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Topological phase imprinting is a well-established technique for deterministic vortex creation in spinor Bose-
Einstein condensates of alkali-metal atoms. It was recently shown that counterdiabatic quantum control may
accelerate vortex creation in comparison to the standard adiabatic protocol and suppress the atom loss due
to nonadiabatic transitions. Here we apply this technique, assisted by an optical plug, for vortex pumping to
theoretically show that sequential phase imprinting up to 20 cycles generates a vortex with a very large winding
number. Our method significantly increases the fidelity of the pump for rapid pumping compared to the case
without the counterdiabatic control, leading to the highest angular momentum per particle reported to date
for the vortex pump. Our studies are based on numerical integration of the three-dimensional multicomponent
Gross-Pitaevskii equation, which conveniently yields the density profiles, phase profiles, angular momentum,
and other physically important quantities of the spin-1 system. Our results motivate the experimental realization
of the vortex pump and studies of the rich physics it involves.

DOI: 10.1103/PhysRevA.95.013615

I. INTRODUCTION

When the Bose-Einstein condensate (BEC) of alkali-metal
atoms was discovered in 1995 [1,2], some of the immediate
issues to be clarified were whether this system exhibits
quantum coherence and whether it shows superfluidity, similar
to that of superfluid 4He. Quantized vortices are manifestations
of these properties and their realization has been one of the
main research topics of experimental BEC physics since the
discovery of the atomic BECs [3]. In general, the existence
of stable vortices and other topological objects is attributed to
an order parameter manifold with nontrivial homotopy groups
supporting these objects [4,5].

Methods to create vortices in BECs by so-called topological
phase imprinting have been proposed in Refs. [6–12] and
these proposals were later experimentally realized by several
groups [13–19]. In addition to vortex creation, an extension of
this method into a nontrivially three-dimensional scenario [20]
has been used in the experimental creation of a Dirac monopole
in the synthetic magnetic field of a spinor BEC [21]. Other
methods to create vortices include the utilization of moving
laser beams [22–24], rotating trap potentials [25], Laguerre-
Gauss beams [26], and merging multiple condensates [27]. The
advantages of the topological phase imprinting method are that
it creates vortices deterministically at a desired location and
that almost all atoms in the condensate acquire the desired
angular momentum.

The operating principle of a vortex pump [28] is based
on sequential application of the topological phase imprinting
protocol, thus increasing the winding number by 2F for each
vortex pumping cycle, where F is the quantum number of
the hyperfine spin. Conventionally, various vortex pumping
methods resort to adiabatic control of the system to imprint
local Berry phase [29–31]. Hence, rapid pumping gives rise to
errors owing to unwanted nonadiabatic transitions, eventually
leading to the degradation of the pump. On the other hand, a
vortex with a large winding number is dynamically unstable
into splitting into multiple single-quantum vortices [32],
motivating faster vortex pumping. The stability of the

large-winding-number states has been studied [33,34], as well
as their splitting dynamics [35].

Importantly, the counterdiabatic (CD) protocol [36,37],
which is sometimes referred to as assisted adiabatic population
transfer or shortcut to adiabaticity [38,39], can generate
the same state as the corresponding adiabatic dynamics in
shorter time. Therefore, it can be utilized to overcome several
problems in adiabatic quantum control, for example, in cases in
which the population transfer efficiency is limited by decoher-
ence, three-body losses, and external noise in the control pa-
rameters of, e.g., isolated atoms and molecules [36,40,41], spin
chain systems [42,43], Bose-Einstein condensates [44,45],
and electron spin of a single nitrogen-vacancy center in a
diamond [46]. Very recently, the CD protocol was also found
to speed up the topological phase imprinting method [47].
However, vortex pumping using the CD protocol has not been
reported to date.

The purpose of this paper is to demonstrate that the CD
quantum control, assisted by an optical plug, can accelerate
the vortex pump, and hence create a large-winding-number
vortex in a short time. This also serves to reduce the atom loss
from the trap. We consider a spin-1 BEC consisting of 87Rb
atoms in an optical trap with a three-dimensional quadrupole
field present. The parameters in the simulations are set to
experimentally feasible values according to Refs. [21,48]. In
addition, we introduce an optical plug along the symmetry axis
of the condensate to prevent transitions between the hyperfine
spin states during the fast magnetic field ramp. We study the
fidelity of the vortex creation and the state of the condensate for
up to 20 vortex pumping cycles by numerically integrating the
three-dimensional multicomponent Gross-Pitaevskii equation.

This paper is organized as follows. In Sec. II, we analyze
single vortex-creation ramps with the CD quantum control.
We consider four cases: linear and nonlinear ramps with
and without the CD field. We compare the performance of
these schemes to show that the nonlinear ramp with the CD
protocol assisted by an optical plug yields the highest fidelity.
Furthermore, the effect of the condensate aspect ratio on the
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vortex creation fidelity is studied. In Sec. III, we apply the
results obtained in Sec. II to vortex pumping. Detailed density
and phase profiles are studied for nonlinear ramps with the CD
field. Section IV is devoted to conclusions.

II. TOPOLOGICAL VORTEX IMPRINTING
WITH COUNTERDIABATIC FIELD

A. Mean-field theory and topological vortex imprinting

The mean-field order parameter of the spin-1 BEC
is represented in the basis of the z-quantized spin
states, {| + 1〉,|0〉,| − 1〉}, as �(r,t) = (ψ+1(r,t),ψ0(r,t),
ψ−1(r,t))Tz , where the subscript in each spinor component
denotes the magnetic quantum number along z. Furthermore,
we write ψk(r,t) = √

nk(r,t) exp [iφk(r,t)], where nk(r,t) is
the particle density and φk(r,t) is the phase of the spinor
component k. The dynamics of the mean-field order parameter
are solved in three dimensions employing the Gross-Pitaevskii
(GP) equation

i�∂t�(r,t) =
[
− �

2

2m
∇2 + V (r) + c0�(r,t)†�(r,t)

+ c2�(r,t)†F�(r,t) · F + gF μB B(r,t) · F
]

× �(r,t), (1)

where the external optical potential is given by V (r) =
Vopt(ρ,z) + Vplug(ρ), the harmonic part is Vopt(ρ,z) =
m(ω2

ρρ
2 + ω2

zz
2)/2, and Vplug(ρ) = Aplug exp(−ρ2/ρ2

plug) is
the optical plug potential defined in the cylindrical coordinate
system (ρ,ϕ,z). Furthermore, B(r,t) is the external time-
dependent magnetic field, and F = (Fx,Fy,Fz) is a vector
composed of the standard dimensionless spin-1 matrices. The
constants c0 = 4π�

2(a0 + 2a2)/(3m) and c2 = 4π�
2(a2 −

a0)/(3m) are the coupling constants related to the density-
density and spin-spin interactions [49,50], respectively, gF

is the Landé g factor, and μB is the Bohr magneton. For
F = 1 87Rb atoms, the s-wave scattering lengths are given
by a0 = 5.387 nm and a2 = 5.313 nm [51], the atomic mass
by m = 1.443 × 10−25 kg, and gF = −1/2. The number of
atoms is set to N = 2.1 × 105 throughout the simulations and
the optical plug parameters are set to ρplug = 1.80 μm and
Aplug = 6.6 × 10−30 J in the cases in which the optical plug is
employed.

In the topological vortex imprinting scheme considered,
we employ an external magnetic field consisting of a three-
dimensional quadrupole field with an additional bias field
along z defined as

B(r,t) = bq(x x̂ + y ŷ − 2z ẑ) + B0(t) ẑ

= bq(ρ cos ϕ x̂ + ρ sin ϕ ŷ) + Bz(z,t) ẑ, (2)

where bq is the strength of the gradient field and B0(t) is
the bias field component along z. We have further defined
Bz(z,t) = B0(t) − 2bqz.

Let us consider an atom at a point r at time t . In the presence
of the magnetic field B, considering only the Zeeman term in
the Hamiltonian, HZ = gF μB B · F, we have three eigenstates
corresponding to the weak-field-seeking state (WFSS), which
has the highest energy, the neutral state (NS) with zero

energy, and the strong-field-seeking state (SFSS), which has
the lowest energy. In the z-quantized basis, these eigenstates
are represented as

|WFSS〉 =̂ 1

2B

⎛
⎜⎝

B − Bz

−√
2bqρeiϕ

(B + Bz)e2iϕ

⎞
⎟⎠

z

, (3)

|NS〉 =̂ 1√
2B

⎛
⎜⎝

−bqρ√
2Bze

iϕ

bqρe2iϕ

⎞
⎟⎠

z

, (4)

|SFSS〉 =̂ 1

2B

⎛
⎜⎝

B + Bz√
2bqρeiϕ

(B − Bz)e2iϕ

⎞
⎟⎠

z

, (5)

where B(ρ,z,t) =
√

b2
qρ

2 + Bz(z,t)2 is the total magnetic-
field strength. In contrast to the earlier work in Ref. [47],
here we consider an optically trapped condensate and the
magnetic field is primarily used only to control the spin state.
Hence we are free to choose also the magnetically untrapped
SFSS as the initial state. Under a strong bias field we have
B ≈ Bz at the location of the atoms, and consequently the state
is approximately (1,0,0)Tz . As the bias field is adiabatically
ramped to a large negative value, such that Bz ≈ −B, the state
transforms into approximately (0,0,e2iϕ)Tz . The appearance of
the azimuthal dependence in the phase factor can be attributed
to the accumulation of the Berry phase during the adiabatic
change of the bias field [52].

While the bias field is inverted, there appears a space-time
point where the magnetic field and hence Zeeman energy gap
between the eigenstates vanishes. Near this point, transitions
from SFSS to NS and WFSS take place. However, atoms
in the SFSS are naturally repelled from the location of the
magnetic-field zero, which suppresses such transitions. Due to
this reason, we take SFSS as the initial state in most of our
simulations. Additionally, we employ the optical plug in some
of the simulations to further diminish the atom loss and to
stabilize the resulting multiquantum vortex [33].

B. Counterdiabatic field for a three-dimensional
quadrupole field

In an adiabatic process, the populations in the instanta-
neous eigenstates of the time-dependent Hamiltonian remain
constant. If the system is not driven slowly enough, transitions
between the quantum states take place. Counterdiabatic proto-
col can be used to design an auxiliary term in the Hamiltonian
to overcome the requirement of slow driving. This auxiliary
term, in combination with the original Hamiltonian, generates
the same final state as the adiabatic process [36,39].

The dynamics of a spin-1 system in the presence of a chang-
ing magnetic field are described by the Zeeman Hamiltonian
HZ. The auxiliary Hamiltonian provided by the CD scheme
in this case is given by HCD = gF μB BCD · F, where the
so-called CD field reads BCD = �B × ∂t B/(gF μB|B|2) [37].

In the following, we may approximate Bz(z,t) ≈ Bz(0,t) =
B0(t). Thus the CD field in the topological vortex imprinting
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method, according to protocol in Eq. (2), assumes the form

BCD(r,t) = �Ḃ0(t)bq

gF μBB2(ρ,0,t)
(y x̂ − x ŷ), (6)

where Ḃ0(t) denotes the temporal derivative of the bias field.
Hence the required external magnetic field including the
CD field is thus B + BCD. It is also possible to solve the
CD field without setting z = 0, but it turns out to be of
complicated form and not likely conveniently realizable with
the current experimental equipment. Furthermore, we make
the approximation ρ = ρ0 in the denominator of Eq. (6) due
to the requirement ∇ · (B + BCD) = 0 imposed by Maxwell’s
equations.

Implementing the modified magnetic field B + BCD is
experimentally challenging, since it would require two
separate sets of exactly aligned quadrupole coils. In or-
der to make this scheme experimentally convenient, we
consider a time-dependent unitary transformation U (t) =
exp [−iα(t)Fz], similar to that in Ref. [47], which introduces
a position-independent rotation of an angle

α(t) = arctan

( |BCD(r,t)|
bqρ

)
(7)

about the z axis. The order parameter transforms into
� ′(r,t) = U (t)�(r,t). In the beginning and at the end of the
vortex creation process of duration T , we have |B| � |BCD|,
and consequently α(0) = α(T ) ≈ 0, i.e., U (0) = U (T ) ≈ I ,
where I is the identity. Hence the order parameters � ′(r,t) and
�(r,t) coincide in the beginning and at the end of the ramp,
and we may steer the system with the effective Hamiltonian
for � ′(r,t) to achieve the desired CD dynamics.

The Zeeman part of the Hamiltonian (1) transforms for
� ′(r,t) into gF μBU (t)(B + BCD) · FU (t)†. This gives rise to
a rotation of the magnetic field by an angle α(t) about the z

axis. Furthermore, the transformed Hamiltonian includes an
additional term −i�U (t)∂tU (t)† = �α̇(t)Fz, which we take
into consideration by adding a magnetic field �α̇(t)/(gF μB)
along z. The resulting magnetic field, which we use in the
simulations, assumes the form

B̃(r,t) = bqρ

√
1 +

[
�Ḃ0(t)

gF μBB2(ρ0,0,t)

]2

(x̂ + ŷ − 2ẑ)

+
[
B0(t) + �

gF μB
α̇(t)

]
ẑ. (8)

As is evident from the above equation, also the gradient field
along z is affected by the CD field in our simulations. As a
result, only one set of quadrupole coils is required to implement
the resulting magnetic field.

In the vortex creation scheme employed here, the bias field
Bz is ramped from a large positive value to a large negative
value while keeping the quadrupole field strength bq constant.
We consider two different ramping functions

B l
0(t) = (1 − 2t/T )Bi (9)

and

Bnl
0 (t) = g(t)(1 − 2t/T )Bi, (10)

15.00
.

−1

0

1

t/T

B
z
/B

i

Bl
0

Bl
0 + h̄

gF µB
α̇

Bnl
0

Bnl
0 + h̄

gF µB
α̇

15.00
.

0

17.2

t/T

|B
C

D
|/

(b
qρ

0)

Bl
0

Bnl
0

(a)

(b)

FIG. 1. (a) Bias field component along z and (b) the strength
of the CD field as functions of time t . We choose Bi = 0.5 G, ρ0 =
3 μm, bq = 3.675 G/cm, and the total ramp time T = 1.16 ms. In (a),
the dash-dotted blue and the dotted red lines correspond to the linear
and nonlinear ramps, respectively. The solid blue and the dashed red
lines correspond to the linear and nonlinear ramps, respectively, with
the term �α̇/(gF μB) taken into account. In (b), the solid blue and
the dashed red lines correspond to the linear and nonlinear ramps,
respectively.

where T is the duration of the ramp, t ∈ [0,T ], and Bi is the
initial strength of the magnetic field. Ramping functions B l

0
and Bnl

0 are henceforth referred to as linear and nonlinear
ramping functions, respectively. For the nonlinear ramp, we
set

g(t) = 1

2

{
1 − cos

[
2π (t − T/2)

T

]}
. (11)

The ramp functions B l
0 and Bnl

0 , their transformed counter-
parts, and the strength of the CD field for both ramp functions
are shown in Fig. 1. The nonlinear ramp requires a weaker CD
field strength compared with the linear ramp, hence reducing
the amount of electric current needed in the quadrupole coils.

C. Fidelity of vortex creation using counterdiabatic
quantum control

We define the fidelity of vortex creation as the fraction
of atoms trapped in the SFSS, NSFSS(t), with respect to the
conserved total atom number, N , after a single creation ramp.
Initially all atoms reside in the SFSS, i.e., NSFSS(0) = N .
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In an ideal case, without any nonadiabatic excitations, we
would have NSFSS(T ) = N . The initial and final values for
the bias field are set to B0(0) = 0.5 G and B0(T ) = −0.5 G,
respectively. The quadrupole field strength is linearly ramped
on in the beginning of the simulations and off at the end
of the simulations with the bias field kept constant. The
ramp times for setting the quadrupole field on and off are
both roughly 0.06 ms. Hence we can evaluate NSFSS =∫
d r |ψ+1|2 at the beginning and NSFSS = ∫

d r |ψ−1|2 at the
end of the simulations. We consider two cases for the

(a)

(b)

(c)

N
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FIG. 2. Fidelity of the vortex creation as a function of the ramp
time. We study (a) linear ramps, (b) nonlinear ramps, and (c) nonlinear
ramps with the optical plug. Filled squares and empty diamonds
correspond to the case with and without the CD field, respectively,
for (ωρ,ωz) = 2π × (24.8,124) Hz, and filled upward-pointing and
empty downward-pointing triangles correspond to the case with and
without the CD field, respectively, for (ωρ,ωz) = 2π × (124,164) Hz.

optical trapping potentials: (ωρ,ωz) = 2π × (124,164) Hz and
(ωρ,ωz) = 2π × (24.8,124) Hz. These correspond to slightly
oblate and moderately oblate three-dimensional condensates,
respectively. We choose the parameter ρ0 to approximately
correspond to the radial coordinate of the density maximum of
the condensate at the beginning of the simulations: for slightly
(moderately) oblate condensates we set 3.0 (6.7) μm in the
case without the plug and 6.0 (13.4) μm with the plug. The
optimal value for ρ0 depends on the ramp time T [47], and it
is not fully optimized for all ramp times.

The resulting fidelity of the vortex creation is presented in
Fig. 2 as a function of the ramp time T . The effect of the
CD field is most dramatic for brief ramps, i.e., when the bias
field is controlled in a nonadiabatic manner. For T = 10 μs,
both linear and nonlinear ramps without the optical plug give
essentially the same result: the CD field improves the fidelity
from almost zero to 0.1 and 0.3 for slightly and moderately
oblate condensates, respectively. At longer times, T > 10 μs,
nonlinear ramp yields slightly higher fidelity since the zero of
the field moves more slowly in the condensate region.

The optical plug further enhances the fidelity for all ramp
times, since the atoms are repelled from the path of the field
zero. Indeed, the fidelity is very close to unity at T > 100 ms
if the optical plug is employed, regardless whether the CD

(a)

(b)
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FIG. 3. Fidelity of the vortex creation as a function of the aspect
ratio of the trap frequencies ωz/ωρ in the case of nonlinear ramps
and optical plug, for (a) ωρ = 2π × 124 Hz and for (b) ωz = 2π ×
124 Hz. Filled and empty circles correspond to the cases with and
without the CD field, respectively. The ramp time T = 5.78 ms and
the CD parameter ρ0 = √

(2π × 124 Hz)/ωρ × 6 μm.
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FIG. 4. (a),(b),(d),(e) Particle number Nγ for the Zeeman eigenstate γ ∈ {WFSS,NS,SFSS} as a function of time (a),(d) with and (b),(e)
without the CD field. (c),(f) Orbital angular momentum along z as a function of time. The initial state is (a)–(c) SFSS and (d)–(f) WFSS.

field is used or not. Here, also, the effect of the CD field is
negligibly small because α̇(t) is small.

D. Effect of condensate aspect ratio on the vortex
creation fidelity

In the derivation of the CD field of Eq. (6) we have set z = 0.
Hence the CD field is most beneficial for highly oblate rather
than spherical or prolate BECs. In Fig. 3, we study the effect of
the aspect ratio of the BEC cloud on the vortex creation fidelity
by varying the aspect ratio of the trap frequencies ωz/ωρ .

We find that, in general, the vortex creation process is
more precise with more oblate condensates. This is the case
regardless whether we choose to include the CD field in the
creation process or not. Without the CD field, however, the
fidelity saturates well below unity if ωρ is kept constant.
In contrast, if ωρ is varied, the effective condensate width
changes. Due to the increase in the effective width, also the
region in which the vortex creation is nearly adiabatic is
increased, providing higher vortex creation fidelities.

III. VORTEX PUMPING WITH COUNTERDIABATIC
QUANTUM CONTROL

Let us apply the CD control to vortex pumping, in
which we cyclically increase the angular momentum of the
vortex hosted in the BEC. Here, we choose ωz/ωρ = 5 with
ωz = 2π × 124 Hz, ρ0 = 13.4 μm, and employ the optical
plug to ensure that, with the CD field, roughly 90% of the
atoms will remain in the initial state after the first vortex
pumping cycle. Furthermore, the optical plug serves to prevent
the created multiquantum vortex from splitting into multiple

single-quantum vortices [35]. Here, we consider vortex pump-
ing up to 20 cycles. Each cycle consists of the following
sequential steps:

(I) The quadrupole field strength bq is linearly set from zero
to 3.675 G/cm in T1 = 0.06 ms, while keeping the bias field
B0 fixed at Bi = 0.1 G.

(II) The bias field B0 is ramped to −Bi using the nonlinear
ramp with the CD field in T2 = 1.16 ms.

(III) The quadrupole field strength bq is linearly ramped
from 3.675 G/cm to zero in T3 = 0.06 ms.

(IV) The bias field B0 is linearly rotated to its initial state
in T4 = 0.51 ms, while keeping its magnitude constant. Here
we utilize an additional bias field in the y direction, which is
ramped up and down during the field rotation.

Steps I, III, and IV have essentially no effect in the relative
populations of the Zeeman eigenstates. Here we have chosen
Bi = 0.1 G, instead of Bi = 0.5 G, to reduce the ramp time
by a factor of 5 compared with Fig. 2, while the amount of
nonadiabatic excitations remain constant.1 We numerically
verified that the simulations give equivalent results if the
additional bias field is applied along x instead of y in
step IV. The total duration of one cycle in this scheme is
only Tcycle = 1.79 ms. This is significantly faster than vortex
pumping relying on standard adiabatic dynamics [28–31,33].

The particle numbers for the Zeeman eigenstates and the
z components of the condensate orbital angular momentum,
Lz = −i�

∫
d r �†(x∂y − y∂x)�, at different stages of the

1We may use Bi = 0.1 G because, for the chosen ramp time, α(t) is
negligibly small, and consequently � ′(r,t) ≈ �(r,t) in the beginning
and at the end of step II.
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OLLIKAINEN, MASUDA, MÖTTÖNEN, AND NAKAHARA PHYSICAL REVIEW A 95, 013615 (2017)

vortex pumping process are shown in Fig. 4. In the beginning
of the simulation and at the end of step IV, the particle numbers
for each cycle can be conveniently evaluated as NWFSS =∫
d r |ψ−1|2, NNS = ∫

d r |ψ0|2, and NSFSS = ∫
d r |ψ+1|2. Af-

ter 20 cycles, the CD protocol yields an orbital angular
momentum of approximately −14N� and 23N� with the
initial conditions corresponding to the WFSS and SFSS,
respectively. This is a clear improvement compared with
the case without the CD protocol, for which approximately
−6N� is reached at the ninth cycle and 16N� is reached

FIG. 5. Particle densities of the SFSS, NS, and WFSS integrated
along the z axis, corresponding to Fig. 4(f). The field of view in
each panel is 30 × 30 μm2 and the maximum particle density is
ñp = 1.52 × 1011 cm−2. The rightmost column shows the phase of
SFSS in the z = 0 plane.

at the end of the twentieth cycle, for the initial conditions
corresponding to the WFSS and SFSS, respectively. In an
ideal case, a 20-cycle vortex pumping process yields orbital
angular momentum of ±40N�, since each cycle provides
an additional ±2N�. This value is not achieved due to the
nonadiabatic transitions occurring at every cycle between the
different Zeeman eigenstates. Thus the evolving state is a
combination of WFSS, NS, and SFSS.

For WFSS as an initial state, in the case without the CD
field, the orbital angular momentum starts increasing roughly
at the ninth cycle when SFSS becomes the dominant state.
For SFSS as an initial state, it remains as the dominant state
throughout the 20-cycle process. The strong-field-seeking state
yields higher fidelity in vortex pumping because in comparison
to the WFSS, the condensate accumulates further away from
the field zero into the region where the spin rotations caused
by the external magnetic field are more adiabatic.

The order parameters at various instants of time in the
course of vortex pumping are shown in Fig. 5. Here, the
initial state is SFSS and the CD protocol is applied. The phase
information reveals the precise accumulation of the winding
number during the pumping process although the angular
momentum does not exactly increase by 2N� per cycle. The
spiraling phase pattern is attributed to the additional breathing
of the condensate during the vortex creation process.

IV. CONCLUSIONS

We have numerically studied topological vortex imprinting
and vortex pumping in spinor BECs of 87Rb atoms aided by
counterdiabatic quantum control. The employed CD control
can be achieved with a single set of quadrupole field coils
and the simulation parameters are chosen to be experimentally
feasible. We demonstrate that the CD field can be used to
reduce the atom loss in the topological vortex imprinting
process also in the case of an optical plug. The highest fidelity
in the nonadiabatic regime in the vortex creation process is
achieved in our simulations with nonlinear ramps employing
both the optical plug and the CD scheme. We also find that
the more oblate the condensate, the higher the vortex creation
fidelity. Importantly, we show that the CD control and the
optical plug can be used to accelerate the vortex pumping
process in comparison to the standard adiabatic protocol. This
speedup leads to the highest angular momentum per particle
reported to date for the vortex pump.

The experimental realization of the vortex pump remains a
milestone to be achieved in the studies of topological defects
in spinor BECs. Our results show that the requirement of
adiabaticity in conventional vortex pumping can be relaxed
by employing the CD scheme. Faster pumping also acts to
prevent the splitting of vortices with large winding number
during the pumping process.
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