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Abstract A compact electrostatic trap has been designed and installed as part of the recent
upgrades to the IGISOL IV facility. The ConeTrap provides an in vacuo optical pumping site
for low energy (800 eV) ionic ensembles available for interaction periods of 10-100 ms. At
present, 6.7(3) % of injected mass A=98 ions can be trapped, stored for 5 ms, extracted and
transported to a laser-ion interaction region. This fraction represents those ions for which
no perturbation to total energy or energy spread is observed. Proposed enhancements to
the trap are designed to improve the trapping efficiency by up to a factor of 5. Differential
pumping and reduction in background pressure below the present 10−6 mbar will extend
storage times beyond 100 ms.
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1 Introduction

At the laser-IGISOL facility JYFL, there has been an increased, experiment driven, desire
for a field free, high vacuum, trapped ion interaction region in which to perform long inter-
action (10-100 ms) laser spectroscopy. A ConeTrap, pioneered by Schmidt et al. [1], would
provide such a location. These electrostatic traps can successfully contain 30 000 ions for
in excess of 100 ms [1, 2], and are thus ideal for the purpose of laser spectroscopy.

ConeTraps comprise of two (or more) conical, reflecting electrodes that are used to pro-
vide multi-reflection based containment of ions. Simple conical electrodes at voltage create
potentials which internally are harmonic in both the z and r directions (specified in cylindri-
cal coordinates). When two facing cones are partitioned with a grounded aperture electrode
then electrostatic potentials such as those shown in Fig. 1 can be formed. It is observed that,
even with extended central sections, stable ion trapping can be achieved (Fig. 2) for a range
of potentials and various reflections in the ConeTrap.

The ions in the ConeTrap have a maximum axial velocity in the central region, deter-
mined by the electrode voltages. Each ion will momentarily have a net axial velocity of
zero at each end of the trap electrodes. These extremes, the turning points and the trap cen-
tre, are associated with extremes in Doppler-shifted frequency where optical resonance can
be induced in trapped ions. In the centre, velocity spread compressed, collinear laser spec-
troscopy can be attempted, albeit at modest total energy (800 eV). At the turning points
a laser-ion interaction perpendicular to the direction of motion is achieved irrespective of
energy (given a sufficiently narrow laser beam).

2 Description and basic operation of the ConeTrap

Initially, the ConeTrap implemented at the IGISOL IV laboratory was comprised of two
conical electrodes separated by a grounded central chamber, following the designs outlined
in reference [3]. The conical electrodes were made with open ends, allowing laser light to
pass through the ConeTrap and interact with ions in the central region. The restricted stabil-
ity and critical alignment dependencies led to design changes that resulted in the removal
of the grounded central region and development of a ‘collapsed’, two cone only, trap. The
final design is highly compact and electrostatic simulations (described below) reveal broad
stability regions achievable in a range of trapping modes. The device is shown in Fig. 3.
The ConeTrap is constructed from high purity (deoxygenated) copper and PEEK insula-
tors, with the stainless steel supporting rods and meshes external to the trap. The copper
electrodes are each 74.0 mm in length, the smaller aperture, φ1 = 23.0 mm and the larger
aperture, φ2=34.0 mm, creating an opening angle of 8.46◦. The two electrodes are sepa-
rated by 4.0 mm of insulation and a grounded central aperture 2.0 mm thick with opening
diameter 8.0 mm.

At the IGISOL, the ConeTrap is situated on the high voltage platform that houses the
RFQ cooler. At this point, ions have a kinetic energy of approximately 800 eV, thus moving
with a lower velocity than any other section of the high vacuum beamline. Only modest
trapping potentials and fast switching (50 ns) of voltages less than ∼2 kV are required
to operate the device. When positioned on one face of a switchable quadrupole bend, a
laser-ion interaction region covering the full injection path of the ConeTrap can readily be
achieved.

To enable ions to enter the trap the front electrode is switched to an ‘injection’ voltage
and then back to a ‘trapping’ voltage, prior to the reflected bunch returning to the front cone.
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Fig. 1 Plots showing equipotential contours for: (a) Front cone at injection/extraction potential (680 V) and
rear at 805 V, (b) symmetric ConeTrap with both electrodes at 805 V, (c) asymmetric ConeTrap with the
front and rear electrodes set to 1350 V and 805 V respectively. Also included is, (d) a 3-D projection of the
harmonic potential created in the z direction for the asymmetric regime, as shown in (c)

(a) Soft reflection (b)Hard reflection

Fig. 2 Trajectories of ions within the ConeTrap in two different trapping modes

After a desired trapping time, switching down the front electrode permits extraction and
secondary acceleration. At the IGISOL, the ions that exit the trap are guided to the ‘Light
Collection Region’ (LCR) in the collinear laser beamline.

In the absence of collisions with residual gas, or ion-ion interactions, an ionic ensemble
can be indefinitely trapped in either of two symmetric trapping modes, denoted soft and
hard reflections here. A soft reflection is established, at Eion= 800 eV, when both electrodes
are set to a voltage of ∼810 V. Hard reflection is achieved at potentials of 1250–1400 V. It is
also possible to achieve stable modes using an asymmetric combination of these reflections.

The soft reflection results in ions spending significant time, >10 μs at A=100 and 800 eV,
transiting within the electrode compared to that, <2 μs, characteristic of a hard reflection. A
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(a) (b)

Fig. 3 Two depictions of the ConeTrap installed at the IGISOL IV beamline. Panel a) shows the electrode
structure as in SIMION [4], panel b) shows the manufactured component, plus fore-line ion injection Faraday
cage

soft reflection in the back cone and a hard reflection in the front causes ions to spend a
significantly longer time away from the switching potential of the front electrode. An asym-
metric ConeTrap, with respect to potentials, provides the optimal solution for injection and
extraction through the same electrode, and was employed in all testing of the ConeTrap.

3 Intra trap optical pumping

For 800 eV ensembles with energy spreads of 0.6 eV, typical for the JYFL cooler-
buncher [5], reduced Doppler widths of <100 MHz would be expected for A=100 ions at
300 nm. An efficient ConeTrap thus provides an ideal interaction region for optical pumping
of transitions in ionic species. At the IGISOL such optical pumping has already been used
to permit spectroscopy of, previously inaccessible, short-lived radio isotopes [6, 7]. In ref-
erences [6, 7] pumping was performed within the gas-filled cooler buncher and was limited
in linewidth by the macro motion within the RFQ trap (corresponding to 10’s of GHz of line
broadening). More critically, the spectroscopy was limited in the excitation energy of the
populated excited state due to non-photonic relaxation processes in the trapped volume. A
ConeTrap would readily overcome these limitations and permit post trapping spectroscopy
if extracted ensembles could be recovered with minimal perturbation of the energy and
energy spread. Each has been explored at the IGISOL and the results are discussed here.

4 ConeTrap parameters

Full simulation of the ConeTrap has been conducted using the ion-optic simulation package
SIMION [4], in which the potential is initially evaluated (in cylindrical geometry) by numer-
ically solving the Laplace equation for finite grid elements (with 1 mm resolution). Particle
trajectories are then evaluated using a fourth order Runge-Kutta method in three dimen-
sions [8]. Particle-particle and particle-gas interactions were neglected in the simulations
(but explored experimentally). Figure 4 shows the electrostatic model of the post-cooler
environment (referred to as a workbench in SIMION). The behaviour of ions can be modelled,
and the survival as well as energy and temporal spread predicted for the full trapping period.

The simulation was set such that the ConeTrap would trap the ions after a user defined
time, replicating realistic operating conditions including temporal and energy spread of the
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Fig. 4 The SIMION workbench for the ConeTrap and all post-cooler elements used in guiding and focussing
the ion beam. Shown in the right hand corner is a cross section of the asymmetric ConeTrap employed at
typical operating conditions

Fig. 5 Stability plot for the collapsed ConeTrap, showing the survival percentage of ions that are contained
for 5 ms, then released to the LCR (as modelled in SIMION). Negligible losses to buffer gas or ion-ion
collisions are assumed

bunched ion plume. ConeTrap parameters that maximise the trapping efficiency were found,
as functions of the trapping, rear and injection voltages. Injection and extraction voltages
were found to optimise at the same value, reducing the complexity encountered in switching
potentials in the ConeTrap. The region shown in Fig. 5 focuses on rear cone voltages of
800 – 810V, corresponding to >6 μs transit in the rear cone (the minimum storage time for
the efficient capture of ion plumes from the IGISOL cooler-buncher) and extend to 1400 V
for the front cone beyond which trap stability is rapidly lost. The observation of a relatively
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narrow stability region near symmetric potentials and broader stability region for higher
potentials (separated by a region of instability) closely follows the behaviour predicted and
observed in other ConeTraps [3].

5 On-line results

Experimental testing of the collapsed ConeTrap guided by the SIMION modelling was
undertaken at a range of masses and trapping potentials. With the trapping time of the Cone-
Trap set to 5 ms, the released plumes were deflected to micro channel plates (MCPs) at the
LCR (and viewed on an oscilloscope). To ensure count rates free of saturation, ion fluxes
were limited to 0 – 5 ions per bunch.

Ion plumes arriving 5 ms after cooler-buncher release were evident as (shown in Fig. 6).
The temporal spread of the ion plume no longer reflects the 10 –15 μs characteristic release
of the JYFL cooler buncher [9] and instead reflects the cycle time in the ConeTrap, dom-
inated by the orbit time in the rear cone electrode. Figure 7 shows that the bunch width
decreases with an increasing rear voltage in a manner entirely consistent with the SIMION
simulation predictions.

At rear voltages of 805 – 808 V >60 % of the typical ion plumes can be captured by the
device (Vf ront=1350 V). Measurements of trapping efficiencies were made using radioac-
tive ions around mass A=100. The ions were produced in fission using 25 MeV protons
incident upon a natural uranium target. At mass A=98 a range of strontium, yttrium and nio-
bium systems could be investigated by directly monitoring decay gamma emission with and
without storage in the ConeTrap (overcoming saturation issues with the channel plates). A
direct comparison between count rates with and without storage in the ConeTrap were made
using spectra such as those shown in Fig. 8. The ConeTrap extraction efficiency showed no
dependence on chemical species and could be estimated using data from multiple photo-
peaks (highlighted in Fig. 8) to be 6.7(3) % survival from cooler-ejection to end of laser line
detection. Whilst clearly demonstrating that the ConeTrap is operational the result, an order
of magnitude less than our expected (simulated) maximum, suggests significant losses and
potentially significant improvements can be made to the device (Section 6).

Collinear laser spectroscopy was performed on re-accelerated ionic ensembles (previ-
ously stored in the ConeTrap) under off-line conditions. A full a description of the laser
spectroscopy experimental procedure can be found in reference [10]. For these tests the
180Hf ion was studied (which can be efficiently explored on transitions from its ionic ground
state without optical pumping). The 0 – 33180.92 cm−1 resonance in 180Hf was inspected
using direct bunched beam spectroscopy and compared to that observed following 5 ms stor-
age in the ConeTrap. The spectra are displayed in Fig. 9. A total of 197 scan (corresponding
to 1.955 s/channel) were taken with ions bypassing the ConeTrap, while 2007 scans (corre-
sponding to 30.1 s/channel) were recorded for ion ensembles having been stored for 5 ms
in the device.

The linewidth of the resonances (Fig. 9) corresponding to those of trapped ions and those
guided directly to the LCR were found to be 29(6) MHz and 35(3) MHz respectively. No
shift in centroid within errors was detected, suggesting that the mean energy of the trans-
ported bunch had remained constant. The possibility that only an energy analysed fraction of
the total ensemble has been transported to the LCR can only be excluded once higher over-
all injection-storage-extraction efficiency has been achieved (and the linewidth and centroid
investigated at those conditions). At present only the 6.7(3) % transported fraction can be
confirmed to maintain energy and energy spread.
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Fig. 6 Ion plumes arriving at 5 ms after cooler release signal

Fig. 7 Plot comparing the measured and simulated temporal plume width on release and the transit time in
the rear electrode

6 Improving the yield

To improve on the 6.7(3) % efficiency presently achieved on-line further, critical, focussing
ion optics are needed. Simulations run at the experimentally determined optimum trap
parameters (with realistic plume widths of 10 μs and 0.6 eV energy spread) suggest the
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Fig. 8 Germanium detector spectra from A=98 fission fragment isobars detected at the LCR collected over
300 s (peaks highlighted in red indicate those used in storage efficiency estimates) with the (a) ConeTrap
bypassed and (b) 5 ms ConeTrap storage

ConeTrap to presently optimise close to the edge of trap stability and at parameters that do
not provide efficient post-trap transport conditions. Significant losses are predicted to occur
at the first quadrupole switching bend (see Fig. 10) and changes to ion optical elements have
been explored. The full workbench simulation suggests that an additional applied Einzel
lens at the injection/extraction electrode can simultaneously permit both optimised trap-
ping efficiency and optimised downstream transport. Figure 10 shows the suggested optical
changes and ray traces at optimised conditions.

Following commissioning of the new ion-optics further optimisations including faster
switching HV supplies will be explored. During these tests it is intended that single in-out
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(a)

(b)

Fig. 9 Resonance spectra of 180Hf observed for (a) ions passing directly to the LCR and (b) for those
following 5 ms storage in the ConeTrap

reflections of the open ConeTrap will be explored such that the losses arising from injec-
tion, extraction and transport may be quantified separately and addressed appropriately. A
major redevelopment of the rear cone electrode will then be explored. Simulations includ-
ing misalignments and increased spatial ion beam size have shown losses to be significantly
reduced on increasing the size of the rear trap electrode. Figure 11 shows the SIMION
model of a new electrode, presently under construction.

7 Prospects for laser spectroscopy using the ConeTrap

Once fully optimised for transport, losses in the ConeTrap arise from charge exchange col-
lisions with neutral background gas and from ion-ion interactions as the space charge limit
is approached. The latter has experimentally been confirmed to be negligible at typical
IGISOL conditions (∼1000 ions per bunch) consistent with the behaviour reported in [1].
The former, charge-exchange collisions, occur with probabilities dependent on ionic elec-
tron configuration and a straight-forward but highly efficient spectroscopy can be explored
in which ion survival as a function of excited state population is monitored during opti-
cal pumping. The spectroscopy, which may be considered a variant of that developed and
fruitfully exploited in reference [11], can be attempted by pre-pumping ionic ensembles
in the cooler buncher, facilitating broad-band spectroscopy, or within the ConeTrap itself,
providing spectroscopy at ∼100 MHz linewidth (for medium mass nuclei).

When fully commissioned, defined by the device reaching the specifications described
above and further, being operated at a pressure of <10−8 mbar, losses to charge exchange
collisions should be minimal (<10 %) at 100 ms storage. When achieved, optical pumping
in vacuo coupled to fast beam collinear spectroscopy can be performed and the original
objectives of the ConeTrap realised. The interaction time is envisaged to facilitate efficient
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(a)

(b)

Fig. 10 Comparison of ion trajectories on exit from the ConeTrap at the same operating conditions, with (b)
and without (a) an Einzel lens present

Fig. 11 A cross section, taken from the SIMION simulation, of the new proposed ConeTrap with large rear
electrode

spectroscopy on the weakest of allowed spectroscopic transitions and to enable intra-trap
2-photon spectroscopy.

8 Summary

An electrostatic ConeTrap, developed from that described in reference [1], has been con-
structed and tested at the IGISOL facility, JYFL. The trap is presently operational but
improvements in total injection-storage-extraction efficiency, of close to an order of magni-
tude, are being sought. The JYFL ConeTrap is designed for laser spectroscopic use. Long
duration, >100 ms, laser-ion interaction studies using the trap are to be developed during
the next commissioning phase.
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