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A PARALLEL FE-SPLITTING-UP METHOD
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XUE-CHENG Tall PEKKA NEITTAANMAKI

University of Jyvaskyla,
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40100 Jyvaskyla, Finland

Abstract. A new efficient method for solving parabolic systems is presented. The proposed
method is based on the splitting up principle in which the problem is reduced to a series
of independent 1-D problems. This enables the use of parallel processors. We can solve
multidimensional problems only by applying the 1-D FE-method and consequently avoid
the difficulties in constructing a FE-space for multidimensional problems. The method is
suitable for general domains as well as rectangle domains. Every 1-D subproblem is solved
by applying cubic B-splines. Several numerical examples are presented.

1. Introduction

We consider the parabolic boundary value problem

ou 0 ou 0 Ou Ou Ou )
%= B2 (ala) + oy (a26_y) +a3% +a43_y +asu+ f in Qx[0,T]

u(x,y,O) e uO(‘T?y) ’ (2:7 y) € Q
u=0 on 0§ x [0, T7.

(1.1)

We shall suppose for simplicity that Q C R? is convex. Here as < 0.

We shall propose the following method to solve problem (1.1). First, we divide the time
interval [0, T] into N subintervals [t;,t;+1], 1=0,1,2,... ,N —1, tiy; —t; = 7. Thenin
each interval [¢;,ti+1] we first solve for fixed y € (Ymin,Ymax) the subproblem

(( Ouy(z,y,t) O Ouy (z,y,t)
o oz \a@v—%,
Ouy(z,y,t
(12) +as(e, 22D o ¢ (4,0, da(0)), ¢ € fistina)
ul(way’ti) . U2($,y,t,‘)
\ ul(dl(y)vy’t) = ul(d2(y)7 yat) =0 ’ te [ti7ti+l] .
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For ty = 0, we take u;(z,y,t0) = uo(z,y).

For the used notations we refer to Figure 1.1. With every fixed ¥ € (Ymin, Ymax), (1.2)
is a 1-D partial differential equation on I, = (di(y),d2(y)) and we can use an efficient
1-D FE-method to solve it. In fact, we use a cubic B-spline function as the FE-basis to
solve this 1-D equation with 0(h*) accuracy. Another very important point of this method
1s that we can use parallel processors to solve the 1-D equation (1.2) for various y. In
numerical realization we solve (1.2) for finite number of lines in the interval [Ymin, Ymax]-

After we solve (1.2) for every y in [ti, tiy1], we take ui(z,y,%i+1) as an initial value for
Ua(z,y,t) at t = ¢; in Q. Then we proceed to solve for every fixed £ € (Zmin, Zmax) the
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following problem:

( t duy(z,y, 1
3u2(§;y,t) _ 3% <a2(x,y)3u2(§;ys )> e uz(;yy )
(13) ¢ + a5($7y)u2(xay,t) + f(il?, y’t)a te [tiati+1]a y € (61((17),62(1)))
uz(z,y,t:) = ui(2, ¥, tiy1)
L uz(z,e1(z),t) = us(z, ex(x),t) =0, ¢t € [ti,tip1] .

For the notations used see Figure 1.2. We note that (1.3) is a 1-D problem on I, =
(e1(z),e2(z)). We also use a 1-D cubic B-spline function as a FE-basis to solve (1.3).
When we get the value of u; at ¢ = t;1; on Q we take us(z,y,tit1) as a solution u(z,y,tiy1)
and then proceed to the next interval [t;y1,t;42] by solving (1.2) first and then (1.3) ete.
Also, in practical computing we only solve (1.3) on finite number of lines.

The splitting—up method is already a well studied method, especially for linear problems
[5,9,15]. But in the literature, a lot of work involves the finite difference method. As in
[9] and cited papers therein, it seems that authors always first discretize the problem and
then split the matrix. This technique is suitable for the finite difference method. In [4]
the finite element method was used only for rectangular domains with the splitting-up
method. For a general domain, the authors in paper [10] again first discretize the problem
by using a multidimensional finite element space and then split the matrix into four parts.
In a recent paper [2] the one dimensional finite element method was used in combination
with the splitting-up method and some other methods, but the study is restricted only to
rectangle domains. In this paper we use a 1-D finite element to solve multidimensional
problems in general domains. We give a new settlement which gives a clear view on how
to use the 1-D finite element tecniques for the splitting-up method. The computing of this
method can also be don by parallel processors.

We shall restrict our consideration to 2-D problems only because of the notational

simplicity. We consider the homogenous Dirichlet boundary, for the sake of simplicity, in

the proof. The method also works for nonhomogenous boundary conditions.

In §2, we shall give the detailled analysis of the method and prove the convergence rate
of the splitting—up method. Because, by the splitting—up method, the multidimensional
problems are solved only by a 1-D FE-method, in §3 we describe the numerical imple-
mentation with cubic splines for the 1-D FE-method. With the method from §2 and
§3, in §4 we shall give the numerical experiments for 2-D and 3-D problems. Because
only a 1-D FE~method is used, this gives crucial advantages in the distributed parameter
1dentification problems [14].

2. The splitting—up method

For simplicity we suppose that a3 = 0, a4 = 0. Let the matrix a = (C:)l c? ) satisfy the
2

ellipticity conditions. In our paper, we assume functions u, f, wo,a and O are smooth
enough. For extensions see Remark 5.1 in §5.

In our paper, we use standard notations for Sobolev spaces H*(Q) and HF(Q), £ >0
is an integer and spaces Ck(Q), C§°(Q) with continuous functions and test functions.
Especially we write L2(Q) for HO() with scalar product (-, *Jo,o and norm || - || 2(q).
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We define the bilinear forms in H}(Q) x H} ()

b(u,v) = — [y aVu - Vo dzdy + [, asuvdzdy u,v € H(Q)
_ Odu Ov i
2.1) bi(u,v) = — [, Ga- dzdy u,v € H}(Q)

u Qv
b = - — — dzd H}(Q
2(u,v) fnazay 3, 4 Y+ [qasuvdzdy u,v € HY(Q)
and three operators A, Ay, A,

(Au,v)o,0 = b(u,v) u € Dom (A) Vv € H}(Q)
(A1u,v)o,0 = b1(u,v) u €Dom (4,) We HY(Q)
(A2u,v)o,0 = ba(u,v) u € Dom (A2) Yv e HYQ).

To explain the meaning of operator A above, let u € H}(£2) be given. If v — b(u,v) is
continuous in the L?(Q)-topology, then we say u € Dom (A4). Because H}(Q) is dense
in L*(2), we can extend it to L2(f2), then by the Riesz representation theorem, we know
there exists a unique element Au € L%(Q), which satisfies

(Au,v)o,0 = b(u,v) Vv € Hi(Q).

’ We define this relation from u to Au as the operator A. A;, A, are defined in the same
way.
From the definition, it is obvious that Dom (4;) N Dom (42) = Dom (A4) = H2%(Q) N
H§(9). For u € Dom (A)
Au = Ayu + Aju.

By operator A, we can write (1.1) as an abstract evolution equation in L%(Q).

du
(2.2) = = Au + f, u € Dom (A)

The concepts about semigroups used here can be found in [11].
Concerning operators A, A; and A,, we can prove the following theorem:

THEOREM 1. Operator A, A, and A, generate a Cy—semigroup of contractions Ty (t), Ta(?)
and Ty(t), respectively.

REMARK 2.1. In the proof, we not only prove the result of the theorem, but we also show
the 2-D variational equations are equivalent to a series of 1-D variational equations.

PROOF: Operator A obviously generates a Co—semigroup of contractions. So we only need
to prove the same is true for A;, A;. Because




and from the Lumer—Philips theorem [11, p. 14], we only need to prove that for A > 0
R(A\I — A)) = L*¥(9).
This means for every A > 0, f € L?(), there exists u; € Dom (4,) which satisfies
(A = Ar)uy = f.

This is equivalent to showing that u; € H}(Q) is the solution of the variational equation

(2.3) /(a1%@ + Auyv) dxdy = / fvdzdy Yov e Hy(Q).
q Oz Oz Q

Next we shall show that the 2-D problem (2.3) can be reduced to 1-D problems.

t

RV AR

x Figure 2.1
For every fixed y, we consider the following 1-D problem (see Fig.2.1):

{ _ _aa;:. (al%) 4+ Auy = f(xiy)
| u1 € Hy((d1(y), d2(y)))-

The Lax-Milgram theorem implies that there exists a unique g¥(z) € HE((di(v),da2(y)))
such that

: d2(y) dg¥ Ov, d2(y) )
(2.4) (al e e + /\gyvl) dz = / fG y)vr dr Yoy € Hy((d1(y), d2(v)))-
di(y) T or d1(y)

For different y, the corresponding solution g¥(z) is also different. Let ii1(z,y) := ¢¥(z).
For a square (z;,z3) X (y1,¥2) C Q, we choose vi(z) € H}((z),z2)), and let it be zero
elsewhere. So vi(z) € H}((di(y),d2(y))) for every y € (y1,y2). We also choose wz(y) €
Hj ((1,92)) and let it be zero elsewhere. Consequently, vi(z)ws(y) € Hj () and we get

)




/ (CI]%% + )\ﬁlvl) wae d.'L‘dy
Q

Oz Oz
v2 i 0u, 0 .
= [" watw) (a_a_“) dady
(2'5) y;z z;2(!/) 6gy 61)1
:/ w2 (y) (al—a—-i-)\gyvl) dzdy
n di(y) T z

=/fv1w2 drdy.
Q

In (2.4) g¥ depends continuously on a; and f. From this we can see that @ is measurable
on 1. So, the conditions for the Fubini theorem are satisfied.

The product functions, v;(z)w2(y), in rectangles inside Q are dense in C§°(f2). For
example, we can divide €2 into rectangles as in Figure 4.1 with uniform mesh and get Qp
and take S* to be the linear product FE-space on Q, [3, p. 56, Th. 2]. Then if 8Q is
regular enough, for every w € C§(2) there exists vpwy € S* such that

||w — vhwh||H1(Q)

<Hw — vpwr || r@\an) + 1w — vewn || H1(q,)
< C meas (Q\Q4) + Ch.

By choosing v; = vy and wy; = wy in (2.5) and letting h — 0 we obtain
(2.6) / (al%la—w + )\ﬁlw) dzdy = / fw dzdy Yw(z,y) € C§°(R).
Q 83: (9:1: Q

Because C§°(Q2) is dense in H}(Q), (2.6) is also valid for every w € Hj(f2). This proves
%1(z,y) is a solution of (2.3). Therefore '

R(M — A;) = L2(Q).

So Ay generates a Cy—semigroup of contractions. The same is for A;. O

THEOREM 2. Fort > 0 we have

(27) ||T0(t)u0 - T2(t)T1(t)U0|IL2(Q) = O(t) if Ug € H2(Q) N H(}(Q),
and
(28) “T()(t)UO . Tg(t)Tl(t)uO“L2(Q) S_ Ct2 if Ug € H4(Q) N H(}(Q),

where C' is independent of t.
PRrRooF: From [11, Th. 2.4] we obtain
To(t)uo — up — tAug

(2.9) = /Ot (To(r) — I) Aug dr
— /: /UT ATy (s)Aug dsdr = fut(t — 7)ATo(7)Auy dr.
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As the operators are closed and also ug € D(A), we get i
ST (o = T(t)(Ar + 42)T (Duo |
%T2(t)(A1 + Az)Tl (t)uc = Tz(t)AlTl (t)Al’LLo + 2A2T2(t)T1 (t)A1 Ug + A2T2(t)A2T1(t)uo. i

Consequently,
Tz(t)Tl (t)ug — Uy — t(Al + A2)’U,0 |

= /t TZ(T)(AI + Az)Tl (T)’u.o dr — t(Al + Az)Uo |

(210) _ / t /0 T(Tg(s)A1T1(S)A1u0+2A2T2(S)T1(3)A1U0+A2T2(3)A2T1(3)“0)deT

= /t(t — T)(TQ(T)AlTl(T)Al'U,o + 2A2T2(T)T1(T)A1’U.o + Ang('r)Ang(T)ug) dr. I |

Because Aug = Ajuo + Azuo, by substracting (2.10) from (2.9) we obtain

| To(t)uo — T2(t)T1()uol L2¢0)
t2

< tlz{H /0 (£ = 7)ATo(r) Auo dr

L¥(Q)

+ l At(t — T)(Tz (T)AlTl (T)A1u0 + 2A2T2(T)T1(T)A1uo + A2T2(T)A2T1(T)UO) dr

L’(Q)}

|

|

|

|

|

|

|

1 | \
< 59 Jaax, [|ATo(T) Auol| 20 |
|

|

|

|

0<Lr<t

+ max
0<r<t

Ty (7)Ar T (1) Aruo + 242 T (7)T1(7) Aruo + A2T2(T)A2T1(T)“°Hum)} =%

From the definitions of the operators and semigroups and also from the regularity property
for the parabolic equations, as in [8], we can see that this constant is independent of ¢ but
depends on ||uo||g¢). This proves (2.8).

To prove (2.7) we note that: if ug € Dom (A4;) N Dom (Az), then Aug = Ajug + Azug.

So
hm T()(t)’uO e Tg(t)Tl (t)uo
t—0t t
= = To(t)’do — Ug _ Tz(t)Tl (t)'u.o = Tz(t)U() _ Tz(t)UO — Up
t—0+t t t t
= Aug — (Aruo + Azup)

=0.




According to Theorem 1 and 2 we can discretize the original problem in the following
way. We first divide [0,T] into N subintervals

[tiytit1] 1=0,1,2... ,N-1 tipp—ti=T/N=r.

Then at each subinterval {t;,ti41], 1 =0,1,2,... ,N — 1, we first solve the subproblem (in
the z—direction)

d
% = A1u1, w1 € Dom (A1) C Ho(Q), t€ [ti,ti]

(2.11) u1(t;) = ua(ts)
if i =0,u(0) = uo.

Then by moving the information we obtained at the time level ¢;4+; back to the time level
t; we solve the problem (in the y—direction)

(2.12) dt

d
{ 2 = Ajug + f ug € Dom (A2) C H(}(Q) , tE€ [tiutH—l]
uz(ti) = ua(tit1).

Now us(t) represents the final approximation for u(t) for ¢ € [t;,ti+1]-
Note that (2.11), (2.12) mean

u1(tivr) = Ta(r)ua(t:)
ug(tit1) = To(r)ua(tiv1) + /_l+1 Ty(tigr — t)f(t) dt

¢

= Tp(7)T1(7)ua(t:) + 7 f(ti41) + O(7?).

But
u(tiv1) = To(m)u(t:) + /t ™ To(tiy: —t)f(t)dt
= To(m)u(t:) + 7f(ti41) + O(7?) .
Consequently

fu(tiv1) — wa2(tiv1)|l2(e)
< ||T0(7')u(t,-) — Tz(T)Tl (T)uz(t,‘)lle(Q) + Cr?
< (To() = Te(r)Ta (7)) ulti)ll p2ca) + 1 To(T)Ta(7)(u(ts) — ua(t:))ll L2y + C7°

<Y (T () = To(r)Ta () ults) L2ey + €77

i=1
{ <iCr? if u(t) satisfy (2.8),
=qo(7)  if u(t) satisfy (2.7).




Here we use the property that T;,T, are Cp—semigroups of contractions. Further, if we
assume ug € H*(Q) and a1, ay are regular enough, then as in [8], we can prove u(t) €
H*(Q), Vit > 0, so u(t) satisfles (2.8), and also |[u(t)|| yy4(q) is uniformly bounded with ¢.
So the constant C here is independent of 7.

The solutions of (2.11) and (2.12) exist and are unique by Theorem 1. Because 4;, A,
are all defined on 2-D domains, (2.11) means that u; is the variational solution of the
problem

G (0006 Noa + (0 IFEC 0. 5200) =0
Vo(z,y) € Ho(Q) , t € [ti, tita]
ul(xay’ti) = U2((L‘,y,t,‘)-

This 1s a 2-D problem, we should in practice use a 2-D FE-method to solve it. However,
we have the following theorem:

(2.13)

THEOREM 3. Problem (2.13) is equivalent to the following problem:

0 Ov
FCuDGCY) =0 WeH)
0,I

>y

G G100, + (005

U’l('v y)ti) = u2('a y,tl')

for every fixed y € (Ymin,Ymax), Where Iy = (d1(y),d2(y)). Correspondingly, one gets u,
by solving the 1-D equivalent of form (2.12).

(2.14)

PROOF: As we see in the proof of Theorem 1, when we solve (2.14) for every y, the obtained
solution satisfies (2.13). However, because A; generates a C,—semigroup of contractions,
the solution of (2.13) is unique. So they are equivalent to each other. O

Theorem 3 means that the solution of (2.13) satisfies (2.14) for every y, and when we
solve (2.14) for every y, the solution satisfies (2.13) (see Figure 1.1). The corresponding
result holds for u; as well. For real computings we just compute (2.14) for finite y, for
example, in finite number of lines (cf. Fig. 1.1 and Fig. 1.2).

This theorem shows that we can solve (2.11) and (2.12) by a 1-D FE-method (with 1-D
cubic spline functions, for example). Moreover, we can solve (2.11) and (2.12) by parallel
processing because for different fixed z or y the obtained problems are independent of each
other.

In Section 3 and 4 we shall describe the numerical implementation of the proposed
method.

3. On solving the 1-D subproblem

For the sake of the multidimensional problems, we should first describe the numerical
realization for the 1-D problem
Ou(z,t 9 0 t .
280 - 2 (2D + ) n m0 OV x0T
u(z,0) = uo(w) , TE (0, 1)
u(0,t) =u(1,t) =0, t € [0,T).

(3.1)




We use a FE~method to solve problem (3.1). We take a uniform subdivision of (0,1) with
mesh size h to define the nodal points z; = ¢th, 1 =0,... ,M, M = % We choose the
cubic B-spline ¢;, i =0,... , M as the basis function. In order to give expression for ¢;
we first define the following function

i — )3 _ )3 3
(2 6:1:) _2(13:1:) _$3+2(1—;—1)’ o<z < 1
)3 )3
(2 6:1:) _2(13.7:) 43 1<z<0
— )3 )3
go(:c)—<(26a:) _2(13:1:), 0<z<1
)3
G-z Jci<o
6
0, elsewhere

and then define the functions ¢; as follows

(32) 6ie) = (252,

QOur basis functions are defined as follows:
vi(z) =¢i(z) , 1=2,3,... M -2

and at the end points we define our basis functions as

Po = Po — 4P,
Y1 = ®1 4990
1

PM-1 = Pu_r— ZSEM

Ou = Pu — 4Prm41,
which satisfy the Dirichlet boundary condition. Here @_;, @ar4q, are the functions as in
(3.2), but they are extended out of the interval (0,1) (see [12, p. 208, 13, p. 73 ] for

details).
The discrete analog of (3.1) reads

4 1uvd:v+ 1a%%d:c—/lfv dz Vo, € S* t €[0,T]
(3.3) at J, " o 0z 0z  J, " b ’ ’
un(z,0) = ug(2),
where up(z,t) = Zf\io z;(t)pi(z) and S* is the FE-space spanned by the basis functions
{oi}M,. Now (3.3) leads to the initial value problem:

{B:&(t) + Az(t) = F(t) , te€l0,T)

(3.4) 2(0) — o0,
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where B = (b"i)(M+1)><(M+1)’ A= (aii)(M+1)x(M+1) and F(t) = (fi)m+1 with compo-
nents

b.._/l — - la&p;%dz f-(t)—-flf(t T)p; dz
LY ) SO'QPJ a"J_ 0 61,‘ am T e A ] P .

The implicit Euler scheme for solving (3.4) reads

B n+l1 __ n B n _
(—A—t—i—A)x = B +At:1: , n=20,1,...
.’L‘O=.’l}0.

(3.5)

In the above algorithm we in fact do not need to compute z°. Only Bz° is needed. As
up(z,0) = ) z;(0)pi(z), multiplying both sides by ¢; (j = 0,1,...,M) and by integrat-

ing we get

2 zi(0)(pispi)oa = (un(®,0),05)0,0 = (uo(), ¢5)0,0

that 1s
(3.6) Bix® = b,
where b = (bp,...,by) with components b; = fol upidz. Note that we do not need

to solve the system (3.6), but only to compute b; (analytically or by applying numerical
integration).

The implicit Euler method is unconditionally stable. At the whole the accuracy in above
approximation is of order 0(h* + At). In the following we give the numerical results, which
illustrate the accuracy in L®°-norm. In fact we have proved the error estimate in L?-
norm (which is convenient in the semigroup theory), but in numerical tests we control the
pointwise error. This is necessary to control numerically as well as the error in L?-norm.

EXAMPLE 3.1. Let a =1, u = e""ztsin('lra:), f=0and T = 1. Table 3.1 shows the
accuracy of the computed solution in L*°—norm (maximum norm over inner grid points).

h T h? h3 h*
1/10 1.74-2 1.81-3 1.86-4
1/20 4.49-3 2.27-4 1.15-5
1/30 2.00-3 6.72-5 2.09-6

Table 3.1. ||u — up | Lo

In using this 1-D solver to multidimensional problems we encounter the situation that

we know ug(z) only at the node points (see Step 3 in §4). In order to get z in (3.5) we

use the following technique.

11




When we divide the interval (0,1) into M elements, the freedom of the basis function
is M + 1. Because the homogeneous boundary conditions are naturally satisfied, we only
have the values of ug(z) at the M — 1 inner node points, which are

M

(3.7) uo(e) = 3 2dpi(c).

1=0

We note that in order to get z° we still need two extra conditions. We choose the derivative

at the end points 2 = 0 and z = 1 as these conditions and use the following technique to
compute it.

By using the Taylor expansion and also because of u(0)=0 we can get
/ 4 1 4
(3.8) u'(0) = [ 4u(h) — 3u(2h) + gu(Bh) — Zu(4h) /h 4+ O(h*).
u'(1) can be computed in the same way. From (3.7) we also know
M
(3.9) up(e) = Y 22¢i(a).
1=0

With »'(0) and u'(1) approximately obtained as in (3.9) we can compute z° =
(23,...,2%;) by solving the following system of equations obtained from (3.7) and (3.9)

21 : ub(0)
Ui ARG

310 D =l
I I Y B e
S £ VAN AT

4. Application of the 1-D solver to multidimensional case

With the 1-D solver as described in §3 we can solve the 2-D problem (1.1) in the

following way:

1. Embed the domain 2 into a grid consisting of rectangles as in Figure 4.1.

2. Store the boundary points. We should point out here that the boundary points can
be taken as the grid points near 0, but because only 1-D problems need to be
solved, we can take the exact boundary points, for example we take P; instead of
P, as in Figure 4.1. However, now the computation of u} in (3.8) and also (3.10)
should be changed.

3. At the time interval [t;,t;41], ¢=0,1,2,... solve (2.11) first and then (2.12).

12




Figure 4.1

For example, when ¢ = 0, we take the initial value in (2.11) as u3(0) = ug. For every yn
call the 1-D solver to solve (2.11) on (d1(yy), d2(ys)) to time t = At.

Then take the value of u; at the time t = At as the initial value for ug at ¢t = 0in (2.12).
Note that because we solve u; discretely, when we solve (2.12) for z = z,,, we only know
up at the node points. Consequently we use the 1-D solver as described in the second part
of §3 to solve (2.11) for every z, from t = 0 to t = At.

"Then proceed to the next time interval. Solve (2.11) first for every y,,. Then solve (2.12)
for every z,. By calling the 1-D solver we mean the method described in the second part
of §3.

For parallel prosessors, if we solve (2.11) (see also (1.2) and Fig.1.1) on N lines in the
z-direction then we use N processors to compute them and then if we solve (2.12) (see also
(1.3) and Fig.1.2) on M lines in the y-direction we can use M — N (we assume M > N) new
processors plus the N processors to compute uz. The following examples contain results
of the numerical tests. In the example we take a; = a5 := a,a3 = a4 = as :=0in (1.1).

EXAMPLE 4.1. We take Q = (0,1) x (0,1), a = e®¥, u = e'sin(nz)sin(xy) and T =

1. Moreover, f and ug are obtained through (1.1). The L®-norm errors for various
discretization parameters are in Table 4.1.

k 4 h? h3 ht
1/5 0.545 0.136 3.208-2
1/10 1.656-1 1.823-2 2.337-3
1/20 4.423-2 2.341-3 1.198-4
Table 4.1. |ju — up, ||

With the 1-D solver we also easily get the numerical results for 3-D problems which

13

R —




show the same convergence rate (see Example 4.2). In the next example the problem

% =V -(GVU)"*’f(x,y,Z’t)

u(:z:,y,z,O) . uo(x,y,z) 3 (m,y,z,t) € 2 x [O’T]

u |aqxfo,71= 0

(4.1)

is solved in = (0,1)x(0,1)x(0,1) with 7" = 1 and a is assumed to be a scalar parameter.

EXAMPLE 4.2. Let a =1, u = e¢=3™ tsin(nz) sin(ny) sin(rz) and f = 0. Numerical errors
at the nodal points are shown in Table 4.2.

h T h? h3 ht
1/4 7.95-2 2.67-2 7.60-3
1/8 2.65-2 3.50-3 4.16-4
1/16 6.98-3 4.50-4 2.50-5

Table 4.2. ||u = ’U,h,-,-”Loo

It is remarkable that in using our method in computing the 3-D problem very small
computer storage is needed and we also get very good accuracy. In the paper we require
that the parameters a;, 7 = 1,2,...,5 are time independent. But this is not essential. We
have also done the computing when these parameters depend on t. They also show the
same convergence property.

5. Conclusion

From the theoretical analysis and the numerical experiments we should point out that
our method has the following good points:

1. We can use a parallel processor to solve the 2— and 3—-dimensional problems.

2. With this splitting technique we can solve all multidimensional problems by using
only a 1-D finite element method. Because only a 1-D finite space is needed, we
have plenty of good finite element spaces available. For example, any order spline
functions; P—version FE-spaces, H-P version FE-spaces. From this we also get
another very important advantage, that is, we remove all the great difficulty in
constructing these FE-spaces for multidimensional domains. In this paper only
cubic spline functions are used. These have a convergence order of (1/N*), but a
freedom of N + 3. Here only a first order scheme was used for the time variable. In
order to improve the convergence order in the time variable a boundary correction
is necessary as mentioned in [6].

3. In the computing we only need to solve the 1-D problems and so a small amount of
computer storage is needed. This makes it possible to solve very complicated 3-D
problems using micro—computers or transputers for example.

4. The input for our method are the boundary points, which is much less than in the
standard FEM. Moreover, we can also use nonuniform mesh sizes in our method.
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REMARK 5.1. When mixed derivatives occur in (1.1), i.e. 5‘9;((112 g—:), %(am 5%), we can

use a transform to turn the equation into the form as in (1.1). Accordingly, the boundary
is also changed.

REMARK 5.2. It seems quite straightforward to extend the method for the hyperbolic
equation

Ut = V(GVU) + f
and for the fourth order problem
uy = A(aAu) + f
and for
Ut = A((ZAU) + f
with appropriate boundary and initial data. The proposed method seems to give excellent
results in the parameter identification of these problems [14].

Acknowledgements: The authors would like to thank professor Lin Qun for his advice
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