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Abstract We introduce a global analysis of collinearly fac-
torized nuclear parton distribution functions (PDFs) includ-
ing, for the first time, data constraints from LHC proton–lead
collisions. In comparison to our previous analysis, EPS09,
where data only from charged-lepton–nucleus deep inelas-
tic scattering (DIS), Drell–Yan (DY) dilepton production in
proton–nucleus collisions and inclusive pion production in
deuteron–nucleus collisions were the input, we now increase
the variety of data constraints to cover also neutrino–nucleus
DIS and low-mass DY production in pion–nucleus collisions.
The new LHC data significantly extend the kinematic reach
of the data constraints. We now allow much more freedom
for the flavor dependence of nuclear effects than in other cur-
rently available analyses. As a result, especially the uncer-
tainty estimates are more objective flavor by flavor. The neu-
trino DIS plays a pivotal role in obtaining a mutually consis-
tent behavior for both up and down valence quarks, and the
LHC dijet data clearly constrain gluons at large momentum
fraction. Mainly for insufficient statistics, the pion–nucleus
DY and heavy-gauge-boson production in proton–lead col-
lisions impose less visible constraints. The outcome – a new
set of next-to-leading order nuclear PDFs called EPPS16 – is
made available for applications in high-energy nuclear colli-
sions.

1 Introduction

Proton–lead (pPb) and lead–lead (PbPb) collisions at the
Large Hadron Collider (LHC) have brought heavy-ion
physics to the high-energy realm [1–4]. A more than ten-
fold increase in the center-of-mass energy with respect to the

a e-mail: kari.eskola@jyu.fi
b e-mail: petja.paakkinen@jyu.fi
c e-mail: hannu.paukkunen@jyu.fi
d e-mail: carlos.salgado@usc.es

deuteron–gold (DAu) collisions at the Relativistic Heavy-
Ion Collider (RHIC) has made it possible to study novel
hard-process observables in a heavy-ion environment. For
example, production cross sections of heavy-gauge bosons
(Z and W±) and jets have been measured. Because of the
new experimental information from the LHC it is now also
timely to update the pre-LHC global analyses of collinearly
factorized nuclear parton distribution functions (PDFs) – for
reviews, see e.g. Refs. [5,6].

The original idea of having nuclear effects in PDFs was
data-driven as the early deep inelastic scattering (DIS) experi-
ments unexpectedly revealed significant nuclear effects in the
cross sections [7,8]. It was then demonstrated [9,10] that such
effects in DIS and fixed nuclear-target Drell–Yan (DY) cross
sections can be consistently described by modifying the free
nucleon PDFs at low Q2 and letting the Dokshitzer–Gribov–
Lipatov–Altarelli–Parisi (DGLAP) evolution [11–17] take
care of the Q2 dependence. In other words, the data were
in line with a concept that the measured nuclear effects are
of non-perturbative origin but at sufficiently high Q2 there is
no fundamental difference in the scattering off a nucleon or
off a nucleus. These ideas eventually led to the first global fit
and the EKS98 set of leading-order nuclear PDFs [18,19].
Since then, several parametrizations based on the DIS and DY
data have been released at leading order (EKPS [20], HKM
[21], HKN04 [22]), next-to-leading order (nDS [23], HKN07
[24], nCTEQ [25], AT12 [26]), and next-to-next-to-leading
order (KA15 [27]) perturbative QCD.1 For the rather limited
kinematic coverage of the fixed-target data and the fact that
only two types of data were used in these fits, significant sim-
plifying assumptions had to be made e.g. with respect to the
flavor dependence of the nuclear effects. The constraints on
the gluon distribution are also weak in these analyses, and it
is only along with the RHIC pion data [31] that an observable
carrying direct information on the nuclear gluons has been

1 For studies addressing origins of the nuclear effects, see e.g. Refs. [28–
30].
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added to the global fits – first in EPS08 [32] and EPS09 [33],
later in DSSZ [34] and nCTEQ15 [35]. The interpretation
of the RHIC pion production data is not, however, entirely
unambiguous as the parton-to-pion fragmentation functions
(FFs) may as well undergo a nuclear modification [36]. This
approach was adopted in the DSSZ fit, and consequently their
gluons show clearly weaker nuclear effects than in EPS09
(and nCTEQ15) where the FFs were considered to be free
from nuclear modifications. To break the tie, more data and
new observables were called for. To this end, the recent LHC
dijet measurements [37] from pPb collisions have been most
essential as a consistent description of these data is obtained
with EPS09 and nCTEQ15 but not with DSSZ [38,39].

Another observable that has caused some controversy and
debate during the past years is the neutrino–nucleus DIS. It
has been claimed [40] (see also Ref. [41]) that the nuclear
PDFs required to correctly describe neutrino data are differ-
ent from those optimal for the charged-lepton induced DIS
measurements. However, it has been demonstrated [42,43]
that problems appear only in the case of one single data set
and, furthermore, that it seems to be largely a normalization
issue (which could e.g. be related to the incident neutrino
flux which is model-dependent). The neutrino data were also
used in the DSSZ fit without visible difficulties.

New data from the LHC 2013 p-Pb run have gradually
become available and their impact on the nuclear PDFs has
been studied [39,44] in the context of PDF reweighting [45].
Apart from the aforementioned dijet data [37] which will
e.g. require a complete renovation of the DSSZ approach,
the available W [46,47] and Z [48,49] data were found to
have only a rather mild effect mainly for the limited statisti-
cal precision of the data. However, the analysis of Ref. [39]
used only nuclear PDFs (EPS09, DSSZ) in which flavor-
independent valence and light sea-quark distributions were
assumed at the parametrization scale. Thus, it could not reveal
the possible constraints that these electroweak observables
could have for a particular quark flavor. On the other hand,
the analysis of Ref. [44] involves some flavor dependence but
the usage of absolute cross sections which are sensitive to the
free-proton baseline PDFs complicates the interpretation of
the results.

In the present paper, we update the EPS09 analysis by
adding a wealth of new data from neutrino DIS [50], pion–
nucleus DY process [51–53], and especially LHC pPb dijet
[37], Z [48,49] and W [46] production. Thus, we take the
global nuclear PDF fits onto a completely new level in the
variety of data types. In addition, in comparison to EPS09,
a large part of the whole framework is upgraded: we switch
to a general-mass formalism for the heavy quarks, relax the
assumption of the flavor independent nuclear modifications
for quarks at the parametrization scale, undo the isospin cor-
rections that some experiments had applied on their data, and
also importantly, we now assign no extra weights to any of
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Fig. 1 Illustration of the EPPS16 fit function RA
i (x, Q2

0)

the data sets. In this updated analysis, we find no significant
tension between the data sets considered, which lends sup-
port to the assumption of process-independent nuclear PDFs
in the studied kinematical region. The result of the analy-
sis presented in this paper is also published as a new set of
next-to-leading order (NLO) nuclear PDFs, which we call
EPPS16 and which supersedes our earlier set EPS09. The
new EPPS16 set will be available at [54].

2 Parametrization of nuclear PDFs

Similarly to our earlier work, the bound proton PDF
f p/A
i (x, Q2) for mass number A and parton species i is

defined relative to the free-proton PDF f p
i (x, Q2) as

f p/A
i (x, Q2) = RA

i (x, Q2) f p
i (x, Q2), (1)

where RA
i (x, Q2) is the scale-dependent nuclear modifica-

tion. Our free-proton baseline is CT14NLO [55]. Consis-
tently with this choice, our analysis here uses the SACOT
(simplified Aivazis–Collins–Olness–Tung) general-mass
variable flavor number scheme [56–58] for the DIS cross
sections. The fit function for the nuclear modifications
RA
i (x, Q2

0) at the parametrization scale Q2
0, illustrated in

Fig. 1, is also largely inherited from our earlier analyses
[18,20,32,33],

RA
i (x, Q2

0) =
⎧
⎨

⎩

a0 + a1(x − xa)2 x ≤ xa
b0 + b1x

α + b2x
2α + b3x

3α xa ≤ x ≤ xe
c0 + (c1 − c2x) (1 − x)−β xe ≤ x ≤ 1,

(2)

where α = 10xa and the i and A dependencies of the
parameters on the r.h.s. are left implicit.2 The purpose of

2 See Ref. [59] for a study experimenting with a more flexible fit func-
tion at small x .
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the exponent α is to avoid the “plateau” that would other-
wise (that is, if α = 1) develop if xa < 0.1. The coeffi-
cients ai , bi , ci are fully determined by the asymptotic small-
x limit y0 = RA

i (x → 0, Q2
0), the antishadowing maximum

ya = RA
i (xa, Q2

0) and the EMC minimum ye = RA
i (xe, Q2

0),
as well as requiring continuity and vanishing first derivatives
at the matching points xa and xe. The A dependencies of y0,
ya , ye are parametrized as

yi (A) = yi (Aref)

(
A

Aref

)γi [yi (Aref )−1]

, (3)

where γi ≥ 0 and Aref = 12. By construction, the nuclear
effects (deviations from unity) are now larger for heavier
nuclei. Without the factor yi (Aref) − 1 in the exponent one
can more easily fall into a peculiar situation in which e.g.
yi (Aref) < 1, but yi (A � Aref) > 1, which seems physi-
cally unlikely. For the valence quarks and gluons the values
of y0 are determined by requiring the sum rules

∫ 1

0
dx f p/A

uV (x, Q2
0) = 2, (4)

∫ 1

0
dx f p/A

dV
(x, Q2

0) = 1, (5)

∫ 1

0
dxx

∑

i

f p/A
i (x, Q2

0) = 1, (6)

separately for each nucleus and thus the A dependence of
these y0 is not parametrized. All other parameters than y0, ya ,
ye are A-independent. In our present framework we consider
the deuteron (A = 2) to be free from nuclear effects though
few-percent effects at high x are found e.g. in Ref. [60].
The bound neutron PDFs f n/A

i (x, Q2) are obtained from the
bound proton PDFs by assuming isospin symmetry,

f n/A
u,u (x, Q2) = f p/A

d,d
(x, Q2), (7)

f n/A
d,d

(x, Q2) = f p/A
u,u (x, Q2), (8)

f n/A
i (x, Q2) = f p/A

i (x, Q2) for other flavors. (9)

Above the parametrization scale Q2 > Q2
0 the nuclear

PDFs are obtained by solving the DGLAP evolution equa-
tions with two-loop splitting functions [61,62]. We use our
own DGLAP evolution code which is based on the solution
method described in Ref. [63] and also explained and bench-
marked in Ref. [64]. Our parametrization scale Q2

0 is fixed
to the charm pole mass Q2

0 = m2
c where mc = 1.3 GeV. The

bottom quark mass is mb = 4.75 GeV and the value of the
strong coupling constant is set by αs(MZ) = 0.118, where
MZ is the mass of the Z boson.

As is well known, at NLO and beyond the PDFs do not
need to be positive definite and we do not impose such a

restriction either. In fact, doing so would be artificial since the
parametrization scale is, in principle, arbitrary, and positive
definite PDFs, say, at Q2

0 = m2
c may easily correspond to

negative small-x PDFs at a scale just slightly below Q2
0. As

we could have equally well parametrized the PDFs at such
a lower value of Q2

0, we see that restricting the PDFs to be
always positive would be an unphysical requirement.

3 Experimental data

All the �−A DIS, pA DY and RHIC DAu pion data sets we
use in the present analysis are the same as in the EPS09 fit.
The only modification on this part is that we now remove the
isoscalar corrections of the EMC, NMC and SLAC data (see
the next subsection), which is important as we have freed
the flavor dependence of the quark nuclear modifications.
The �−A DIS data (cross sections or structure functions F2)
are always normalized by the �−D measurements and, as in
EPS09, the only kinematic cut on these data is Q2 > m2

c .
This is somewhat lower than in typical free-proton fits and
the implicit assumption is (also in not setting a cut in the
mass of the hadronic final state) that the possible higher-
twist effects will cancel in ratios of structure functions/cross
sections. While potential signs of 1/Q2 effects have been
seen in the HERA data [65] already around Q2 = 10 GeV2,
these effects occur at significantly smaller x than what is the
reach of the �−A DIS data.

From the older measurements, also pion–nucleus DY data
from the NA3 [51], NA10 [52], and E615 [53] collaborations
are now included. These data have been shown [66,67] to
carry some sensitivity to the flavor-dependent EMC effect.
However, more stringent flavor-dependence constraints at
large x are provided by the CHORUS (anti)neutrino–Pb DIS
data [50], whose treatment in the fit is detailedly explained
in Sect. 3.2.

The present analysis is the first one to directly include
LHC data. To this end, we use the currently published pPb
data for heavy-gauge boson [46,48,49] and dijet produc-
tion [37]. These observables have already been discussed in
the literature [39,44,68–71] in the context of nuclear PDFs.
Importantly, we include the LHC pPb data always as forward-
to-backward ratios in which the cross sections at positive
(pseudo)rapidities η > 0 are divided by the ones at nega-
tive rapidities η < 0. This is to reduce the sensitivity to the
chosen free-proton baseline PDFs as well as to cancel the
experimental luminosity uncertainty. However, upon taking
the ratio part of the information is also lost as, for example,
the points near η = 0 are, by construction, always close to
unity and carry essentially no information. In addition, since
the correlations on the systematic errors are not available,
all the experimental uncertainties are added in quadrature
when forming these ratios (except for the CMS W measure-

123



 163 Page 4 of 28 Eur. Phys. J. C   (2017) 77:163 

1

10

10
2

10
3

10
4

10
5

10
-4

10
-3

10
-2

10
-1

1

fixed target DIS and DY
LHC dijets
LHC W & Z
CHORUS neutrino data
PHENIX π0

x

Q
2

[G
eV

2 ]

Fig. 2 The approximate regions in the (x, Q2) plane at which different
data in the EPPS16 fit probe the nuclear PDFs

ment [46] which is taken directly from the publication) which
partly undermines the constraining power of these data. The
baseline pp measurements performed at the same

√
s as the

pPb runs may, in the future, also facilitate a direct usage of
the nuclear modification factors dσ pPb/dσ pp. The technical-
ities of how the LHC data are included in our analysis are
discussed in Sect. 3.3.

In Fig. 2 we illustrate the predominant x and Q2 regions
probed by the data. Clearly, the LHC data probe the nuclear
PDFs at much higher in Q2 than the earlier DIS and DY data.
For the wide rapidity coverage of the LHC detectors the new
measurements also reach lower values of x than the old data,
but for the limited statistical precision the constraints for the
small-x end still remain rather weak. All the exploited data
sets including the number of data points, their χ2 contribu-
tion and references are listed in Table 1. We note that approx-
imately half of the data are now for the 208Pb nucleus while
in the EPS09 analysis only 15 Pb data points (NMC 96) were
included. Most of this change is caused by the inclusion of
the CHORUS neutrino data.

3.1 Isoscalar corrections

Part of the charged-lepton DIS data that have been used in the
earlier global nPDF fits had been “corrected”, in the original
publications, for the isospin effects. That is, the experimen-
tal collaborations had tried to eliminate the effects emerg-
ing from the unequal number of protons and neutrons when
making the comparison with the deuteron data. In this way
the ratios F A

2 /FD
2 could be directly interpreted in terms of

nuclear effects in the PDFs. However, this is clearly an unnec-
essary operation from the viewpoint of global fits, which
has previously caused some confusion regarding the nuclear
valence-quark modifications: the particularly mild effects

found in the nDS [23] and DSSZ [34] analyses (see Fig. 27)
most likely originate from neglecting such a correction.

The structure function of a nucleus A with Z protons and
N neutrons can be written as

F A
2 = Z

A
Fp,A

2 + N

A
Fn,A

2 , (10)

where Fp,A
2 and Fn,A

2 are the structure functions of the bound
protons and neutrons. The corresponding isoscalar structure
function is defined as the one containing an equal number of
protons and neutrons,

F̂ A
2 = 1

2
Fp,A

2 + 1

2
Fn,A

2 . (11)

Using Eq. (10), the isoscalar structure function reads

F̂ A
2 = βF A

2 , (12)

where

β = A

2

(

1 + Fn,A
2

Fp,A
2

)

/

(

Z + N
Fn,A

2

Fp,A
2

)

. (13)

Usually, it has been assumed that the ratio Fn,A
2 /Fp,A

2 is free
from nuclear effects,

Fn,A
2

Fp,A
2

= Fn
2

Fp
2

, (14)

and parametrized according to the DIS data from proton and
deuteron targets. Different experiments have used different
versions:

– EMC parametrization [78]:

Fn
2

Fp
2

= 0.92 − 0.86x,

– SLAC parametrization [72]:

Fn
2

Fp
2

= 1 − 0.8x,

– NMC parametrization [80]:

Fn
2

F
p
2

= A(x)

(
Q2

20

)B(x) (

1 + x2

Q2

)

A(x) = 0.979 − 1.692x + 2.797x2 − 4.313x3 + 3.075x4

B(x) = −0.171x2 + 0.244x3.
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Table 1 The data sets used in the EPPS16 analysis, listed in the order
of growing nuclear mass number. The number of data points and their
contribution to χ2 counts only those data points that fall within the

kinematic cuts explained in the text. The new data with respect to the
EPS09 analysis are marked with a superscript a

Experiment Observable Collisions Data points χ2 References

SLAC E139 DIS e−He(4), e−D 21 12.2 [72]

CERN NMC 95, re DIS μ−He(4), μ−D 16 18.0 [73]

CERN NMC 95 DIS μ−Li(6), μ−D 15 18.4 [74]

CERN NMC 95, Q2 dep DIS μ−Li(6), μ−D 153 161.2 [74]

SLAC E139 DIS e−Be(9), e−D 20 12.9 [72]

CERN NMC 96 DIS μ−Be(9), μ−C 15 4.4 [75]

SLAC E139 DIS e−C(12), e−D 7 6.4 [72]

CERN NMC 95 DIS μ−C(12), μ−D 15 9.0 [74]

CERN NMC 95, Q2 dep DIS μ−C(12), μ−D 165 133.6 [74]

CERN NMC 95, re DIS μ−C(12), μ−D 16 16.7 [73]

CERN NMC 95, re DIS μ−C(12), μ−Li(6) 20 27.9 [73]

FNAL E772 DY pC(12), pD 9 11.3 [76]

SLAC E139 DIS e−Al(27), e−D 20 13.7 [72]

CERN NMC 96 DIS μ−Al(27), μ−C(12) 15 5.6 [75]

SLAC E139 DIS e−Ca(40), e−D 7 4.8 [72]

FNAL E772 DY pCa(40), pD 9 3.33 [76]

CERN NMC 95, re DIS μ−Ca(40), μ−D 15 27.6 [73]

CERN NMC 95, re DIS μ−Ca(40), μ−Li(6) 20 19.5 [73]

CERN NMC 96 DIS μ−Ca(40), μ−C(12) 15 6.4 [75]

SLAC E139 DIS e−Fe(56), e−D 26 22.6 [72]

FNAL E772 DY e−Fe(56), e−D 9 3.0 [76]

CERN NMC 96 DIS μ−Fe(56), μ−C(12) 15 10.8 [75]

FNAL E866 DY pFe(56), pBe(9) 28 20.1 [77]

CERN EMC DIS μ−Cu(64), μ−D 19 15.4 [78]

SLAC E139 DIS e−Ag(108), e−D 7 8.0 [72]

CERN NMC 96 DIS μ−Sn(117), μ−C(12) 15 12.5 [75]

CERN NMC 96, Q2 dep DIS μ−Sn(117), μ−C(12) 144 87.6 [79]

FNAL E772 DY pW(184), pD 9 7.2 [76]

FNAL E866 DY pW(184), pBe(9) 28 26.1 [77]

CERN NA10a DY π−W(184), π−D 10 11.6 [52]

FNAL E615a DY π+W(184), π−W(184) 11 10.2 [53]

CERN NA3a DY π−Pt(195), π−H 7 4.6 [51]

SLAC E139 DIS e−Au(197), e−D 21 8.4 [72]

RHIC PHENIX π0 dAu(197), pp 20 6.9 [31]

CERN NMC 96 DIS μ−Pb(207), μ−C(12) 15 4.1 [75]

CERN CMSa W± pPb(208) 10 8.8 [46]

CERN CMSa Z pPb(208) 6 5.8 [48]

CERN ATLASa Z pPb(208) 7 9.6 [49]

CERN CMSa dijet pPb(208) 7 5.5 [37]

CERN CHORUSa DIS νPb(208), νPb(208) 824 998.6 [50]

Total 1811 1789

Using these functions we calculate the correction factors β

thereby obtaining the ratios F A
2 /FD

2 , to be used in the fit, from
the isoscalar versions F̂ A

2 /FD
2 reported by the experiments.

As discussed in Ref. [67], also the π−A DY data from the
NA10 collaboration [52] have been balanced for the neutron
excess. The correction was done by utilizing the leading-

123



 163 Page 6 of 28 Eur. Phys. J. C   (2017) 77:163 

order DY cross section. Here, we account for this with the
isospin correction factor given in Eq. (8) of Ref. [67].

3.2 Treatment of neutrino DIS data

In the present work we make use of the CHORUS neu-
trino and antineutrino DIS data [50]. Similar measurements
are available also from the CDHSW [81] and NuTeV [82]
collaborations, but only for the CHORUS data the correla-
tions of the systematic uncertainties are directly available
in the form we need.3 Moreover, the 208Pb target has a
larger neutron excess than the iron targets of CDHSW and
NuTeV, thereby carrying more information on the flavor sep-
aration. The data are reported as double differential cross
sections dσ

ν,ν
i,exp/dxdy in the standard DIS variables and,

guided by our free-proton baseline fit CT14NLO [55], the
kinematic cuts we set on these data are Q2 > 4 GeV2 and
W 2 > 12.25 GeV2.4 In the computation of these NLO neu-
trino DIS cross sections, we apply the dominant electroweak
[83] and target-mass [84] corrections as in Refs. [42,43],
together with the SACOT quark-mass scheme.

In order to suppress the theoretical uncertainties related
to the free-proton PDFs, as well as experimental systematic
uncertainties, we treat the data following the normalization
prescription laid out in Ref. [43]. For each (anti)neutrino
beam energy E , we compute the total cross section as

σν,ν
exp (E) =

∑

i

dσ
ν,ν
i,exp

dxdy
�

xy
i δE,Ei , (15)

where Ei is the beam energy corresponding to the i th data
point. By �

xy
i we mean the size of the (x, y) bin (rectangles)

to which the i th data point belongs. The original data are then
normalized by the estimated total cross sections of Eq. (15)
as

dσ̃
ν,ν
i,exp

dxdy
≡ dσ

ν,ν
i,exp

dxdy

/

σν,ν
exp (E = Ei ). (16)

As discussed e.g. in [45,85], the χ2 contribution of data with
correlated uncertainties is obtained in terms of the covariance
matrix C as

χ2 =
∑

i, j

(
dσ̃

ν,ν
i,exp

dxdy
− dσ̃

ν,ν
i,th

dxdy

)

C−1
i j

(
dσ̃

ν,ν
j,exp

dxdy
− dσ̃

ν,ν
j,th

dxdy

)

,

(17)

3 http://choruswww.cern.ch/Publications/DIS-data/.
4 The cuts are more stringent here than for other DIS data as only
absolute cross sections are available (instead of those relative to a lighter
nucleus).

where now the theory values dσ̃
ν,ν
j,th/dxdy are the computed

differential cross sections normalized by the corresponding
integrated cross section (similarly to Eq. (16)). The elements
of the covariance matrix are in our case defined as

Ci j ≡ (δ̃stat
i )2δi j +

∑

k

β̃k
i β̃

k
j , (18)

where the statistical uncertainty δ̃stat
i on dσ̃

ν,ν
i,exp/dxdy is com-

puted from the original statistical uncertainties δstat
i by

δ̃stat
i ≡ δstat

i /σ ν,ν
exp (Ei ). (19)

Here we neglect the statistical uncertainty of σν,ν(E) as for
this integrated quantity it is always clearly smaller than that
of the individual data points. The point-to-point correlated
systematic uncertainties β̃k

i for the normalized data points
we form as

β̃k
i ≡

(
dσ

ν,ν
i,exp

dxdy
+ βk

i

)/

σ
ν,ν
k (Ei ) − dσ̃

ν,ν
i,exp

dxdy
, (20)

where

σ
ν,ν
k (E) =

∑

i

(
dσ

ν,ν
i,exp

dxdy
+ βk

i

)

�
xy
i δE,Ei . (21)

Above, the index k labels the parameters controlling the
experimental systematic uncertainties and βk

i are the cross-
section shifts corresponding to a one standard deviation
change in the kth parameter. We note that β̃k

i in Eq. (20) for
the relative cross sections in Eq. (16) are constructed such that
if the βk

i correspond only to the same relative normalization
shift for all points, then β̃k

i are just zero. We also note that in

Eq. (18) we have assumed that the response of dσ̃
ν,ν
i,exp/dxdy

to the systematic uncertainty parameters is linear.
As shown in e.g. Ref. [42], the Q2 dependence of nuclear

effects in neutrino DIS data is weak. Hence, for a concise
graphical presentation of the data as a function of x , we inte-
grate over the y variable by

dσ̃
ν,ν
exp

dx
(E) =

∑

j

dσ̃
ν,ν
j,exp

dxdy
�

y
j δx,x j δE,E j , (22)

where �
y
j is the size of the y bin to which the j th data point

belongs, and x j the corresponding value of the x variable. The
overall statistical uncertainty to the relative cross section in
Eq. (22) is computed as

δstat(E, x) =
√
√
√
√

∑

j

(
δ̃stat
j �

y
j

)2
δx,x j δE,E j , (23)
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and the total systematic uncertainty is given by

δsys(E, x) =
√

∑

k

[
δ

sys
k (E, x)

]2
, (24)

where

δ
sys
k (E, x) =

∑

j

β̃k
j�

y
j δx,x j δE,E j . (25)

In the plots for dσ̃
ν,ν
exp /dx presented in Sect. 5 (Figs. 20, 21),

the statistical and total systematic uncertainties have been
added in quadrature. We also divide by the theory values
obtained by using the CT14NLO free-proton PDFs (but still
with the correct amount of protons and neutrons). We stress
that Eqs. (22)–(25) are used only for a simple graphical pre-
sentation of the data but not for the actual fit.

3.3 Look-up tables for LHC observables and others

In order to efficiently include the LHC observables in our
fit at the NLO level, a fast method to evaluate the cross sec-
tions is essential. We have adopted the following pragmatic
approach: For a given observable, a hard-process cross sec-
tion σ pPb in pPb collisions, we set up a grid in the x variable
of the Pb nucleus, x0, . . . , xN = 1, and evaluate, for each x
bin k and parton flavor j

σ
pPb
j,k =

∑

i

f p
i ⊗ σ̂i j ⊗ f Pb

j,k, (26)

where σ̂i j are the coefficient functions appropriate for a given
process and f Pb

j,k involve only proton PDFs with no nuclear
modifications,

f Pb
j,k(x) ≡

∑

�

[
Z f p,Pb

� (x) + N f n,Pb
� (x)

] ∣
∣
∣
∣
RPb
j =1,RPb

i 	= j=0

× θ (x − xk−1) θ (xk − x) . (27)

Thus, the functions f Pb
j,k pick up the partonic weight of the

nuclear modification RPb
j in a given interval xk−1 < x < xk .

Since the nuclear modification factors RA
i are relatively

slowly varying functions in x (e.g. in comparison to the abso-
lute PDFs), the observable σ pPb can be computed as a sum
of σ

pPb
j,k weighted by the appropriate nuclear modification,

σ pPb =
∑

j,k

σ
pPb
j,k RPb

j (xk−1 < x < xk). (28)

As an illustration, in Fig. 3, we show the histograms of σ
pPb
j,k

corresponding to W+ production measured by CMS in the
bin 1 < ηlab < 1.5. For the electroweak LHC observables

σpPb
uV ,k

σpPb
dV ,k

σpPb
u,k

σpPb
d,k

σpPb
s,k

σpPb
c,k

σpPb
g,k

x

σ
pP

b
j,

k
[fb

],
C

M
S

W
+

,1
<

η
<

1.
5

Fig. 3 An example of the σ
pPb
j,k histograms used in evaluating the LHC

pPb cross sections in Eq. (28). The cross section σ pPb is computed as
a sum of all the bins weighted by the appropriate nuclear modification
factors. The sum of all the bins gives the cross section with no nuclear
modifications (RPb

i = 1)

we have used the MCFM code [86] to compute the grids, and
for dijet production the modified EKS code [87–89].

We set up similar grids also for inclusive pion production
in DAu collisions at RHIC using the INCNLO [90] code
with KKP FFs [91], and for the DY process in π A collisions
using MCFM with the GRV pion PDFs [92]. In all cases,
we have checked that the grids reproduce a direct evaluation
of the observables within 1% accuracy in the case of EPS09
nuclear PDFs.

4 Analysis procedure

The standard statistical procedure for comparing experimen-
tal data to theory is to inspect the behavior of the overall χ2

function, defined as

χ2 (a) ≡
∑

k

χ2
k (a) , (29)

where a is a set of theory parameters and χ2
k (a) denotes the

contribution of each independent data set k,

χ2
k (a) ≡

∑

i, j

[Ti (a) − Di ]C
−1
i j

[
Tj (a) − Dj

]
. (30)

Here, Ti (a) denote the theoretical values of the observ-
ables in the data set k, Di are the corresponding experi-
mental values, and Ci j is the covariance matrix. In most
cases, only the total uncertainty is known, and in this case
Ci j = (δuncorr.

i )2δi j , where δuncorr.
i is the point-to-point

uncorrelated data uncertainty. In the case that the only corre-
lated uncertainty is the overall normalization δnorm., we can
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also write

χ2
k (a) =

(
1 − fN
δnorm.

)2

+
∑

i

[
Ti (a) − fN Di

δuncorr.
i

]2

, (31)

which is to be minimized with respect to fN . All the uncer-
tainties are considered additive (e.g. the possible D’Agostini
bias [93] or equivalent is neglected). The central fit is then
defined to correspond to the minimum value of the global χ2

obtainable with a given set of free parameters,

χ2
(
a0

)
≡ min[χ2 (a)]. (32)

In practice, we minimize the χ2 function using the Leven-
berg–Marquardt method [94–96].

In our previous EPS09 analysis, additional weight fac-
tors were included in Eq. (29) to increase the importance
of some hand-picked data sets. We emphasize that in the
present EPPS16 study we have abandoned this practice due
to the subjectiveness it entails. In the EPS09 analysis the use
of such data weights was also partially related to technical
difficulties in finding a stable minimum of χ2 (a) when using
the MINUIT [97] library. In the EPS09 analysis an additional
penalty term was also introduced to the χ2 (a) function to
avoid unphysical A dependence at small x (i.e. to have larger
nuclear effects for larger nuclei). Here, such a term is not
required because of the improved functional form discussed
in Sect. 2.

As the nuclear PDFs are here allowed to go negative it is
also possible to drift to a situation in which the longitudinal
structure function F A

L becomes negative. To avoid this, we
include penalty terms in χ2 (a) at small x that grow quickly
if F A

L < 0. We observe, however, that the final results in
EPPS16 are not sensitive to such a positiveness requirement.

4.1 Uncertainty analysis

As in our earlier analysis EPS09, we use the Hessian-matrix-
based approach to estimate the PDF uncertainties [98]. The
dominant behavior of the global χ2 about the fitted minimum
can be written as

χ2(a) ≈ χ2
0 +

∑

i j

δai Hi jδa j , (33)

where δa j ≡ a j − a0
j are differences from the best-fit values

and χ2
0 ≡ χ2(a0) is the lowest attainable χ2 of Eq. (32). The

Hessian matrix Hi j can be diagonalized by defining a new
set of parameters by

zk ≡
∑

j

Dk jδa j , (34)

with

Dkj ≡ √
εkv

(k)
j , (35)

where εk are the eigenvalues and v
(k)
j are the components of

the corresponding orthonormal eigenvectors of the Hessian
matrix,

Hi jv
(k)
j = εkv

(k)
i , (36)

∑

i

v
(k)
i v

(�)
i =

∑

i

v
(i)
k v

(i)
� = δk�. (37)

In these new coordinates,

χ2(z) ≈ χ2
0 +

∑

i

z2
i . (38)

In comparison to Eq. (33), here in Eq. (38) all the cor-
relations among the original parameters ai are hidden in the
definition Eq. (34), which facilitates a very simple error prop-
agation [98]. Indeed, since the directions zi are uncorrelated,
the upward/downward-symmetric uncertainty for any PDF-
dependent quantity O can be written as

�O =
√
√
√
√

∑

i

(�zi )2
(

∂O
∂zi

)2

, (39)

with an uncertainty interval �zi = (t+i + t−i )/2 where t±i
are zi -interval limits which depend on the chosen tolerance
criterion. The partial derivatives in Eq. (39) are evaluated
with the aid of PDF error sets S±

i defined in the space of zi
coordinates in terms of t±i as

z(S±
1 ) = ±t±1 (1, 0, . . . , 0) ,

... (40)

z(S±
N ) = ±t±N (0, 0, . . . , 1) ,

where N is the number of the original parameters ai . It then
follows that

�O = 1

2

√
∑

i

[O (
S+
i

) − O (
S−
i

)]2
. (41)

Although simple on paper, in practice it is a non-trivial task
to obtain a sufficiently accurate Hessian matrix in a multivari-
ate fit such that Eq. (38) would be accurate. One possibility,
used e.g. in Ref. [99], is to use the linearized Hessian matrix
obtained from Eq. (30)

H linearized
i j ≡

∑

k,�

∂Tk
∂ai

C−1
k�

∂T�

∂a j
, (42)
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where the partial derivatives are evaluated by finite differ-
ences. The advantage is that by this definition, the Hessian
matrix is always positive definite and thereby has automat-
ically positive eigenvalues and e.g. Eq. (34) is always well
defined.

Another possibility, which is the option chosen in the
present study, is to scan the neighborhood of the minimum
χ2 and fit it with an ansatz

χ2(a) = χ2
0 +

∑

i, j

δai hi jδa j , (43)

whose parameters hi j then correspond to the components
of the Hessian matrix. While this gives more accurate
results than the linearized method (where some informa-
tion is thrown away), the eigenvalues of the Hessian become
easily negative for the presence of third- and higher-order
components in the true χ2 profile. Hence, to arrive at
positive-definite eigenvalues, some manual labour is typi-
cally required e.g. in tuning the parameter intervals used
when scanning the global χ2. Yet, the resulting uncertainties
always depend somewhat on the chosen parameter intervals,
especially when the uncertainties are large. To improve the
precision, we have adopted an iterative procedure similar to
the one in Ref. [100]: After having obtained the first estimate
for the Hessian matrix and the z coordinates, we recompute
the Hessian matrix in the z space by re-scanning the vicinity
of z = 0 and fitting it with a polynomial

χ2(z) = χ2
0 +

∑

i, j

zi ĥi j z j , (44)

where ĥi j is an estimate for the Hessian matrix in the z space.
We then re-define the z coordinates by

zk →
∑

�

D̂k�δa�, (45)

where

D̂k� ≡
∑

j

√
ε̂k v̂

(k)
j D j�, (46)

and ε̂k and v̂(k) are now the eigenvalues and eigenvectors of
the matrix ĥi j . Then we repeat the iteration a few times, using
the D̂i j of the previous round as Di j in Eq. (46). Ideally, one
should find that the eigenvalues ε̂k converge to unity during
the iteration but in practice, some deviations will always per-
sist for the presence of non-quadratic components in the true
χ2 profile. We have also noticed that, despite the iteration,
the resulting uncertainty bands still depend somewhat on the
finite step sizes and grids used in the χ2-profile scanning
especially in the regions where the uncertainties are large. In
such regions the Hessian method starts to be unreliable and

the uncertainties found represent only the lower limits for the
true uncertainties.

The global χ2 profiles as a function of the final eigen-
vector directions, which we arrive at in the present EPPS16
analysis, are shown in Fig. 4. In obtaining these, during the
iteration, the finite step sizes (zi in Eq. (44)) along each pro-
visional eigenvector direction were adjusted such that the
total χ2 increased by 5 units from the minimum. As seen in
the figure, in most cases, the quadratic approximation gives a
very good description of the true behavior of χ2, but in some
cases higher-order (e.g. cubic and quartic) components are
evidently present. The effects of higher-order components
can be partly compensated by using larger step sizes dur-
ing the iteration such that the quadratic polynomial approx-
imates the true χ2 better up to larger deviations from the
minimum (but is less accurate near the minimum). However,
we have noticed that with increasing step sizes the resulting
PDF uncertainties get eventually smaller, which indicates
that some corners of the parameter space are not covered as
completely as with the now considered 5-unit increase in χ2.

The basic idea in the determination of the PDF uncertainty
sets in the present work is similar to that in the EPS09 analy-
sis. As in EPS09, for each data set k with Nk data points we
determine a 90% confidence limit χ2

k,max by solving

∫ Mk

0

dχ2

2�(Nk/2)

(
χ2

2

)Nk/2−1

exp
(
−χ2/2

)
= 0.90, (47)

where

Mk = χ2
k,max × Nk − 2

χ2
k,0

, (48)

and in which χ2
k,0 is the value of χ2 for kth data set at the

global minimum. The integrand in Eq. (47) is the usual χ2

distribution – the probability density to obtain a given value of
χ2 when the data are distributed in a Gaussian way around
the known truth. The effect of Eq. (48) is, as sketched in
Fig. 5, to scale the χ2 distribution such that its maximum
occurs at the central value of the fit χ2

0,k , against which the
confidence limit is defined. In other words, we assume that if
the experiment would be repeated several times the outcome
would follow the scaled distribution (the blue curve in Fig. 5)
and not the ideal one (the green curve in Fig. 5). This proce-
dure allows one to define confidence limits also for data sets
which happen to give very large χ2

k /Nk for e.g. underesti-
mated uncertainties or particularly large fluctuations [101].

For each eigenvector direction zi and data set k we find
the interval [zki,min, z

k
i,max] for which χ2

k < χ2
k,max. Looping

over all the data sets k we then find the intersection of the
intervals [zki,min, z

k
i,max] for each i . In other words, we require

all the individual data sets to remain within the defined 90%
limit,
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Fig. 5 Determination of 90% confidence limit for an individual data
set with Nk = 50 data points and for which the global minimum corre-
sponds to χ2

k,0 = 80

zi,min ≡ max{zki,min},
zi,max ≡ min{zki,max}. (49)

The outcome of this process is shown in Figs. 6 and 7
for all eigendirections. The individual limits [zki,min, z

k
i,max]

are shown as solid lines (with bars or arrows) and the
intersection [zi,min, zi,max] as a gray band. This proce-
dure is repeated for all eigendirections i . We note that
we have here grouped together all the data (summing the
χ2 contributions) from a given experiment and thus, in
Figs. 6 and 7 there are less labels than individual con-
tributions in Table 1. Motivation for such a grouping is
that even if an experiment gives data for various nuclei
(e.g. SLAC E139) these are not unrelated e.g. for the
baseline measurement and detector systematics. Further-
more, it may also happen (e.g. direction 8, lower limit; in
Fig. 6) that none of the individual experiments (with grouped
data) places stringent uncertainty limits, i.e. the intervals
[zi,min, zi,max] become rather wide and the total χ2grows
substantially above χ2

0 . In such a case, the data from var-
ious experiments together may provide a better constraint
than an individual experiment. To take this into account,
we treat the aggregate of all the data as a single addi-
tional “experiment” (the first rows in the panels of Figs. 6
and 7.

We study two options to define the PDF uncertainty sets
S±
i . In the first one, we set t+i = zi,max and t−i = −zi,min in

Eq. (40), i.e.,
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Fig. 6 Determination of the confidence limits for the eigendirections
1 to 12. The bars show the limits zki,min, zki,max for each individual (or
grouped) data set k and the marker in between indicates where the min-
imum χ2

k,0 of that data set is reached. The set “all” refers to all data

combined. An arrow signifies that the confidence limit has not yet been
reached in the scanned interval. The gray bands are the intersection
intervals

[
zi,min, zi,max

]
explained in the text
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Fig. 7 As Fig. 6 but for eigendirections 13 to 20

z(S+
1 [dyn]) = z1,max (1, 0, . . . , 0)

z(S−
1 [dyn]) = z1,min (1, 0, . . . , 0)

... (50)

z(S+
N [dyn]) = zN ,max (0, 0, . . . , 1)

z(S−
N [dyn]) = zN ,min (0, 0, ..., 1) ,

where the numbers zi,min/max are obtained as described
above. This is sometimes referred to as dynamic tolerance
determination [99]. For the second option, we specify an
average tolerance �χ2 as

�χ2 ≡ 1

N

∑

i

χ2
(
S−
i [dyn])+χ2

(
S+
i [dyn])−2χ2

0

2
, (51)

where χ2(S±
i [dyn]) are the values of χ2 that correspond to

the error sets S±
i

[
dyn

]
defined above. For the present fit with

all the data, we find �χ2 ≈ 52. This averaging process is

illustrated in Fig. 8 which shows the individual differences
χ2(S−

i [dyn]) − χ2
0 and χ2(S+

i [dyn]) − χ2
0 as bars together

with the found average. In this case the PDF uncertainty sets
S±
i

[
�χ2

]
are defined by imposing a fixed global tolerance

�χ2 = 52,

z(S±
1 [�χ2]) = δz±1 (1, 0, . . . , 0)

... (52)

z(S±
N [�χ2]) = δz±N (0, 0, ..., 1)

where the numbers δz±i are the deviations in positive and
negative direction chosen such that the χ2 grows by 52. The
obtained values for δz±i are listed in Table 2.

As expected, Fig. 8 shows rather significant variations
in χ2(S±

i [dyn]) − χ2
0 depending on which eigendirection

one looks at. However, the corresponding variations in
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Fig. 8 The individual values of χ2(S±
k ) − χ2

0 compared with the average �χ2 = 52

Table 2 The parameter
deviations δz±i defining the
EPPS16 error sets in Eq. (52)

δz−i Value δz+i Value

δz−1 −5.620 δz+1 5.121

δz−2 −5.489 δz+2 5.395

δz−3 −5.496 δz+3 5.344

δz−4 −6.705 δz+4 6.412

δz−5 −5.631 δz+5 6.194

δz−6 −7.013 δz+6 7.148

δz−7 −7.021 δz+7 7.219

δz−8 −7.092 δz+8 7.268

δz−9 −6.532 δz+9 7.935

δz−10 −7.231 δz+10 7.133

δz−11 −7.396 δz+11 6.968

δz−12 −7.674 δz+12 6.814

δz−13 −7.343 δz+13 7.065

δz−14 −6.863 δz+14 7.749

δz−15 −6.810 δz+15 7.080

δz−16 −5.847 δz+16 6.327

δz−17 −5.669 δz+17 7.238

δz−18 −7.531 δz+18 6.510

δz−19 −6.240 δz+19 7.576

δz−20 −4.485 δz+20 10.53

zi,min/max ∼
√

χ2(S±
i [dyn]) − χ2

0 which determine the error
sets are much milder. Hence, it can be expected that the two
error-set options, S±

i [dyn] and S±
i [�χ2], will eventually lead

to rather similar uncertainty estimates. In the following (see
Fig. 11), we will verify that this indeed is the case. Hence, and
also to enable PDF reweighting [45], we choose the S±

i [�χ2]
with the single global tolerance �χ2 as the final EPPS16
error sets.

As in EPS09, the propagation of PDF uncertainties into
an observable O will be here computed separately for the
upward and downward directions,

(
δO±)2 = (53)

∑

i

[max
min{O(S+

i ) − O(S0),O(S−
i ) − O(S0), 0}]2

,

where O (S0) denotes the prediction with the central set and
O (

S±
i

)
are the values computed with the error sets [102].

5 Results

5.1 Parametrization and its uncertainties

The parameter values that define the fit functions, the nuclear
modifications RA

i in Eq. (2) at the initial scale Q2
0 are listed

in Table 3 where we also indicate the parameters that were
fixed to those of other parton species or assumed to have
some particular value. The fixed value of β = 1.3 for all
flavors as well as setting γya = 0 for sea quarks are motivated

Table 3 List of parameters defining the central set of EPPS16 at the
initial scale Q2

0 = 1.69 GeV2. The numbers in bold indicate the 20
parameters that were free in the fit

Parameter uV dV u

y0(Aref ) Sum Rule Sum rule 0.844

γy0 Sum Rule Sum rule 0.731

xa 0.0717 As uV 0.104

xe 0.693 As uV As uV

ya(Aref ) 1.06 1.05 1.03

γya 0.278 As uV 0, fixed

ye(Aref ) 0.908 0.943 0.725

γye 0.288 As uV As uV

β 1.3, fixed 1.3, fixed 1.3, fixed

Parameter d s g

y0(Aref ) 0.889 0.723 Sum rule

γy0 as u as u Sum rule

xa As u As u 0.0820

xe As uV As uV As uV

ya(Aref ) 0.919 1.24 1.12

γya 0, fixed 0, fixed As uV

ye(Aref ) As u As u 0.874

γye As uV As uV As uV

β 1.3, fixed 1.3, fixed 1.3, fixed
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Fig. 9 The EPPS16 nuclear modifications for carbon (leftmost
columns) and lead (rightmost columns) at the parametrization scale
Q2 = 1.69 GeV2 and at Q2 = 10 GeV2. The thick black curves corre-

spond to the central fit S0 and the dotted curves to the individual error
sets S±

i

[
�χ2

]
of Eq. (52). The total uncertainties are shown as blue

bands
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Fig. 10 The EPPS16 nuclear modifications for valence and sea u &
d quarks for lead at the parametrization scale Q2 = 1.69 GeV2. The
solid black curves correspond to the central result and the dotted/dashed
curves to the specific error sets as indicated. The total uncertainties are
shown as blue bands

by the EPS09 analysis. Freeing the latter easily leads to an
unphysical case (γya < 0) and thus we have decided to keep
it fixed at this stage.

The RA
i functions themselves with error sets of Eq. (52)

and uncertainty bands of Eq. (53) are plotted in Fig. 9 for
carbon and lead nuclei at Q2 = Q2

0 and Q2 = 10 GeV2.
Regarding these results, we make the following observations:

First, the obtained valence modifications RA
uV

and RA
dV

are
very similar in the central set S0, and strongly anticorrelated:
as the average valence modification is fairly well constrained
(see Fig. 27) an error set whose, say, RA

uV
is clearly below

the central value has to have an RdA
V

which is correspond-
ingly above the central value, and vice versa. This is further
demonstrated in Fig. 10 where only the errors sets S±

1 are
shown for valence. The large error bands for RA

uV
and RA

dV
at small x in Fig. 9 reflect the fact that the flavor separation
is not stringently constrained in the antishadowing region:
the finite uncertainties there induce (via the sum rules) larger
uncertainties in the shadowing region; see Fig. 10.

Second, interestingly also the u and d sea-quark modifica-
tions are very similar in the central set S0, and anticorrelated
(except in the large-x region where they were assumed to be
the same at Q2

0), though not as strongly as the valence quarks
because also the strange-quark distribution plays some role.
An example is shown in Fig. 10 where the errors sets S±

10
and S±

16 have been plotted. In contrast to the valence quarks,
individual sets are not always anticorrelated throughout all

the x values, but sets that are anticorrelated e.g. near xa can
be very similar toward x → 0.

Third, the central value of the strange-quark nuclear mod-
ification indicates stronger nuclear effects than for the other
light sea quarks. On the other hand, the uncertainty is also
significant and even a large enhancement at small x appears
possible. While such an effect is theoretically unlikely (we
would expect shadowing), it is consistent with the utilized
data whose uncertainties our uncertainty bands represent.
It should also be borne in mind that the determination of
the strange quark in CT14 (our baseline PDF) may suffer
from uncertainties (e.g. related to treatment of dimuon pro-
cess in neutrino–nucleus DIS) and can, to some extent, affect
the nuclear modifications we obtain. Thus, building a “hard
wall” e.g. prohibiting an enhancement at small x is not jus-
tified either. Nevertheless, the found central values of the
strange-quark nuclear modifications are clearly in a sensible
ballpark.

Fourth, for gluon distributions the uncertainties are large
at small x at Q2

0 but quickly diminish as the scale is increased.
The gluon distributions in some error sets also go negative
at small x at low Q2 but since FL remains positive, this is
allowed.

Fifth, on average, the nuclear effects of lead tend to be
stronger than those of carbon and also the uncertainties on
lead are larger than those on carbon. Given that most of
the data are for heavier nuclei than carbon, especially the
smaller errors for carbon may appear a bit puzzling. The rea-
son is in the new way of parametrizing the A dependence of
the nuclear effects, see Eq. (3), that favours larger nuclei to
exhibit larger nuclear effects.

Sixth, the parametrization bias that our fit function entails
is particularly well visible in the valence-quark panels where
a narrow “throat” at x ≈ 0.02 can be seen. This is an artifact
of not allowing for more freedom at small x while requiring
the sum rules in Eq. (4) and Eq. (5): to satisfy the sum rule,
an enhancement around x = 0.1 must be accompanied by a
depletion at small x (or vice versa), and since xa for valence
is fairly well determined the fit function always crosses unity
near x ≈ 0.02.

In Sect. 4.1 we mentioned that the two error-determination
options, the dynamical tolerance and fixed global tolerance,
lead to similar uncertainty estimates. To demonstrate this,
we plot in Fig. 11 the error bands of the nuclear effects RPb

i
at Q2 = 10 GeV2 obtained correspondingly from the error
sets S±

i [dyn] and S±
i [�χ2]. Indeed, we find no significant

differences between the two options.

5.2 Comparison with data

Figures 12, 13, 14, 15, 16, 17, 18, 19, 20 and 21 present
a comparison of the EPPS16 fit with the experimental data
of Table 1, computing the PDF error propagation accord-
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Fig. 11 The error bands of nuclear modifications at Q2 = 10 GeV2 from the global tolerance �χ2 = 52 used in the final EPPS16 fit (black
central line and light-blue bands) compared to the error bands from the dynamical tolerance determination (hatching) explained in Sect. 4.1
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Fig. 12 The Q2 dependence of structure-function ratios as measured by the NMC collaboration [74], compared with the EPPS16 fit. Solid lines
show our central set results, and error bands are computed from Eq. (53)
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Fig. 13 Ratios of structure functions for various nuclei as measured
by the NMC [73,74] and EMC [78] collaborations, compared with the
EPPS16 fit. In the rightmost panel the labels “addendum” and “chariot”

refer to the two different experimental setups in Ref. [78]. For a better
visibility, some data sets have been offset by a factor of 0.92 as indicated

ing to Eq. (53). The error bars shown on the experimental
data correspond to the statistical and systematic errors added
in quadrature. The charged-lepton DIS data are shown in
Figs. 12, 13, 14 and 15. We note that, for undoing the isoscalar
corrections as explained in Sect. 3.1, the data appear some-
what different from those e.g. in the EPS09 paper. On aver-
age, the data are well reproduced by the fit. In some cases the
uncertainty bands are rather asymmetric (see e.g. the NMC
data panel in Fig. 15) which was the case in the EPS09 fit as
well. This is likely to come from the fact that the A depen-
dence is parametrized only at few values of x (small-x limit,
xa , xe) and in between these points the A dependence appears
to be somewhat lopsided in some cases. The Q2 dependence
of the data visible in Figs. 12 and 14 is also nicely consistent
with EPPS16.

The pA vs. pD Drell–Yan data are shown in Figs. 16 and
17. In the calculation of the corresponding differential NLO
cross sections dσDY/dxdM we define x1,2 ≡ (M/

√
s)e±y

where M is the invariant mass and y the rapidity of the dilep-
ton. The scale choice in the PDFs is Q = M . While these data
are well reproduced, the scatter of the data from one nucleus
to another is the main reason we are unable to pin down any
systematic A dependence for the sea quarks at xa (some A
dependence develops via DGLAP evolution, however). For
example, as is well visible in Fig. 17, it is not clear from the
data whether there is a suppression or an enhancement for
x � 0.1.

The pion–A DY data are presented in Fig. 18. As is evi-
dent from the figure, these data set into the EPPS16 fit without
causing a significant tension. Overall, however, the statisti-
cal weight of these data is not enough to set stringent addi-
tional constraints to nuclear PDFs. Similarly to the findings
of Ref. [67], the optimal data normalization of the lower-

energy NA10 data (the lower right panel) is rather large
( fN = 1.121), but the x2 dependence of the data is well
in line with the fit.

The collider data, i.e. new LHC pPb data as well as the
PHENIX DAu data, are shown in Fig. 19. To ease the inter-
pretation of the LHC data (forward-to-backward ratios), the
baseline with no nuclear effects in PDFs is always indicated
as well. The baseline deviates from unity for isospin effects
(unequal amount of protons and neutrons in Pb) as well as
for experimental acceptances. For the electroweak observ-
ables, the nuclear effects cause suppression in the computed
forward-to-backward ratios (with respect to the baseline with
no nuclear effects) as one is predominantly probing the region
below x ∼ 0.1 where the net nuclear effect of sea quarks has
a downward slope toward small x . Very roughly, the probed
nuclear x-regions can be estimated by x ≈ (MW,Z/

√
s)e−y

and thus, toward more forward rapidities (y > 0) one probes
smaller x than in the backward direction (y < 0). The sup-
pression comes about as smaller-x quark distributions are
divided by larger-x (less-shadowed or antishadowed) quarks.
In the case of dijets, the nuclear PDFs are sampled at higher
x and, in contrast to the electroweak bosons, an enhancement
is observed. In our calculations, this follows essentially from
antishadowed gluons becoming divided by EMC-suppressed
gluon distributions; see Ref. [70] for more detailed discus-
sions. The PHENIX pion data [31] is also well consistent
with EPPS16, though, for the more precise CMS dijet data,
its role is no longer as essential as in the EPS09 analysis.

Finally, comparisons with the CHORUS neutrino and
antineutrino data are shown in Figs. 20 and 21. The data
exhibit a rather typical pattern of antishadowing followed by
an EMC effect at large x . The incident beam energies are not
high enough to reach the small-x region where a shadowing
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Fig. 14 The Q2 dependence of the ratio FSn
2 /FC

2 for various values of x as measured by NMC [79], compared with EPPS16

effect would be expected. Toward small x , however, the data
do appear to show a slight downward bend, a possible onset
of shadowing.

5.3 Comparison with baseline

To appreciate the effects induced by the new data (pion–A
DY, neutrino DIS and LHC data) in the EPPS16 fit, we have
performed another fit excluding these data sets but still cor-
recting the DIS data for the isospin effects. This fit is referred
to as “baseline” in the following. The resulting nuclear mod-
ifications for Pb at Q2 = 10 GeV2 with a comparison to
the EPPS16 results are shown in Fig. 22. For the baseline
fit here, the global tolerance is �χ2

baseline = 35. As seen
in the figure, it is not always the case that the uncertain-
ties of EPPS16 would be smaller than those of the baseline.
This originates from the mutually different global tolerances
of the two fits and from the differences of the χ2 behav-
ior around the minima. In any case, the uncertainty bands
always overlap and both of these enclose the central values
both from the baseline fit and the full analysis. Thus, the two
are consistent. Qualitatively, the most notable changes are
that, in comparison to the baseline, the EPPS16 central val-
ues of both valence-quark flavors as well as that of gluons
exhibit a very similar antishadowing effect followed by an

EMC pit. We have observed that this difference is mostly
caused by the addition of neutrino DIS data (valence quarks)
and the CMS dijet data (gluons). This is also illustrated in
Fig. 23 where the left-hand panel shows the χ2 contribu-
tion of the CHORUS data as a function of yuV

a − ydV
a (the

antishadowing peak heights for Aref as in Table 3) and the
right-hand panel the χ2 contribution of the CMS dijet data
as a function of yga − yge . The individual points correspond to
the EPPS16 and baseline-fit error sets. From these panels we
learn that in order to optimally reproduce the CHORUS data
we need yuV

a ∼ ydV
a , and agreement with the CMS dijet data

requires yg
a > yg

e (EMC effect). The other new data (pion–A
DY, LHC electroweak data) do not generate such a strong
pull away from the central set of the baseline fit. Also the
PHENIX data prefers a solution with a gluon EMC effect,
but the contribution of these data in the total χ2 budget is
so small that such a tendency is practically lost in the noise
(in the EPS09 analysis this was compensated by giving these
data an additional weight). The inclusion of the dijet data has
also decreased the gluon uncertainties at large x , excluding
the solutions with no antishadowing. In the case of u and d
sea quarks there are no significant differences between the
baseline fit and EPPS16. It appears that the s-quark uncer-
tainty at small x has somewhat reduced by the inclusion of
the new data, but the uncertainty is in any case large.

123



Eur. Phys. J. C   (2017) 77:163 Page 19 of 28  163 

x x

dσ
�A D
IS

(x
,Q

2 )
/d

σ
�D D
IS

(x
,Q

2 )

F
A 2
(x

,Q
2 )

/F
C 2
(x

,Q
2 )

Fig. 15 The SLAC [72] and NMC [75] data for DIS cross-section and
structure-function ratios compared with the EPPS16 fit. For a better
visibility, the SLAC data have been multiplied by 1.2, 1.1, 1.0, 0.9 for

Q2 = 2 GeV2, Q2 = 5 GeV2, Q2 = 10 GeV2, Q2 = 15 GeV2, and
the largest-x set by 0.8

Fig. 16 Ratios of Drell–Yan dilepton cross sections dσ pA/dσ pBe as a function of x1 at various values of fixed M as measured by E866 [77],
compared with EPPS16
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Fig. 17 Ratios of Drell–Yan cross sections measured by E772 as a function of x2 at fixed values of M , compared with the EPPS16 fit

Fig. 18 The π±–A Drell–Yan
data from E615 [53], NA3 [51]
and NA10 [52], compared with
the EPPS16 fit. The NA10 data
have been multiplied by the
optimized normalization factor
fN from Eq. (31)
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The values of χ2/Ndata for individual data sets are shown
in Fig. 24. For the CMS dijet data the baseline fit gives a very
large value but this disagreement disappears when these data
are included in the fit. However, upon including the new data
no obvious conflicts with the other data sets show up and
thus the new data appear consistent with the old. While it is
true that on average χ2/Ndata for the old data grows when
including the new data (and this is mathematically inevitable)
no disagreement (χ2/Ndata � 1) occurs. For the NMC Ca/D
data χ2/Ndata is somewhat large but, as can be clearly seen
from Fig. 13, there appears to be large fluctuations in the
data (see the two data points below the EPPS16 error band).
While the improvement in χ2/Ndata for the CHORUS data

looks smallish in Fig. 24, for the large amount of data points
(824) the absolute decrease in χ2 amounts to 106 units and
is therefore significant.

5.4 Comparison with other nuclear PDFs

In Fig. 25 we compare our EPPS16 results at the scale
Q2 = 10 GeV2 with those of the nCTEQ15 analysis [35].
The nCTEQ15 uncertainties are defined by a fixed tolerance
�χ2 = 35, which is similar to our average value �χ2 = 52
and in this sense one would expect uncertainty bands of com-
parable size. The quark PDFs were allowed to be partly fla-
vor dependent in the nCTEQ15 analysis (although to a much
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Fig. 19 The LHC pPb data from CMS [37,46,48] and ATLAS [49]
for Z (upper panels) W± (middle panels), and dijet production (lower
left panel) compared with the EPPS16 fit. The dashed lines indicate the
results with no nuclear modifications in the PDFs. The PHENIX DAu

data [31] for inclusive pion production (lower right panel) are shown
as well and have been multiplied by the optimal normalization factor
fN = 1.03 computed by Eq. (31)
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Eν =25 GeV Eν =35 GeV Eν =45 GeV Eν =55 GeV Eν =70 GeV

Eν =90 GeV Eν =110 GeV Eν =130 GeV Eν =170 GeV

Fig. 20 The neutrino–nucleus DIS data based on CHORUS [50] measurements, compared with the EPPS16 fit. The data as well as the theory
curves have been obtained as described in Sect. 3.2

Eν =25 GeV Eν =35 GeV Eν =45 GeV Eν =55 GeV Eν =70 GeV

Eν =90 GeV Eν =110 GeV Eν =130 GeV Eν =170 GeV

Fig. 21 As Fig. 20 but for antineutrino beam

lesser extent than in EPPS16), hence we show the compari-
son for all parametrized parton species. The two fits (as well
as nCTEQ15 and our baseline fit in Fig. 22) can be consid-
ered compatible since the uncertainty bands always overlap.
For all the sea quarks the nCTEQ15 uncertainties appear
clearly smaller than those of EPPS16 though less data was
used in nCTEQ15. This follows from the more restrictive
assumptions made in the nCTEQ15 analysis regarding the
sea-quark fit functions: nCTEQ15 has only 2 free parame-
ters for all sea quarks together, while EPSS16 has 9. Specif-
ically, the nCTEQ15 analysis constrains only the sum of
nuclear ū+d̄ with an assumption that the nuclear s quarks are
obtained from ū + d̄ in a fixed way. In contrast, EPPS16 has
freedom for all sea-quark flavors separately, and hence also
larger, but less biased, error bars. For the valence quarks,

the nCTEQ15 uncertainties are somewhat larger than the
EPPS16 errors around the x-region of the EMC effect which
is most likely related to the extra constraints the EPPS16 anal-
ysis has obtained from the neutrino DIS data. Especially the
central value for dV is rather different from that of EPPS16.
The very small nCTEQ15 uncertainty at x ∼ 0.1 is pre-
sumably a similar fit-function artifact as what we have for
EPPS16 at slightly smaller x . Such a small uncertainty is
supposedly also the reason why nCTEQ15 arrives at smaller
uncertainties in the shadowing region than EPPS16. For the
gluons the nCTEQ15 uncertainties are clearly larger than
those of EPPS16, except in the small-x region. While, in
part, the larger uncertainties are related to the LHC dijet data
that are included in EPPS16 but not in nCTEQ15, this is not
the complete explanation as around x ∼ 0.1 the nCTEQ15
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Fig. 22 The nuclear modifications at Q2 = 10 GeV2 from the EPPS16 fit (black central line and light-blue bands) compared with the baseline fit
(green curves with hatching) which uses only the data included in the EPS09 fit
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sets from the baseline fit. The arrow indicates the direction of change
induced by inclusion of these data into the analysis

uncertainties also largely exceed the uncertainties from our
baseline fit (see Fig. 22). Since the data constraints for glu-
ons in both analyses are essentially the same, the reason must
lie in the more stringent Q2 cut (Q2 > 4 GeV2) used in the
nCTEQ15 analysis, which cuts out low-Q2 data points where
the indirect effects of gluon distributions via parton evolu-
tion are the strongest. The inclusion of the dijet data into the
nCTEQ15 analysis would clearly have a dramatic impact.
This can be understood from Fig. 26 where we compare the
CMS dijet data also with the nCTEQ15 prediction (here, we

have formed the nCTEQ15 nuclear modifications from their
absolute distributions and used the same dijet grid as in the
EPPS16 analysis).

A comparison of EPPS16 with EPS09 [33] and DSSZ [34]
is presented in Fig. 27. In the EPS09 and DSSZ analyses the
nuclear modifications of valence and sea quarks were flavor
independent at the parametrization scale and, to make a fair
comparison we plot, in addition to the gluons, the average
nuclear modifications for the valence quarks and light sea
quarks,
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Fig. 24 The values of χ2/Ndata from the baseline fit (red bars) and EPPS16 (green bars) for data in Table 1
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Fig. 25 Comparison of the EPPS16 nuclear modifications (black central curve with shaded uncertainty bands) with those from the nCTEC15
analysis [35] (red curves with hatching) at Q2 = 10 GeV2

RPb
V ≡ up/Pb

V + dp/Pb
V

up
V + dp

V

, (54)

RPb
S ≡ up/Pb + d

p/Pb + sp/Pb

up + d
p + sp

, (55)

instead of individual flavors. For the valence sector, all
parametrizations give very similar results except DSSZ in
the EMC-effect region. As noted earlier in Sect. 3.1 and in
Ref. [6] this is likely to originate from ignoring the isospin
corrections in the DSSZ fit. The sea-quark modifications look
also mutually rather alike, the EPPS16 uncertainties being
somewhat larger than the others as, being flavor dependent,
the sea quarks in EPPS16 have more degrees of freedom. As
has been understood already some while ago [5,6], the DSSZ

parametrization has almost no nuclear effects in gluons as
nuclear effects were included in the FFs [36] when computing
inclusive pion production at RHIC. As a result, DSSZ does
not reproduce the new CMS dijet measurements as shown
here in Fig. 26. Between EPS09 and EPPS16, the gluon
uncertainties are larger in EPPS16. While EPPS16 includes
more constraints for the gluons (especially the CMS dijet
data), in EPS09 the PHENIX data was assigned an additional
weight factor of 20. This in effect increased the importance
of these data, making the uncertainties smaller than what
they would have been without such a weight (the baseline-fit
gluons in Fig. 22 serve as a representative of an unweighted
case). In addition, in EPPS16 one more gluon parameter is
left free (xa) which also increases the uncertainties in com-
parison to EPS09.
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Fig. 26 The CMS dijet data [37] compared with the results obtained
with the EPPS16 (blue bands), nCTEQ15 [35] (red bands) and DSSZ
[34] (hatched bands) nuclear PDFs

6 Application: W charge asymmetry

The W charge-asymmetry measurement by CMS in pPb col-
lisions [46] revealed some deviations from the NLO calcu-
lations in the backward direction and it was suggested that
this difference could be due to flavor-dependent PDF nuclear
modifications. While it was shown in Ref. [103] that such a
difference does not appear in the ATLAS PbPb data [104]
at the same probed values of x , the situation still remains
unclear. To see how large variations the new EPPS16 can
accommodate, we compare in Fig. 28 the CMS data with the
EPPS16 and EPS09 predictions using the CT14NLO proton
PDFs. As discussed in the original EPS09 paper [33], the
total uncertainty should be computed by adding in quadra-
ture the uncertainties stemming separately from EPPS16 and
from the free-proton baseline PDFs,

(δOtotal)
2 = (δOEPPS16)

2 + (δObaseline)
2, (56)

where δOEPPS16 is evaluated by Eq. (53) using the uncertainty
sets of EPPS16 with the central set of free-proton PDFs, and
δObaseline by the same equation but using the free-proton error
sets with the central set of EPPS16. The same has been done
in the case of EPS09 results. While the differences between
the central predictions of EPPS16 and EPS09 are tiny, it can
be seen that the uncertainty bands of EPPS16 are clearly
wider and, within the uncertainties, the data and EPPS16 are
in a fair agreement. As this observable is mostly sensitive to
the free-proton baseline (to first approximation the nuclear
effects in PDFs cancel) we do not use these asymmetry data
as a constraint in the actual fit in which we aim to expose the
nuclear effects in PDFs.
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Fig. 27 Comparison of the EPPS16 nuclear modifications (black cen-
tral curve with light-blue uncertainty bands) to those from the EPS09
analysis (purple curves with hatching) and DSSZ [34] (gray bands) at
Q2 = 10 GeV2. The upper panels correspond to the average valence
and sea-quark modifications of Eqs. (54) and (55), the bottom panel is
for gluons

7 Summary and outlook

We have introduced a significantly updated global analysis
of NLO nuclear PDFs – EPPS16 – with less biased, flavor-
dependent fit functions and a larger variety of data constraints
than in other concurrent analyses. In particular, new LHC
data from the 2013 pPb run are for the first time directly
included. Another important addition here is the neutrino–
nucleus DIS data. Also the older pion–nucleus DY data are
now for the first time part of the analysis. From the new data,
the most significant role is played by the neutrino DIS data
and the LHC dijet measurements whose addition leads to a
consistent picture of qualitatively similar nuclear modifica-
tions for all partonic species. Remarkably, the addition of
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new data types into the global fit does not generate notable
tensions with the previously considered data sets. This lends
support to the validity of collinear factorization and process-
independent nuclear PDFs in the kinematical x, Q2 region
we have considered.

However, the uncertainties are still significant for all com-
ponents and, clearly, more data is therefore required. In
this respect, the prospects for rapid developments of nuclear
PDFs are very good: It can be expected that new data from
the LHC will be available soon. For example, from the 2013
pPb data taking, a more differential dijet analysis by the
CMS collaboration [105] as well as W data by ATLAS [106]
are still being prepared. In November–December 2016, the
LHC has recorded pPb collisions at the highest energy ever,√
s = 8.16 TeV, with more than six times more statistics

than that from the 2013 pPb run at
√
s = 5.02 TeV.5 The

new data from this run will provide further constraints to
the nuclear PDFs in the near future. As in the case of free-
proton PDFs [107,108] heavy-flavor production at forward
direction [109] may offer novel small-x input. An interest-
ing opportunity is also the possibility of the LHCb experi-

5 https://lpc.web.cern.ch/lumiplots_2016_PbPb.htm.

ment to operate in a fixed-target mode and measure e.g. pNe
(and other noble gases) collisions [110]. From other experi-
ments, new fixed-target proton-induced Drell–Yan data from
the Fermilab E-906/SeaQuest experiment [115] should also
provide better constraints e.g. for the A dependence of the
sea-quark nuclear modifications.

Further in the future, the planned Electron–Ion Collider
[111] (and LHeC [112] if materialized) will provide high-
precision DIS constraints for all nuclear parton flavors. In
addition, the possible realization of a new forward calorime-
ter (FOCAL) at the ALICE experiment [113] would, in turn,
give a possibility to measure isolated photons in the region
sensitive to low x gluons [114].

On the theoretical side, there is ample room for improve-
ments as well. For example, similarly to the free-proton fits,
an upgrade to next-to-NLO or inclusion of photon distribu-
tions and mixed QCD–QED parton evolution are obvious
further developments. In a longer run, to avoid biases due
to specific baseline proton PDFs, especially regarding the s
quark sector, fitting the proton PDFs and nuclear PDFs in
one single analysis is ultimately needed.
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