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I. INTRODUCTION

In this paper we are concerned with the mixed boundary value problem for the
following div-rot system:

( 1.1)

(t.z)

u:f in {¿,
.r:g in d),rot

div

ft u:0 On fr,
n^u:0 on f2.

where O is a bounded domain in Æ2 with a Lipschitz boundary ôQ : f o w 11 v 12,
,fs is a finiie set of points where one type of boundary conditions changes into another
and T r,l2 arc disjoint and open in ôO. Functions/and g are given; for a differentiable
vector field u : (ur,ur), div u : ô(tt * ôrur, rot u : ôtuz - ôrur; n : (nynz)
is the outward unit normal to ôQ, which exists almost everywhere, n ..r : np1 *
* nzuz,n A u : hLu2 - flzurlf l-1 : Ø of f, : ø the usual compatibility condi-
tion is assumed.

Many physically interesting phenomena can be described by a system like (1.1) to
(t.Z) (e.g. the steady state Maxwell equations, the ideal fluid flow and mechanics
problems,see[2,3,5,8, Ll, 13, 14, 15,16, 19,21]).Such a problem isalsoobtained
when the gradient of a second order elliptic problem with mixed Dirichlet and
Neumann boundary conditions is looked for. For an extensive collection of examples

we refer to [5, 15, L9,zIfand references therein.
A flnite element approximation of the system (1.1)-(1.2) in smooth domains for

I t : Ø (or f, : Ø) is investigated in [3, 14, 18]. The aim of this paper is to generalize

these results to non-smooth domains and also to cover combined boundary conditions.
Because of non-smoothness, a technique quite different from that in [14, 18] is used
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to prove the Z-ellipticity or uniform 7, - ellipticity (see Theorems 3.1 and 4.3).
We utilize the concept of a stream function ([0]). fne paper is organized as follows:

In Chapter 2 we introduce sonìe special function spaces. A variational formulation
of the problem (1.1)-(1.2) is given in Chapter 3 and its solvability is proved for
.l-, and .l-, connected. Chapter 4 contains a finite element approximation of the
corresponding variational continuous problem. Finally, in Chapter 5 sonre numerical
examples are presented.

2. PRELIMINARIES

Let O c Rz be a bounded domain with a Lipschitz boundary. The notation Ho(A),
k> 0, is used for the Sobotev space, see [12]; especiatly É(A): Ho(O) wirh the
scalar product (', ')o.The usual norm in }lr(o) or iî(Hk(a))'z will be denoted by

ll.llo," u"¿ the-subscript O will often be omitted. We shall also denote by ll.llr,.
the norm in Û(f) for a measurable part f of ôQ. The notation Ht/,(f) is used
for the space of traces El. for E e ¡f t(f2).

Let Ck(Q) be the space of functions, the (classical) derivatives of which up to order
k are continuous in O. We write ô¡ : ôlôx¡ and put C@) : Co(ø).

We note (see [6], p. 16) that rhe functional yr* n.vlaa defined on (C*(Õ))2 can
be extended by continuity to a linear continuous mapping from the space

ø(div; o) : {v e (r'z(a))'zI aiv v e L,(q}

into H-tt'(ôO), which is the dual space to the space Htt'z(ôA).In this case, the Green
formula is of the form

(2.1) (div v, E)o + (v, grad ç)e: (n . v, e)aa Vv e Ir(div; O) YE e nt(A) .

Here ( ,, .)ao denotes the duality pairing between H-1t2(ôA) aîd H1/2(ôe), and
n . y is called the normal component of y. In particular, if n . vlao e L2(ôA) then

(2.2) (n .v, e)aa : | 1n . ,¡ rp a, vE e Hj(a) .

J uo'

The tangential component n 
^ 

veH-tt2(aQ) can be defined (see also [6], p. z0)
for v from the space

fI(rot; o) : {v e (I}(a))'z I rot v e L,(a)} .

The Green formula now reads

(2.3) (rot v, A)o - (v,curl E)o : (n n v, e)aa Vve }I(rot; O) yE e Ht(A),

where curl e : (ô-rq, -ôrE). More details about the spaces I/(div; O) and If(rot; O)
can be found in [6, 10, fi., 2O). F-urther, we define some subspaces of these spaces
in the following way:
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fr(div; e, r,): {v e (L'(a))' lt¡ e Ê1o¡: (v, grad ú)o : (-Í, ú),
Yrþ e Ht(a, f r)\ ,

H(rot; ç, r"): {v e (I}(a))' ltg e I}(o): (v, curl E)o :
: (g, E)o YE e nr(a, r r)\ ,

where

Hl(a,f) : {Eeu'(a)l E : o on f,}, i : r,2.

The functions f and g arc the divergence and rotation of v, respectiveiy. Note that
if ve /{(div;Q,ft)n(nt(A))z, then n.y:0 on fr, and analogously n A v:0
on l, for v e H(rot;9, f ,) n (H1(O)'z.

The symbols C, C1, Cr,... are reserved for the so-called gener,c constants which
may vary with context. Let us still emphasize that all statements will always hold
only for a sufficiently small triangulation parameter /r.

3. ON THE CONTINUOUS PROBLEM

We shall now give a variational formulation of the problem (t.t)-(t.Z). We
equip the space

{ : H(div; o)n /1(Lot;o)
with the norm

lll'lll : (ll'll3 + lldi"'ll3 + llrot'll3)'t' .

For f, g e Ê(a) we define the linear form

(3.1) b(") : (f, ¿¡u v)o + (ø, rot v)o , v e /' ,

and the bilinear form

(3.2) a(v,v') : (div v, div v')o + (rot v, rot v')o , v,v' e "// .

Further, let us introduce the space oftrial functions

V: H(div;9,f ,) n I/(rot; n,rr)
with the norm lll.lll.

By a (weak) uariational formulation of the problem (1.1)-(1.2) we understand
the problem of ûnding u e tr/ which satisfies

,.(3.3) a(u, v) : tt(r) for all v e V .

We shall call u the weak solution of the problem (l.I)-(1.2), since evidently
any sufficiently smooth u satisfies also (3.3). Conversely, any sufficiently smooth
solution ueV of (3.3) satisfies (1.1)-(t.Z), too (see the proof of Theorem 4.6).
Before we consider the unique solvability of (3.3) we have to prove two theorems.
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Theorem 3.1. Let Q c R2 be a bounded domain with a Lípschitz boundary. Then

(3.4) ll"ll. S c(llaivvllo + llrot vlls) for au vev,
if and only if f , and f 2 are connected.

Proof. ",+": 1o Suppose that .f1 is not connected and let f" be one of its compo-
nents. Let

(3.5) v: cvrlz,

where z e Ht(A) is a weak solution of the following problem:

(3.6) Az : 0 in dz ,

z:1. on f'r,
z:0 on fr-f'r,

ônz:0 on fr,

(a,,: ôlôn). We show that in this case v does not satisfy (1.+) by verifying first that
veV.

For the unit tangent t: (nz, -nr)to ôQwe write ô. : ôlôt.Let þ eHI(Q,f 
") 

n
n C-(O) be arbitrary. Since ry' : 0 on lr,we have by (3.5), (3.6) and by the Green
formula (2.3) that

(3.i) (v, grad ¿)o : (curl z, grad/,)o : -f ,@ n grad,/) d, :
)un'

lt: 
)uot 

ô'ry' ds : 
J r,,u'Ú 

ot'

But the last integral is zero, since either fl is a closed curve or tlt : 0 at the end
points of l-i. According to [4], p. 618, Ht(Q,f ) n C'(0) is dense in nl(A,f ,)
with respect to the ll 

.ll, - ro.*. Consequently, the relation (3.?) yields

(3.8) (v, grad ú)o : 0 Y{ e Ht(a, rr) ,

i.e. v e H(div; 92, ,l-r).
Further, using (3.5) and the fact that z is a weak solution of (3.6), we get

(3.9) (v, curl g)o : (curl z,cutlE)o = (grad z,grad E)o :6
for all E e Ht(Q,,I-r), i.e. v e H(tot; Q, f ,).

Now, from (3.8), (3.9) and (3.6) we find that div v : rot v : 0 in g, but ll"llo + O,

i.e. (3.4) does not hold.
2' Secondly, we suppose that f , is not connected and that f 

" 
is one of its compo-

nents. Then by an analogous argument as in past 1", it can be shown that Q.a)
does not hold for v - grad z, where z e Ht(A) is the weak solution of the problem

Áz:0 in ç),
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ônz:0 on lr,
z:I on f'),
z:0 on fr-fL.

'o+": Conversely, let l-, and J-2 be connected. Both the cases f t :0 and f 2 : Ø

are proved in [10]. So let l-, * Ø, I z * Ø, and let v e Y be arbitrary. LeI p e Hl (e, f 2)
be a weak solution of the problem

(3.10) p : div v in d¿ ,

ô,P:o on fr,
P:0 on f2,

Hence

(3.11) ($ad r, grad ú), : (-div v, ¿)o Yrþ e nl(o, rr)
and

(3.t2) llpll, s c,llciv vllo .

Utilizing (3.11) and the definition of fl(div; Q, f ,), we get for w : v - grad p that

(3.13) (w, grad ú)o : 0 vrþ e Hl(a, r,) ,

i.e. the vector function w is divergence-free.

Further, let EeHt(Q,f ) n C-(O) be arbitrary. Then the Green formula (2.1)
and (2.2) yields

(Bradp,curlE)6 : I oþ.curlE)ds : - I pa,qds : 0,' Juo' Jun-

as p :0 on ]-, and E: 0 on lr. Due to the density of I11(O, fr) n C-(Õ) in
H[(a,f)weget

(3.14) (grad n, curl E)o : g vE e Ht(Q, f ,) .

Next, from the connectivity of l-, and l-, we see that Q is either simply connected
or doubly connected. When O is doubly connected, then ,l-, is just one of the two
components of ôO and we have

(3.15) n.w:0 in n-'t'(fr)
(n-1r2(f r) is the dual space to Ht,t(f r), see [6,9]). As w is divergence-free we find
by the Green formula (2.1)Ihat (n.w,l)aa:0. Consequently, by (3.15) it also
holds that (n.w,I)r,:0, where (.,.)r, denotes the duality pairling between
n-tt'(f ,) and Hrt2(f r).

ny [6], p. 22, therc exists a stream function q e HI(A) (unique apart from an
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additive constant, which will be chosen later) such that

(3.16) curl q : n(:, - grad p).

The relations (3.13), (3.16) and (2.3) imply that for any {reHt(Q,f2)aC*(Q),

g : (curl q,gradú)o : -(curl þ,grad s)" : | þ ô,qds,
Jr'

as ry' : 0 on fr. Thus q e HI(Q, f ,) is constant on (connected) ,l', and we can choose
q to be zero on ,l-r, i.e. q e HL(O, f ,).

By (3.16), (3.1a) and by the definition of fI(rot; O, fz) we obtain

(erad ø, gtad E)o: (curl q, clnl E) : (*, curl 9)o :
: (v - grad p, curl E)o : (v, curl e)o : (rotv, E)o

for all E e H(Q,,l-r), i.e. q e Ht(Q, fr) is a weak solution of the problem

(3.1i) -/,1 : rot, in Q,

4:0 on fr,
ô,Q:o on fr,

and

(3.1s) llsll, s c,llrot vllo.

Finally, (3.16), (3.12) and (3.1s) imply

ll"ll' s llgrad pllo + ljcurl sll, S c(ll¿iv vllo + llrot vllo) . tr
Convention.3.2. For simplicity we suppose from now on that I, and l, are

connected.

Remark. 3.3. By Theorem 3.2 Ihe bilinear form (3.2) is a scalar product in V and

la(v,v) is equivalent to the norm lllvlll, i.e.

(3.1e) clil"ill,3a(v,4s11¡"¡¡1,,vev.

Theorem 3.4. The space V equippecl with the scalar product o(., .) is a Hilbert
space.

Proof. Let {vo} c. V be a Cauchy sequence. One sees by Theorem 3.L that vo

converges to a function v e (L'z(O))'z in the ll 
. 
llo-norm. Evidently also div yk converges

to some/e.L2(O). Hence,

(div vo, ú)o * (Í,ú)o Yr! e n[(a, rr) ,

(vo, grad ,lt)o - (r,gradrþ)o Vþ e nt(A,f r).
By the definition of Il(div; Q, f ,) we see that v e ff(div; 9, f ,) with div , : l.
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Analogously, it can be verified that v e I{(rot; n, f z). n
Due to the Riesz theorem, the foregoing theorem and (3.19), we come to the

following assertion.

Corollary 3,4.The problem (3.5) høs a unique solution.

Remark.3.5. Assuming the ff2-regularity for the problems (3.10) and (:.tZ) we
can derive from (3.16) the so-called Friedrichs inequality:

(3.20) ll'll, = 
c(llaiv vllo + llrot vllo) for all v e Y.

Sufficient conditions for the H2-regularity of the mixed problem (3.10) in polygonal
domains can be found e.g. in [Z], p.210. tn [tO] necessary and sufficient conditions
for the validity of (3.20) are given in the case I t : Ø or f2 : ø.

4. ON THE DISCRETE PROBLEM

We suppose that ôQ is piecewise twice differentiable and has a finite number
of corners. BV {9'o\ we denote a strongly regular family or triangulations of Q : Q :
: U K, i.e. ll- o\ satisfies the inverse assumption (see [Z], p. 1a0). Here h is the usual

Keî¡
discretization parameter. Further, we assume that the common sides of neighbouring
triangles of î¡ are always straight segments, while the other sides are in general
curved (i.e. they coincide with the corresponding parts of the boundary ôQ). More-
over, let the interior of any side of Ke î¡ be disjoint with F, n f, (the so-called
consistence condition).

Let Z'o be the set of all nodal points of îolying on f, (; :1,2).Let 2 be the
unionof fo and all corner points ôQ andletZ:2r{xefoIttre tangents to l-1
and to f2 are perpendicular at x).

We define finite element subspaces {n, Vn c (I{l(O))'z, by

(4.1) {o: {ve@@)),lvl*e(r,(K))2 vKe{,,\,
V, : {v e {ol u(x) : 0 Vx e Z, (n. v) (x) : o

YxeZl,"Z, (n n v)(r): O YxeZl"Z\.
Here Pr(K) denotes the space of polynomials on K of degree at most one. Thus, Ø,

consists of piecewise linear continuous vector fields satisfying only pointwise the
boundary conditions. Consequently, we get the inclusion Vo c. Y if and only if O is
polygonal, i.e. the following finite element approximation of the problem (3.3) will
be conforming just for polygonal domains.

Find uo e Z, such that

(4.2) a(uo,vo): U(vt) YvreVo,

where ø and b arc defined Uy (:.2) and (3.1), respectively.
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tl

/Ì.

A basis of Vo can be constructed as follows. Let Pr, ..., Po be the interior nodal
points of {,, let Po*!,...,Pk+t be the nodal points of ftrZ, andlet Po*r*r,...
...,Pk+t+ttt be the nodal points of F2rZ. Further,let E, be the usual Courant
tetrafunctions such that

Er(P¡) : õ,,, i,j : 1,...,k + I + m.
Then obviously

{(E', o)}f=' , {(0,8)}i=' u {t(P,) E,\l!i*' u {n(n) E'}i!i,Ii*,

form a basis in V,, and this is just the basis used in Chap. 5.

Concerning the unique solvability of the problent(+.2), we first prove an auxiliary
lemma.

Lemma 4.1. Let voe"lro and let div v,, : rot v,, : 0. Then v¡ is from (Pr(O))'
and has the form

(4.3) "o(r): (ax, * þ*r+y,þxt- øx, * ð),r: (rr.x2)eÕ,

vthere a, B, y, ô e Rr .

Proof. Let the assumptions of the lemma be satisfied and let K, K' e î,,be two
neighbouring triangles. Then evidently v, is on K and K' of the form

(4.4) "r[*(t) 
: (or, * þxz * y, þxt - ax2 i ô) ,

trl*,(o) - (a'x1 * þ'xz -l y', þ'xt - u'x2 + ð').

We distinguish the following two cases:

1) Let the common side S of the triangles K and K' coincide with the line xr :
: kxt * 4. From (a.a) and from the continuity of vo on S, one gets

' dxt* þkx1+ ßq+l : a'xt * þ'kxt* þ'q+Y',
þxt - ukxl - aq + ô : þ'x,r - a'kx, + a'q + õ',

which implies

d - &' : k(ß' - þ) and p - p' : k(q- a'),

i.e. ø: a' and p: ß'.

2) Let S : K n K' coincide with the line xr : const., then by ( .a) we see that
a,: il.' and, þ : B'.

Further, from (4.4) and the continuity of v¡,, w€ get also ! : l' and ð : ð'. tr

Theo¡em 4.2. If cañ, (Z) > 1., then the díscrete problem (4.2) always has a uníque
solution.
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Proof. We prove that a(.,.) is a scalar product on Zr. Then the unique solvability
of the proble^ (4.2) will follow from the Riesz theorem.

So let a(v,,, yJ : 0 for some v,,eY,,. Thus, (4.3) and (4.1) yield

"o(') 
: (i -Ð(î;) . (l) 

: o vx : (,,, x,)e z .

Since card (Z), t, the matrix of this system is singular and, therefore, ø: /l - 0
and consequently also 1l : ð : 0. Hence, v¡ : 0. tr

In the case cañ (Z) < 1, it is easy to give an example when (4.2) has more so[utions.
Fortunately, it results from the following theorem that (a.2) has a unique solution
at least for sufficiently small fr.

Theorem 4.3. For sufficiently small h, the bílinear form a(,, ,) is uníformly
Yo-elliptic (wíth respect to h), i.e. there exíst constanls C > O and hç > 0 such that
for any l¡ with h e (0, ho),

(4.5) a(v,,,vo) 
= 

clll"rlli' Vvoe vo .

The proof is based on the following two lemmas.

Lemma 4.4. There exísts a constant C > 0 such that

(4.6) clll"lli' s a(v, v) + lln. "113,., 
+ lln n vllfr,.,

for altve(nt(a))2.

Proof. We can proceed in the way analogous to that adopted in the proof of
Theorem 3.1. Let v e (n1(A))2 be given. Instead of (3.10) and (3.17) we have

Áp:divv in d),
P:0 on fr, and

ônP : n .v on lr,

-Áq : rotv in

- Çl- 0 on
ôn8:n^Yon

Q,
tr,
fz,

respectively. Hence,

llpll'," < c'(llaiv vllo,o + lln . vllo,.,) ,

llsll,," < c,(llrot 
"llo,o 

+ lln n vllo,.,) .

Finally, the assertion follows from the representation v - grad p + curl q as in the
proof of Theorem 3.1. ú

According to the pointwise boundary conditions of v,, e Zu on piecewise smooth
,1, and l2,the last two terms in (4.6) vanish for å -+ 0. This can be proved in a way
similar to [17].
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Lemma 4.5. There exists a constant C > 0 such that

lln ."1113,., + lln n ,ollåt,,, S chllr]l|*
for all v,,e Vo and for all sufficíently small h > 0.

Proof. LetvoeYobe given, let P, and P,*, be two neighbouring nodes of f2
and let f', be an arc (of the class gQ)) between them. As (n n ,Ð (P) : 0 and
(n n v)(P,*r) :0, wehave(see ltll,p.Zl)
(4.7) l(n n v)G)l s c1h,(lvo(x)l + lvyå(x)l)
for all x e f\, where the constant C, > 0 depends only on ôQ, and, Vv, denotes
the mat¡ix of the first partial derivatives of v,,, and 

| 
. 
I is ttre Euclidean norm.

Similarly, on every arc f ', between two neighbouring nodal points of F, we have

(4.8) l(".",)(')l s c"h,(lvu(x)l + lvvå(x)l)
forall xefi.

Now by (4.7), (4.8) and by the rrace theorem

(4.e) lln .',113,., + lln n ,n]l.,ï,,, <

s crho I fl"rl, + lvvnlr) ds < cnhallv¡ll?," + c,h3llvvoll2o,n^",
J uo"

wlrere of : U{K I g-^lK ¡ ôe # 0}. For esrimaring the rerm [unlVrol, ds in (4.e),
the linearity of vol*, Ke{¡, and the fact that meas(KnâO)/meas'f :O(h-i)
was utilized.

The inverse property (see [2], p. Iaz) for the finite elements says

(4.10) ll"rllr," < Ch-1llv,,llo,n for all uue Vo.

Finally, a combination of (a.9) and (4.10) gives the assertion of the lemma. D
Norv, the proof of Theorem 4.3 immediately follows from Lemmas 4,4 and 4,5,

Finally, we shall consider the rate of convergence of the discrete solutions.

Theorem 4,6, For ue(Ht*"(rz))t, 0 < e I I, the dffirence u - uo fulfils the
inequalíty

lll, -,,lll < cå"llulfr+,.

Froof. Let <Þ e t'z(A) ((ø, t)o : O in the case f 
" 

: ø) be arbitrary and ler ry' e
e.l'lr(f2, f ,)be a weak solution of the problem:

div grad {r : A in d) ,

ô'Ú:o on l''
tþ:0 on lz.
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Putting v : grad ry', we get Uy (:.:) that (note that rot grad : 0)

(div u, @)o : (div u, div v)o : a(u, r) : b(v) : (¿ aiv v)e : (/, @)o ,

i.e. div v : f in f'z(O). Analogously, we find that (3.3) implies rot u : g in I](a).
Consequently, we have a(u, v) : b(r) for all v e (Hr(O))2 and in particular,

a(u, v,,) : b("0) Vv,, e V¡ .

Applying the second Strang lemma ([Z], p. 210), we obtain

lll, - r"lll s c, inflllu - ",1 i 
< c, inf llu - "rll, S c,h"llulft*",lll xlll 

- Yheyh v¡ev6

where Cr, C2 do not depend on ft and where the last estimate follows from the
well-known results for finite elements by the interpolation properties of Sobolev
spaces (see e.g. [1], p. 10). !

Remark 4.7. If V n (C-(Q)2 is dense in Z with respect to the lll.lll-norm, using
a standard technique we get

(4.11) lllu - u,,lll -- o for h--+ 0 .

In [8] it is proved that V n (U'(ç))' contains a dense subset (in the Hl-topology)
of infinitely differentiable functions for.l-, : Ø. Thus in this case, (+.11) holds for
u e (H1(O))2. Let us still note that under some regularity assumptions it can be

proved þee [t]) for f, : Ø that llu - ,rllo : 0(h').

5. NUMERICAL TESTS

The method given above was tested in different geometries. In the following,
three test examples are presented. The authors are indebted to Mr. M. Könkkölå
fot his help in carrying out the computions connected with these examples.

Example5.l. Let O:(0, 1)x(0, 1) and.l-r:{xem'zl0<x1 <1,x2:0},
f z: ôQrFr. For f(*): -f,æ2 sinTrxl cos (nxrfZ), S(*):1 the weak solution
of tlre system (1.1)-(1.2) is u(x): z(cos7¡x1cos (nxrl2) + 1 - xz, -+ sinøxr.
. sin (æ *rlZ)).The valuesof theerror u - u¡in various norms are shown in Table 5.1.

Table 5.1 Errcls in Example 5.1.

h ll, - u,llo ill, - ,,lll ll" - ,,,11,

112

114

1/8
t 1L6

.7982s82

.1616543

'0386592
.0096729

5.2197511
2.7678407
1.4152033
.7070499

7.1782787
3.7882521
L'9233271

'9618257
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From Table 5.1 it can be seen that in the ll.llo-norm the convergence is quadratic
whereas in the lll.lll-norm or ll.llr-norm it is linear.

Example5.2. Let e: {xe Rll*? + *rr<t, xz} 0}, I, = {xeÆrl-1.
< xl < I, x, : 0Ì, l-, : ôO r Fr. For Í(*) : Bxr, g(x): 0, rhe weak solution
of the system (1.1)-(1.2) is

,(r) =, (:r? + xtr - t,2xrx2).

Table 5.2. E¡rors in Example 5.2.

h ll, - qll. I l, - ,,,lll ll, _ ,oll,

112

r14
1/8
t lt6

.3116610

'0897454
.0232356
.0058458

2.7396820
1.s784481
.8303512

'4234565

3'7690384
2.0048463
1 .01 89380

5121525

In Table 5.2 we find that the results are analogous to the first test example. Due
to (3.20), the norms lil.ltj ana ll 

. ll, ur" equivalent in both the test examples.

Example 5.3. Consider the problem

(s.1) Áp:î in e,
P :0 on ôQ,

where f) : {xe R' l*? + r3 <1}r{x e R2lxr> 0,x, I 0},

(s.z) l(x,, x,) : I(r, E) : iQt r - 32) sin lE e r7(a) ,

and wlere (r, E) are the usual polar coordinates. The weak solution p e Ht(a)
of (5.1) is of the form

a(x1, xr) : Þ(,', E) : (r' - rz) sin lE .

It is easy to verify that u : grad p e V,

u(x,,x2):ú(r;E): (3(, - 12) sin i.;Qr - a)sinfrpcos s,

3(r' -') co, I + ;(i, - 4) sin lE sin E) ,

istlresolutionofthesystem(1.1)-(1.2) forfr: ôe,g:0andfor/givenby(S.Z).
In the calculation of the approximation for solution u or(t.t)-(1.2), the initial

triangulation of o with h:112 containing 12 elements was chosen. Refinements
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were carried out three times. The ûnite element mesh of f) for h : Il8 and the

corresponding solution uhcan be seen in Figure 5.3.

\ \11
tl I

n ll'-,ollo lll,-"rlll ll,-,,11'

¡

rl¡¡r-

Fig.5.3, Finite element mesh ol 12 and the corresponding solution u¡for h: ll8.

The values of errors in different norms are listed in Table 5.4'

Tabte 5.4. Errors in ExamPle 5.3.

112

rl4
1/8
t 116,

.1472717

.03r9256

.oo97791

.0036453

1.961094
1.142105

.622665

.330447

3'054758
1.77s036

.962657

.510507

The above results confirm the theoretical accuracy.
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Souhrn

APROXIMACE KONEÕNYMI PRVKY DIV.ROT SYSTÉMU

S KOMBINOYANYMI OKRAJOVÍMI PODMÍNKAMI
NA NEHLADKYCH OBLASTECH

M¡cn¡r- KËÍZ¡<, Prrrl N¡rrr¡.lNtvtÄrr

Na rovinn¡Ích omezenjch oblastech s po ðástech hladkou hranicí je vy5etiována

metoda koneðn¡fch prvkü pro ie5ení div-rot systérnu (t.t) s kombinovan¡fmi okrajo-

vjmi podmínkami (1.2). Je doká,øána jednoznaénâ ie5itelnost variaðní úlohy (1.1) aU

(1.2) i její diskrétní aproximace opírající se o lineární prvky. Dále jsou odvozeny

àproximaðní vlastnosti této metody, které jsou ilustrovány tÍemi testovacími pÏíklady.
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