
    

 

 

 
 
This is an electronic reprint of the original article.  
This reprint may differ from the original in pagination and typographic detail. 
 

Author(s): 

 

 

Title: 

 

Year: 

Version:  

 

Please cite the original version: 

 

 

  

 

 

All material supplied via JYX is protected by copyright and other intellectual property rights, and 
duplication or sale of all or part of any of the repository collections is not permitted, except that 
material may be duplicated by you for your research use or educational purposes in electronic or 
print form. You must obtain permission for any other use. Electronic or print copies may not be 
offered, whether for sale or otherwise to anyone who is not an authorised user. 

 

Identification of critical curves. Part II. Discretization and numerical realization

Haslinger, Jaroslav; Horák, Vaclav; Neittaanmäki, Pekka; Salmenjoki, Kimmo

Haslinger, J., Horák, V., Neittaanmäki, P. & Salmenjoki, K. (1991). Identification of
critical curves. Part II. Discretization and numerical realization. Mathematica
Scandinavica 36 (5), 380-391. Retrieved from https://eudml.org/doc/15686

1991



36 (1991) APPLICATIONS OF MATHEMATICS No. 5, 380-391

IDENTIFICATION OF CRITICAL CURVES
PART II: DISCRETIZATION AND NUMERICAL REALIZATION

Jnnosr,lv Hlsuucrn, VÁclev HonÁr, PsKrÂ. NrrrraANMÄKr, Ktuuo S,qrtreN¡orr

(Received April 11, 1990)

Summary, We consider the finite element approximation of the identiûcation problem, where
one wishes to identify a curve along which a given solution of the boundary value problem
possesses some specific property. We prove the convergence of FE-approximation and give some
results of numerical tests.

Keywords: Identification of a curve, approximation by FEM, convergence.

AMS classificafion.' 49E30, 65N30

INTRODUCTION

In practice we often meet problems when we wish to identify a curve along which
a given solution of a boundary value problem possesses some specific property.
In [1] the problem of identification of a curve along rvhich the "flux" functional

lr@ulôn)ds attains its maximum, is analysed. The present paper deals rvith the
approximation of this problem. Some numerical results are presented.

I. SETTING OF THE PROBLEM

This paper deals with the flnite element approximation of an identiûcation problem,
the continuous version of which has been already introduced in [t]. Let us mention
its definition. We shall assume the following mixed boundary value problem:

(s')
-Lu: f

u:0
ôu
^:g0n

in d¿,

on lr,

on f ,,

where
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is a bounded domain, the Lipschitz boundary ôO of which is decomposed as follows

ôe:FtuFr,
f , : {(xr, xr) e R2 | *, : p(*r), x, e (0, 1)} ,

j-r : âOrfz.

Here p is a Lipschitz continuous function on [0, t]. Moreover,;f e L2(a), g e r?(rr).
In order to give the variational form of (Ø'), we iniroduce the space

V:{Dent(O)fu:0onfr}.
The variational formulation of (Ø,) reads as follows:

(s) {rind ueV suchthat

l.(Vu,yu)s,ç : (Í, a)o,o 1- tr" gu ds yu e V .

Th_e symbol ( , )-o," denotes the usual scalar produ ct rn L2(A).
Let 0 < d, < F < 1, ô > 0 be given, By Uu¿ we denote a subset of Lipschitzcon-

tinuous functions, defined by

U^¿ : {E | :a e [0, o], þ .lß, 1f, E e Co,t[a, B)] ,

<n(u) : p("), E(Ê) : p(þ), õ < E _< p on lo, þf,

fø("t) - q(tt)l s c,lx, - x,l vx1, x1 .lo, þf, meas a(E): crl
whe¡e

fr(E) : {("r, rr)e R, I o s x2 3 p(x) x, e[0, a]v lB,If
0 < x, S ø(xr) xrelu, þf]'

and C1, C, are positive constants such that U^d + ø.
Finally, set

- tr,,rrrø ds - tr,,t"', g ds ,
t(q) :(u!, t\

\d/, / aakt'l

where

and(,
In [1]

rL(E) : {(",, *r) e R2 | x, : p(xr),x, e (0, ø)}

ri(E) : {(r,, *r) e R2 | x, : p(xt),x, e (B, t)}

)aole¡ denotes the duality pairing between H-u2(ôo(ç)) and nr/r(ôa(E)).
the following problem has been introduced:

f Find g* e (J o¿ such that

ir(r-) : max J(E) .
(peuad

(P)',
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This problem can be equivalently formulated (see [t]) as follows:

lp) JFind e* €U^¿ such that
\ / 

L,g@*): min g(E) 
,

where 
Qeadd

g(E): 
Io<r.,f d* * !r,'çp¡g ds * !r,'6¡g ds.

The existence of at least one solution ø* of(P) has been established in [1].

2. APPROXIMATION OF (P)

In what follows we shall assume O c R2 to be of a special type, namely such that
the function p describing f, is piecewise linear in [0, 1] with nodes included in [æ, 

p]

only (see Fig. 1)*)

X2

l2

I

â

l1

q

I Þ lXr0c(q

Figure I

Let Ø,(a, þ), o: a1I a2 < '.. <
number of nodal points n doesn't depend on ore[0,4] and þ.1F,1]. The xl-co-
ordinates of the vertices of p are included in Ø,(a, É). Any Ø,,(o, þ) will be charac-

terizedby two numbers h^u*(o, þ) : ^u*,1or*, - arl, h^rn(a, B) : min¡la r*, - arl.

We shall assume that the position of a¡, i * 1, ..., n depends continuously on a, þ,
The approximation of U u¿ will be constructed by means of piecewise linear

functions:

uiu : {ç | rø e [0, ef, þ.[F, 1]' E e c(lu, Bl),

Ela**e r1þ*ra¡), E(u) : p("), rp(þ) : p(ll) ,

õ s E s p on lo, þf,l9(;r) - e(xl)l < c,lx, - Í11

Vx1, x1 .la, þf, õ, < meas A(ç) 
= 

Õt\ .

C t, e z, e 3 arc positive constants chosen in such a way thal U:d + ø.

*) This assumption is only for technical reasons.
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l-

Remark 2.1. The equality constraint meas O(g) : Cz in the definition of
Uu¿ is now replaced by two sided inequality constraints õ2 5! meas n(rfi S e t
(for the choice of Õ", õ3 see below). This means that Uiu Ç (J^d.

The approximation of (P) is now defined as follows:

lp) JFind çI eUi¿ such that
\ /" l'/(Ei): min g(E) '

Next, we ,nutt un"tylî
(i) the existence of at least one solution qf of (P),;

(ii) the relation between (P), and (P) when n * oo+.

3. EXISTENCE OF A SOLUTION FOR (P)¡

In order to prove the existence of a solution for (P)", we formulate this problem
in the language of discrete design variables. The vector ofdiscrete designvariables
, : (rr, ..., @zn) contains

(j) the nodesof Ø,,(a, þ);
(jj) the xr-coordinates of vertices of g e Uf,u at ar, i : I, ..., n.

For the sake of simplicity of notation we shall suppose that the first n components
of co are the nodes of Ø,(a, p), while the elements of (jj) are listed last, i.e.

(Ð¡: a¡ í : 1,,.'rn;
@¡ : e(a¡-,) ¿ : n * 7,...,2n.

Let the parameter n be frxed. Then Uiu can be identiûed with a compact subset
U of R2o as follows:

u :{re R2nlå-"*(or,a¡o) à n¡+r - .a,rlh^rn(ar,rrt,),i: L,...,n - li
t

ø, e [0, d,f, ønelß,l], @n!r : p(ar), o)2n : p(a") ;

ô < a, 3 p(rtt¡-,), i : n * 2,,..,2n - l;

lr,*, - a,l < Crlcor+l-¿ - alÍ-nl, i : tt i L,...,2n - l1

e , s'¡,þ9+þù *"=\,ry(,,*,-o - o,,-o) +

+ (1 - ,,)Øù!@ s õ,Ì."2"J
Let f o: Ulo --+ R2o be a mapping defined through the relation

r,(E) : (ar, ..., en, E(ot), ..., E(o,)), e e UI¿.

¡¡

d
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It is easy to see that î,,(Uiò : U andthe inverse mapping î, t: tJ - Uiais given by

g;t(r) : ir,*,/, , (Ð : (rr, ..., o,rn) e (I ,j=r

where /¡, j : I,...,n ate piecewise linear functions satisfying t¡(at): ð¡¡. Finally,
set

e(r) :,y(g;'t) : Io<r¡f dx * [¡,,1r¡s ds * [r,,ç¡ s ds,

The equivalent formulation of (P)" is given by

(F). JFind
ls(r*)

ez: Cz

o¡* eU such that
: min s(r).

The main result of this section is

Theorem 3.1. For any n there exists qt least one solution Ej of (P),.

Proof. U is a compact subset of R2n, ø -- 9(ø) is a continuous function. Using
the classical compactness argument, we obtain the existence of at least one (o* :

: (rî, @î,...,ø1,)eU solving (F)". Setting ,pi :Lrl*,/¡we arrive at the asser-

tion of Theorem 3.1. j=r

4. RELATION BETWEEN (P) AND (P)n, n + :t'

Let {Ø,(u, þ)}, , - æ be a regular family of partitions of la. þl in the following
sense:

fthere 
exists a positive number q independent of

)r, o, ß and such that

l!^ !'' !) 
= 

n.
U,-,,(o, /) -

Let E! e Uiu be a solution of (P),. Now we shall analyse what happens when

n --+ æ,
First of all we shall specify the choice of constants Õ", Õrappearing in the definition

of Uiu. We set

L_ 0)
0)Õt: Cz 1+

where 7 e (0, t) and the meaning of C, is given by the definition of U.6. First we prove
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Lemma 4.1. For any g E[Io6, {pilo, ff --' Rr there exists a seÇluence <pneUla
defined on la, B] and such that

(+.t) <p,3 I (uniformly) on lu, þf .

Proof. Let Ee(J.u be defined on [a, þ], o, [0, a], ß rLß, f]. Set en: rn(p,
where r,E denotes the piecewise linear Lagrange interpolattn ãr E. using the
classical approximation properties of g,, we have

(q.z) IlE, - Ell"*<(o,f)) I ")ll*il*,,-,ø,pn s ,1,

which yields (4.1). Let us prove thar gne uio. clearly, it is necessary only to verify
that

,,(t -(Ð) = 
meas rr(ø") s c, (r . (Ð)

(the other properties of Eo appeaL:ing in the definition of ulu are satisfied because
of the definition of rp,). We have

meas o(g,,) : Jo(ç"i dx: meas o - !r"lr*^a, :: meas o - ll li" dx t lp" [,_ a, :
measo(ø) + IP"$i,d", - Jå" dr,) dx, s c, + Ill!6,ax,lax,

s cz * "! = 
c,(t .0)

because of (+.2), provided n is sufficiently large.
Similarly

meas a(E,) 2 C,

The main of this section is

(' - (Ð)

n--+ædl - a*, ßl - þ*,

çI = E* on I.:

Theorem 4.1. Let Eï euk,,E|¡lyi, ßT1-. Rr be a solution of (p),,. Then there
exist subsequences of .{al},{ßT},!vl} (denoted bv the ,o*, ,y'*Tol) and a*e
e [0, a], þ* el\, rf, E* e (Ju6, E*:[o*,-É*] --+ Rr such that

(+.¡)

l***,p.-t
for any integer m and

(4.4) E* is a solution of (p) ,

Proof. Let El eUiu, E!:loi, þil * R1 be a solution of (p),,:

(4's) s(EI) 
= 

s(E) YE euio.

385



As ø| e [0,o], þl ,Lß,1] there exist subsequences of {a}}, {Bf} (stltt denoted by
the same symbol) and numbers ø* e [0, of, ß* . [p, 1] such that

(4.6) u!-+u*, ßI-þ*, r?-)oo.

Let mbe an integer andl,oas above. Then Ef are defined on I^(m being fixed) for
n sufficiently large. As the sequence {Ei lt^\ satisfies on /, all assumptions of the
Ascoli-Arzela theorem, there exist a subsequence {Ei,} - {qi} and a function
q*tu) e C(/,) such that

e!,]E*{'l on I^.

Replacing m by (m f 1), one can find a subsequence {Ek} - {Ei,} defined on
I 
^* , and a function r*@+ 

1) e C(t 
^* ,) 

such that

Ek 3 
'x(n+7) 

on 1,,*, .

Clearly t*(n+1) : E*(n) on f,. Repeating the same procedure for any integer m

and passing to the diagonal subsequence defined by means of {Ei'}, {EÍ'},... on"
construct a sequence, denoted bV {EÍ}, such that

EI 3 q* on I^ where fx - ,x(n) on I^, rrl integer.

It is easy to see that e* e Uua. Indeed, as

",(' -0) = 
meas 

'(ef) 
s c, (r . (;l)

then

(4.7)

But
meas O(rPf) : meas A - ll:i I"^, d* :
: meas O - Jr_ II^. d, - [o^ Ior^. d* ,

where meas G- + 0 as n¿ --) co. Keeping m frxed and n -- oo we have

,1* 
*"ut ç(Ei) : meas O - Ir^ Ior. dt - .[o- Io*, d* .

Letting m -+ Ø we finally obtain

,1- 
*"ut A(EI) : meas O - lu,: ¡'-. dx : meas A(ç*).

Comparing this with (+.2) we see that meas O(9*) : Cz. Further

::ti('*(". . :) -,Ï("r)) + lim ef(af) =

lim meas o(<n|) : C,
¡+ó

g* a** *)

(..: lim *
9"( +
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where c(m) + 0 if m "> Ø. Thus g*(a*) : p(o*) and similarly ç*(þ*) : p(þ*).

The other conditions appearing in the definition of Uu6ate easily satisfied. Let us

prove that

(4.Ð 
,trm "ø(Ei) : .t(E*) .

Indeed,

ln<r^.¡Í dx : Ial dx - lfXi I'r".f a, :
: Iof dx - Jr," Íor,,Íd* - lu^lor,,.f o*,

where meas G* --+ 0 as m '-+ co. For m frxed and n '-> co we have

,ltulo<**r.l 
¿¡ : Joldx - I,^lio'f dx - Ie^lfr,f a*.

Letting m -+ æ we finally obtain

(4.9) 
"[- 

Jorr"e/ dx : Irl ax - Jfl [or.Í a* : In<*.¡l dx .

Similarly

lr,,@**)e ds : l3' ø 1çt + (p')')dx, 
n];o 

i¡6. s J(t + (¿)')dx, :
: tt"g'¡ g ds

and

[rrr@n )g ds'ï !r.r1e,¡ g ds .

Takinginto account this, (4.9) and the definition of 9,we arrive at (4.8).

Let Ee(J76,{pilo,þf* Rl be fixed. According to Lemma 4.1 there exists a se-

quence eneUIt, enilü,p]* Rt and such that (4.1) holds. In the same way as

before one can prove that

"fu9(E'): 
g(E)'

From this, (4.8) and (4.5) we get

e(E*) 
= 

s(q).

As g e U"6 is an arbitrary element this means lhat E* solves (P).

5. NUMERICAL EXAMPLES

Let us suppose for simplicity that p is a linear function defined on [0, 1], and let
0 < A < F < t. Let n be fixed. The partition Ø,(a, þ) will contain moving nodes,

forming a partition of la, B] (see Fig. 2).
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The vector of discrete design variables , : (.r, ..., @2il) now contains

(j) the nodes of ø,(u, þ);
(jj) the xr-coordinates of vertices of EeUiuat a,,i : L,...,n.
The set U, introduced in Section 3, is a compact subset of R2'.

Y
i:J¡^

X2

b)¡.2
(do*l

0 û.r1 q É oô1 Xl

Figure 2

From the definition.of U we see that all constraints with the exception of the last
one are linear. In U we take the constants to be

a : 0.15, F: 0.95, ct : 1..5, cz: Õ, : er: 0.5gg4,

ô : 0'1, h^,(rr,@,) : 1, h^r,(ap @r) : 0'02, n : 13 .

In order to solve the problern (P), numerically one uses some iterative method;
typically a gradient type method.

In optimization we apply the Sequential Quadratic Programming method (sub-
routine EO4VDE of NAG-library). Domain integrals are computed using Gaussian
quadrature and line integrals with the trapezoidal formula. A sufficient subdivision
is performed dynamically in the domains of integration to get accurate results.
In sensitivity analysis the method of part f rvas compared with the finite difference
and the algebraic method and all three methods gave the same gradient. In optimiza-
tion the algebraic gradient, obtained through analytical differentiation of the cost,
was used.

In the examples \rye take O to be given by

O : {(rr, x2)e[2l0. r, < p(xr) : ixt Í l, xre(O,t)}.

We consider two cases:

Example 5.1. Let xt: f(xrxz): -2n2 sin(æx1)sin(nxr), g(xpxz): -2'5n.
. sin (txr) cos (æxr) and let O be given as above. As an initial guess we choose

ro¡ : 0.125 + (t - 1)0'0625, i : I,...,l3
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and
@14: 0'5625, o)ts:0'5, (Ðt6:0'4375 ' Q)17:0'375,

@ß : 0'3125 , @te : 0'3125 , o)2o: 0'40178 , a)zt : 0'49107 ,

@22 :0'58035 , Q)23 : 0'66964 , o)24: 0'75892 , Q)25: 0'84821 '
a)zø : 0'9375 '

In Figure 3 below we have the initial and optimal curYos I fot this example.

1.0

0.9

0.8

1.0

0.9

0.8

0.7

0.6

0.

0.6

Xr 0.5

0.1

0.3

0.2

0.1

0.0

Xz0

0.0 0.1 0.2 0.3 0.1

0.4

0.2

0.'l

0.0

0.6 0.? 0.8 0.9 1.0 0.0 0.1 0.2 G.3 0.4 0.5 0.6 0.7

X1

9 1.0

X1

Figure 3

In Table 1 below we have the values of/ along the optimal curve Ef

Table 1

X7 x2 x3

0.0000000
0.1092079
o.t3l3l76
0.2441563
o.264s934
0.3071481
0.3508292
0'4093626
0.4750012
0.7462183
0.8078977
0'8717889
1.000000

0.5000000
0.3361 88 I
0.3030236
0.33s931 1

0'3665868
0.4304188
0.49s9405
0'5837405
0.6689263
0.6193624
o.'nt8464
0'8076833
1.000000

0.0000000

- 5.780113

- 6.446706

-t1.9t932
-13.320s2
- 15.83973

-17.6@62
-18.29257
-16.97169
- l3'l4l2l
- 8.81186s

- 4.395551

0.000000

The cost in optimization was reduced from Jo : -3'93614 to Joo, : -4'88278,
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Example 5.2.Let xt : Í(xt, xr) : x? + xl, g(xr, xz) : I and let O be given as

above. Moreover, let the initial guess be the same as in Example 5.1. In Figure 4

below we have the initial and optimal curves g for this example.

i,0

0.9

0.8

0.7

0.ó

Xz 0.5

1.0

0.9

0.0

0.?

0.6

X2

0.4

0.3

0.2

0.1

0.0

0,t,

0.3

0.2

0.1

0.0

0.9 1.0 0,0 0.1 0,4 0.ó 0.7 1.00.0 0.1 0,2 0.3 0.4 0.5 0.6 0.7

X1
X1

Figure 4

In Table 2 below we have the values of / along the optimal curve <pl

Table 2.

X1 x2 x3

0.0000000
0.2072488
0.3436032
0.4082979
0.4289429
0.4492524
0.4692871
0.599s7A2
0'6263743
o.6976938
o.7892034

0.8258656
1.000000

0.5000000
0.5999357
0.5744058

0.4785570
o'4560512
0.4260519
o'4344718
0.4016983
0'439s616
0.546s407
0.6838051
o'7387984
1.000000

0.2500000
o.4028749
0',1480O52

o'3957239
o.39r9747
0.3833479
0.4089961
0.5208459
0.5855591
0'7854833
1.090431

1.227877

2'000000

From the table we see that / is constant along most of the optimal cufYe 9, which

corresponds to the theory from [1]. The cost in optimization was reduced from "Io 
:

: 0'6616 to Joo, : O'3!24.
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