate constant, advection is the main fate of t-DOC in lakes with water retention 200 times less than 3 years (Hanson et al., 2011; Brett et al., 2012). Advected 201 allochthonous organic matter cannot be used to support in-lake consumer 202 production due to mass balance constraints.

Terrestrial organic matter loading to streams

203204

205

206

207208

209

210

211

212

213

The special volume edited by Webster & Meyer (1997) reported 28 cases where leaf litter inputs and benthic primary production were simultaneously determined for different streams. These data indicated the median leaf litter inputs and benthic algal production values were 454 (218-615) and 134 (63-514) mg carbon m⁻² d⁻¹, respectively. When compared within systems, the median ratio of leaf litter inputs to algal production was 2.8 (0.6-7.8). Webster & Meyer (1997) also reported 13 cases where t-DOC loading to streams was quantified; these data had a median of 134 (94-634) mg carbon m⁻² d⁻¹. Because t-DOC is metabolized very slowly and this fraction is advected in streams, these data

suggest that particulate inputs will dominate the active terrestrial organic matter processing in streams.

215216217

218

219

220

221

222

223

224

225

226

227

228

229230

231

232

233

234

235

236237

238

239

240

241242

243

244

214

Autochthony or Allochthony in Lotic Ecosystems

Conceptual theories on the relative importance of autochthonous and allochthonous carbon for animal production in lotic ecosystems are founded primarily on techniques for analyzing gut contents and feeding behavior, and more recently, tracer techniques that track the incorporation of resources into tissue (e.g., bulk tissue stable isotopes and fatty acids). The dominant importance of algae in supporting animal production in areas where PAR reaches the stream bottom is almost universally acknowledged (e.g., arid zone streams -Minshall, 1978; Bunn et al., 2006), but controversy continues over the primary carbon sources in forested headwaters and large turbid rivers. Terrestrial carbon from leaf litter has been thought to be the main carbon source in forested headwaters since at least publication of The Stream And Its Valley (Hynes, 1975) and development of the River Continuum Concept (or RCC: Vannote et al., 1980). This was primarily based on observations of a substantial influx of leaf litter, reduced PAR for photosynthesis due to extensive riparia, a dearth of visible benthic algae, stream respiration much higher than production, and the dominance of shredding invertebrates and other detritivores. However, in one shaded headwater stream Mayer & Likens (1987) determined that algae represented more than half the food consumed by the caddisfly Neophylax aniqua and was responsible for 75% of its energy needs, even though algal production was < 2% of total energy inputs. More recently, a survey of 70 streams and rivers, most forested, where isotopes had been measured in food webs found ¹³C values indicating algal diets in scraping grazers from very small shaded headwater streams (draining 0.2 km²) down through middle-sized rivers (drainage areas of 4000 km² (Finlay, 2001). Other recent research has also challenged the RCC not only in low-latitude forest systems where sufficient PAR can stimulate benthic algal production (Brito et al., 2006; Davies et al., 2008; Lau et al., 2009a,b; Dudgeon et al., 2010), but even in more temperate systems (e.g.,

Finlay, 2001; McNeeley *et al.*, 2007; Carroll *et al.*, 2016; Hayden *et al.*, 2016;
Jonsson & Stenroth, 2016). Within the RCC model was the explicit assumption
that at low light levels, consumers would be limited by low algal production and
therefore turn towards the lower-quality but plentiful terrestrially-derived
resources. On the other hand, the flux of primary consumer production to
predators and omnivores can be relatively high and imply top-down control of
primary consumer populations (Hall *et al.*, 2001).

252

253

254

255

256

257258

259

260261

262

263

264265

266

267268

269

270

271

272273

274275

Wetzel (1995, 2001) suggested the metabolism of terrestrial origin particulate and especially dissolved organic matter by aquatic bacteria dominates both the material and energy fluxes of most aquatic ecosystems, especially small oligotrophic lakes and headwater streams. Many studies have also noted it is common for north temperature and boreal lakes to be net heterotrophic or have primary production to respiration (P/R) ratios < 1, with the implication being this provides insights into whether the aquatic system being studied is on balance mainly supported by allochthony or autochthony (Odum, 1956; Vannote et al., 1980). Although the significance of low P/R ratios and/or net heterotrophy for upper trophic levels has been disputed (Rosenfeld & Mackay, 1987; Thorp & Delong, 2002), many of the papers in the zooplankton allochthony literature begin by emphasizing the supposed importance of net heterotrophy for upper trophic levels (Grey et al., 2001; Jansson et al., 2007; Karlsson, 2007; Berggren et al., 2010). What the "net heterotrophy" literature actually shows is that allochthonous carbon inputs play an important role in the influx and efflux of CO2 in many lakes and streams (Duarte & Prairie, 2005). Understanding the role lakes play in the global carbon cycle is very important, but this research does not indicate the relative importance of allochthonous and autochthonous carbon subsidies for upper trophic levels. This latter question is addressed by considering the rates at which food of autochthonous and direct (t-POC inputs) or indirect (bacterial production supported by t-DOC) terrestrial origin are consumed and the growth efficiency with which this matter is used (Rosenfeld & Mackay, 1987; Thorp & Delong, 2002; Marcarelli et al., 2011). Furthermore, low P/R ratios are most commonly observed when apparent respiration is high, and high

278

279

280281

282

283

284

285

286

287

288289

290

291292

293

294

295

296

297

298299

300

301

302

303

304

305

respiration indicates a high flux of organic matter being converted to CO₂ most likely via photochemical or bacterial degradation (Amon & Benner, 1996b; Cory *et al.*, 2014). Since animals use reduced carbon this also represents an oxidized carbon flux that is not available to support upper trophic level production. The ratio of the bioavailable terrestrial and aquatic particulate organic matter fluxes is a more useful index of potential allochthonous subsidies to consumer production (Rosenfeld & Mackay, 1987; Brett *et al.*, 2012). There are also potentially important methodological issues in the net heterotrophy literature (see Carignan *et al.*, 2000; Abril *et al.*, 2015) which need to be resolved before we have a clear understanding for the prevalence of this phenomenon in oligotrophic lakes and headwater streams.

Models of carbon sources for large rivers have focused either on the main channel (original RCC model), floodplains (Flood Pulse Concept, or FPC: Junk et al., 1989; and revision of the RCC by Sedell et al., 1989), or the entire riverine landscape, especially the main and side channels of the riverscape (Riverine Productivity Model, or RPM: Thorp & Delong, 1994, 2002; and the Riverine Ecosystem Synthesis, or RES: Thorp et al., 2006, 2008). Scientists supporting predictions of the RCC and FPC for large rivers could point to rates of downstream transport (rapid removal of algae from the system), the river's helical flow (continually taking phytoplankton into and out of the photic zone), the absence of PAR on the bottom across most of the river's width, and the high turbidities of many rivers. Consequently, Sedell et al., (1989) inferred that secondary production and system metabolism was principally supported by terrestrial carbon derived from upstream leakage of refractory carbon or lateral inputs from overland flow during flood and non-flood periods. Supporters of the RPM and RES argue instead that algal production in the main channel (e.g., Delong & Thorp, 2006), nearshore environments, and lateral slackwaters of the main and side channels provide sufficient labile carbon to support metazoan production during periods of maximum secondary production (e.g., Thorp et al., 2006, 2008; Jardine et al., 2012). Even in highly turbid lowland rivers, much of

the consumer biomass, especially in higher trophic levels, is derived from algal sources (Power, 2001; Bunn *et al.*, 2003; Jardine *et al.*, 2013).

307308309

310

311

312313

314

315316

317

318319

320

321

322

323

324

325

326

327328

329

330

331

332

333

334335

336

306

Tools to resolve this debate

Resolution of this nearly four-decade debate is hampered by a lack of detailed chemical analysis of carbon digestibility and by shortcomings in analytical techniques for tracking carbon sources, determining food chain length, and analyzing community relationships (e.g., Layman et al., 2007). From the biochemical perspective, however, our earlier conclusions for allochthonous carbon flowing into lakes should be directly applicable to allochthonous inputs to a river from headwaters to its terminus. From a sampling/analytical perspective, problems arise in determining source signatures, turnover rates and metabolic transformations within the consumer (e.g., effects of starvation: Bowes et al., 2014) and among trophic levels (e.g., Bowes & Thorp, 2015) using standard techniques (see Jardine et al., 2014). Of these problems, determining source signatures is the most problematic, in part because scientists have until recently been limited to bulk tissue stable isotope techniques (the easiest, cheapest, and most widespread method) and fatty acid methods (good for specific source identification, but inappropriate for determining food chain length and other community metrics). The primary analytical problem in identifying primary food sources with bulk tissue techniques is reliably determining the δ^{13} C autotrophic values of both terrestrial plants and algae. The values of both resources can vary substantially in time and space, especially for algae (Cloern et al., 2002; Hadwen et al., 2010; Bowes & Thorp, 2015). In an attempt to alleviate this problem, aquatic ecologists have often used isotopic values of herbivores, such as benthic bivalve molluscs or grazer macroinvertebrates (Vander Zanden & Rasmussen, 1999; Finlay, 2001). This is also problematic, however, because one needs to know: (a) what the mussel or other herbivore has been consuming and in what proportion (e.g., benthic or suspended algae and/or particulate organic matter of autochthonous or allochthonous origin); (b) from where within the river the food was primarily obtained (affecting the exact δ^{13} C value); and (c) how the value

changes as resources are conveyed through the food web under different physiological and environmental conditions.

337338

339

340

341342

343344

345346

347

348349

350

351

352353

354

355

356

357

358

359

360

361

362

363

364365

366367

Finlay and colleagues found that in streams with catchment areas < 10 km² benthic algae had depleted ¹³C values relative to terrestrial vegetation by 3 to 9‰, but for watershed surface areas ranging from 10 to 1,000 km² algal carbon isotope values varied widely and extensively overlapped with those for terrestrial C3 plants (Finlay et al., 1999; Finlay, 2001). In relatively productive, unshaded, larger streams and rivers, the algae tend to incorporate dissolved atmospheric CO₂, which has a δ^{13} C value of about -8%. Because of the relatively high demand for CO₂ in productive waters, algae discriminate relatively little towards the lighter isotope and thus incorporate a ¹³C value which is enriched by about -15 to -23% relative to terrestrial C3 plants (which have nearly constant δ^{13} C values of \approx -28% from headwaters to downstream reaches of rivers, as expected given their well-mixed atmospheric source). Three factors conspire to reduce stable isotope differences in small, shady, streams: 1) in the lessproductive shaded stream algae may have an abundance of CO2 and thus fractionate more towards the lighter isotope, and become less enriched than the δ¹³C of terrestrial C3 plants; 2) the dissolved inorganic carbon in small shaded streams may derive in part from respired terrestrial organic matter and thus transfer this lighter isotopic value to the algae; 3) the epilithon may contain organic carbon derived from dissolved and fine particulate organic matter of terrestrial origin embedded within the matrix. Thus studies of small streams may find that the values of periphyton and terrestrial material are not sufficiently different to be able to separate sources, whereupon they may abandon this approach (see Hall et al., 2001) or may simply not publish. Lack of publication of these findings creates a bias in the literature towards the cases in which stable isotopes provide a clear solution to the analysis of food sources. As previously noted, in meta-analyses of studies reporting the δ^{13} C values of periphyton, Finlay (2001) and Ishikawa et al. (2012) found a trend towards lighter values at a catchment size of approximately 0.2-10 km² and 75% canopy cover. This generally implies difficulty in discriminating algal and terrestrial resources in

small, shaded streams, although in some studies the algae can have a distinctly more depleted δ^{13} C than the terrestrial material and hence provide the required discrimination between sources (e.g., Rounick *et al.*, 1982; Finlay, 2001).

Another approach for overcoming the source discrimination problem is to sample over large spatial scales and correlate the δ^{13} C (or δ^{15} N) of consumers with the source of interest (e.g., benthic algae; see Rasmussen *et al.*, 2009; Rasmussen, 2010; Jardine *et al.*, 2012). In a meta-analysis of carbon and nitrogen isotope data from 92 sites across Australia and New Guinea, ranging from temperate forest streams to large arid zone rivers, Bunn *et al.* (2013) showed that 78% of the observed variation in consumer nitrogen isotopes was explained by variation in algal nitrogen isotopes and, importantly, the slope of this relationship was not different from 1. The close tracking of consumer and algal isotope values implies that most of the consumer nitrogen in these systems was derived from algae, and a similar relationship was found in data from 23 studies from North and South America, New Zealand, and Asia. The relationship for carbon isotopes was significant, but weaker (i.e., 48% of variability explained) and with a slope that was significantly less than 1, implying that other resources were also important (Bunn *et al.*, 2013).

Even after one obtains a satisfactory signature from the aquatic herbivore, one would not have a reliable terrestrial signature for comparison because, first, the bulk tissue values of terrestrial plants also vary in space and time and the investigator would have to assume an equal mixture of organic carbon from various plant species and upstream locations; second, there are only few, if any, aquatic primary consumers that assimilate only terrestrial resources and can truly represent a terrestrial end member. Empirical studies have shown that even obligate and facultative shredders (classified based on functional feeding) assimilate autochthonous algae in shaded streams (e.g., Li & Dudgeon, 2008; Lau *et al.*, 2009a,b; Hayden *et al.*, 2016), thus faunal representatives of terrestrial signature are expected to be more scarce in wider river channels where light availability and primary production are greater.

Another solution to this dilemma is through the use of a relatively new analytical technique: amino acid stable isotope analyses. This method has been employed in marine food web studies (e.g., McClelland & Montoya, 2002; Popp et al., 2007; Chikaraishi et al., 2009, 2014; Nielsen et al., 2015; McMahon et al., 2016), a stream field study (Ishikawa et al., 2014), a laboratory freshwater food web experiment (Bowes & Thorp, 2015), and several museum studies of freshwater piscivorous and invertivorous fishes collected from the Upper Mississippi and lower Ohio Rivers (Thorp & Bowes, 2017; Bowes et al., in press). This technique links essential amino acids in the tissue of consumers with their ultimate autotrophic source because the consumers cannot synthesize essential amino acids. For example, the results of Thorp & Bowes (2017) demonstrated that on average 60-75% of the consumer amino acids were derived from algae in the rivers they studied.

Based on the biochemical analysis of terrestrial carbon in many studies and general conclusions from stable isotope and fatty acid studies of mid-sized and large rivers, we contend that algae represent the primary carbon source supporting metazoan production during periods of somatic growth. The ultimate contributions of river algae during other seasons when animal growth is static or negative still needs to be resolved as does the contribution of algae to animal production in forested headwaters. However, even in these systems there is clear evidence that algae are the main carbon source for herbivorous invertebrates (Mayer & Likens, 1987; Finlay, 2001; McNeeley *et al.*, 2007). We also contend that algae represent the primary nitrogen source supporting metazoan production across a wide range of lotic and lentic systems.

Enzymatic and biochemical constraints on the utilization of terrestrially derived carbon

The problem with using terrestrial derived carbon is not its energy content *per se*, but rather the accessibility of the energy contained within this material and the suitability of the biochemical composition of the resource for synthesis of new biomass in animals. Biological recalcitrance is due to kinetic, not energetic

content limitations. For example, a variety of terrestrial plants have average 429 energy contents of 19 ± 1 MJ kg⁻¹ (± 1 SD) (Friedl *et al.*, 2005), which is slightly 430 431 higher than for proteins and carbohydrates (i.e., 17 MJ kg⁻¹), but considerably 432 less than the average energy content of fats (38 MJ kg⁻¹) and alcohols (29 MJ kg⁻¹) 1) (Blaxter, 1989). It is obvious that many synthetic organic compounds such as 433 434 plastics have a high-energy content (20-46 MJ kg⁻¹) while also being almost entirely resistant to attack by biological enzymes. Similarly, cellulose has 435 436 extremely low bioavailability to the large majority of insects (Martin et al., 1991). 437 True lignin digestion is thought to be restricted to a very small fraction of insects (Breznak & Brune, 1994; Geib et al., 2008). This is important because we 438 439 hypothesize that aquatic animal consumers will grow best when utilizing diets 440 that most closely match their own biochemical composition, or complement their endogenous capacity to modify and synthesize biochemicals. 441 442

443

444

445

446

447

448449

450

451452

453

454

455456

457

458 459

Many bacteria are biochemical specialists and are equipped with specific enzymes that target particular molecular bonds. The structural carbon that dominates the tissues of many higher plants is comprised in large part of lignins and cellulose (Meyers & Ishiwatari, 1993). Lignocellulose degradation in terrestrial soil systems plays a central role in the global carbon budget, but currently the fundamental understanding of the degradation of these compounds is only rudimentary (Benner et al., 1988; Lynd et al., 2002; Martinez et al., 2005). Cellulose is the most prevalent component of plant tissue comprising 35-50% of dry weight, and is generally embedded in a biopolymer structural matrix including hemicelluloses (20-35% of dry wt.) and lignin (5-30% of dry wt.) (Lynd et al., 2002), with other biochemicals such as carbohydrates, lipids and proteins comprising a much smaller portion of plant tissues (Martinez et al., 2005). The lignocellulosic component of the plant undergoes self-assembly at the site of biosynthesis and is composed of randomly polymerized polyphenolics intertwined with hemicellulose, resulting in a hydrophobic crystalline or complex amorphous structure, which protects against biodegradation. Collectively these physical properties of lignocellulose do not present well-defined enzymatic targets, making it difficult for enzymes to bind to susceptible sites and thereby conferring

 considerable resistance to microbial degradation (e.g., Moran & Hodson, 1989). These characteristics of higher plant structural material have been hypothesized to be an evolutionarily adaptive strategy to avoid attack by bacteria, fungi and herbivorous animals (Coley *et al.*, 1985; Rosenthal & Kotanen, 1994). By presenting a physical or enzymatic target with a random or tightly packed structure, the organism can prevent its consumers from refining an effective attack strategy. With the exception of termites (Ohkuma, 2003), very few animals are known to possess the requisite enzymes to metabolize the lignocellulosic biomass of terrestrial plants, and most of the degradation of lignocellulose in soils and aquatic systems is carried out by ascomycete fungi and various bacteria (Lynd *et al.*, 2002; Simonis *et al.*, 2008).

White rot fungi are the best-known living organisms that specialize on using

higher plant lignocellulose as their main substrate. They accomplish this feat by means of nonspecific extracellular oxidative enzymes (oxidoreductases) such as lignin and manganese peroxidases (Tuomela *et al.*, 2000). The forms of terrestrial carbon that are not metabolized by bacteria and fungi within terrestrial soil systems are subsequently exported to streams and lakes. The aquatic realm is the recipient of the metabolic "leftovers" from the partial degradation of lignocellulose in the terrestrial system (Sutton & Sposito, 2005). High watershed t-DOC export is particularly associated with catchments with large wetland or saturated areas (Rasmussen *et al.*, 1989; Dillon & Molot, 1997; Canham *et al.*, 2004) and streams draining catchments with well-drained soils typically have low t-DOC concentrations (Gergel *et al.*, 1999). Because anoxic degradation (especially in lakes and wetlands) yields very little energy to microbes, with most energy channeled towards methanogenesis (Schink, 1997), the degradation of organic matter in saturated anoxic conditions is slow and often incomplete for less energetically favorable forms of terrestrial carbon.

Increased oxygen availability accelerates rates of lignin degradation by hydrogen peroxide, which is in turn derived from the metabolism of cellulose and hemicellulose in aerobic conditions (Sanchez, 2009). In the absence of oxygen, lignocellulose degradation to humic substances is much slower and less

complete (Tuomela *et al.*, 2000). In anoxic systems where methanogenesis prevails, optimal substrate metabolism generally requires syntrophic cooperation between two or more highly specialized bacteria species wherein the product of one species' metabolism is the resource for the other species (Schink, 1997). Optimal metabolic transfers between syntrophic bacteria occur when the cooperating species are in very close physical proximity, often as aggregates or flocs. However, this type of metabolic cooperation between bacteria species seems to be much less common in oxic environments (Schink, 1997).

Because of their complex and amorphous structure, humic and fulvic acids are, like their precursors, quite resistant to enzymatic hydrolysis. Therefore, they are most susceptible to generalized attacks by reactive oxygen species such as H₂O₂ and ultraviolet radiation (UVR) in natural systems (Amon & Benner, 1996b), and chlorine, ozone, and UVR in engineered systems (Matilainen & Sillanpää, 2010). For example, it is widely recognized that much of the degradation of complex t-DOC molecules in aquatic systems is a consequence of UVR driven photooxidation (Cory *et al.*, 2014), which in turn produces simpler molecules (e.g., formaldehyde, acetaldehyde, glyoxylate, and pyruvate) via cleavage of macromolecules into lower molecular weight compounds that can be more easily metabolized by bacteria (Lindell *et al.*, 1995; Vähätalo *et al.*, 2011). Some research, however, suggests low molecular weight t-DOC is actually less bioavailable to microbial degradation because it is more diagenetically altered than most high molecular weight organic matter (Tulonen *et al.*, 1992; Amon & Benner, 1996a).

The colonization of decaying leaf litter by bacteria and fungi in smaller streams has been likened to peanut butter on crackers (e.g., Cummins, 1974), with the microbial biofilm converting detrital material into more labile and higher quality food sources for benthic invertebrates (Findlay, 2010). However, experimental studies suggest that microbial colonization of decaying leaves does not lead to greater nutritional quality of leaf litter (due to very low quantities of $\omega 3$ fatty acids), despite increases in bacterial and fungal fatty acids over time (Torres-Ruiz & Wehr, 2010). A recent feeding experiment showed that the

presence of high quality algae attached to leaf litter not only boosted the somatic growth of larvae of the shredding caddis (*Anisocentropus bicoloratus*), but also increased the incorporation of low quality leaf litter into stream food webs (Guo *et al.*, 2016a). Although the shredders obtained most of their carbon by leaf consumption, they acquired and selectively retained their physiologically important fatty acids (ω3 PUFA) from high quality algae. Likewise, results from manipulative feeding experiments in Lau *et al.* (2013) showed pre-conditioned leaf litter alone could not sustain the somatic growth of the isopod *Asellus aquaticus*, which is a common benthic generalist in boreal freshwaters. Supplying leaf litter and algae together, however, substantially enhanced somatic growth. This growth facilitation and the PUFA accumulation in *Asellus* were mediated by its seasonal physiological variation – *Asellus* optimized PUFA retention during the spring (i.e., the reproductive season) and somatic growth in the fall – yet in both seasons an algal diet was needed to satisfy its physiological requirements.

Terrestrial and autochthonous carbon fluxes to and within aquatic ecosystems: oligo/mesotrophic lakes

Initially, it was concluded that the flux of terrestrial carbon to zooplankton via a t-DOC to bacteria pathway was very minor and only accounted for 1-2% of zooplankton carbon (Cole *et al.*, 2006). These authors concluded direct t-POC consumption was the main pathway by which terrestrial organic matter was routed to zooplankton with this pathway accounting for \approx 50% zooplankton carbon in unfertilized lakes (Cole *et al.*, 2006). However, as noted by Brett *et al.* (2009, 2012), t-POC inputs to these lakes are < 5% of algal primary production and because t-POC is a very low quality resource compared to phytoplankton, it is unlikely that a small flux of low quality resource could support \approx 50% of zooplankton production.

Cole *et al.* (2011) acknowledged that t-POC influxes were too low to support a large fraction of zooplankton production in their lakes. Instead these authors hypothesized that a microbially-mediated t-DOC to bacteria pathway was the primary route by which zooplankton obtained terrestrial C (Cole *et al.*, 2011). In a

feeding experiment using t-DOC with algae, McMeans et al. (2015) found higher 553 554 somatic growth, but no viable egg reproduction in Daphnia magna exposed to 555 high t-DOC and attributed this growth response to the provision of bacteria rather 556 than direct t-DOC utilization. However, this pathway is contingent on t-DOC being the main resource for planktonic bacteria. The strong relationship between 557 558 phytoplankton and bacteria production reported by Fouilland & Mostajir (2010) (i.e., $r^2 = 0.83$) and others (Bird & Kalff, 1984; $r^2 = 0.88$) suggests otherwise. 559 560 Because DOC releases from algal production average about 20-30% of gross 561 primary production (Cole et al., 1982; Cole et al., 2000), the flux of algal derived DOC will on average be similar (29-137 mg C m⁻² d⁻¹) to the flux of t-DOC that is 562 removed in oligo/mesotrophic lakes (37-165 mg C m⁻² d⁻¹) (Brett et al., 2012). 563 Furthermore, Kritzberg et al. (2004, 2005) concluded heterotrophic bacteria 564 preferentially utilize phytoplankton-derived DOC compared to t-DOC, and algal 565 566 DOC resulted in higher bacterial growth efficiency. Several studies have also reported that bacteria production is not correlated with the standing pool of t-567 DOC in aquatic systems (Amon & Benner, 1996b; Carignan et al., 2000; 568 569 Karlsson, 2007; Farjalla et al., 2009; Gudasz et al., 2012; Kankaala et al., 2013). 570 The potential importance of a t-DOC to bacteria to zooplankton pathway is also 571 contravened by bacterial production only averaging \approx 30% of algal primary 572 production in oligo/mesotrophic lakes (Fouilland & Mostajir, 2010). Finally, 573 several authors have directly tested the food quality of heterotrophic bacteria for 574 freshwater zooplankton. So far, all these studies have shown freshwater 575 zooplankton cannot survive on diets solely comprised of bacteria; and when 576 zooplankton consume mixed bacteria and phytoplankton diets, they very preferentially utilize the algal fraction of their diets (Martin-Creuzburg et al., 2011; 577 578 Taipale et al., 2012; Wenzel et al., 2012b; Taipale et al., 2014). 579 Methanogenesis and methanotrophy is another pathway by which terrestrial 580 inputs might contribute to consumer production in aquatic food webs. Increasingly sophisticated stable isotope, and especially fatty acid biomarkers 581 582 that are diagnostic for methane oxidizing bacteria, can be used to definitively 583 establish methane contributions to consumer production (Kankaala et al., 2006b;

Deines et al., 2007; Taipale et al., 2008; 2012; Jones & Grey, 2011). However, 584 these approaches do not establish the origin of the reduced carbon that originally 585 586 supported methanogenesis. In a study of 207 Finnish boreal lakes, Juutinen et al. 587 (2009) observed the greatest methane effluxes from shallow nutrient rich and humic lakes. Deemer et al. (2016) recently showed water column chlorophyll a 588 589 concentrations were the best predictor of methane effluxes from reservoirs. They also concluded that eutrophic reservoirs emitted an order of magnitude more 590 591 methane than did oligotrophic reservoirs. Among 224 lakes from Quebec 592 (Canada), Rasilo et al. (2015) found that methane effluxes were positively 593 correlated with temperature and lake nutrient status, and negatively correlated 594 with lake area and dissolved humic matter concentrations. West et al. (2012) showed that additions of algae (i.e., Scenedesmus) promoted substantially 595 596 higher rates of CH₄ production than did equivalent additions of terrestrially 597 derived organic matter (i.e., maple leaves) in laboratory experiments. Anoxia and 598 high organic matter content promotes methanogenesis especially in the sediments of eutrophic lakes and reservoirs (Rudd & Hamilton, 1978; Molongoski 599 600 & Klug, 1980). Hypolimnia with low oxygen or anoxia are also commonly 601 encountered in small temperate and boreal humic lakes (Juutinen et al., 2009; 602 Rinta et al., 2015). Methanotrophy predominately takes place at the interface 603 zone between oxic and anoxic layers at the sediment surface or in the water 604 column (Rudd & Hamilton, 1978; Kankaala et al., 2006a; Bastviken et al., 2008; 605 Schubert et al., 2010). Thus, CH₄ contributions have been shown to be significant 606 especially for chironomids in the profundal zone of some eutrophic lakes (Deines 607 et al., 2007; Ravinet et al., 2010; Jones & Grey, 2011) and for pelagic 608 cladocerans in seasonally stratified humic lakes (Taipale et al., 2008; Kankaala 609 et al., 2013). Because methanogenesis is a less energetically favorable reaction in regards to Gibbs free energy, we hypothesize that the most easily metabolized 610 611 organic matter (e.g., algal and non-lignified littoral detritus) will preferentially 612 support acetoclastic methane production, and thus methane-based food webs in freshwater ecosystems. Hydrogenothrophic methanogens can utilize carbon 613 dioxide and hydrogen, both produced by fermenting and syntrophic bacteria 614

during earlier steps of anaerobic organic matter decomposition (Conrad, 1999; 2005). In this pathway the energy comes from the hydrogen because CO₂ does not contain usable energy. In nutrient poor environments the hydrogenothrophic pathway seems to be more important than acetoclastic methanogenesis (Casper, 1996; Galand *et al.*, 2010). At present the magnitude of methanogenic pathway from allochthonous organic and/or inorganic carbon to freshwater food webs is unknown.

621622623

624

625

626

627

628

629

630 631

632

633

634 635

636

637

638

639

640

641642

643

644

645

615 616

617

618

619 620

You are what you eat, and you eat what you are

We hypothesize that organisms at the plant-animal interface preferentially consume and assimilate basal resources that best match their own biochemical composition, as well as their innate ability to synthesize structural molecules from dietary precursors. Considerable research also shows the lipid composition of herbivorous zooplankton is strongly influenced by their diets (Brett et al., 2006; Ravet et al., 2010; Burns et al., 2011; Taipale et al., 2011; Galloway et al., 2015; Taipale et al., 2015) (Fig. 2). In streams and larger rivers, caddis and mavflv larvae, amphipods, and snails similarly strongly reflect the fatty acid composition of their food (Steinman et al., 1987; Torres-Ruiz et al., 2007, 2010; Lau et al., 2009a; Gladyshev et al., 2012; Larson et al., 2013; Guo et al., 2016b). This link between the biochemical composition of the food and that of consumers is critical because terrestrially derived carbon has a profoundly different elemental and biochemical composition than does algae. Because of its very high proportion of lignocellulose, on a per carbon basis, the terrestrial carbon of higher plant origin is a poor carbon source for animal production. At the crudest stoichiometric level, terrestrial plant material is also nutritionally much more imbalanced than freshwater autotrophic matter relative to herbivorous invertebrate demands, with carbon to phosphorus and carbon to nitrogen ratios on average three times greater in terrestrial plants than aquatic autotrophs (Elser et al., 2000). This difference is a consequence of the previously mentioned prominence of carbon intensive structural molecules (i.e., \approx 90% cellulose, hemicelluloses and lignin) in terrestrial plant tissues (Lynd et al., 2002). Variations in the nutrient

stoichiometry and elemental imbalances of basal food sources also profoundly 646 647 affect the excretion rates (and hence production efficiency) of certain 648 macroinvertebrates in streams, with greater retention of limiting nutrients (e.g., P) 649 than would be predicted by a stoichiometric mass-balance model (Rothlisberger 650 et al., 2008). 651 At a more detailed scale of biochemical resolution, terrestrial plants are devoid of the essential fatty acids upon which the nutritional physiology of 652 653 zooplankton, benthic invertebrates, and especially fish production depends, such as eicosapentaenoic acid (EPA; 20:5\omega3), docosahexaenoic acid (DHA; 22:6\omega3), 654 655 and arachidonic acid (ARA, 20:406) (Mayer & Likens, 1987; Brett & Müller-Navarra, 1997; Sargent et al., 1999; Brett et al., 2009; Lau et al., 2009a, 2012; 656 657 Guo et al., 2016c). The fatty acid composition of primary producers varies tremendously between terrestrial and aquatic basal resources and even within 658 659 algal groups (Guschina & Harwood, 2006; Torres-Ruiz et al., 2007; Brett et al., 660 2009; Galloway & Winder, 2015: Guo et al., 2015; Hixson et al., 2015). The 661 short-chain ω -3 α -linolenic acid (α -LA; 18:3 ω 3) is commonly synthesized by 662 distinct phytoplankton and benthic algal species including green algae and some 663 cyanobacteria (Gugger et al., 2002; Taipale et al., 2016), but the long-chain ω-3 664 PUFA, including EPA and DHA are only synthesized by certain algal taxa (e.g., cryptophytes, diatoms, dinoflagellates, golden algae and raphidophytes; Ahlgren 665 666 et al., 1992; Taipale et al., 2013, 2016), as well as some stream-dwelling moss species (Kalacheva et al., 2009). Very few freshwater heterotrophic bacteria can 667 668 synthesize ω-3 PUFA in significant amounts, although interestingly a small 669 number of marine bacteria species do synthesize these molecules (Russell & 670 Nichols, 1999). Higher plants can synthesize α -LA, but lack the enzymes 671 necessary to elongate and desaturate this molecule to EPA and DHA (Guschina 672 & Harwood, 2006), the physiologically active ω-3 molecules in animals. Some 673 animals can elongate and desaturate α -LA to EPA and DHA, however, the 674 conversion rate is low in many aquatic consumers (Koussoroplis et al., 2014; Murray et al., 2014). For example, conversion is below 0.5% in herbivorous 675 Daphnia (von Elert, 2002; Taipale et al., 2011), and thus Daphnia require EPA 676

directly from their diets. In addition to EPA and DHA, metazoan zooplankton require dietary sterols for optimal somatic growth and reproduction (Martin-Creuzburg & von Elert, 2009). The terrestrial organic carbon available to support aquatic production is almost entirely devoid of essential fatty acids and sterols (Brett *et al.*, 2009; Taipale *et al.*, 2014), regardless if this carbon is incorporated directly as t-POC or indirectly as t-DOC via a bacterial pathway. As terrestrial plant matter is processed by soil microbes, these elemental and biochemical imbalances are exacerbated. Furthermore, metazoans also require amino acids, vitamins and other biomolecules for somatic growth and reproduction for which t-POC is also a poor source.

686 687 688

689

690

691

692 693

694

695

696 697

698

699700

701

702

703

704

705 706

707

677

678 679

680

681 682

683 684

685

Terrestrial resources can be important prey for fish

It is well established that terrestrial invertebrates (e.g., grasshoppers, ants, beetles and cicadas) are important prey for some fish species (especially salmonids and centracids) in small streams and the littoral regions of some lakes (Elliot, 1970; Wipfli, 1997; Nakano & Murakami, 2001; Francis & Schindler, 2009). This natural history knowledge has been familiar to most anglers for several centuries (Walton, 1653). It is also well known that in New Zealand, Mongolia, and Alaska small rodents can be important prey for larger trout that facilitate rapid grow during years when rodent populations periodically erupt (Wyatt, 2013; Lisi et al., 2014) (Fig. 3). Many tropical fish consume the fruits of terrestrial vegetation and thereby play an important role in seed dispersal (Boujard et al., 1990; Correa et al., 2007). In all of these cases, fish are consuming terrestrial resources with very low or no lignocellulose content and low C:N ratios. However, where riparian invertebrates are important for fish diets, it is also notable that it has been shown in some cases that the production of riparian invertebrates is strongly dependent on aquatic prey such as emergent insects (Power et al., 2004; Stenroth et al., 2015; Recalde et al., 2016). Bastow et al. (2002) even showed that supposedly "terrestrial" invertebrates obtained \approx 90% of their carbon as well as most of their water from algal mats that were stranded along the river margin during the summer drought period.

710

711

712

713

714

715

716

717

718

719

720721

722

723724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

Marine allochthony: the exception that proves the rule!

Because allochthonous means something transported from elsewhere into a particular system, technically riverine phytoplankton inputs to an estuary would be allochthonous, whereas primary production within the estuary by *Phragmites* australis or Spartina spp. would be autochthonous. However, from a biochemical and nutritional perspective nearly all the important distinctions between allochthonous and autochthonous carbon subsidies relate to the differences between higher vascular plants and algae. Heterotrophic bacteria and cyanobacteria have other characteristics (such as a dearth of sterols and essential fatty acids) that place them into a third biochemical and low food quality category. As previously noted, terrestrial vascular plants have a high proportion of structural lignocellulose, high relative saturated fatty acid content, and no highly unsaturated C20 or C22 PUFA (Brett et al., 2009). Submerged vascular plants tend to have lower C:N:P ratios than emergent vascular plants (Demars & Edwards, 2007), probably due to a lesser need for structural lignocellulose, and are therefore probably somewhat more palatable (e.g., Jacobsen & Sand-Jensen, 1994; Elger & Willby, 2003). Conversely, all algae whether phytoplankton or periphyton have little structural carbon, and oftentimes high essential fatty acid content (Brett & Müller-Navarra, 1997; Brett et al., 2009). It is probably biochemically irrelevant whether algal production in lakes is pelagic or benthic because, for example, benthic and pelagic diatoms are closely related and have similar nutritional value. From this biochemical perspective, riverine planktonic diatoms advected into an estuary would be expected to be high food quality for herbivorous invertebrates (Jassby & Cloern, 2000; de Moura et al., 2016), whereas the autochthonous production by *Phragmites* or *Spartina* would be expected to be very low quality. A similar phenomenon has been observed in the Upper Mississippi, where consumers (bluegill sunfish, zebra mussels, pocketbook mussels) from the main channel (where diatoms predominated) had significantly higher long-chain PUFA content than the same species occupying backwater habitats, where detrital inputs and cyanobacteria were more prevalent

(Larson *et al.*, 2015). Therefore, the type of primary production (i.e., vascular plants or algae) is actually much more important than whether this production is allochthonous or autochthonous.

739

740

741

742

743744

745

746

747

748749

750

751752

753

754755

756

757

758

759760

761

762

763

764

765

766767

768769

To emphasize the point that the most salient difference between allochthonous and autochthonous subsidies to aquatic invertebrates is the biochemical composition of this material, consider the case of marine subsidies to salmonids in river systems in the north Pacific. The classic paradigm in these systems was that spawning Pacific salmon (Oncorhynchus spp.) support production within streams via an inorganic marine derived nutrient pathway (Naiman et al., 2002). However, as has long been known by anglers (Route, 1991) and recent research has shown (Naiman et al., 2002; Schindler et al., 2003; Wipfli et al., 2003), resident and juvenile anadromous salmoninds are also directly supported by very high food quality salmon eggs and flesh (Fig. 4). In this case, the marine derived carbon is clearly allochthonous to the salmon nursery streams, but outstanding fish growth rates are obtained (Denton et al., 2009) due to the very high lipid and essential fatty acid content of this organic matter (Sargent et al., 1999; Ravet et al., 2010; Wipfli & Baxter, 2010). Ultimately, the growth of aquatic invertebrates and fish is predicated on the biochemical composition and nutritional value of their diets, and not the spatial origin of this matter.

Catabolic and anabolic partitioning of basal resources

Karlsson (2007) presented the intriguing hypothesis that terrestrial carbon sources might be predominantly used to support catabolic metabolism, whereas algal derived carbon is the primary support for anabolic production. According to this hypothesis, organisms utilizing terrestrial carbon would obtain an energetic benefit from this resource, but this might leave almost no trace in their somatic lipid composition or stable isotope ratios. This possibility presents interesting challenges for field projects attempting to quantify terrestrial carbon subsidies to upper trophic levels. Brett *et al.* (2009) showed that when *Daphnia* were given diets comprised of 50% high quality phytoplankton and 50% low quality t-POC,

they obtained higher production rates than would have been expected had they only consumed half as much phytoplankton as used in the 100% phytoplankton treatment. When offered alone, this experiment showed t-POC resulted in a Daphnia growth efficiency of 5%, whereas pure phytoplankton diets resulted in growth efficiencies of \approx 40% (Brett et al., 2009). When offered a 50:50 t-POC and phytoplankton diet mixture the overall growth efficiency for the mixed diet was \approx 30%, which indicates the partial growth efficiency for the t-POC fraction of the diet was \approx 20%. This clearly suggests that when offered a mixed diet, the Daphnia did realize a benefit from the terrestrial carbon available to them. It also suggests that utilization of low quality terrestrial basal resources may be greatly enhanced by the simultaneous consumption of high food quality algae (Taipale et al., 2014). Wetzel (1995) hypothesized that allochthonous resources may function as a metabolic "lifeboat" by providing low quality resources that allow consumers to survive during periods when more nutritious autochthonous resources are not available. Taipale et al. (2016) recently revealed that Daphnia utilize carbohydrates (glucose) from t-POC for energy and save essential fatty acids and amino acids for somatic growth and reproduction, thus using a "sparing strategy" to maximize their somatic growth and reproduction under nutritional stress.

788789790

791

792

793 794

795

796 797

798

799

800

770

771

772

773

774775

776

777

778

779

780

781

782 783

784

785

786 787

Allochthonous inputs: small flux and low quality

As previously noted, our analysis showed inputs of particulate terrestrial carbon and bacterial production are usually much smaller than the combined benthic and pelagic primary production in lakes (see Fig. 1). Brett *et al.* (2009), Wenzel *et al.* (2012a) and Taipale *et al.* (2014) also showed t-POC is a much lower quality food resource for zooplankton growth and reproduction than many phytoplankton (although the food quality of cyanobacteria was similarly poor compared to t-POC). So far, Brett *et al.* (2009) are the only authors to have successfully reared zooplankton through to reproduction on an exclusive diet of t-POC (Fig. 5). When fed finely ground fresh red alder (*Alnus rubra*) leaves for 22 days, *Daphnia* had > 90% survival and produced an average of 3.1 ± 2.7 (± SD)

803

804

805 806

807

808

809

810

811

812

813814

815

816817

818

819

820

821

822

823824

825

826

827

neonates each. These individuals also grew to an average dry weight of 0.22 ± 0.05 mg individual-1 (Fig. 5). In contrast, Daphnia from the same maternal cohort fed the alga Cryptomonas ozolinii had 100% survival, produced an average of 69.5 ± 23.2 neonates ind.⁻¹, and had an average DW of 1.06 ± 0.16 mg ind.⁻¹ by the same age (Fig. 5). These results show fresh t-POC is a viable resource for aquatic herbivores, albeit a much lower quality one than nutrient rich algae such as cryptophytes or diatoms. Similar results were observed with stream-dwelling benthic invertebrates, in which hydropsychid caddisfly larvae fed algae or autumn-shed leaves lost weight when switching from algal- to detritus-based diets (Torres-Ruiz et al., 2010). Similarly, shredder caddis larvae reached a smaller body size when fed on low quality terrestrial leaf litter and their growth was substantially boosted as the availability of high quality algae attached to leaf surfaces increased (Guo et al., 2016a). The benthic generalist isopod Asellus aquaticus also lost weight when solely fed leaf litter (growth = -0.017 ± 0.001 d⁻¹) similar to experimentally starved individuals (growth = $-0.018 \pm 0.002 \, d^{-1}$) (Lau et al., 2013). Conversely, when Asellus was provided a mixed diet of algae and leaf litter its growth rate was greatly enhanced (growth = $0.022 \pm 0.005 \, d^{-1}$). The bacterial pathway to upper trophic level consumers entails two potentially large energetic penalties, i.e., low growth efficiency relative to algae if directly consumed by herbivores or additional trophic steps if utilized by protozoa prior to being consumed by zooplankton (Stockner & Porter, 1988). For example, Taipale et al. (2012) showed experimentally that all Daphnia fed only bacteria died before reproducing. However, Taipale et al. (2012) also showed Daphnia could tolerate bacteria dominated diets, especially if mixed with very nutritious cryptophytes. These results suggest that bacteria are similarly poor nutritional quality as t-POC for herbivorous metazoan. For example, the fatty acid profiles of Daphnia experimentally fed t-POC derived from terrestrial leaves did not differ from

animals that were experimentally starved (Galloway *et al.*, 2014; Taipale *et al.*, 2015). Similarly, when *Daphnia* were fed a 95% Actinobacteria and 5% cryptophyte dietary mixture, they had FA profiles that were much more similar to cryptophytes than Actinobacteria (Galloway *et al.*, 2014). The median flux

estimates from Fig. 1 suggest t-POC, bacteria and algal carbon fluxes contribute $\approx 5\%, \approx 25\%$ and $\approx 70\%$ of the particulate matter available for consumption by herbivorous zooplankton in lakes. If these flux estimates are corrected for the large differences in food quality (i.e., phytoplankton are a factor ≈ 10 higher food quality than either t-POC or bacteria), then the median values presented in Fig. 1 equate to t-POC plus processed t-DOC, bacteria and algae on average supporting 1.7% (0.6-4.9%), 2.9% (1.3-5.6%), and 93.7% (87.7-96.6%) of consumer production, respectively.

839 840 841

842

843

844

845

846847

848849

850

851

852

853

854

855

856

857

858859

860

861

862

832

833

834 835

836

837838

t-DOC suppression of upper trophic level production

As has been previously noted, high t-DOC concentrations in lakes may strongly suppress pelagic and benthic primary production (Jones, 1992; Vadeboncoeur et al., 2008; Karlsson et al., 2009), thereby increasing the relative availability of allochthonous energy sources. In oligotrophic clearwater lakes (DOC < 5 mg C L-1), nutrients (nitrogen and phosphorus) associated with a moderate increase in t-DOC concentration may slightly stimulate primary production and/or brown-colored DOC may play a protective role in UV screening (Finstad et al., 2014; Seekell et al., 2015). However, due to PAR attenuation and phosphorus sequestration, it is typical for high t-DOC lakes to have much less phytoplankton and benthic algal biomass and production than would be expected in clearwater lakes with similar phosphorus concentrations (Jones, 1992; Vadeboncoeur et al., 2008; Karlsson et al., 2009; Thrane et al., 2014). For example, del Giorgio & Peters (1994) reported strongly inhibitory effects of DOC on phytoplankton photosynthesis and showed that excess carbon (DOC) was respired as CO₂ and therefore not available as reduced carbon for biomass production in higher trophic level consumers. Bacteria using t-DOC as their carbon source have generally poor growth efficiency (<10%) (e.g., del Giorgio & Cole, 1998; Eiler et al., 2003; Räsänen et al., 2016) and additional steps within the microbial food web (heterotrophic nanoflagellates, ciliates) further increase respiratory losses. It was similarly demonstrated that primary production decreased with increasing DOC in oligotrophic lakes (Carpenter et al., 1998),

suggesting that increasing DOC in aquatic ecosystems reduced light availability for primary production and consequently dietary energy for consumer production. This was supported by the results of Kelly *et al.* (2014) who found a negative relationship between t-DOC concentration and zooplankton biomass in ten temperate lakes within a DOC gradient of 5-25 mg C L⁻¹. Similarly, Karlsson *et al.* (2015) found a negative correlation between DOC concentration (7-22 mg C L⁻¹) and fish productivity in small boreal lakes, even though stable isotopes indicated t-DOC contributed to fish production. Rask *et al.* (2014) also reported that fish growth declined as lake t-DOC concentrations increased. Similar to this finding, Lau *et al.* (2014) also showed that consumer production and quality, measured as tissue PUFA concentrations, depended on the degree of autochthony in food chains of humic and oligotrophic lakes. Based on the very low food quality of t-POC and the low food quality and/or longer pathway for bacterial incorporation into upper trophic levels, it is likely that algal primary production will be the most important resource supporting upper trophic levels in most oligotrophic lakes.

Benthic algal production is strongly related to mean lake depth and water-clarity which can be greatly inhibited by high algal biomass due to eutrophication or as previously mentioned high t-DOC concentrations (Vadeboncoeur & Lodge, 2000; Vadeboncoeur *et al.*, 2003). However, the role of t-DOC in suppressing total primary productivity may be complex. For example, Vesterinen *et al.* (2016) observed that in a small lake with very high t-DOC (ca. 30 mg C L⁻¹), and therefore a shallow euphotic zone (< 1m) with very low pelagic primary production, littoral algal primary production was relatively high and contributed to > 90% to the overall summertime primary production.

Interpreting stable isotope mixing models - assumptions can be very influential

The most consistent evidence presented to suggest that terrestrial subsidies to aquatic consumers are strong comes from the recent outputs of Bayesian stable isotope mixing models (SIMMs). However, Bayesian SIMMs have several quirks that are currently poorly understood. For example, when the resource datasets considered in Bayesian SIMMs are highly variable or the models are

mathematically under-determined, these analyses tend to produce outcomes that are strongly influenced by the prior generalist assumption (Fry, 2013a,b; Brett, 2014b). If a resource is included in a Bayesian SIMM, it will almost always be included in the solution at substantial levels even if it is of no real importance (Fry, 2013a; Brett, 2014b). Furthermore, fractionation-corrected consumers often fall well outside of the hypothesized resource polygons in this field literature (e.g., Cole et al., 2011; Solomon et al., 2011; Berggren et al., 2014; Tanentzap et al., 2014). These cases indicate there is a fundamental flaw in the dataset; for example, either an important food resource was left out of the analysis, or the wrong trophic enrichment factors were used for the consumer (see Bunn et al., 2013), or the correct foods with the wrong stable isotope values were used in the analysis. Unfortunately, unlike conventional mass balance analyses, current Bayesian SIMMs do not recognize obvious signs of a misspecified model in their numerical outputs and these algorithms output a result no matter how mismatched the underlying data are. To avoid these problems, scientists are encouraged to plot their data and make sure samples fall within the mixing polygons (Phillips et al., 2014), in addition to solely considering the numerical outputs from SIMMs.

One of the biggest challenges for these types of analyses is obtaining estimates for the stable isotope values of the phytoplankton component of zooplankton diets (Brett, 2014a). Because the phytoplankton are mixed with the detrital, bacterial and protozoan components of the seston, it is rarely possible to obtain a direct estimate of phytoplankton stable isotope values (but see Vuorio *et al.*, 2006). A variety of methods have been employed to resolve this problem. For example, some authors estimate the δ^{13} C value of the phytoplankton by assuming a "photosynthetic fractionation factor" (ϵ_P) to predict the δ^{13} C value of the phytoplankton from directly determined δ^{13} C values for the CO₂ in the water (Brett, 2014a). Other studies have directly measured the δ^{13} C values of large sized phytoplankton, which can be separated from the seston using a variety of methods (Vuorio *et al.*, 2006). A few studies (Pace *et al.*, 2007; Kankaala *et al.*, 2010; Berggren *et al.*, 2014; Taipale *et al.*, 2016) have estimated the δ^{13} C value

using algal specific lipid biomarkers, especially PUFA. Other authors have simply assumed fixed δ^{13} C values for the phytoplankton within the seston (Karlsson *et al.*, 2012). Direct measurements δ^{13} C values of phytoplankton (Zohary *et al.*, 1994; Grey *et al.*, 2000; Vuorio *et al.*, 2006; Taipale *et al.*, 2016) have shown considerable variability (\pm 7‰) in isotopic values between phytoplankton taxa, as well as within taxa between seasons and lakes. Using the stable isotope values of fatty acids that are characteristic for phytoplankton, Taipale *et al.* (2016) recently found the δ^{13} C values of the dominant phytoplankton taxa could explain most of the variation in the δ^{13} C values of the zooplankton in humic lakes.

933934935

936

937938

939

940941

942

943

944

945

946

947

948

949

950

951952

953

954

955

925

926

927

928929

930

931

932

Conclusions

In a period of unprecedented global change from climate change, land use alterations, and species invasions we should be asking, "Which basal resources are the most important to sustain the growth and reproduction of aquatic invertebrates and fish in aquatic ecosystems", and "how might anthropogenic changes to temperature, nutrients, and light regimes change the supply of high quality resources?" It is clear from the literature that aquatic systems that have the largest terrestrial inputs may also be the systems with the lowest rates of secondary production relative to basal carbon fluxes (Karlsson et al., 2015). This could be due to the very low food quality of terrestrial carbon sources (Brett et al., 2009; Lau et al., 2013), as well as the fact that in some systems large inputs of t-DOC actually inhibit pelagic and especially benthic algal production (Jones, 1992; Vadeboncoeur et al., 2008; Karlsson et al., 2009). The presence of a resource does not prove its importance. In fact, from a mass balance and kinetics perspective, a high standing stocking of a constituent (e.g., t-DOC) actually indicates that this constituent has low reactivity and thus is unlikely to be an important resource for consumers (Brett et al., 2012). It is also entirely possible for the system to be net heterotrophic due to microbial respiration of terrestrial carbon and still have fish production strongly supported by an algae-invertebrate pathway (Thorp & Delong, 2002; Lau et al., 2014). Support of upper trophic level production by terrestrial carbon inputs may depend on the simultaneous

availability of essential biomolecules synthesized by algae. Stream studies suggest that even when allochthonous inputs greatly dominate, invertebrate and fish production is very preferentially supported by algal basal resources (Mayer & Likens, 1987; Bunn et al., 2003; Brito et al., 2006; Lau et al., 2009a). Lake studies suggest terrestrial carbon inputs generally have much lower mass fluxes and very low food quality, so the large majority of lake food webs are primarily supported by algal production. There is no doubt that in some systems considerable amounts of terrestrially derived carbon are ingested and assimilated by herbivorous organisms; but because of the recalcitrant biochemical composition of this material, it is utilized a factor 5-10 less efficiently than algal basal resources. Not all carbon-based molecules are equally bioavailable, and specific biochemicals synthesized by particular primary producers may have an inordinate influence on the productivity of upper trophic levels. Fish production in particular may be highly dependent on specific basal producers that synthesize biochemically high quality organic matter including large amounts of essential long carbon chain polyunsaturated fatty acids (Sargent et al., 1999). As we learn more about the nutritional underpinnings of consumer production in aquatic habitats, we can better predict how their populations will respond to environmental changes that influence the fluxes, quality, and composition of their terrestrial and aquatic food sources.

977 Future perspectives

956

957958

959

960961

962963

964

965

966

967

968969

970

971

972

973

974

975

976

978

979

980

981

982

983

984

985

986

Both the lake and stream literature on reduced carbon influxes is characterized by small data sets. More field data for a much wide range of aquatic ecosystems will improve our understanding of when and where substantial terrestrial support of consumer production is plausible. Similarly, our current understanding of how land-use and climate change might affect the influx of terrestrial resources to aquatic systems and autochthonous production within these systems is only rudimentary. Much of what has been published on this topic is based on stable isotope mixing models that can be highly dependent on poorly constrained assumptions (e.g., the stable isotope values of phytoplankton,

 environmental water contributions to consumers, isotopic fractionation in consumers, missing isotopic data for protozoa, etc.). These types of analyses should be validated with direct evidence that the hypothesized scenarios are plausible from a nutritional perspective. Only a few studies have directly compared consumer growth and reproduction for algal, bacterial and terrestrial organic matter dominated diets, and future studies could expand our understanding of what resources can actually support consumer production. Several studies have suggested that terrestrial and aquatic resources may support different aspects of consumer production (i.e., catabolism and anabolism), and terrestrial resources might allow some consumers to survive periods when more nutritious resources are seasonally limited (i.e., the Wetzel lifeboat hypothesis). High quality aquatic resources may also greatly enhance the ability of consumers to utilize much lower quality terrestrial resources. These are particularly interesting lines of inquiry for future research.

References

- 1003 Abril G., Bouillon S., Darchambeau F., Teodoru C.R., Marwick T.R., Tamooh F. *et al.* (2015)
 1004 Technical Note: Large overestimation of *p*CO₂ calculated from pH and alkalinity in acidic,
 1005 organic-rich freshwaters. *Biogeosciences*, **12**, 67-78.
 1006 Abloren G., Gustafsson I.B. & Boberg M. (1992) Fatty acid content and chemical composition
 - Ahlgren G., Gustafsson I.B. & Boberg M. (1992) Fatty acid content and chemical composition of fresh-water microalgae. *Journal of Phycology*, **28**, , 37-50.
 - Amon R.M. & Benner R. (1996a) Bacterial utilization of different size classes of dissolved organic matter. *Limnology and Oceanography*, **41**, 41-51.
 - Amon R.M.W. & Benner R. (1996b) Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system. *Geochimica et Cosmochimica Acta*, **60**, 1783-1792.
 - Bastviken D., Cole J.J., Pace M.L. & Van de Bogert M.C. (2008) Fates of methane from different lake habitats: Connecting whole-lake budgets and CH₄ emissions. *Journal of Geophysical Research: Biogeosciences*, **113**, G02024, doi: 10.1029/2007JG000608.
 - Bastow J.L., Sabo J.L., Finlay J.C. & Power M.E. (2002) A basal aquatic-terrestrial trophic link in rivers: algal subsidies via shore-dwelling grasshoppers. *Oecologia*, **131**, 261-268.
 - Benner R., Lay L., K'nees E. & Hodson R.E. (1988) Carbon conversion efficiency for bacterial growth on lignocellulose: implications for detritus-based food webs. *Limnology and Oceanography*, **33**,1514-1526.
 - Berggren M., Strom L., Laudon H., Karlsson J., Jonsson A., Giesler R. *et al.* (2010) Lake secondary production fueled by rapid transfer of low molecular weight organic carbon from terrestrial sources to aquatic consumers. *Ecology Letters*, **13**, 870-880.
 - Berggren M., Ziegler S.E., St-Gelais N.F., Beisner B.E., & del Giorgio P.A. (2014) Contrasting patterns of allochthony among three major groups of crustacean zooplankton in boreal and temperate lakes. *Ecology*, **95**, 1947-1959.
 - Bird D.F. & Kalff J. (1984) Empirical relationships between bacterial abundance and chlorophyll concentration in fresh and marine waters. *Canadian Journal of Fisheries and Aquatic Sciences*, **41**, 1015-1023.
 - Blaxter K.L. (1989) Energy metabolism in animals and man. Cambridge University Press.
 - Boujard T., Sabatier C., Rojasbeltran R., Prevost M.F. & Renno J.F. (1990) The food-habits of 3 allochthonous feeding characoids in French Guiana. *Revue d'écologie la Terre et la Vie,* **45**, 247-258
 - Bowes R.E. & Thorp J.H. (2015) Consequences of employing amino acid vs. bulk-tissue, stable isotope analysis: a laboratory trophic position experiment. *Ecosphere 6*, Article 14.
 - Bowes R.E., Lafferty M.H. & Thorp J.H. (2014) Less means more: nutrient stress leads to higher δ¹⁵N ratios in fish. *Freshwater Biology*, **59**, 1926-1931.
 - Bowes R.E., Thorp J.H. & Reuman D.C. (2017) Multidimensional metrics of niche space for use with diverse analytical techniques. *Nature Scientific Reports*, (In Press)
 - Brett M.T. (2014a) Are phytoplankton in northern Swedish lakes extremely ¹³C depleted? (comment to Karlsson et al. 2012). *Limnology and Oceanography*, **59**, 1795-1799.
 - Brett M.T. (2014b) Resource polygon geometry predicts Bayesian stable isotope mixing model
 - bias. Marine Ecology Progress Series, **514**, 1-12.

 Brett M.T. & Benjamin M.M. (2008) A reassessment of lake phosphorus retention and the nutrient
 - Brett M.T. & Benjamin M.M. (2008) A reassessment of lake phosphorus retention and the nutrient loading concept in limnology. *Freshwater Biology*, **53**, 194-211.
 - Brett M.T. & Müller-Navarra D.C. (1997) The role of essential fatty acids in aquatic food web processes. *Freshwater Biology*, **38**, 483-499.
 - Brett M.T., Müller-Navarra D.C., Ballantyne A.P., Ravet J.L. & Goldman C.R. (2006) *Daphnia* fatty acid composition reflects that of their diet. *Limnology and Oceanography*, **51**, 2428-2437.
- 1050 Brett M.T., Arhonditsis G.B., Chandra S. & Kainz M.J. (2012) Mass flux calculations show strong allochthonous support of freshwater zooplankton production is unlikely. *PLoS ONE*, **7**, e39508.
- Brett M.T., Kainz M.J., Taipale S.J. & Seshan H. (2009) Phytoplankton, not allochthonous carbon,
 sustains herbivorous zooplankton production. *Proceedings of the National Academy of Sciences of the United States of America*, 106, 21197-21201.
- 1056 Breznak J.A. & Brune A. (1994) Role of microorganisms in the digestion of lignocellulose by termites. *Annual Review of Entomology*, **39**, 453-487.

- 1058 Brito E.F., Moulton T.P., De Souza M.L. & Bunn S.E. (2006) Stable isotope analysis indicates microalgae as the predominant food source of fauna in a coastal forest stream, south-east Brazil. *Austral Ecology*, **31**, 623-633.
- Bunn S.E., Balcombe S.R., Davies P.M., Fellows C.S. & McKenzie-Smith F.J. (2006)
 Aquatic productivity and food webs of desert river ecosystems. In: R.T. Kingsford (ed).
 Ecology of Desert Rivers pp 76-99. Cambridge Press.

1065

1066

1067 1068

1069

 $\begin{array}{c} 1070 \\ 1071 \end{array}$

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091 1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102 1103

1104

- Bunn S.E., Davies P.M. & Winning M. (2003) Sources of organic carbon supporting the food web of an arid zone floodplain river. *Freshwater Biology*, **48**, 619-635.
- Bunn S.E., Leigh C. & Jardine T.D. (2013) Diet-tissue fractionation of δ¹⁵N by consumers from streams and rivers. *Limnology and Oceanography*, **58**, 765-773.
 - Burns C.W., Brett M.T. & Schallenberg M. (2011) A comparison of the trophic transfer of fatty acids in freshwater plankton by cladocerans and calanoid copepods. *Freshwater Biology*, **56**, 889-903.
 - Canham C.D., Pace M.L., Papaik M.J., Primack A.G.B., Roy K.M., Maranger R.J. *et al.* (2004) A spatially explicit watershed-scale analysis of dissolved organic carbon in Adirondack lakes. *Ecological Applications*, **14**, 839-854.
- Carignan R., Planas D. & Vis C. (2000) Planktonic production and respiration in oligotrophic shield lakes. *Limnology and Oceanography*, **45**,189-199.
- Carpenter S.R., Cole J.J., Pace M.L., Van de Bogert M., Bade D.L., Bastviken D. *et al.* (2005) Ecosystem subsidies: Terrestrial support of aquatic food webs from ¹³C addition to contrasting lakes. *Ecology*, **86**, 2737-2750.
- Carpenter S.R., Cole J.J., Kitchell J.F. & Pace M.L. (1998) Impact of dissolved organic carbon, phosphorus, and grazing on phytoplankton biomass and production in experimental lakes. *Limnology and Oceanography*, **43**, 73-80.
- Carpenter S.R., Kitchell J.F. & Hodgson J.R. (1985) Cascading trophic interactions and lake productivity. BioScience, 35, 634-639.
- Carroll T.M., Thorp J.H. & Roach K.A. (2016) Autochthony in karst spring food webs. *Hydrobiologia*, **776**, 173-191.
- Casper P. (1996) Methane production in littoral and profundal sediments of an oligotrophic and a eutrophic lake. *Archiv für Hydrobiologie, Special Issues, Advances in Limnology* **48**, 253-259.
- Chikaraishi Y., Ogawa N.O., Kashiyama Y., Takano Y., Suga H., Tomitani A. *et al.* (2009)

 Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. *Limnology and Oceanography Methods*, **7**, 740-750.
- Chikaraishi Y., Steffan S.A., Ogawa N.O., İshikawa N.F., Sasaki Y., Tsuchiya M. *et al.* (2014) High-resolution food webs based on nitrogen isotopic composition of amino acids. *Ecology and Evolution*, **4**, 2423-2449.
- Choquenot D. & Ruscoe W.A.(2000) Mouse population eruptions in New Zealand forests: the role of population density and seedfall. *Journal of Animal Ecology*, **69**, 1058-1070.
- Cloern J.E., Canuel E.A., Harris D. (2002) Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system. *Limnology and Oceanography*, **47**, 713-729.
- Cole JJ, Carpenter S.R., Kitchell J.L., Pace M.L., Solomon C.T. & Weidel B. (2011) Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. *Proceedings of the National Academy of Sciences of the United States of America*, 108, 1975-1980.
- Cole J.J., Carpenter S.R., Pace M.L., Van de Bogert M.C., Kitchell J.L. & Hodgson J.R. (2006) Differential support of lake food webs by three types of terrestrial organic carbon. *Ecology Letters*, 9, 558-568.
- Letters, 9, 558-568.
 Cole J.J., Likens, G.E. & Strayer, D.L. (1982) Photosynthetically produced dissolved organic carbon: An important carbon source for planktonic bacteria. *Limnology and Oceanography*, 27, 1080-1090.
- 1109 Cole J.J., Pace M.L., Carpenter S.R. & Kitchell J.F. (2000) Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. *Limnology and Oceanography*, **5**, 1718-1730.

- Cole J.J., Carpenter S.R., Kitchell J.F. & Pace M.L. (2002) Pathways of organic carbon utilization in small lakes: results from a whole-lake ¹³C addition and coupled model. *Limnology and Oceanography*, **47**, 1664-1675.
- 1115 Coley P.D., Bryant J.P. & Chapin F.S. (1985) Resource availability and plant antiherbivore defense. *Science*, **230**, 895-899.
- 1117 Conrad R. (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. *FEMS Microbiology Ecology* **28**, 193-1119 202.
- 1120 Conrad R. (2005) Quantification of methanogenic pathways using stable carbon isotope signatures: a review and a proposal. *Organic Geochem*istry, **36**, 739-752.
- 1122 Correa S.B., Winemiller K.O., López-Fernández H. & Galetti M. (2007) Evolutionary perspectives on seed consumption and dispersal by fishes. *Bioscience*, **57**, 748-756.
- 1124 Cory R.M., Ward C.P., Crump B.C. & Kling G.W. (2014) Sunlight controls water column processing of carbon in arctic fresh waters. *Science*, **345**, 925-928.
- 1126 Cummins K. (1974) Structure and function of stream ecosystems. *BioScience*, 24, 631-641.
- Davies P.M., Bunn S.E. & Hamilton S.K. (2008) Primary production in tropical rivers. In: D.
 Dudgeon (ed). pp 24-43. Tropical Stream Ecology. Academic Press.
- Deemer B.R., Harrison J.A., Li S., Beaulieu J.J., DelSontro T., Barros N., et al. (2016)
 Greenhouse gas emissions from reservoir water surfaces: A new global synthesis.

 BioScience, p.biw117.
- 1132 Deines P., Bodelier P.L. & Eller G. (2007) Methane derived carbon flows through methane oxidizing bacteria to higher trophic levels in aquatic systems. *Environmental Microbiology*, **9**, 1126-1134.
- Demars B.O. & Edwards A.C. (2007) Tissue nutrient concentrations in freshwater aquatic macrophytes: high inter - taxon differences and low phenotypic response to nutrient supply. *Freshwater Biology*, **52**, 2073-2086.
- de Moura G.C., de Lucena Barbosa J.E., Patrício J., Nery J.F. & Gonçalves A.M.M. (2016)
 Seasonal and spatial shifts in copepod diets within tropical estuaries measured by fatty acid profiles. *Ecological Indicators*, **69**, 284-294.
- del Giorgio P.A. & Cole J.J. (1998) Bacterial growth efficiency in natural aquatic systems. *Annual Review of Ecology and Systematics*, **29**, 503–541.
- del Giorgio P.A. & Peters R.H. (1994) Patterns in planktonic P:R ratios in lakes: Influence of lake trophy and dissolved organic carbon. *Limnology and Oceanography*, **39**, 772-787.
- Delong M.D. & Thorp J.H. (2006) Significance of instream autotrophs in trophic dynamics of the
 Upper Mississippi River. *Oecologia*, **147**, 76-85.
 Denton K.P., Rich Jr, H.B. & Quinn, T.P. (2009) Diet, movement, and growth of Dolly Varden in
 - Denton K.P., Rich Jr, H.B. & Quinn, T.P. (2009) Diet, movement, and growth of Dolly Varden in response to sockeye salmon subsidies. *Transactions of the American Fisheries Society*, 138, 1207-1219.
- 1150 Dillon P.J. & Kirchner W.B. (1975) The effects of geology and land use on the export of phosphorus from watersheds. *Water Research*, **9**, 135-148.

1149

1152

1153

- Dillon P.J. & Molot L.A. (1997) Effect of landscape form on export of dissolved organic carbon, iron, and phosphorus from forested stream catchments. Water Resources Research, 33, 2591-2600.
- Duarte C.M. & Prairie Y.T. (2005) Prevalence of heterotrophy and atmospheric CO₂ emissions from aquatic ecosystems. *Ecosystems*, **8**, 862-870.
- Dudgeon D., Cheung F.K.W. & Mantel S.K. (2010) Foodweb structure in small streams: do we
 need different models for the tropics? *Journal of the North American Benthological Society*,
 29, 395-412.
- Eiler A., Langenheder S., Bertilsson S. & Tranvik L.J. (2003) Heterotrophic bacterial growth efficiency and community structure at different natural organic carbon concentrations. *Applied and Environmental Microbiology,* **69**, 3701-3709.
- Elger A. & Willby N.J. (2003) Leaf dry matter content as an integrative expression of plant palatability: the case of freshwater macrophytes. *Functional Ecology*, **17**, 58-65.
- 1165 Elliott J.M. 1970 Diel changes in invertebrate drift and the food of trout *Salmo trutta* L. *Journal of Fish Biology,* **2**, 161-165.

1167 Elser J.J., Fagan W.F., Denno R.F., Dobberfuhl D.R., Folarin A., Huberty A. *et al.* (2000) Nutritional constraints in terrestrial and freshwater food webs. *Nature*, **408**, 578-580.

1181

1182

1183

1184 1185

1186

 $\begin{array}{c} 1187 \\ 1188 \end{array}$

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198 1199

1200

1201

1202

1203

1204

1205

1206 1207

1208

1209

1210

1211

1212

1213

- 1169 Engstrom D.R., Fritz S.C., Almendinger J.E. & Juggins S. (2000) Chemical and biological trends during lake evolution in recently deglaciated terrain. *Nature*, **408**, 161-166.
- 1171 Farjalla V.F., Amado A.M., Suhett A.L. & Meirelles-Pereira F. (2009) DOC removal paradigms in highly humic aquatic ecosystems. *Environmental Science and Pollution Research*, **16**, 531-538.
- 1174 Findlay S. (2010) Stream microbial ecology. *Journal of the North American Benthological Society*, 1175 **29**, 170-181.
- 1176 Finlay J.C. (2001) Stable-carbon-isotope ratios of river biota: Implications for energy flow in lotic food webs. *Ecology*, **82**, 1052-1064.
- Finlay J.C., Power M.E., & Cabana G. (1999) Effects of water velocity on algal carbon isotope ratios: Implications for river food web studies. *Limnology and Oceanography*, **44**, 1198-1203. 1180 Finstad A.G., Helland I.P., Ugedal O., Hesthagen T. & Hessen D.O. (2014) Unimodal response of
 - Finstad A.G., Helland I.P., Ugedal O., Hesthagen T. & Hessen D.O. (2014) Unimodal response of fish yield to dissolved organic carbon. *Ecology Letters*, **17**, 36-43.
 - Fouilland E. & Mostajir B. (2010) Revisited phytoplanktonic carbon dependencyof heterotrophic bacteria in freshwaters, transitional, coastal and oceanic waters. *FEMS Microbiology Ecology*, **73**, 419-429.
 - France R., Culbert H., & Peters R. (1996) Decreased carbon and nutrient input to boreal lakes from particulate organic matter following riparian clear-cutting. *Environmental Management*, **20**, 579-583.
 - Francis T.B. & Schindler D.E. (2009) Shoreline urbanization reduces terrestrial insect subsidies to fishes in North American lakes. *Oikos*, **118**, 1872-1882.
 - Friedl A., Padouvas E., Rotter H. & Varmuza K. (2005) Prediction of heating values of biomass fuel from elemental composition. *Analytica Chimica Acta*, **544**, 191-198.
 - Fry B. (2013a) Review: Alternative approaches for solving underdetermined isotope mixing problems. *Marine Ecology Progress Series*, **472**, 1-13.
 - Fry B. (2013b) Minmax solutions for underdetermined isotope mixing problems: Reply to Semmens et al. (2013). *Marine Ecology Progress Series*, **490**, 291-294.
 - Galand P.E., Yrjälä K. & Conrad R. (2010) Stable isotope fractionation during methanogenesis in three boreal peatland ecosystems. *Biogeosciences* **7**, 3893-3900.
 - Galloway A.W.E. & Winder M. (2015) Partitioning the relative importance of phylogeny and environmental conditions on phytoplankton fatty acids. *PLoS ONE*, **10**, e0130053.
 - Galloway A.W.E., Britton-Simmons K.H., Duggins D.O., Gabrielson P.W. & Brett M.T. (2012) Fatty acid signatures differentiate marine macrophytes at ordinal and family ranks. *Journal of Phycology*, 48, 956-965.
 - Galloway A.W.E., Taipale S.J., Hiltunen M., Peltomaa E., Strandberg U., Brett M.T. *et al.* (2014) Diet specific biomarkers show that high quality phytoplankton fuels herbivorous zooplankton in large boreal lakes. *Freshwater Biology*, **59**, 1902-1915.
 - Galloway A.W.E., Brett M.T., Holtgrieve G.W., Ward E.J., Ballantyne A.J., Burns C.W., et al. (2015) A fatty acid based Bayesian approach for inferring diet in aquatic consumers. *PLoS ONE*, **10**, e0129723.
 - Garcia E. & Carignan R (1999) Impact of wildfire and clear-cutting in the boreal forest on methyl mercury in zooplankton. *Canadian Journal of Fisheries and Aquatic Sciences*, **56**, 339-345.
 - Geib S.M., Filley T.R., Hatcher P.G., Hoover K., Carlson J.E., del Mar Jimenez-Gasco M. et al. (2008) Lignin degradation in wood-feeding insects. *Proceedings of the National Academy of Sciences of the United States of America*, **105**, 12932-12937.
 - Gergel S.E., Turner M.G. & Kratz T.K. (1999) Dissolved organic carbon as an indicator of the scale of watershed influence on lakes and rivers. *Ecological Applications*, **9**, 1377-1390.
- Gladyshev M.I., Sushchik N.N., Kalachova G.S. & Makhutova O.N. (2012) Stable isotope
 composition of fatty acids in organisms of different trophic levels in the Yenisei River. *PloS ONE*, 7, e34059.
- 1219 Goldman C.R. (1960) Primary productivity and limiting factors in 3 lakes of the Alaska Peninsula. 1220 Ecological Monographs, **30**, 208-230.
- 1221 Grey J., Jones R.I. & Sleep D. (2000) Stable isotope analysis of the origins of zooplankton carbon in lakes of differing trophic state. *Oecologia*, **123**, 232-240.

- 1223 Grey J., Jones R.I. & Sleep D. (2001) Seasonal changes in the importance of the source of 1224 organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope 1225 analysis. Limnology and Oceanography, 46, 505-513.
- 1226 Gudasz C., Bastviken D., Premke K., Steger K. & Tranvik L.J. (2012) Constrained microbial 1227 processing of allochthonous organic carbon in boreal lake sediments. Limnology and 1228 Oceanography, 57, 163-175.

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253 1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264 1265

1266

1267

1268

1269

1270

- Gugger M., Lyra C., Suominen I., Tsitko I., Humbert J.F., Salkinoja-Salonen M.S. et al. (2002) Cellular fatty acids as chemotaxonomic markers of the genera Anabaena, Aphanizomenon, Microcystis, Nostoc and Planktothrix (cyanobacteria). International Journal of Systematic and Evolutionary Microbiology, 52, 1007-1015.
- Guo F., Kainz M.J., Sheldon F. & Bunn S.E. (2015) Spatial variation in periphyton fatty acid composition in subtropical streams. Freshwater Biology, 60, 1411-1422.
- Guo F., Kainz M.J., Valdez D., Sheldon F. & Bunn S.E. (2016a) High-quality algae attached to leaf litter boost invertebrate shredder growth. Freshwater Science, 35, 1213-1221.
- Guo F., Kainz M.J., Sheldon F. & Bunn S.E. (2016b) Effects of light and nutrients on periphyton and the fatty acid composition and somatic growth of invertebrate grazers in subtropical streams. Oecologia, 181, 449-462.
- Guo F., Kainz M.J., Sheldon F. & Bunn S.E. (2016c) The importance of high-quality algal food sources in stream food webs-current status and future perspectives. Freshwater Biology, 61, 815-831.
- Guschina I.A. & Harwood J.L. (2006) Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research. 45, 160-186.
- Hadwen W.L., Spears M. & Kennard M.J. (2010) Temporal variability of benthic algal δ^{13} C signatures influences assessments of carbon flows in stream food webs. Hydrobiologia, 651, 239-251.
- Hall R.O., Likens G.E. & Malcom H.M. (2001) Trophic basis of invertebrate production in 2 streams at the Hubbard Brook Experimental Forest. Journal of the North American Benthological Society, 20, 432-447.
- Hanson P.C., Hamilton D.P., Stanley E.H., Preston N., Langman O.C. & Kara E.L. (2011) Fate of allochthonous dissolved organic carbon in lakes: a quantitative approach. PLoS ONE, 6,
- Hayden B., McWilliam-Hughes S.M. & Cunjak R.A. (2016) Evidence for limited trophic transfer of allochthonous energy in temperate river food webs. Freshwater Science, 35, 544-558.
- Hixson S.M., Sharma B., Kainz M.J., Wacker A. & Arts M.T. (2015) Production, distribution, and abundance of long-chain omega-3 polyunsaturated fatty acids: a fundamental dichotomy between freshwater and terrestrial ecosystems. Environmental Reviews, 23, 414-424.
- Hood E., Battin T.J., Fellman J., O'Neel S. & Spencer R.G. (2015) Storage and release of organic carbon from glaciers and ice sheets. Nature Geoscience, 8, 91-96.
- Hopkinson C.S. & Vallino J.J. (1995) The relationships among man's activities in watersheds and estuaries: A model of runoff effects on patterns of estuarine community metabolism. Estuaries, 18, 598-621.
- Hynes H.B.N. (1975) Edgardo Baldi memorial lecture. The stream and its valley. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie, 19, 1-15.
- Ishikawa N.F., Kato Y. Togashi H. Yoshimura M. Yoshimizu C. Okuda N. & Tayasu. I. (2014) Stable nitrogen isotopic composition of amino acids reveals food web structure in stream ecosystems. Oecologia, 175, 911-922.
- Ishikawa N., Doi H. & Finlay J. (2012) Global meta-analysis for controlling factors on carbon stable isotope ratios of lotic periphyton. *Oecologia*, **170**, 541-549.
- Jacobsen D. & Sand-Jensen K. (1995) Variability of invertebrate herbivory on the submerged macrophyte Potamogeton perfoliatus. Freshwater Biology, 34, 357-365.
- 1272 1273 Jansson M., Persson L., De Roos A.M., Jones R.I. & Tranvik L.J. (2007) Terrestrial carbon and 1274 intraspecific size-variation shape lake ecosystems. Trends in Ecology & Evolution, 22, 316-1275 322
- 1276 Jardine T.D., Woods R., Marshall J., Fawcett J., Lobegeiger J., Valdez D. et al. (2015) 1277 Reconciling the role of organic matter pathways in aquatic food webs by measuring multiple 1278 tracers in individuals. Ecology, 96, 3257-3269.

- Jardine T.D., Hadwen W.L., Hamilton S.K., Hladyz S., Mitrovic S.M., Kidd K.A. *et al.* (2014)
 Understanding and overcoming baseline isotopic variability in running waters. *River Research and Applications*, 30, 155-165.
- 1282 Jardine T.D., Hunt R.J., Faggotter S.J., Valdez D., Burford M.A. & Bunn S.E. (2013) Carbon from periphyton supports fish biomass in waterholes of a wet-dry tropical river. *River Research and Applications*, **29**, 560-573.
- Jardine T.D., Pettit N.E., Warfe D.M., Pusey B.P., Ward D.P., Douglas M.M. et al. (2012)
 Consumer-resource coupling in wet-dry tropical rivers. Journal of Animal Ecology, 81, 310-322.

1292

1293

1294

1295

1296

1297

1298

1299

1300

1303

1304

1305

1306

1307

1308

1309

1313

1314

1318

1319

1320

- Jardine T.D., Pusey B.P., Hamilton S.K., Pettit N.E., Davies P.M., Sinnamon V. *et al.* (2012). Fish
 mediate high food web connectivity in the lower reaches of a tropical floodplain river.
 Oecologia, **168**, 829-38.
 - Jassby A.D. & Cloern J.E. (2000) Organic matter sources and rehabilitation of the Sacramento-San Joaquin Delta (California, USA). *Aquatic Conservation-Marine and Freshwater Ecosystems*, **10**, 323-352.
 - Johansson K.S.L., Trigal C., Vrede T. & Johnson R.K. (2013a) Community structure in boreal lakes with recurring blooms of the nuisance flagellate *Gonyostomum semen*. Aquatic Sciences, 75, 447-455.
 - Johansson K.S.L., Vrede T., Lebret K. & Johnson R.K. (2013b) Zooplankton feeding on the nuisance flagellate *Gonyostomum semen. PLoS ONE*, **8**, e62557.
 - Jones R.I. (1992) The influence of humic substances on lacustrine planktonic food chains. *Hydrobiologia*, **229**, 73-91.
- Jones R.I. & Grey J. (2011) Biogenic methane in freshwater food webs. Freshwater Biology, 56, 213-229.
 - Jones R.I., Shaw P.J. & De Haan H. (1993) Effects of dissolved humic substances on the speciation of iron and phosphate at different pH and ionic strength. *Environmental Science & Technology*, **27**, 1052-1059.
 - Jonsson M. & Stenroth K. (2016) True autochthony and allochthony in aquatic-terrestrial resource fluxes along a landuse gradient. *Freshwater Science*, **35**, doi:10.1086/68784
 - Junk W.J., Bayley P.B. & Sparks R.E. (1989) The flood pulse concept in river–floodplain systems. Canadian Journal of Fisheries and Aquatic Sciences Special Publication, 106, 110-127.
- Juutinen S., Rantakari M., Kortelainen P., Huttunen J.T., Larmola T., Alm J. et al. (2009) Methane
 dynamics in different boreal lake types. Biogeosciences, 6, 209-223.
 Kalacheva G.S., Sushchik N.N., Gladyshev M.I. & Makhutova O.N. (2009) Seasonal dynamics of
 - Kalacheva G.S., Sushchik N.N., Gladyshev M.I. & Makhutova O.N. (2009) Seasonal dynamics of fatty acids in the lipids of water moss *Fontinalis antipyretica* from the Yenisei River. *Russian Journal of Plant Physiology*, **56**, 795-807.
- Kankaala P., Bellido J.L., Ojala A., Tulonen T. & Jones R.I. (2013) Variable production by
 different pelagic energy mobilizers in boreal lakes. *Ecosystems*, 16, 1152-1164.
 Kankaala P., Huotari J., Peltomaa E., Saloranta T. & Ojala A. (2006a) Methanotrophic act
 - Kankaala P., Huotari J., Peltomaa E., Saloranta T. & Ojala A. (2006a) Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lake. *Limnology and Oceanography*, **51**, 1195-1204.
 - Kankaala P., Taipale S.J., Grey J., Sonninen E, Arvola L. & Jones R.I. (2006b) Experimental δ ¹³C evidence for a contribution of methane to pelagic food webs in lakes. *Limnology and Oceanography*, **51**, 2821-2827.
- Oceanography, **51**, 2821-2827.
 Kankaala P., Taipale S.J., Li L. & Jones R.I., 2010. Diets of crustacean zooplankton, inferred from stable carbon and nitrogen isotope analyses, in lakes with varying allochthonous dissolved organic carbon content. *Aquatic Ecology*, **44**, 781-795.
- 1326 Karlsson J., Berggren M., Ask J., Byström P., Jonsson A., Laudon H. *et al.* (2012) Terrestrial organic matter support of lake food webs: evidence from lake metabolism and stable hydrogen isotopes of consumers. *Limnology and Oceanography*, **57**, 1042-1048.
- 1329 Karlsson J., Bergström A.-K., Byström P., Gudasz C., Rodríguez P. & Hein C. (2015) Terrestrial organic matter input suppresses biomass production in lake ecosystems. *Ecology*, **96**, 2870-2876.
- Karlsson J., Jonsson A., Meili M. & Jansson M. (2003) Control of zooplankton dependence on
 allochthonous organic carbon in humic and clear-water lakes in northern Sweden. *Limnology* and Oceanography, 48, 269-276.

1335 Karlsson J. (2007) Different carbon support for respiration and secondary production in unproductive lakes. *Oikos*, **116**, 1691-1696.

1341

1342

1343

1344

1345

1346

1347

1348

1349

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364 1365

1366

1367

1368

1372

- 1337 Karlsson J., Byström P., Ask J., Persson L. & Jansson M. (2009) Light limitation of nutrient-poor lake ecosystems. *Nature*, **460**, 506-509.
- 1339 Kelly P.T., Solomon C.T., Weidel B.C. & Jones S.E. (2014) Terrestrial carbon is a resource, but not a subsidy, for lake zooplankton. *Ecology*, **95**, 1236-1242.
 - Klaveness D. (1988) Ecology of the Cryptomonadida a first review. In: Sandgren, C.D. (ed.): Growth and Reproductive Strategies of Freshwater Phytoplankton, 105-133. Cambridge University Press, New York. 442 pp.
 - Koussoroplis A.M., Nussbaumer J., Arts M.T., Guschina I.A. & Kainz, M.J. (2014) Famine and feast in a common freshwater calanoid: Effects of diet and temperature on fatty acid dynamics of *Eudiaptomus gracilis*. *Limnology and Oceanography*, **59**, 947-958.
 - Kritzberg E.S., Cole J.J., Pace M.L. & Graneli W. (2005) Does autochthonous primary production drive variability in bacterial metabolism and growth efficiency in lakes dominated by terrestrial C inputs? *Aquatic Microbial Ecology*, **38**, 103-111.
- Kritzberg E.S., Cole J.J., Pace M.L., Granéli W. & Bade D. (2004) Autochthonous versus
 allochthonous carbon sources to bacteria: Results from whole lake ¹³C addition experiments.
 Limnology and Oceanography, 49, 588-596.
 Larson J.H., Bartsch M.R., Gutreuter S., Knights B.C., Bartsch L.A., Richardson W.B. *et al.* 2015.
 - Larson J.H., Bartsch M.R., Gutreuter S., Knights B.C., Bartsch L.A., Richardson W.B. *et al.* 2015. Differences between main-channel and off-channel food webs in the upper Mississippi River revealed by fatty acid profiles of consumers. *Inland Waters*, **5**, 101-106.
 - Larson J.H., Richardson W.B., Knights B.C., Bartsch L.A., Bartsch M.R., Nelson J.C. *et al.* (2013) Fatty acid composition at the base of aquatic food webs is influenced by habitat type and watershed land use. *PLoS ONE*, **8**, e70666.
 - Lau D.C.P., Goedkoop W. & Vrede T. (2013) Cross-ecosystem differences in lipid composition and growth limitation of a benthic generalist consumer. *Limnology and Oceanography*, 58, 1149-1164.
 - Lau D.C.P., Leung K.M.Y. & Dudgeon D. (2009a) Are autochthonous foods more important than allochthonous resources to benthic consumers in tropical headwater streams? *Journal of the North American Benthological Society*, 28, 426-439.
 - Lau D.C.P., Leung K.M.Y. & Dudgeon D. (2009b) What does stable isotope analysis reveal about trophic relationships and the relative importance of allochthonous and autochthonous resources in tropical streams? A synthetic study from Hong Kong. *Freshwater Biology*, **54**, 127-141.
- Lau D.C.P., Sundh I., Vrede T., Pickova J., & Goedkoop W. (2014) Autochthonous resources are
 the main driver of consumer production in dystrophic boreal lakes. *Ecology*, 95, 1506-1519.
 Lau D.C.P., Vrede T., Pickova J. & Goedkoop W. (2012) Fatty acid composition of consumers in
 - Lau D.C.P., Vrede T., Pickova J. & Goedkoop W. (2012) Fatty acid composition of consumers in boreal lakes variation across species, space and time. *Freshwater Biology*, **57**, 24-38.
- Layman C.A., Arrington D.A., Montaña C.G. & Post D.M. (2007) Can stable isotope ratios provide for community-wide measures of trophic structure? *Ecology*, 88, 42-48.
 Lebret L., Fernandez M.F., Hagman C.H.C., Rengefors K. & Hansson L.-A. (2012) Grazing
 - Lebret L., Fernandez M.F., Hagman C.H.C., Rengefors K. & Hansson L.-A. (2012) Grazing resistance allows bloom formation and may explain invasion success of *Gonyostomum semen*. *Limnology and Oceanography*, **57**, 727–734.
- semen. Limnology and Oceanography, **57**, 727–734.
 Lepistö A., Futter M.N. & Kortelainen P. (2014) Almost 50 years of monitoring shows that climate, not forestry, controls long term organic carbon fluxes in a large boreal watershed. *Global Change Biology*, **20**, pp.1225-1237.
- Lewis Jr., W.M., Hamilton S.K., Rodríguez M.A., Saunders III J.F. & Lasi M.A. (2001) Foodweb
 analysis of the Orinoco floodplain based on production estimates and stable isotope data.
 Journal of the North American Benthological Society, 20, 241-254.
- Li A.O.Y. & Dudgeon D. (2008) Food resources of shredders and other benthic
 macroinvertebrates in relation to shading conditions in tropical Hong Kong streams.
 Freshwater Biology, 53, 2011-2025.
- 1387 Li B. & Brett M.T. (2013) The influence of dissolved phosphorus molecular form on recalcitrance and bioavailability. *Environmental Pollution*, **182**, 37-44.

- Lindell M.J., Granéli W. & Tranvik L.J. (1995) Enhanced bacterial growth in response to
 photochemical transformation of dissolved organic matter. *Limnology and Oceanography*, 40,
 1391
 195-199.
- Lisi P.J., Bentley K.T., Armstrong J.B. & Schindler D.E. (2014) Episodic predation of mammals by
 stream fishes in a boreal river basin. *Ecology of Freshwater Fish*, 23, 622-630.
 Lynd L.R., Weimer P.J., van Zyl W.H. & Pretorius I.S. (2002) Microbial cellulose utilization:

1403

1404 1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415 1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1429

- Lynd L.R., Weimer P.J., van Zyl W.H. & Pretorius I.S. (2002) Microbial cellulose utilization: Fundamentals and biotechnology. *Microbiology and Molecular Biology Reviews*, **66**, 506-577.
- 1396 Marcarelli A.M., Baxter C.V., Mineau M.M. & Hall, R.O. (2011) Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. *Ecology*, **92**, 1215-1225.
- Martin M.M., Jones C.G. & Bernays E.A. (1991) The evolution of cellulose digestion in insects
 [and Discussion]. *Philosophical Transactions of the Royal Society of London B: Biological Sciences*, 333, 281-288.
 Martin-Creuzburg D., Beck B. & Freese H.M. (2011) Food quality of heterotrophic bacteria for
 - Martin-Creuzburg D., Beck B. & Freese H.M. (2011) Food quality of heterotrophic bacteria for Daphnia magna: evidence for a limitation by sterols. FEMS Microbiology Ecology, 76, 592-601.
 - Martin-Creuzburg D. & von Elert E. (2009) Ecological significance of sterols in aquatic food webs. In Lipids in Aquatic Ecosystems (pp. 43-64). Springer New York.
 - Martínez A.T., Speranza M., Ruiz-Dueñas F.J., Ferreira P., Camarero S., Guillén F. et al. (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. *International Microbiology*, **8**, 195-204.
 - Matilainen A. & Sillanpää M. (2010) Removal of natural organic matter from drinking water by advanced oxidation processes. *Chemosphere*, **80**, 351-365.
 - Mayer M.S. & Likens G.E. (1987) The importance of algae in a shaded headwater stream as food for an abundant caddisfly (Trichoptera). *Journal of the North American Benthological Society*. **6** 262-269
 - McClelland J.W. & Montoya J.P. (2002) Trophic relationships and the nitrogen isotopic composition of amino acids in plankton. *Ecology*, **83**, 2173-2180.
 - McMahon K.W., Thorrold S.R., Houghton L.A. & Berumen M.L. (2016) Tracing carbon flow through coral reef food foods using a compound-specific stable isotope approach. *Oecologia*, **180**, 809-821.
 - McMeans B.C., Koussoroplis A.-M., Arts, M.T. & Kainz M.J. (2015) Allochthonous dissolved organic matter pathways support somatic growth and reproduction of *Daphnia magna* when algae are limiting. *Journal Plankton Research*, **37**, 1201-1209.
 - McNeeley C., Finlay J.C. & Power M.E. (2007) Grazer traits, competition, and carbon sources to a headwater-stream food web. *Ecology*, **88**, 391-401.
 - Meyers P.A. & Ishiwatari R. (1993) Lacustrine organic geochemistry an overview of indicators of organic matter sources and diagenesis in lake sediments. *Organic Geochemistry*, **20**, 867-
- 1427 900.
 1428 Minshall G.W. (1978) Autotrophy in stream ecosystems. *BioScience*, **28**, 767-771.
 - Molongoski J.J. & Klug M.J. (1980) Anaerobic metabolism of particulate organic matter in the sediments of a hypereutrophic lake. *Freshwater Biology*, **10**, 507-518.
- Monteith D.T., Stoddard J.L., Evans C.D., de Wit H.A., Forsius M., Høgåsen T. *et al.* (2007)
 Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry.
 Nature. 450, 537-540.
- Moran M.A. & Hodson R.E. (1989) Formation and bacterial utilization of dissolved organic-carbon derived from detrital lignocellulose. *Limnology and Oceanography*, **34**, 1034-1047.
- Morris D.P., Zagarese H., Williamson C.E., Balseiro E.G., Hargreaves B.R., Modenutti B. *et al.* (1995) The attentuation of solar UV radiation in lakes and the role of dissolved organic carbon. *Limnology and Oceanography*, **40**, 1381-1391.
- Murray D.S., Hager H.H., Tocher D.R. & Kainz M.J. (2014) Effect of partial replacement of dietary fish meal and oil by pumpkin kernel cake and rapeseed oil on fatty acid composition and metabolism in Arctic charr (*Salvelinus alpinus*). Aquaculture, **431**, 85-91.
- Naiman R.J., Bilby R.E., Schindler D.E. & Helfield J.M. 2002. Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. *Ecosystems*, **5**, 399-417.

Nakano S. & Murakami M. 2001. Reciprocal subsidies: dynamic interdependence between
 terrestrial and aquatic food webs. *Proceedings of the National Academy of Sciences of the United States of America*, 98, 166-170.

1449 1450

1451

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

- Nielsen J.M., Popp B.N. & Winder M. (2015) Meta- analysis of amino acid stable nitrogen isotope ratios for estimating trophic position in marine organisms. *Oecologia*, **178**, 631-642.
 - Neres-Lima V., Brito E.F., Krsulovik F.A.M., Detweiler A.M., Hershey A.E. & Moulton T.P. (2016) High importance of autochthonous basal food source for the food web of a Brazilian tropical stream regardless of shading. *International Review of Hydrobiology* (in press).
- Odum H.T. (1956) Primary productivity in flowing waters. *Limnology and Oceanography*, **1**, 102-1453

 1454
 Ohkuma M. (2003) Termite symbiotic systems: efficient bio-recycling of lignocellulose. *Applied*
 - Ohkuma M. (2003) Termite symbiotic systems: efficient bio-recycling of lignocellulose. *Applied Microbiology and Biotechnology*, **61**, 1-9.
 - Pace M.L., Cole J.J., Carpenter S.R., Kitchell J.F., Hodgson J.R., Van de Bogert M.C. et al. (2004) Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature, 427, 240-243.
 - Pace M.L., Carpenter S.R., Cole J.J., Coloso J.J., Kitchell J.F., Hodgson J.R. et al. (2007) Does terrestrial organic carbon subsidize the planktonic food web in a Clearwater lake? *Limnology* and Oceanography, 52, 2177-2189.
 - Phillips D.L, Inger R., Bearhop S., Jackson A.L., Moore J.W., Parnell A.C. et al. (2014) Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology, 92, 823-835.
 - Piovia-Scott J., Sadro S., Knapp R.A., Sickman J., Pope K. & Chandra S. (2016) Variation in reciprocal subsidies between lakes and land: perspectives from the mountains of California. *Canadian Journal of Fisheries and Aquatic Sciences.* **73**, 1691-1701.
 - Polis G.A., Anderson W.B. & Holt R.D. (1997) Toward an integration of landscape and food web ecology: The dynamics of spatially subsidized food webs. *Annual Review of Ecology and Systematics*, **28**, 289-316.
 - Popp B.N, Graham B.S., Olson R.J., Hannides C., Lott M.J., López-Ibarra G.A. *et al.* (2007) Insight into the trophic ecology of yellowfin tuna, *Thunnus albacares*, from compound-specific nitrogen isotope analysis of proteinaceous amino acids. *Terrestrial Ecology*, **1**, 173-190.
 - Power M.E. (2001) Field biology, food web models, and management: Challenges of context and scale. *Oikos*, **94**, 118-129.
 - Power M.E., Rainey W.E., Parker M.S., Sabo J.L., Smyth A., Khandwala S., *et al.* (2004) River to watershed subsidies in an old-growth conifer forest. Pages 217-240 in G.A. Polis, M.E. Power, and G. Huxel, editors. Food webs and Landscapes. Univ. Chicago Press, Chicago.
 - Prairie Y.T. (2008) Carbocentric limnology: looking back, looking forward. Canadian Journal of Fisheries and Aquatic Sciences. 65, 543-548.
 - Preston N.D., Carpenter S.R., Cole J.J. & Pace M.L. (2008) Airborne carbon deposition on a remote forested lake. *Aquatic Sciences*, **70**, 213-224.
 - Räsänen N.H.J., Kankaala P., Akkanen J., Tahvanainen T. & Saarnio S. (2016) Effects of mireoriginated dissolved organic carbon, nitrogen, and phosphorus on microbial activity in boreal headwaters. *Inland Waters*, **6**, 65-76.
 - Rasilo T., Prairie Y.T. & Del Giorgio P. (2015) Large-scale patterns in summer diffusive CH4 fluxes across boreal lakes, and contribution to diffusive C emissions. *Global Change Biology*, **21**, 1124–1139.
 - Rask M., Sairanen S., Vesala S., Arvola L., Estlander S. & Olin, M. (2014) Population dynamics and growth of perch in a small, humic lake over a 20-year period – importance of abiotic and biotic factors. *Boreal Environment Research*, 19, 112-124.
 - Rasmussen J.B. (2010) Estimating terrestrial contribution to stream invertebrates and periphyton using a gradient-based mixing model for δ^{13} C. *Animal Ecology*, **78**, 674-685.
- 1494 Rasmussen J.B., Godbout L. & Schallenberg M. (1989) The humic content of lake water and its relationship to watershed and lake morphometry. *Limnology and Oceanography*, **34**, 1336-1343.
- 1497 Rasmussen J.B., Trudeau V. & Morinville G. (2009) Estimating the scale of fish feeding movements in rivers using δ^{13} C signature gradients. *Journal of Animal Ecology*, **79**, 393-402.

- 1499 Ravet J.L., Brett M.T. & Arhonditsis G.B. (2010) The effects of seston lipids on zooplankton fatty 1500 acid composition in Lake Washington. Ecology, 91, 180-190.
- 1501 Ravinet M., Syväranta J., Jones R.I. & Grey J. (2010) A trophic pathway from biogenic methane 1502 supports fish biomass in a temperate lake ecosystem. Oikos, 119, 409-416.
 - Recalde F.C., Postali T.C., & Romero G.Q. (2016) Unravelling the role of allochthonous aquatic resources to food web structure in a tropical riparian forest. Journal of Animal Ecology, 85, 525-536.
 - Rengefors K., Pålsson C., Hansson L.A. & Heiberg L. (2008) Cell lysis of competitors and osmotrophy enhance growth of the bloom-forming alga Gonyostomum semen. Aquatic Microbial Ecology, 51, 87-96.
- 1509 Rinta, P., Bastviken D., van Hardenbroek M., Kankaala P., Leuenberger M., Schilder J. et al. 1510 (2015) An inter-regional assessment of concentrations and δ^{13} C values of methane and 1511 dissolved inorganic carbon in small European lakes. Aquatic Sciences, 77, 667-680.
- 1512 Rosenfeld J.S. & Mackay R.J. (1987) Assessing the food base of stream ecosystems: alternatives to the P/R ratio. Oikos, 50, 141-147.
- 1513 1514 Rosenthal J.P. & Kotanen P.M. (1994) Terrestrial plant tolerance to herbivory. Trends in Ecology 1515 & Evolution, 9, 145-148.
 - Rothhaupt K.O. (1996) Laboratory experiments with a mixotrophic chrysophyte and obligately phagotrophic and phototrophic competitors. *Ecology*, 77, 716-724.
 - Rothlisberger J.D., Baker M.A. & Frost P.C. (2008) Effects of periphyton stoichiometry on mayfly excretion rates and nutrient ratios. Journal of the North American Benthological Society, 27,
- 1520 1521 Rounick J.S., Winterbourn M.J. & Lyon G.L. (1982) Differential utilization of allochthonous and 1522 1523 autochthonous inputs by aquatic invertebrates in some New Zealand streams: a stable carbon isotope study. Oikos, 39, 191-198.
- 1524 Route A.J. (1991) Flies for Alaska. Spring Creek Press. 1525

1504

1505

1506

1507

1508

1516

1517

1518

1519

1526

1527

1528

1531

1532

1533

1534

1535

1536

1537

1538

1539 1540

1541

1542

1543

1544

1545

1546

1547

- Rudd J.W.M. & Hamilton R.D. (1978) Methane cycling in an eutrophic shield lake and its effects on whole lake metabolism. Limnology and Oceanography, 23, 337-348.
- Russell N.J. & Nichols D.S. (1999) Polyunsaturated fatty acids in marine bacteria—a dogma rewritten. Microbiology, 145, 767-779.
- 1529 Sanchez C. (2009) Lignocellulosic residues: Biodegradation and bioconversion by fungi. 1530 Biotechnology Advances, 27, 185-194.
 - Sargent J., McEvoy L., Estevez A., Bell G., Bell M., Henderson J. et al. (1999) Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture, 179, 217-229.
 - Schindler D.E., Scheuerell M.D., Moore J.W., Gende S.M., Francis T.B. & Palen W.J. (2003) Pacific salmon and the ecology of coastal ecosystems. Frontiers in Ecology and the Environment, 1, 31-37.
 - Schindler D.W., Curtis P.J., Bayley S.E., Parker B.R., Beaty K.G. & Stainton M.P. (1997) Climateinduced changes in the dissolved organic carbon budgets of boreal lakes. Biogeochemistry,
 - Schink B. (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiology and Molecular Biology Reviews, 61, 262-280
 - Schubert C.J., Lucas F.S., Durisch-Kaiser E., Stierli R., Diem T., Scheidegger O. et al. (2010) Oxidation and emission of methane in a monomictic lake (Rotsee, Switzerland). Aquatic Sciences 72, 455-466.
 - Sedell I.R., Richey J.E. & Swanson F.I. (1989) The river continuum concept; a basis for the expected behavior of very large rivers? Pages 49-55 in D.P. Dodge, editor. Proceedings of the International Large River Symposium, Canadian Special Publications in Fisheries and Aquatic Sciences, 106, 49-55.
- 1549 Seekell D.A., Lapierre J.F., Ask J., Bergström A.K., Deininger A., Rodríguez P. et al. (2015) The 1550 influence of dissolved organic carbon on primary production in northern lakes. Limnology and 1551 Oceanography, 60, 1276-1285.
- 1552 Simonis J.L., Raja H.A. & Shearer C.A. (2008). Extracellular enzymes and soft rot decay: Are 1553 ascomycetes important degraders in freshwater? Fungal Diversity, 31, 135-146.

- 1554 Skyllberg U., Westin M.B., Meili M. & Björn E. (2009) Elevated concentrations of methyl mercury 1555 in streams after forest clear-cut: a consequence of mobilization from soil or new methylation? 1556 Environmental Science & Technology, 43, 8535-8541.
- 1557 Solomon C.T., Carpenter S.R., Clayton M.K., Cole J.J., Coloso J.J., Pace M.L. et al. (2011). 1558 Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian 1559 mixing model. Ecology, 92, 1115-1125.

1561 1562

1563

1564

1565

1566

1567

1568

1571

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

- Steinberg C.E., Kamara S., Prokhotskaya V.Y., Manusaděianas L., Karasyova T.A., Timofeyev, M.A. et al. (2006) Dissolved humic substances - ecological driving forces from the individual to the ecosystem level? Freshwater Biology, 51, 1189-1210.
- Steinman A.D., McIntire C.D. & Lowry R.R. (1987) Effects of herbivore type and density on chemical composition of algal assemblages in laboratory streams. Journal of the North American Benthological Society, 6, 189-197.
- Stenroth K., Polvi L.E., Fältström E. & Jonsson M. (2015) Land-use effects on terrestrial consumers through changed size structure of aquatic insects. Freshwater Biology, 60, 136-
- 1569 Stockner J.G. & Porter K.G. (1988) Microbial food webs in freshwater planktonic ecosystems. In 1570 Complex interactions in lake communities (pp. 69-83). Springer New York.
 - Summerhayes V.S. & Elton C.S. (1923) Bear Island. Journal of Ecology, 11, pp.216-233.
- 1572 Sutton R. & Sposito G. (2005) Molecular structure in soil humic substances: the new view. 1573 Environmental Science & Technology, 39, 9009-9015.
 - Taipale S.J., Brett M.T., Hahn M.W., Martin-Creuzburg D., Yeung S., Hiltunen M. et al. (2014) Differing Daphnia magna assimilation efficiencies for terrestrial, bacterial and algal carbon and fatty acids. Ecology, 95, 563-576.
 - Taipale S.J., Brett M.T., Pulkkinen K., & Kainz M.J. (2012) The influence of bacteria-dominated diets on Daphnia magna somatic growth, reproduction, and lipid composition. FEMS Microbiology Ecology, 82, 50-62.
 - Taipale S.J., Galloway A.W.E, Aalto A.L., Kahilainen K.K., Strandberg U. & Kankaala P. (2016a) Terrestrial carbohydrates support freshwater zooplankton during phytoplankton deficiency. Scientific Reports, 6, 30897 | DOI: 10.1038/srep30897
 - Taipale S.J., Kainz M.J. & Brett M.T. (2011) Diet switching experiments show rapid accumulation and preferential retention of highly unsaturated fatty acids in Daphnia. Oikos, 120, 1674-1682
- 1586 Taipale S.J., Kainz M.J. & Brett M.T. (2015) A low ω-3:ω-6 ratio in Daphnia indicates terrestrial 1587 resource utilization and poor nutritional condition. Journal of Plankton Research, 37, 596-610.
 - Taipale S.J., Kankaala P., Tiirola M. & Jones R.I. (2008) Whole-lake dissolved inorganic 13C additions reveal seasonal shifts in zooplankton diet. Ecology, 89, 463-474.
 - Taipale S.J., Strandberg U., Peltomaa E., Galloway A.W., Ojala A. & Brett M.T. (2013) Fatty acid composition as biomarkers of freshwater microalgae; analysis of 37 strains of microalgae in 22 genera and in seven classes. Aquatic Microbial Ecology, 71, 165-178.
 - Taipale S.J., Vuorio K., Brett M.T., Peltomaa E., Hiltunen M., & Kankaala P. (2016b) Lake zooplankton δ^{13} C values are strongly correlated with the δ^{13} C values of distinct phytoplankton taxa. Ecosphere (in press).
 - Tanentzap A.J., Szkokan-Emilson E.J., Kielstra B.W., Arts M.T., Yan N.D. & Gunn J.M. (2014). Forests fuel fish growth in freshwater deltas. Nature Communications, 5, 4077.
 - Thorp J.H. & Bowes R.E. (2017) Carbon sources in riverine food webs: new evidence from amino acid isotopic techniques. Ecosystems (in press) DOI: 10.1007/s10021-016-0091-y.
 - Thorp J.H. & Delong M.D. (1994) The riverine productivity model: an heuristic view of carbon sources and organic processing in large river ecosystems. Oikos, 70, 305-308.
- 1601 1602 Thorp J.H. & Delong M.D. (2002) Dominance of autochthonous autotrophic carbon in food webs 1603 of heterotrophic rivers. Oikos, 96, 543-550.
- 1604 Thorp J.H., Thoms M.C. & Delong M.D. (2006) The riverine ecosystem synthesis: biocomplexity 1605 in river networks across space and time. River Research and Applications, 22, 123-147.
- 1606 Thorp J.H., Thoms M.C. & Delong M.D. (2008) The riverine ecosystem synthesis. Academic 1607 Press, Boston, MA, USA. 208 p.
- 1608 Thrane J.E., Hessen D.O. & Andersen T. (2014) The absorption of light in lakes: negative impact 1609 of dissolved organic carbon on primary productivity. Ecosystems, 17, 1040-1052.

1610 Torres-Ruiz M. & Wehr J.D. (2010) Changes in the nutritional quality of decaying leaf litter in a stream based on fatty acid content. *Hydrobiologia*, **651**, 265-278.

- Torres-Ruiz M., Wehr J.D. & Perrone A.A. (2007) Trophic relationships in a stream food web: the importance of fatty acids for macroinvertebrate consumers. *Journal of the North American Benthological Society*, **26**, 509-522.
 - Torres-Ruiz M., Wehr J.D. & Perrone A.A. (2010) Are net-spinning caddisflies what they eat? An investigation using controlled diets and fatty acids. *Journal of the North American Benthological Society*, **29**, 803-813.
- Tranvik L.J., Porter K.G. & Sieburth J. McN. (1989) Occurrence of bacterivory in *Cryptomonas*, a common freshwater phytoplankter. *Oecologia*, **78**, 473-476.
- Tulonen T., Salonen K. & Arvola L. (1992) Effects of different molecular weight fractions of dissolved organic matter on the growth of bacteria, algae and protozoa from a highly humic lake. *Hydrobiologia*, **229**, 239-252.
 Tuomela M., Vikman M., Hatakka A. & Itävaara M. (2000) Biodegradation of lignin in a compost
 - Tuomela M., Vikman M., Hatakka A. & Itävaara M. (2000) Biodegradation of lignin in a compost environment: a review. *Bioresource Technology*, **72**, 169-183.
 - Vadeboncoeur Y. & Lodge D.M. (2000) Periphyton production on wood and sediment: substratum-specific response to laboratory and whole-lake nutrient manipulations. *Journal of the North American Benthological Society*, **19**, 68-81.
 - Vadeboncoeur Y., Peterson,G., Vander Zanden M.J. & Kalff J. (2008) Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light. *Ecology*, **89**, 2542-2552.
 - Vadeboncoeur, Y., Jeppesen E., Vander Zanden M.J., Schierup H.H., Christoffersen K. & Lodge D.M. (2003) From Greenland to green lakes: Cultural eutrophication and the loss of benthic pathways in lakes. *Limnology and Oceanography*. **48**, 1408-1418.
 - Vähätalo A.V., Aarnos H., Hoikkala L. & Lignell R. (2011) Photochemical transformation of terrestrial dissolved organic matter supports hetero-and autotrophic production in coastal waters. *Marine Ecology Progress Series*, **423**, 1-14.
 - Vander Zanden M.J. & Rasmussen J.B. (1999) Primary consumer δ^{13} C and δ^{15} N and the trophic position of aquatic consumers. *Ecology*, **80**, 1395-1404.
 - Vannote R.L., Minshall G.W., Cummins K.W., Sedell J.R. & Cushing C.E. (1980) The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130-137.
 - Vesterinen J., Devlin S.P., Syväranta J. & Jones R.I. (2016) Accounting for littoral primary production by periphyton shifts a highly humic boreal lake towards net autotrophy. *Freshwater Biology*, **61**, 265-276.
 - von Einem J. & Granéli W. (2010) Effects of fetch and dissolved organic carbon on epilimnion depth and light climate in small forest lakes in southern Sweden. *Limnology and Oceanography*, **55**, 920-930.
 - von Elert E. (2002) Determination of limiting polyunsaturated fatty acids in *Daphnia galeata* using a new method to enrich food algae with single fatty acids. *Limnology and Oceanography*, **47**, 1764-1773.
 - Vuorio K., Meili M. & Sarvala J. (2006) Taxon-specific variation in the stable isotopic signatures (δ^{13} C and δ^{15} N) of lake phytoplankton. *Freshwater Biology*, **51**, 807-822.
 - Walton I. (1653) The Compleat Angler. Charles Lamb Publisher.
 - Webster J.R., Golladay S.W., Benfield E.F., D'Angelo D.J. & Peters G.T. (1990) Effects of forest disturbance on particulate organic matter budgets of small streams. *Journal of the North American Benthological Society*, **9**, 120-140.
- Webster J.R. & Meyer J.L. (1997) Organic matter budgets for streams: a synthesis. *Journal of the North American Benthological Society*, 16, 141-161.
 Wehr J.D., Holen D.A., MacDonald M.M. & Lonergan S.P. (1998) Effects of different carbon
 - Wehr J.D., Holen D.A., MacDonald M.M. & Lonergan S.P. (1998) Effects of different carbon sources on a freshwater plankton community. *Canadian Journal of Fisheries and Aquatic Sciences*, **55**, 2150-2160.
- Wehr J.D., Petersen J. & Findlay S. (1999) Influence of three contrasting detrital carbon sources on planktonic bacterial metabolism in a mesotrophic lake. *Microbial Ecology*, **37**, 23-35.
- Wenzel A., Bergström, A.K., Jansson, M. & Vrede, T. (2012a) Poor direct exploitation of terrestrial
 particulate organic material from peat layers by *Daphnia galeata*. *Canadian Journal of* Fisheries and Aquatic Sciences, 69, 1870-1880.

- 1666 Wenzel A., Bergström A.-K., Jansson M. & Vrede T. (2012b) Survival, growth and reproduction of 1667 Daphnia galeata feeding on single and mixed Pseudomonas and Rhodomonas diets. 1668 Freshwater Biology, 57, 835-846.
- 1669 West W.E., Coloso J.J. & Jones S.E. (2012) Effects of algal and terrestrial carbon on methane 1670 production rates and methanogen community structure in a temperate lake sediment: 1671 Methanogen response to trophic change. Freshwater Biology, 57, 949-955.

1673

1677

1678

1679

1680

1681 1682

1683

- Wetzel R.G. (1995) Death, detritus and energy flow in aquatic ecosystems. Freshwater Biology,
- 1674 Wetzel R.G. (2001) Chapter 23, Detritus: organic carbon cycling and ecosystem metabolism. In 1675 Limnology, Lake and River Ecosystems, 3rd edition. Academic Press. 1676
 - Williamson C.E. & Rose K.C. (2010) When UV meets fresh water. Science, 329, 637-639.
 - Wipfli M.S. & Baxter C.V. (2010) Linking ecosystems, food webs, and fish production: subsidies in salmonid watersheds. Fisheries, 35, 373-387.
 - Wipfli M.S., Hudson J.P., Caouette J.P. & Chaloner D.T. (2003) Marine subsidies in freshwater ecosystems: Salmon carcasses increase the growth rates of stream-resident salmonids. Transactions of the American Fisheries Society, 132, 371-381.
 - Wipfli M.S. (1997) Terrestrial invertebrates as salmonid prey and nitrogen sources in streams: contrasting old-growth and young-growth riparian forests in southeastern Alaska, USA. Canadian Journal of Fisheries and Aquatic Sciences, 54, 1259-1269.
- 1684 1685 Wyatt B. (2013) What trout want: the educated trout and other myths. Stackpole Books, 2013. 1686 Zohary T., Erez J., Gophen M., Berman-Frank I. & Stiller M. (1994) Seasonality of stable carbon 1687 isotopes within the pelagic food web of Lake Kinneret. Limnology and Oceanography, 39, 1688 1030-1043.

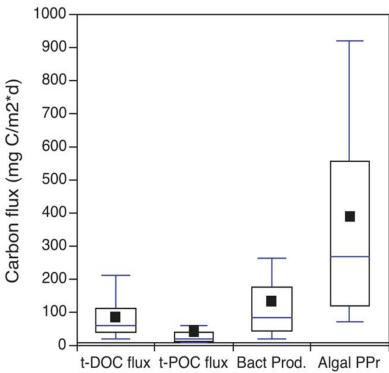
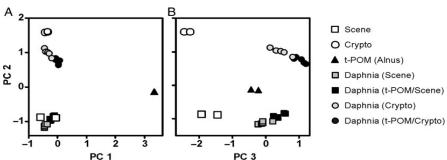



Fig. 1. The mass influx of dissolved and particulate carbon from terrestrial sources and the in-lake production of bacteria and benthic/pelagic algae based on individual lake observations (Brett *et al.*, 2012). Only algal production data from lakes with total phosphorus $\leq 20~\mu g~L^{-1}$ were used. Terrestrial particulate loading was calculated based on direct the aeolian transport data from Preston *et al.* (2008) while also assuming fluvial t-POC inputs are equal to 10% of t-DOC loading (Wetzel, 2001). Bacteria production was estimated from algal production based on a model derived from data provided by Fouilland & Mostajir (2010). The mid-line in the box and whisker plots represents the sample median, the filled box represents mean, the outer margins represent the 25th and 75th percentiles and the whiskers represent the 10th and 90th percentiles. The sample sizes were $n=20,\,8$ and 58, respectively, for t-DOC, t-POC, and algal production mass fluxes.

17061707

1708

1709

1710

1711

1712

17131714

1715

17161717

1718

17191720

1721

1722

Fig. 2. A principal components analysis of the fatty acid composition of terrestrial detritus (i.e., finely-ground Alnus rubra; t-POM), phytoplankton (i.e., Scenedesmus acutus and Cryptomonas ozolinii), and Daphnia fed either pure or mixed diets of phytoplankton and t-POM (Taipale et al., 2015). Diet samples are the fatty acid profiles of Alnus (t-POM; black triangle), Scenedesmus (Scene; open square), or Cryptomonas (Crypto; open circle). Samples labeled "Daphnia" represent Daphnia fatty acid profiles after consuming Scenedesmus (gray square), Cryptomonas (gray circles), or mixed diets of Alnus-Scenedesmus (black squares) and Alnus-Cryptomonas (black/white circles). The first PC explained 21.7% of the variability and separated the Alnus from the phytoplankton diets and all Daphnia. This PC was strongly positively correlated with the SAFAs 14:0, 16:0, 20:0, 22:0 and 24:0. The second PC explained 53.8% of the variability and separated the two phytoplankton diets as well as Daphnia consuming these diets, and was positively correlated with LIN, 18:1ω9, and ALA, and negatively with SDA, EPA and DHA. The third PC explained 12.0% of the variability and separated Daphnia from their diets. This PC was positively correlated with ARA.

Fig. 3. An aquatic consumer (*Salmo trutta*) which has consumed a large mass of terrestrial resources (the house mouse *Mus musculus*). In New Zealand mice populations often erupt when various trees (especially beech, *Nothofagus* spp.) have prolific seedfalls (Choquenot & Ruscoe, 2000). When these masting events occur, mice can become important prey for salmonid fish such as *S. trutta* and *Oncorhynchus mykiss*. Image taken by Steve Fox and used with permission.

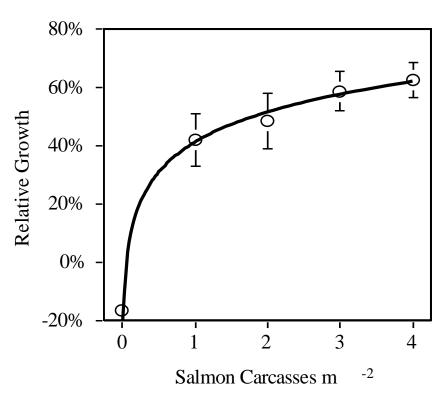
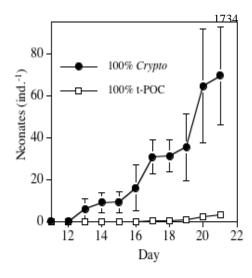
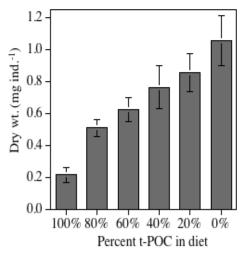




Fig. 4. Mean growth of juvenile Coho salmon (± SE) over 66 days when exposed to a gradient of salmon carcass additions. Adapted from Wipfli *et al.* (2003).

1754

Fig. 5. The growth and reproduction responses of *Daphnia magna* fed phytoplankton or finely ground terrestrial detritus (Brett *et al.*, 2009). The upper left panel shows cumulative *Daphnia* neonate production when fed the phytoplankter *Cryptomonas ozolinii* or leaves of the riparian tree *Alnus rubra*. The lower left panel shows the size outcomes for *Daphnia* fed a gradient of *Alnus* and *Cryptomonas* for 14 days. The upper right panel shows 18 day old *Daphnia* that have exclusively consumed *Rhodomonas lacustris*. The lower right panel shows 18 day old *Daphnia* that exclusively consumed a mixture of finely ground

leaves from various riparian plants. The *Daphnia* in these panels were matched up from parallel maternal broods. The error bars in these plots represent ± 1 SD.