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Abstract. A brief survey with a bibliography of superconvergence
phenomena in finding a numerical solution of differential and integral
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gent schemes for elliptic problems in plane employing the finite element
method.
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1. Introduction

The purpose of this paper is to give a survey of the existing Titera-
ture on superconvergence techniques for differential and integral equa-
tions. Especially, we shall concentrate (Section 2) on efficient super-
convergent schemes for a class of important problems - the second order
elliptic boundary value problems solved by the finite element method.

During the development of this method it has been found out (see
e.g. (16, 46, 70, 73, 98]) that the rate of convergence of FE-approxima-
tions at some exceptional points of a domain exceeds the possible global
rate. This phenomenon has come to be known as "superconvergence". Such
points of exceptional accuracy of the derivatives of FE-approximations (the
so-called stress points) have been observed e.g. in [17, 47, 99, 166,

179, 192].
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A systematic study of superconvergence phenomena seems to have its
peginning in the seventies. There has been a great effort focused on
the superconvergence at nodal points and also at the Gauss-Legendre,
Jacobi, and Lobatto points etc., see [73, 112, 33, 16]. However, at the
present time the term superconvergence is used in much broader sense
than before. One can recover the Galerkin solution or its derivatives
by means of various post-processing techniques to produce an acceleration
of convergence, and this is also called by many authors a superconver-

gence if the post-processing is easily computable. After such a post-

processing one can often get an increase of accuracy not only at some
isolated points, but also in a subdomain (local superconvergence) or
even in the whole domain (global superconvergence).

In Section 2 we introduce several superconvergent FE-schemes for
plane elliptic problems which possibly will characterize what was done
in this field. Further we only mention superconvergence phenomena for
two-point boundary value problems and other related problems.

Section 3 is intended to be a brief survey of extensive literature
on superconvergence for parabolic and hyperbolic problems, integral equa-
tions, and other problems if the Galerkin, collocation or least squares
method are employed.

Recently the number of papers concerning superconvergence has con-
siderably grown and most of them have been written during the Tast five
years. Thus this paper should facilitate the orientation in the litera-
ture. In order to help the reader, the bibliography is equipped with

the reference numbers to Mathematical Reviews.




2. Superconvergence schemes for elliptic problems

2.1, The aim. The main aim of this section is to present several

nd order elliptic boundary value prob-

superconvergent FE-schemes for a 2
lem in plane. For the sake of clarity, we demonstrate these schemes in

their simplest setting and only for the Poisson equation

1]
—

~AU in @,

(2.1)

u=20 on o ,
where Q < R2 is a bounded domain with a Lipschitz boundary 39 and
fe LZ(Q). Furthermore, we note superconvergence results for two-point
boundary value problems, for higher order elliptic problems in plane and
for the computation of the boundary flux. We close this section with a

remark on other techniques for the acceleration of convergence.

2.2._ _Preliminaries. Let us introduce several notations and defi-
nitions. The Euclidean norm is denoted by |[-]| . We write QO cc Q
if 9y is a domain such that ﬁo<: Q. By Pk(Q) we mean the space of

polynomials of degree at most k. The usual norm and seminorm in the

Sobolev space (w';(a))d (k€ (0,1,...},de (1,2}, pell,=]) are

denoted by II'”k,p,Q and |'|k,p,9 , respectively. In particular, we
: k _ ok _ _ -

write HY(Q) = WP(Q) and Il = II-Ilk’Q = II-IIk’p,Q for p=2.

The space Hé(Q) is the closure of CE(Q) under the H-II1-norm.
We denote by Th a partition (triangulation) of the domain Q in
the usual sense [53, 166]. Up to the end of subsection 2.3.7, the fam-

ilies (T of partitions of Q are supposed to be strongly regular;

h}
i.e. any K € T, contains a circle of diameter Ch and is contained in

(4)

h
a circle of diameter h, 0 < C <1 independent of h and K.

(4) Here and in what follows the letter C stands for a generic posi-
tive constant which may vary with context.




We denote by Vh c Hé(Q) a finite element space corresponding to

Throughout the subsections 2.3, 2.6 and 2.7, the notation u s

T

"
used for the weak solution of (2.1) and u is supposed to be sufficiently

smooth. By u, € Vh we mean the Galerkin approximation of u, 1i.e.

where (-,-)0 is the inner product in (LZ(Q))d, d=1,2.

2.3._ _The superconvergence_results_for_the problem (2.1). For a

"reasonable" choice of k and p, the best possible global estimate for

the Galerkin method is usually of the form

AU = Auplly o S

where A = I (the identity operator) or A =9, C(u) depends on some

norm of u, and n(h) which is independent of u, has mostly the form

a(h) =% Inhi®, «>0, 8>0 real.

We do not give an exact general definition of the superconvergence
since there is a lot of very different approaches to it. Nevertheless,
we outline roughly what we mean by superconvergence in this section.

Consider a linear continuous post-processing operator |

(2.2) ~: Auy > Aup s

The post-processing (2.2) is said to cause the superconvergence if

fAu - Kﬁhll — o(n(h)) as h - 0.
Here, the norm Ii-1l has to be close to the H-llk'p g-norm in some |
sense. For instance, |i-|l may be a discrete analog of the II-1, o g-norm,
Or » = . 1] = .
' -1 [l ”k,p,QO for 2y == @, or -1l I ”k,p,Q , etc.

Early papers established superconvergence phenomena mainly when

(2.2) was a restriction operator. Recently, however, there is a growing




literature on superconvergence, where the post-processing (2.2) is an
averaging, convolution, or smoothing operator. We will illustrate

various types of (2.2) in the following examples.

2.3.1. In the first place we introduce the superconvergence phe-

nomenon at nodal points, which was analysed by Douglas, Dupont and

Wheeler [73]. Here A = I and the post-processing (2.2) is a restric-
tion.
For a partition 0 =n4 <ny ... <ny = 1, let I.=1In_, ,ni].

Fix an integer k > 3 and define

(2.3) S = {s € Hy0, 1) | s € P (L

)) 1'=1,...,m}
1‘ ‘l

and the finite element space on o = (0,1)x(0,1) via the tensor

product

V, = S.n N

h h*

Then

c+2 (5)

max lu(X) = uh(X)l S C h llullk+3 ’

xENh

where N = {(ni ,nj)} is the set of nodal points and ’Uh(x) S uh(x)

for x € Nh . This is a superconvergence result in the sense that the

rate of convergence at nodes is greater than globally possible, that is

< c hk+1(

hu = uplly o g ullyp o * Nullag og)

2.3.2. Next, we present the result of Zlamal [192], where ~ s
again a restriction operator but A = V.
Let the domain & be a finite union of rectangles with sides

parallel to the coordinate axes. Partitions Th are formed by rec-

(5) In what follows all the statements hold only for a sufficiently
small discretization parameter h.




tangles and Vh < Hg(Q) consists of continuous functions which are
incomplete polynomials of the third degree on every K € Th (the two
terms x? and xg are missing in the cubic polynomials). These poly-
nomials of the so-called Serendipity family are uniguely determined by
the values at the corners and at the midpoints of the sides, and it is

well-known that
Iu - VU ll. < C he Jlull
h'"0 - 3

is the best possible rate. Let us denote by Gh the set of all maps

of the four Gaussian points (=v3/3,£/3/3) of the square

K=1[-1,1] x [-1,1] through one-to-one linear continuous mappings
FK: K>K, Ke Th' Then the arithmetic mean u of the values

| Yu(x) -%h(x)l, x€G, , (where V~uh(x) = vu, (x), XEGh) is bounded by

3
K S Ch (|U|3 + |U|4)

or, equivalently,

(2.4) 0% T 1vulx) - Fu (1§ CR Tl + Tuly).
XEGh

This estimate is valid even for a more general second order elliptic
equation with variable coefficients and also for tne homogeneous Newton
boundary condition [192]. In fact, Zldmal [193] proved more than (2.4),
namely that

(2.5)  nC T 1vule) -, (015) 12 = o)
xe6

This is fhe discrete Lz—norm estimate. The bound (2.4) can be generalized
to the one- and three-dimensional cases and for other elements of the
Serendipity family, e.g. for rectangular bilinear elements, the sampling
at centroids leads to the O(hz) superconvergence. The generalization

for curved isoparametric elements (including the reduced integration)




can be found in Zlamal [193] and Lesaint and Zlamal [112]. Related
papers include Zldmal [194, 195]. Some extensions of (2.4) under a
weaker condition on the ellipticity can be found in Leyk [115], see

also Chen [48, 50].

2.3.3. We introduce a simple averaging post-processing for the

gradient (A = V) suggested, among others, by Lin, LU and Shen [121].

Let Th consist of triangles and let

5 - 1oy | :
(2.6) Vy, = {thHO(Q)| Vh||<€ P1(K) vKeT }.

Moreover, we assume that each Th is uniform, i.e. any two adjacent
triangles of Th form a parailelogram.

Denote by Mh the set of the midpoints of all sides of the tri-
angulation Th' As the gradient of u, € Vh is constant on every

one may define
o =1
(2.7) Vuh(x) —Z(Vuh|K+Vuth.), x €M na,

where K, K' € Th are those adjacent triangles for which x € K n K",

Now if u € C3(d) n Hé(m then
(2.8) max  {vu(x) - ¥O, ()1 = 0h 1Tnh1).
XEM, NN
h
Note that
vy - vuplly g o(h IInh1),

or even 0O(h) for convex polygons [148].
The bound (2.8) was derived (see [122]) also for quasi-uniform

triangulations in which any two adjacent triangles of T, form only

h
an approximate parallelogram, i.e. it holds that

L2(S) - &(S") I < Cn?,



where £(S) and £(S') are the lengths of the opposite sides of the
parallelogram. For another type of triangulations we further refer to
Lin and LU [119]. The O(hz) superconvergence in the discrete Lz-norm
(even for variable coefficients) is given by Andreev [2] and Levine
(113, 11417.

The averaging technique (2.7) is based on the fact that only the
tangential component of vu, is a superconvergent approximation to the
tangential component of vu at the midpoints of sides (2, 114]. Also
sampling at the two Gaussian points of each side of triangular quadratic
elements leads to the superconvergence of the tangential component of

the gradient, see Andreev [3].

2.3.4. A superconvergent recovery of the gradient at centroids is

proposed by Levine [114].
The space V, 1is as defined in (2.6) over a quasi-uniform tri-

angulation. Denote by Ch the set of centroids of all K € Th . Then

for x € Ch N QO we define

3

Z

R
(2.9) Vuh(x) =z (3 VUth + Vuh|K1),

i=1

where Ki are triangles adjacent to K, x &€ K, and Qg <= is

fixed. Now we have the estimate

T vulo - 95 0D e g .

xECthO
whereas
(2.10) Ivu - vupllyg < Chilull, .
The O( h2) superconvergence is also proved when an appropriate

numerical quadrature (e.g. the centroid rule) is used.

The relation (2.9) can be interpreted as follows. We first recover




the gradient at the midpoint of each side of a triangle (cf. (2.7))

and then average these three gradients to obtain an approximation to
the gradient at the centroid. The O(h2) superconvergence of the
gradient at centroids; when the linear elements are used for solving

a denenerated elliptic problem, is proved in E1 Hatri [89]. Obviously,
we may uniquely determine a piecewise linear discontinuous field §ﬁh
on Q5 ==, which fulfils (2.7). Then we can easily derive from

(2.8), see Neittaanmdki and K¥izek [136], that ﬁﬁh recovers the gradient

at any point of QO ,  d.e.

~ _ 2
(2.11) | vu - vuh”O,w,QO = 0(h"|1Inhl).

Analogously, for the || -norm, the O(hz) superconvergence can

: HOsQO
be obtained. Some extensions to a global superconvergence are discussed

in the forthcoming paper of Lin and Xu [123].

2.3.5. Another simple averaging technique has been analysed by

KFiZek and Neittaanmaki [104].

Again we assume that V, s of the form (2.6). Thus, when one

needs an approximation of Vu at some nodal point x € N then it

h 3
is quite natural to calculate an average of all the constant vectors
Vuh|K, where K € Th are incident with x. This technique is,

in fact, often used in practice, see e.g. [90, 138, 177, 191]. Putting

(2.12) o, (x) = + 3§ vuy |

5 Y XEN
KN{x}#9

na,

K h

we can uniquely define the continuocus piecewise linear field ﬁﬁh over
a fixed 2p s q. Suppose now that 9 1is a parallelogram and that
T, are uniform. Then (see [104]) the following local superconvergence

estimate holds (cf. (2.10))

~ 2
It vu - VuhHO,QO < Ch IluH3’Q-
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When 30 1is curved, the Tocal 0(h3/2) superconvergence can be
achieved also for the Newton boundary condition and smooth coefficients
[(1041. If Q@ s a polygonal domain covered by uniform tFiangu1ations
we can also get (see KriZek and Neittaanmaki [106]) the global super-

convergence of ﬁﬁh S wh X wh:
(2.13)  N9u - Sl . < Chlull

’ h"0,n - 3,0 2
where

(2.14) W= tw e H'(2)] W

h € P1(K) VK € Th}.

hlk

However, this requires to define the averaged gradient at boundary

nodes, for instance as

{ ﬁﬁh(x) =0 for all vertices x of 30, and
(2.15) b, 3
~ 1 =
u.(x) =5( ) wu - vu )
h 2tk Tk T Vnlkg

for the other boundary nodes x € Nhn 3R . Here Ki and K3 form

a parallelogram for every i =0,1,2, and K1n K2n K3 = {x}.

2.3.6. Next, we introduce the smoothing technique suggested by

Oganesijan and Ruhovec [144], p. 94 and p. 189.

Let the boundary 3Q be from the class C3 and let V_ be

h
again as in (2.6). Suppose that triangulations consist of right-angled
isosceles triangles in every Qp =< 9 for a sufficiently small h.
For details about the triangulation near the boundary 30, we refer

to [143, 144]. We set, see [144] (or [142], p. 148)

up(x) = _4h-2 J up(x + y)dy,

Dy,

where Dh = (-h,h) x (<h,h). Then for Qg =2, we have




1

o~ 3/2
[lu uhll1,Q < Ch Hu||3’Q :

0
By comparison with (2.10) we find that the above error bound is a super-
convergent estimate for the gradient. For the global O(h3/2) super-
convergence, it is necessary to extend U, outside of @ 1in an appro-
priate way (see [144], p. 21). Note that the averaged gradients in
(2.11) and (2.13) are not potential fields in contradistinction to the

case introduced here.

2.3.7. The Galerkin solution can be post-processed also by a
convolution with the kernel proposed by Bramble and Schatz [24].

For simplicity, assume that @ «can be decomposed into a finite
numpber of identical squares and let the nodal points of rectangular

partitions Th be of the form (ih, jh), where 1i,j are integers.

For a fixed k > 2, define the space of the two-dimensional B-splines
- 3y :
h o=ty € HO(Q)g vh(x1 ’XZ) =

Gin e 213 /01 g lxg/h =3y

1

where ajj € R and 9y is the one-dimensional B-spline (of order

r=k+1) given recurrently by the convolution

g :go*g p=1)2""’k’

p p-1°

9 being the characteristic function of the interval [ -3 '%].

Let us define Uh via the convolution

- _2 2 k"1
(2.16) U (x) = h J(_f L kg (O =y )/h-3)) u (y) dy

1
R i=1 j=1-k J !
' |_|_1 . _ o
where k-j = kj = ij for j=1,...,k-1, kO = kO , and where
Ky 3 =0,1,...,k-1, are determined as the unique solution of the

J ]
linear algebraic system
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k=1
1k | g @) (ve)®Md

0 J y = Sgpe Mm=0.0, kT
R’

J

Hence, kj depend only on the choice of k (a table of the constants
kj for 2 < k <5 can be found in [24], p. 110). In (2.16), Uh(x)
can be calculated analytically at any point x € Ry <=2, especially
at nodes it is simple.

If k>2 and QO cc:Q1 cc 2 then we have the superconvergence

estimates
=Tyl g < € th(uuqu,g21 MUl o) s
l=Tyllg uq € O th(IIu|I2k+2’Q1 Tl g ) s
whereas
u-uplly = oS, u-ung o= ot

The above technique of [24] is presented for more general classes
of splines in Rd and also for negative norms. Moreover, the authors show how
to obtain the superconvergence up to the boundary when @ 1is the unit square.
The generalization of the above superconvergent interior approxi- .
mations also to derivatives of u 1is studied by Thomée [170]. For
the post-processing by the convolution with the Bramble-Schatz kernel,

see also Douglas [66, 67].

2.3.8. We are mostly far from superconvergence on general meshes,
which seems to be open problem for many schemes. However, the next
averaging (smoothing) technique proposed by Louis [128] is applicable

even for irregular partitions of a convex polygon < R2 . We only

assume that the finite dimensional spaces Vh < Hé(Q) nave the following

standard approximation property:

 For any v € Hé(Q) n Hk+1(Q), k >0, there exists a v, €V,
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with

K-m+1
llv = vl < Ch vl 4> me {0, 13,

Let X €Q and r > 0 be fixed with

Ulx ,r) = {y € Rz\ Ix -yl < r} caq.

Define the average of U by

(2.17) U (x) = J (Fy) (r(y = x) + vy =x)) + up(y) ap(y -x)) dy,
U(x,r)

where

1 2
i Inlz|, z € R,

<
N

N
-2

1}

1

8nr

Tzt - arf 1218+ (34 Tnr)

4

<
—
N
~
[}
(M
=

s z

Then for u € Hk+1(9), k >2, it is

~

(2.18)  Tu(x) - T (x)1 = 0(neky |

Louis' method requires more effort than that of Bramble and Schatz
(cf. (2.16)), since in (2.17) the domain of 1ntegra£ion is independent
of h. Moreover, (2.17) cannot be calculated analytically, in general.
S0 it is reasonable to use this procedure either only at,points of
special interest or at those points where other methods do not work
(e.g. on irregular meshes). Louis [128] gives also a formula for aver-

Zk)

ages-of vu, with the same accuracy 0(h 1ike in (2.18).

2.3.9. Also a least squares smoothing proposed by Hinton and

Campbell [90] can be performed to achieve a higher accuracy of Vi, -
The field vu, is discontinuous in general and thus a continuous field

ﬁﬁh may be computed from vu, through the Tocal or global L2-1east
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squares method. For instance, when Vh is given by (2.6), vup is
piecewise constant and we can thus choose §Dh in the class of con-
tinuous piecewise linear functions. Although the least squares method
requires more arithmetic operations than (2.12) or (2.15) do, the

numerical results are better, see [90]. Related works include Hinton

and Owen [91], Hinton, Scott and Ricketts [92].

2.3.10. A number of papers are devoted to the interior estimates

of higher accuracy, where (2.2) is the restriction Aﬁh = Auhlﬂo’

9y €<= @, Let us mention, for instance, Bramble and Thomée [25],

Descloux [61], Haslinger [86], Nakao [135], Nitsche and Schatz [141],
Schatz and Wahlbin [156].

2.3.11. For other superconvergence results for second order prob-
lems in R" (n > 2), the reader is referred to Babuika, Izadpanah and
Szabo [13], Bramble and Schatz [23], Dautov [56], Dautov and Lapin (58],
Dautov, Lapin and Lyashko [60],‘Douglas and Milner [76], E1 Hatri (88,8917,
Korneev [103], Lin and Xu ([123], Nakao [135], Zhu [189, 190]. Related
references further include e.g. Arnold and Brezzi [4], BSabudka and Miller
(14], Carey and Oden [341, Mansfield [129], etc. Numerical tests can be
found in [13, 14, 104, 106, 114, 128, 136, 137, 193].
2:.4.__Two-point boundary value problems. For the sake of complete-

ness, let us further recall the superconvergence results for the two-

point problem
(2.19) -u" +a(x)u' +b(x)u = f(x), x € (0,1),

with the Dirichlet conditions u(0) = u(1) = 0. The functions a,b
and f are supposed to be sufficiently smooth and let f =0 imply
U=10. The Galerkin method chooses uy, € Sh (Sh given by (2.3)) such

that for uniform partition

(2.20) (u% s Splg (2 U +bup, sy = (f ,sh)0 ¥, € Sy




This method exhibits the 0O(h superconvergence at nodal points,

see Douglas and Dupont [69] (or [70])

. 2k
max |u(n.) - uh(n.)l < Ch Hu||k+1.

0<i<m !

Moreover, on any segnent Ij there are k-1 interior points (the

k+2)

Lobatto points), where u- up is 0(h , 1.e. one order better than

globally, see Bakker [16]. At the k Gauss-Legendre points of each

k+1) convergence instead of O(hk),

I., the derivative wuy has O(h
see Lesaint and Zlamal [112]. A Tlocal O(h2k) accuracy for the first
derivative can be obtained from a system which requires very little
more computing than (2.20), see Douglas and Dupont [70]1. In Dupont (771,
a simple post-processing is performed to produce a superconvergence for
both the values and the derivatives at any point of the interval. For
a post-processing applied to the C1-Ga1erk1n approximation of (2.19),
see Doug]as-and Dupont [68]. Other superconvergence results for the
Galerkin method are described by Babuska and Miller [14], Chen (461, Douglas, Dupont
and Wahlbin [71], de Groen [85], Huang and Wu [97], Marshall [132], Wheller [182].
In the one-dimensional case similar to (2.1) it holds that
) when linear elements are used (see [166], p. 107),
1.e. there is no discretization ervor at nodes for an arbitrary parti-
| tion. Analogous results for higher order one-dimensional problems can
be found e.g. in [105, 185].
| Finally, let us mention important papers on superconvergence for
two-point problems using other than the Galerkin method. For the least
squares method, see Ascher [11], Locker and Prenter [126, 1451; for
the method of moments, see Mock [133], Rachford and Wheeler [147]; for
the collocation or collocation-Galerkin method, see Ascher and Weiss (121,
de Boor and Swartz [20, 22], Carey and Wheeler [35], Christiansen and
Russell [51, 52], Diaz [62], de Hoog and Weiss [93], Houstis [95],

Pereyra and Sewell [146], Wheeler [184]. Several papers given above
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contain also a superconvergence analysis for higher order problems.
For more facts about superconvergence results in HU , we refer to
the survey paper on two-point boundary value problems written by Reddien

(1511, (or Reddien [150], Nitsche [140]).

2.5._ Higher order problems in plane. For superconvergence phe-
nomena in higher order (fourth order) elliptic problems in RZ which
are similar to those of second order problems, we gquote e.g. Dautov [57],

Dautov and Lapin (591, Korneev [103], Zlamal [192].

2.6.__Boundary flux. MWe describe a method for finding a super-

-—— e = e -

convergent approximation to the boundary flux q = Vu v, Wwhere

3N
u is the weak solution of (2.1) and v 1is the outward unit normal to
30 . The method was first proposed and analysed by Douglas, Dupont and
Wheeler [72] for rectangular elements. For simplicity, we restrict
ourselves only to the usual Tinear elements, see e.g. Glowinski (8017,
p. 398.

Let V_ and W~ be given by (2.6) and (2.14), respectively.

h
We seek a function Eh = thSQ (for some W € wh) which is a better
approximation to g than qy, = Vuh|SQ - v. By analogy to the Green

formula, we may uniquely determine ah by

J ahvh ds = (vu, W) - (Fuv)y Vv, €W .

3N
Taking v, as the usual Courant basis functions at boundary nodes,
we obtain a system of algebraic equations with a sparse matrix. Solving
this system requires only 0(m) operations, where m is the number of
boundary nodes.

As suggested in [106], the post-processing technique (2.15) can also
be used for approximating q. Namely, define Eh = VUp, LR where
VU, s defined by (2.15).

Further superconvergence technigues for the boundary flux for second

Order problems in Rd (d > 1) are characterized in Carey, Humphrey
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and Wheeler [33], King and Serbin [102], Louis [128], Wheller [183].

2.7._0Other _technigues_for the acceleration of convergence. We
close this section remainding some post-processing techniques which
increase the accuracy but differ from (2.2).

A widely used technique is the Richardson extrapolation. We out-
line this method in the case of the problem (2.1). Let V, be as

given in (2.6) over a quasi-uniform triangulation T with the nodes

Nh . Define

(2.21) - %(4u

Yh h2 T Up) o

where Uy /2 is the Galerkin approximation over the refinement of T.n

by midlines. Then for the most favourable case,

max | u(x) - Uh(x)l s 0(h4),
XENh
whereas
2
Hu - llg o = 0(h%).

Hence, the accuracy of the extrapolation (4uh/2 - uh)/3 is much better
_ than uh/2' This very old and well known technique is proposed for
finite element method e.g. in Lin, LU and Shen [122],
Marchuk and Shaidurov [130, 131], Urvancev and Shaidurov [176] (and
Chen [49] for the one-dimensional case). The simultaneous use of (2.12)
and (2.21) was studied by Lin and Zhu [124].

Other techniques for the acceleration of convergence, especially
for the finite difference method, were treated by Lin and LU [117]
(splitting extrapolation), Lin and LU [118, 120] (correction techniques).

See also Marchuk and Shaidurov [131], Neittaanmaki and Lin [137], etc.




3. Superconvergence results for other problems

In this section we mention some superconvergence phenomena which

were discovered for other than elliptic problems.

3.1. _Parabolic_problems. Superconvergence results for parabolic
problems have been reported in the text books of Fairweather (78],
Fletcher [79] and Thomée [174]. Here, superconvergence phenomena
analogous to that for elliptic problems can be expected. For convenience,

consider the provlem

Q

u

3F - Au = f in ax(0,T), Q< R, T>0,
(3.1)  uwlx,0) =) in a,
u(x , t) =0 on 3x(0,T).

The superconvergence analysis of (3.1) with the usual Crank-Nicclson
scheme was done by E1 Hatri [87], among others. For instance, biguadratic
elements on uniform rectangular partitions T.n over Q give the accu-
racy O(h3 +r2) (where 1t 1is the time step) for the space gradient at
the Gauss-Legendre points in the discrete Lz—norm. Thus one sees that
this is similar to (2.5). The method of [87] has been considered also
for variable coefficients and higher order elements (including numerical
integration). _ .

The superconvergence technigue (2.7) for the problem (3.1) was
justified by Andreev [2]. He used a semidiscrete Galerkin scheme (that
is, the discretization in space only). Arnold and Douglas [5] also
applied a semidiscrete scheme (with 2 < R1) and obtained super-
convergence results for a quasiparabolic problem at nodal points. See
also Douglas [65] for a collocation method. With the help of the

Laplace transform, an alternative proof of superconvergence is given
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in Bakker [15]1 and Adeboye [1].

In fact, the literature on superconvergence results for parabolic
problems is very rich. Especially, let us recall the series of Thomée's
works [167, 169, 171-1741. Furthermore, we cite the papers by Douglas
(66, 671, Douglas, Dupont and Wheller (72, 74], Douglas, Ewing and
Wheller [751, Kendall and Wheller [101], Lazarov, Andreev and ET Hatri

(1101, Nakao [134], Wheeler [184].

3.2. _Hyperbolic_problems. Relatively few papers are devoted to
superconvergence phenomena when solving hyperbolic problems. For the
initial-boundary value problem for the first order equations (particu-
larly su/at+3u/3x = 0), see Cullen (55], Dougalis (63], Houstis
[94], Thomée [168], Thomée and Wendroff [175], Winther [187].
Second order problems are treated %n Dougalis [63], Dougalis and Serbin

[64]. Let us mention, for example, the result of [64], where the

problem
3 U L3 )2y s p(x)u = Fflx,t) din (0,1)x(0,T), T>0,
au

gf(x ,0) = uo(x), 0 <x <1,

with 1-periodicity of uO, u%, a, b and f 1in the x range, is considered.

The functions a ,b are supposed to be infinitely differentiable and
a(x) >a >0, b(x) > 0. The Galerkin subspaces Vh consist of periodic
B-splines of order r = k+1 on uniform partitions of [0,1] (k > 1

is the degree of the polynomials). A semidiscrete approximation of (3.2)
with a suitable choice of the initial conditions for the Galerkin equa-
tion leads to an increased accuracy of the approximate solution which
th) k+1) is the optimum Lz-error.

is  Of -accurate at nodes whereas 0(h
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Analogous superconvergence results have been obtained also for a multi-
step fully discrete Galerkin approximation. The effect of numerical

integration is analyzed in [64] as well.

3.3.__Some_special equations. There are also superconvergence
results for partial differential equations of various special types.
For the Boussinesg equation, see Winther [188], for the Korteweg-de
Vries equation, see Arnold and Winther [10], for the Sobolev equation,
see Arnold, Douglas and Thomée [6]. An averaging technique for the
Stokes problem can be found in Johnson and Pitkdaranta [100]. A super-
convergence result for the neutron transport equation has been estab-
Tished by Lesaint and Raviart [111]. We also mention the paper [139]

of Neta and Victory, where superconvergence phenomena have been pre-

sented for cell-edge and cell-average fluxes.

3.4.__Integral and integro-differential equations. The investi-
gation of superconvergence phenomena for integral equations had its
origin about 5 years later than that for differential equations.
Nevertheless, the existing literature is quite extensive.

Fredholm integral equations of the first and second kind that
arise from elliptic and some more general problems have been analysed
by Hsiao and Wendland [96], Arnold and Wendland [8], Wendland et al.
(54, 107, 165, 180, 181], see also Chandler [39] and Sloan and Thomée
(163].

Superconvergence results for the integral equation of the first
Kind were obtained by Locker and Prenter [127] when they employed the

least squares method. The Fredholm integral equation of the second

kind is the most studied case. Let us confine ourselves to a model

example

(3.3) ul(x) -jh(x,s) u(s) ds = f(x), xea=(0,1),
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where u is sought for given f and k. The Galerkin approximation

of (3.3) consists in finding up, € Vi such that
(uh - Kuh ,vh)0 = (f ,vh)0 Vv, € Vh’

where K is the integral operator occurring in (3.3) and Vh is a
piecewise-polynomial space (see e.g. (2.3)) based on polynomials of
degree at most K.

The study of the post-processing
(3.4) up = Kup + f

(which is proposed to be used also recurrently) is of particular interest

here. In the most convenient case we have

“u = uh l|1,0°,Q s

whereas

O(hk+1),

Hu-uplly oo =

see Sloan and Thomée [163]. For other related works concerning the
iterated Galerkin scheme (3.4), we quote Chandler [36-38], Chatelin

[40 -42], Chatelin and Lebbar [44, 45], Graham [83], Hsiao and Wendland
[96], Sloan [161, 162], Spence and Thomas [164]. Superconvergence
properties of the Galerkin approximation were also studied by
Richter [153].

For collocation methods, where the superconvergence at collocation
points is obtained, we quote Vainikko and Uba [178]. For superapproxi-
mation results on collocation methods, see Arnold and Wendland [8],
Saranen and Wendland [154]. A comparison of Galerkin and collocation
schemes and their-iterated variants has been presented by Arnold and

Wendland [9], Graham, Joe and Sloan [84].
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Next, let us mention the works of Brunner [26-31], Brunner and
Ngrsett [32] which are concerned with superconvergence when solving

Volterra integral equations of the first and second kind by collocation

methods. Some special equations have been studied by Goldberg, Lea and
Miel [82] (airfoil equation), Larsen and Nelson [109] (discrete-ordinate
equations in slab geometry). HMore details about the convergence
acceleration (superconvergence) for integral equations are included in
the survey papers by Chandler [38], Goldberg [81], Lin and Liu [116],
Sloan [160].

For integro-differential equations, see e.g. Brunner [30], von

Seggern [157, 158].

3.5.__Remarks. We close with a few comments about superconver-
gence in other fields. Some results for eigenvalue problems were
obtained by de Boor and Swartz [21], Chatelin [40, 42, 431, Chatelin
and Lebbar [45], Regifska [152], Schdfer [155], Sloan [159]. For the
theory of spline approximation, see Beatson [18], Behforooz and Papa-
michael [19], for superappro*imation, see Arnold and Saranen [7],
Costabel, Stephan and Wendland [54]1, Stephan and Wendland [165], for
variational inequalities, see Lapin [108], for the theory of optimal

control, see Reddien [149], and, finally, for a general operator theory,

see Lindberg [125], Winther [186].
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