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Abstract 
Application-layer denial-of-service attacks have become a serious threat to modern high-speed 

computer networks and systems. Unlike network-layer attacks, application-layer attacks can be 

performed by using legitimate requests from legitimately connected network machines which makes 

these attacks undetectable for signature-based intrusion detection systems. Moreover, the attacks 

may utilize protocols that encrypt the data of network connections in the application layer making it 

even harder to detect attacker’s activity without decrypting users network traffic and violating their 

privacy. In this paper, we present a method which allows us to timely detect various application-

layer attacks against a computer network. We focus on detection of the attacks that utilize encrypted 

protocols by applying an anomaly-detection-based approach to statistics extracted from network 

packets. Since network traffic decryption can violate ethical norms and regulations on privacy, the 

detection method proposed analyzes network traffic without decryption. The method involves 

construction of a model of normal user behavior by analyzing conversations between a server and 

clients. The algorithm is self-adaptive and allows one to update the model every time when a new 

portion of network traffic data is available. Once the model has been built, it can be applied to detect 

various types of application-layer denial-of- service attacks. The proposed technique is evaluated 

with realistic end user network traffic generated in our virtual network environment. Evaluation 

results show that these attacks can be properly detected, while the number of false alarms remains 

very low. 

 

Keywords: Network Security, Intrusion Detection, Denial of Service, Anomaly Detection, Traffic 

Clustering 

 

 

1 Introduction 
 

The Internet has become the major universal communication infrastructure. Unfortunately, it is 

also subject to cyber-attacks in growing numbers and varieties. Denial-of-service (DoS) attacks have 

become frighteningly common in modern high- speed networks. On a daily basis, hundreds of 

websites are hit by networks of infected machines which flood them with junk data making them 

inaccessible for regular users [1] [2] [3]. In general, DoS attacks aim to disable a computer or 

network system using lots of messages which need responses consuming the bandwidth or other 

resources of the system. 

Since it is difficult for an attacker to overload the targets resources from a single computer, DoS 

attacks are often launched via a large number of distributed attacking hosts in the Internet. Such 

distributed DoS (DDoS) attacks can force the victim to significantly downgrade its service 

performance or even stop delivering any service [4]. Designed to elude detection by today’s most 

popular tools, these attacks can quickly incapacitate a targeted business, costing victims in lost 

revenue and productivity. 



Traditional DDoS attacks such as ICMP flooding and SYN flooding are carried out at the network 

layer. The purpose of these attacks is to consume the network bandwidth and deny service to 

legitimate users of the victim systems. This type of attack has been well studied recently and different 

schemes have been proposed to protect the network and equipment from such bandwidth attacks 

[5][6][7]. For this reason, attackers shift their offensive strategies to application-layer attacks. 

Application-layer DDoS attacks may focus on exhausting the server resources such as Sockets, CPU, 

memory, disk bandwidth, and I/O bandwidth. Unlike network-layer DoS attacks, application-layer 

attacks do not necessarily rely on inadequacies in the underlying protocols or operating systems. 

They can be performed by using legitimate requests from legitimately connected network machines. 

This makes application- layer DDoS attacks so difficult to detect and prevent. 

Anomaly-based approach is a promising solution for detecting and preventing application-layer 

DDoS attacks. Such approach learns the features of event patterns which form normal behavior, and, 

by observing patterns that deviate from the established norms (anomalies), detects when an intrusion 

has occurred. Thus, systems which use the anomaly detection approach are modeled according to 

normal user-behavior and, therefore, are able to detect zero-day attacks, i.e. intrusions unseen 

previously. The problem of anomaly-based detection of application-layer DoS and DDoS attacks is of 

great interest nowadays [8][9][10][11][12][13][14][15] [16] [17]. 

In this study, we focus on the detection of the attacks that involve the use of HTTP protocol since 

it is the most prevalent application-layer denial-of-service attack type nowadays [2]. Study [10] 

divides HTTP-based DDoS attacks into three categories based on the level of their sophistication. 

The first category is trivial DDoS attacks, during which each bot participating in the attack sends one 

or a limited number of unrelated HTTP attacks towards the target site. This type of at- tacks includes 

such well-known attacks as Sslsqueeze [18] and Slowloris [8]. The second category includes attacks 

that are carried out by bots generating random sequences of browser- like requests of web-pages with 

all of their embedded content making the attack traffic indistinguishable from the regular human 

traffic. The last category contains more advanced DoS attacks that are predicted to rise in popularity 

in the future. These advanced attacks will consist of sequences of HTTP requests which are carefully 

chosen so as to better mimic the browsing behavior of regular human users. 

Despite the rising interest to the detection of application- layer DDoS attacks utilizing HTTP 

protocol, most of the current researches concentrate on the analysis of information extracted from 

network packet payload which includes web resource requested, request method, session ID and 

other parameters. However, nowadays many DDoS attacks are utilizing secure protocols such as 

SSL/TLS that encrypt the data of network connections in the application layer which makes it 

impossible to detect attacker activity based on the analysis of packets’ payload without decrypting it 

[19]. For this reason, the detection of DDoS attacks is supposed to be carried out with the help of 

statistics that can be extracted mostly from network packet headers. 

Another challenge in the problem of application-layer DDoS attacks detection is distinguishing 

these attacks from flash crowds. Flash crowds are large surges of legitimate traffic which occur on 

popular web sites when thousands of requests access to the web servers over the relatively short 

period of time. Flash crowds are quite similar with DDoS attacks in terms of network anomaly and 

traffic phenomenon. They even can cause a web site or target to slow down its service for users or 

even temporarily shut down due to the significant increase of traffic [20]. 

It is also critical to implement a DDoS detection system which is capable to function effectively in 

computer networks that have high traffic and high-speed connectivity [21]. Moreover, since the 

mitigation of damage from a DDoS attack relies on its timely detection, the detection process is 

supposed to take place in an online mode. Nowadays, high-speed computer networks and systems 

deal with thousands traffic flows per second resulting in the data rate of several Gbps. For this 

reason, the construction of the normal user behavior model and the detection of an anomalous activity 

in a high-speed network requires considerable amounts of memory and computing resources. Thus, 

the problem of proper management of these resources is one of the most important challenges when 

designing a DDoS detection and prevention system. 

In this study, we propose an application-layer DDoS attack detection scheme that meets the 

requirements discussed above. First, our method relies on the extraction of normal user behavior 

patterns and detection of anomalies that significantly deviate from these patterns. This allows us to 

detect even attacks that are carried out with legitimate requests from legitimately connected network 

machines. Moreover, the scheme proposed operates with information extracted from packet headers 



and therefore can be applied in secure protocols that encrypt the data of network connections without 

its decrypting. Finally, the normal user behavior model is obtained with the help of a data stream 

clustering algorithm that allows us to continuously update the model within memory and time 

restrictions. In order to evaluate our scheme, we implement a DDoS detection system prototype that 

employs the algorithm proposed. In addition, we create a virtual network environment that allows us 

to generate some realistic end user network traffic and different sorts of DDoS attacks. Simulation 

results show that these attacks can be properly detected, while the number of false alarms remains 

very low. 

The rest of the paper is organized as follows. Problem formulation and related work are discussed 

in Section 2. Extraction of the most relevant features from network traffic is considered in Section 3. 

Section 4 describes our approach of DDoS attacks detection in encrypted network traffic. The 

implementation of this approach in the context of high-speed networks is presented in Section 5. In 

Section 6, we evaluate the performance of the technique proposed. Finally, Section 7 draws the 

conclusions and outlines future work. 

 

2 Problem formulation 
 

We concentrate on the detection of application-layer DDoS attacks in SSL/TLS traffic transferred 

over TCP protocol as the most popular reliable stream transport protocol. We consider a network 

system that consists of several web servers that provide various services to their end users by utilizing 

this protocol. Outgoing and incoming traffic of these servers is captured and analyzed in order to 

detect and prevent potential attacks. The analysis process can be divided into two main phases: 

training and detection. During the training phase, we aim to investigate the traffic and discover 

behavior patterns of normal users. It is assumed that the most part of the traffic captured during this 

training phase is legitimate. In real world, this can be achieved by filtering the traffic with the help of 

a signature-based intrusion detection system. Once normal user behavior patterns have been 

discovered, these patterns can be used to analyze network traffic and detect DDoS attacks against the 

servers in online mode. 

 

3 Related work 
 

The anomaly-based detection approach is often applied for the application-layer DDoS attack 

detection. Study [15] proposes an advanced entropy-based scheme, that analyzes the distribution of 

captured packets among network flows. The method allows to detect variable rate DDoS attacks, 

divide them into different fields and treat each field with different methods. Paper [14] proposes to 

cluster user sessions based on number of requests in the session, request rate, average popularity of 

objects in the session and average transition probability of objects in the session. Hierarchical 

clustering is applied to separate attack sessions from normal ones. Paper [9] shows a novel detection 

technique against HTTP-GET attacks that relies on clustering of user sessions based on minimizing 

entropy of requests in the sessions belonging to the same cluster. Bayes factor analysis is then used to 

detect attacking hosts. Paper [8] considers detection of slow DoS attacks by analyzing numbers of 

packets received by a web server over small time horizons. The detection is carried out by using two 

spectral metrics: average of these packet numbers and the mutual information of the fast Fourier 

transform applied to the number of packets received at the current time horizon and at the previous 

one. In [11], authors model a normal user browsing behavior by constructing a random walk graph 

based on sequences of web pages requested by each user. Once the random walk model has been 

trained, the users subsequent page request sequence is predicted based on page transition probabilities 

calculated. After this, an attacker can be detected by calculating the similarity between the predicted 

page request sequence and observed sequence in the subsequent observation period. Study [10] 

proposes the next-generation system for application-layer DDoS defense by modeling network traffic 

to dynamic web-domains as a data stream with concept drift. An outlier detection is carried out by 

using the normalized length of the longest common subsequence similarity metric applied to 

chronological browsing sequences visited Web pages during a user session. In [12], different features 

are constructed for each user session to differentiate between an attacker and a normal user. These 

features include the number of HTTP requests made by a user in a particular time slot, the number of 



unique URL requests, numbers of successful, redirected and invalid requests, and several others. 

Once all necessary features are calculated, logistic regression is used for modeling a normal user 

browsing behavior for detecting the application layer DDoS attack traffic. Study [13] proposes to 

search for abstract features for each user session with the help of a stacked auto encoder. After that, a 

logistic regression classifier is used to find network traffic related to a DDoS attack.  

As one can notice, all of these studies propose to detect application-layer DDoS attacks by 

monitoring network packet payload. However, it remains unclear how to detect attacks in encrypted 

traffic. In this study, this problem is solved by modeling normal user behavior based on clustering 

feature vectors extracted from packet headers. Traffic clustering without using packet payload 

information is a crucial domain of research nowadays due to the rise in applications that are either 

encrypted or tend to change port consecutively. For example, study [22] uses k-means and model-

based hierarchical clustering based on the maximum likelihood in order to group together network 

flows with similar characteristics. In [23], authors classify encrypted traffic with supervised learning 

algorithm C4.5 that generates a decision tree using information gain, semi-supervised k-means and 

unsupervised multi-objective genetic algorithm (MOGA).  

In modern high-speed networks, large amounts of flow data are generated continuously at an 

extremely rapid rate. For this reason, it is not possible to store all the data in memory, which makes 

algorithms such as k-means and other batch clustering algorithms inapplicable to the problem of 

traffic flow clustering [24]. 

Data stream clustering algorithms is probably the most promising solution for this problem. Most 

stream clustering algorithms summarize the data stream using special data structures: cluster features, 

core sets, or grids. After performing the data summarization step, data stream clustering algorithms 

obtain a data partition via an offline clustering step [25]. Cluster feature trees and micro-cluster trees 

are employed to summarize the data in such algorithms as BIRCH [26], CluStream [27] and ClusTree 

[28]. The StreamKM++ algorithm [29] summarizes the data stream into a tree of coresets that are 

weighted subsets of points that approximate the input data. Grid-based algorithms such as DStream 

[30] and DGClust [31] partition the feature space into grid cells, each of which is representing a 

cluster. Approximate clustering algorithms such as streaming k-means [32] first choose a subset of 

the points from the stream, ensuring that the selected points are as distant from each other as possible, 

and then execute k-means on the data subset. Approximate stream kernel k-means algorithm [24] 

uses importance sampling to sample a subset of the data stream, and clusters the entire stream based 

on each data points similarity to the sampled data points in real-time. 

 

4 Feature extraction 
 

In order to extract features that are necessary for building a normal user behavior model and 

detecting outliers, we consider a portion of network traffic transferred in the computer system under 

inspection in some very short time window. The length of this time window should be picked in such 

a way that allows one to detect attacks timely. 

The method proposed in this study is based on the analysis of network traffic flows. A flow is a 

group of IP packets with some common properties passing a monitoring point in a specified time 

interval. These common properties include transport protocol, the IP address and port of the source 

and IP address and port of the destination. As it was mentioned in the previous section, in this study, 

we concentrate on the traffic transferred over TCP. The time interval is considered to be equal to the 

time window defined previously. Moreover, when analyzing a traffic flow extracted in the current 

time window, we take into account all packets of this flow transferred during previous time windows. 

Resulting flow measurements provide us an aggregated view of traffic information and drastically 

reduce the amount of data to be analyzed. After that, two flows such as the source socket of one of 

these flows is equal to the destination socket of another flow and vice versa are found and combined 

together. This combination is considered as one conversation between a client and a server.  

A conversation can be characterized by following four parameters: source IP address, source port, 

destination IP address and destination port. For each such conversation at each time interval, we 

extract the following information: 

1) duration of the conversation 

2) number of packets sent in 1 second 

3) number of bytes sent in 1 second 



4) maximal, minimal and average packet size 

5) maximal, minimal and average size of TCP window 

6) maximal, minimal and average time to live (TTL) 

7) percentage of packets with different TCP flags: URG, ACK, PSH, RST, SYN and FIN 

8) percentage of encrypted packets with different properties: handshake, alert, etc. 

 

Features of types 2–8 are extracted separately for packets sent from the client to the server and 

from the server to the client. Features of types 2–7 are extracted from packet headers whereas a value 

of feature 8 can be found in packet payload even though it is encrypted.  

It is worth to mention that here we do not take into account time intervals between subsequent 

packets of the same flow. Despite the fact, that increasing of these time intervals is a good sign of a 

DDoS attack, taking them into consideration leads to the significant increasing of the number of false 

alarms. It is caused by the fact, that when the server is under attack it cannot reply to legitimate 

clients timely as well, and, therefore, legitimate clients look like attackers from this point of view. 

Values of the extracted feature vectors can have different scales. In order to standardize the feature 

vectors, max-min normalization is used. Max-min normalization performs a linear alteration on the 

original data so that the values are normalized within the given range. For the sake of simplicity, we 

map vectors to range [0,1]. Since all network traffic captured during the training stage is assumed to 

be legitimate, all the resulting standardized feature vectors can be used to reveal normal user behavior 

patterns and detect behavioral anomalies.  

To map a value 𝑥𝑖𝑗  of the 𝑗-th attribute with values (𝑥1𝑗 , 𝑥2𝑗 , … ) from range 𝑥𝑖𝑗 ∈ [𝑥𝑚𝑖𝑛,𝑗𝑥𝑚𝑎𝑥,𝑗] 

to range 𝑧𝑖𝑗 ∈ [0, 1] the computation is carried out as follows: 

 𝑧𝑖𝑗 =
𝑥𝑖𝑗 − 𝑥𝑚𝑖𝑛,𝑗

𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑚𝑖𝑛,𝑗

. (1) 

 

5 Detection approach 
 

In order to be able to classify application-layer DDoS attacks, we propose an anomaly-detection-

based system that relies on the extraction of normal behavioral patterns during the training followed 

by the detection of samples that significantly deviate from these patterns. For this purpose, we 

analyze the traffic captured in the network under inspection with the help of several data mining 

techniques. 

 

5.1 Training 
 

Once all relevant features have been extracted and standardized, we divide resulting feature 

vectors into several groups by applying a clustering algorithm. Each such group is supposed to 

consist of objects that are in some way similar between themselves and dissimilar to objects of other 

groups. Clustering allows us to discover hidden patterns presented in the dataset to represent a data 

structure in an unsupervised way. There are many different clustering algorithms including 

hierarchical clustering algorithms, centroid-based clustering algorithms and density-based clustering 

algorithms. Each cluster calculated represents a specific class of traffic in the network system under 

inspection. For example, one such class can include conversations between a web server and clients 

which request the same web page of this server. Since the traffic may be encrypted it is not always 

possible to define what web page these clients request. However, since it is assumed that traffic being 

clustered is mostly legitimate, we can state that each cluster describes a normal user behavior pattern.  

After that, we group all conversations which are extracted in certain time interval and have the 

same source IP address, destination IP address and destination port together and analyze each such 

group separately. Such approach is in-line with other studies devoted to the problem of application-

based DDoS attacks detection [9][11][14]. Those studies analyze sequences of conversations 

(requests) belonging to one HTTP session. In our case, since the session ID cannot be extracted from 

encrypted payload, we focus on conversations initiated by one client to the destination socket during 

some short time interval. We can interpret a group of such conversations as a rough approximation of 

the user session.  



For each such group of conversations, we obtain a sequence of numbers that are labels of the 

clusters found to which these conversations belong. An 𝑛-gram model is applied to extract new 

features from each such sequence. An 𝑛-gram is a sub-sequence of n overlapping items (characters, 

letters, words, etc.) from a given sequence. The 𝑛-gram models are used in speech recognition [33] 

and language processing [34]. Thus, the 𝑛-gram model transforms each user session to a sequence of 

n-labels. Then the frequency vector is built by counting the number of occurrences of each n-label in 

the analyzed session. The length of the frequency vector is 𝑘𝑛, where 𝑘 is the number of conversation 

clusters. 

Once new feature vectors have been extracted, a clustering algorithm can be applied to divide 

these vectors into groups. Similarly, to the clusters of conversations, each cluster of 𝑛-gram vectors 

represents a specific class of traffic in the network under inspection. For example, one such cluster 

can include clients that use some web service in similar manner. As previously, we consider each 

resulting cluster as a normal user behavior pattern, because it is assumed that traffic captured during 

the training is mostly legitimate. Thus, the normal user behavior model consists of the clusters of two 

types: clusters of conversations and clusters of user sessions, that directly depend on the conversation 

clusters. 

 

5.2 Detection 
 

Once the training has been completed, the system is able to detect network intrusions. To detect a 

trivial DoS attack we extract necessary features from a new conversation and classify the resulting 

feature vector according to the clusters found. If this vector does not belong to any of the clusters, the 

corresponding conversation is labeled as intrusive and it is supposed to be blocked by the server.  

For example, for centroid-based clustering methods, to define whether a new vector belongs to a 

cluster or not, we calculate the distance between this vector and the cluster center. If the distance 

between the new vector and the cluster center is greater than a predefined threshold, this vector does 

not belong to the cluster. This threshold 𝑇 for some cluster can be calculated based on vectors of the 

training set which belong to this cluster: 𝑇 = 𝜇 +  𝛾𝜎, where 𝜇 is the average distance between the 

center and vectors of this cluster, 𝜎 is the standard deviation of these distance values and 𝛾 is some 

numeric parameter tuned during the detection system validation. 

The anomalous conversations found allow us to detect trivial DDoS attacks. However, if the 

attacker is able to mimic the browsing behavior of a regular human user, conversations related to this 

attack might belong to one of the clusters of the normal behavior model and, therefore, remain 

undetected. In this case, 𝑛-gram statistics should be taken into consideration. Vectors obtained with 

𝑛-gram model during an attack can differ markedly from vectors corresponding to legitimate traffic. 

Thus, we can define whether a computer or network system is under attack during the current time 

interval, and, moreover, find clients responsible for initiating conversations related to the attack. 

Let us consider a client which initiates several connections of certain type during the recent time 

interval. After we classify these connections according to clusters of conversations obtained during 

the training, the 𝑛-gram model is applied to transform this client session into new feature vector. If 

this vector does not belong to any of the session clusters extracted during the training, then this new 

vector is classified as an anomaly and all connections of the client are considered as an attack. As one 

can see, in this case, we cannot define which connections of the client are normal and which 

connections have bad intent. However, this scheme allows us to find the attacker and what web 

service he attempts to attack. After that, the attacker can be black-listed and a more sophisticated 

approach can be applied to analyze the conversations initiated by this attacker in more details. 

 

6 Implementation 
 

In this section, we discuss how the approach described above can be implemented to protect a web 

service in a high-speed encrypted network. The most challenging part of the implementation is 

related to the training stage, since there can be huge volumes of network traffic generated 

continuously at an extremely rapid rate and there is no possibility to store all features extracted from 

this traffic in memory. For this reason, a data stream clustering algorithm can be applied to 

conversations between users and the web service. However, in this case, conversation clusters may 



change every time a new portion of traffic has arrived. In turn, this leads to modifications of 𝑛-gram 

vectors representing user sessions calculated during previous time windows. These modifications are 

supposed to be made before session clusters are updated with new data extracted from this portion of 

the traffic. 

 

6.1 Clustering conversations 
 

Let us consider conversations between clients and the web service that take place in the current 

time window. We propose to cluster feature vectors extracted from these conversations by 

constructing an array of centroids that summarizes the data partition [35] [36]. 

We consider feature vectors 𝑋𝑡 = {𝑥1
𝑡 , … , 𝑥𝑐

𝑡} extracted from 𝑛𝑐
𝑡  conversations during the 𝑡-th time 

window and standardized vectors 𝑍𝑡 = {𝑧1
𝑡 , … , 𝑧𝑐

𝑡} that are obtained from raw vectors 𝑋𝑡 with the 

help of max-min standardization using values 𝑥𝑚𝑎𝑥,𝑗
𝑡  and 𝑥𝑚𝑖𝑛,𝑗

𝑡 .In order to find 𝑘 centroids for these 

vectors, we can apply standard iterative refinement technique. First, 𝑘 centroids are supposed to be 

initiated. It can be carried out by randomly choosing 𝑘 feature vectors from 𝑍𝑡 . However, there is a 

more efficient way to select initial centroids by following kmeans++ procedure [37] [38]: 

1) Choose an initial center 𝑚1
𝑡  centroid uniformly at random from 𝑍𝑡 . 

2) Choose the next center 𝑚𝑖
𝑡, selecting 𝑚𝑖

𝑡 = 𝑧𝑗
𝑡 ∈ 𝑍𝑡  with probability 𝑣𝑗

𝑡: 

 𝑣𝑗
𝑡 =

𝑚𝑖𝑛𝑙∈{1,…,𝑖−1}𝑑(𝑚𝑙
𝑡 , 𝑧𝑗

𝑡)

∑ 𝑚𝑖𝑛𝑙∈{1,…,𝑖−1}𝑑(𝑚𝑙
𝑡 , 𝑧ℎ

𝑡 )
𝑛𝑐

𝑡

ℎ=1

, (2) 

where 𝑗 = {1, … , 𝑛𝑐
𝑡}. 

3) Repeat the previous step 𝑘 −  1 times to select 𝑘 initial centroids. 

 

Once initial centroids 𝑚1
𝑡 , … , 𝑚𝑘

𝑡  have been selected, we iteratively update the centroids as 

follows: 

1) Assign each feature vector to the nearest centroid: 

 𝑝𝑖
𝑡 = {𝑧 ∈ 𝑍𝑡: 𝑑(𝑧, 𝑚𝑖

𝑡) = min𝑙 𝑑(𝑧, 𝑚𝑙
𝑡)}. (3) 

2) For each partition 𝑝𝑖
𝑡, find a new centroid: 

 𝑚𝑖
𝑡 =

1

|𝑝𝑖
𝑡|

∑ 𝑧

𝑧∈𝑝𝑖
𝑡

. (4) 

 

These two steps are repeated until there are no longer changes in partitions during the assignment 

step. 

Let us denote the raw vector that corresponds to standardized vector 𝑧 as 𝑥(𝑧). For each resulting 

partition 𝑝𝑖
𝑡, we store in memory its centroid 

 𝜇𝑖
𝑡 =

1

|𝑝𝑖
𝑡(𝑧)|

∑ 𝑥(𝑧)

𝑧∈𝑝𝑖
𝑡(𝑧)

, (5) 

the number of feature vectors contained in partition 𝑝𝑖
𝑡 

 𝑤( 𝑝𝑖
𝑡) = | 𝑝𝑖

𝑡|, (6) 

and sum of squared features in these vectors 

 
𝜍(𝑝𝑖

𝑡) = ∑ 𝑥2(𝑧)

𝑧∈𝑝𝑖
𝑡

, 
(7) 

where 𝑥2(𝑧) = (𝑥2(𝑧1), 𝑥2(𝑧2), …). It is worth noting that despite we use standardized vectors for 

clustering, we store statistics calculated for raw vectors. In addition, we store vectors 𝑥𝑚𝑖𝑛,𝑗
𝑡  and 

𝑥𝑚𝑎𝑥,𝑗
𝑡  used for the standardization. 



We calculate all the partitions for 𝜏 consecutive time windows 𝑡 ∈ {1, 2, … , 𝜏}, where value of 𝜏 is 

defined by the memory constraints. In order to compress 𝜏 ×  𝑘 resulting partitions into new 𝑘 

clusters. first, we calculate minimal �̅�𝑚𝑖𝑛,𝑗
𝜏  and maximal �̅�𝑚𝑎𝑥,𝑗

𝜏  feature values: 

 
�̅�𝑚𝑖𝑛,𝑗

𝜏 = min
𝑡𝜖{1,2,…,𝜏}

𝑥𝑚𝑖𝑛,𝑗
𝑡 ,

�̅�𝑚𝑎𝑥,𝑗
𝜏 = max

𝑡𝜖{1,2,…,𝜏}
𝑥𝑚𝑖𝑛,𝑗

𝑡 .
 (8) 

These values are used to standardize centroids 𝜇𝑖
𝑡   into vectors 𝑚𝑖

𝑡   for 𝑡 ∈ {1,2, … , 𝜏} and 

𝑖𝜖{1,2, … , 𝑘}. 

We obtain new 𝑘 centroids with the technique similar to the one described above. The only 

difference is that we take into account the numbers of feature vectors assigned with each centroid: 

1) Choose an initial center �̅�1
𝜏 centroid uniformly at random from 𝑚𝑗

𝑡 where 𝑡 ∈ {1,2, … , 𝜏} and 

𝑗𝜖{1,2, … , 𝑘}. 

2) Choose the next center �̅�𝑗
𝜏, selecting �̅�𝑗

𝜏 = 𝑚𝑗
𝑡 with probability 𝑣𝑗

𝑡: 

 𝑣𝑗
𝑡 =

𝑤(𝑝𝑗
𝑡)𝑚𝑖𝑛𝑙∈{1,..,𝑖−1}𝑑(�̅�𝑙

𝜏, 𝑚𝑗
𝑡)

∑ ∑ 𝑤(𝑝ℎ
𝑡 )𝑚𝑖𝑛𝑙𝜖{1,…,𝑖−1}𝑑(�̅�𝑙

𝜏, 𝑚ℎ
𝑡 )𝑘

ℎ=1
𝜏
𝑡=1

. (9) 

3) Repeat the previous step 𝑘 − 1 times to select 𝑘 initial centroids. 

 

After that, new centroids are updated as follows: 

1) Assign each old centroid 𝑚𝑗
𝑡 to the nearest new centroid �̅�𝑖

𝜏: 

 �̅�𝑖
𝜏 = {𝑚𝑗

𝑡: 𝑑(𝑚𝑗
𝑡 , �̅�𝑖

𝜏) = min
𝑙

𝑑(𝑚𝑗
𝑡 , �̅�𝑙

𝜏)}. (10) 

2) For each partition �̅�𝑖
𝜏, find a new centroid: 

 �̅�𝑖
𝜏 =

1

∑ 𝑤(𝑧)𝑚(𝑧)∈�̅�𝑖
𝜏

∑ 𝑤(𝑧)𝑧.

𝑚(𝑧)∈�̅�𝑖
𝜏

 (11) 

These two steps are again repeated until there are no longer changes in partitions during the 

assignment step. 

For each resulting partition �̅�𝑖
𝜏, we store in memory its centroid 

 �̅�𝑖
𝜏 =

1

∑ 𝑤(𝑧)𝑚(𝑧)∈�̅�𝜏
∑ 𝑤(𝑧)𝑥(𝑧),

𝑚(𝑧)∈�̅�𝑖
𝜏

 (12) 

the number of feature vectors associated with this centroid 

 𝑤(�̅�𝑖
𝜏) = ∑ 𝑤(𝑥)

𝑚(𝑥)∈�̅�𝑖
𝜏

, (13) 

and sum of squared features in these vectors 

 𝜍(�̅�𝑖
𝜏) = ∑ 𝜍(𝑥)

𝑚(𝑥)∈�̅�𝑖
𝜏

. (14) 

In addition, we substitute values 𝑥𝑚𝑖𝑛,𝑗
𝑡  and 𝑥𝑚𝑎𝑥,𝑗

𝑡  for 𝑡 ∈ {1,2, . . . , 𝜏} with vectors �̅�𝑚𝑖𝑛,𝑗
𝜏  and �̅�𝑚𝑎𝑥,𝑗

𝜏  

used for the standardization. 

Once 𝜏 × 𝑘 partitions 𝑝𝑖
𝑡 have been compressed to new 𝑘 partitions �̅�𝑖

𝜏, information about the old 

partitions can be removed from the memory. After that, the algorithm continues in the same manner 

with finding partitions for the next 𝜏 − 1 time windows 𝑡 ∈ {𝜏 + 1, 𝜏 + 2, … , 2𝜏 − 1} and combining 

them with partitions �̅�𝑖
𝜏 to obtain new 𝑘 partitions. 

In order to reduce the amount of computing resources required, this clustering procedure can be 

substituted with streaming 𝑘-means approximation proposed in [38]. However, from our numerical 

simulations, we notice, that the clustering algorithm used converges in just few iterations. To 

guarantee that the clustering is completed during the current time window, the number of iterations is 

recommended to be artificially limited. 

 

6.2 Clustering sessions 



 

We consider a group of conversations that are extracted at time window t and have the same 

source IP address, destination IP address and destination port. As mentioned in the Section 4 we 

interpret this group as a rough approximation of the user session. Once all connections at this time 

window have been divided into 𝑘 partitions, for each user session, we obtain an 𝑛-gram vector of size 

𝑘𝑛. Let us denote the new feature matrix as 𝑌𝑡 = {𝑦1
𝑡 , … , 𝑦

𝑛𝑠
𝑡

𝑡 }, where 𝑛𝑠
𝑡  is the number of different 

sessions at time window 𝑡. 

We apply the same partition algorithm to new feature vectors in order to obtain 𝐾 session 

centroids. As previously, for each resulting partition 𝑃𝑖
𝑡, in addition to its centroid 𝑀𝑖

𝑡 = 𝑚(𝑃𝑖
𝑡  ), we 

store in memory the number of feature vectors associated with this centroid: 

 𝑤(𝑃𝑖
𝑡) = |𝑃𝑖

𝑡|. (15) 

However, instead of just sums of squared features in vectors assigned to a centroid, we calculate 

and store matrix 𝑆(𝑃𝑖
𝑡) of size 𝑘𝑛 × 𝑘𝑛, the (𝑗, 𝑙)-th element 𝑆𝑗𝑙(𝑃𝑖

𝑡) of which is calculated as 

follows: 

 
𝑆𝑗𝑙(𝑃𝑖

𝑡) = ∑ 𝑦𝑗𝑦𝑙

𝑦∈𝑃𝑖
𝑡

, 
(16) 

where 𝑗, 𝑙 ∈ {1, … , 𝑘𝑛}. 

Once connection partitions for 𝜏 consecutive time windows 𝑡 ∈ {1, 2, … , 𝜏} have been calculated 

and 𝜏 × 𝑘 resulting partitions 𝑝𝑖
𝑡 have been compressed to new 𝑘 connection clusters �̅�𝑖

𝜏, information 

stored for each session partition 𝑃𝑖
𝑡 is supposed to be updated. It is caused by the fact that connection 

clusters have been changed which leads to the modifications in all the 𝑛-gram vectors. For this 

purpose, we introduce function 𝑓(𝑗, 𝑝𝑙
𝑡 , �̅�𝑖

𝜏) with 𝑗 ∈ {1, … , 𝑘𝑛}, such that if the 𝑗-th 𝑛-gram contains 

label 𝑙 and partition 𝑝𝑙
𝑡 is assigned to new partition �̅�𝑖

𝜏, the function returns the index that corresponds 

to the 𝑛-gram which is obtained from the 𝑗-th gram by substituting label 𝑙 with label 𝑖. 
Let us assume that conversation partition 𝑝𝑖

𝜏 contains some of the partitions obtained at time 

window 𝜏: 

 𝑝𝑖1

𝑡 , … , 𝑝𝑖𝑞

𝑡 ∈ �̅�𝑖
𝜏. (17) 

It is worth noting that partition �̅�𝑖
𝜏 can also contain partitions from other time windows, but they do 

not affect vectors 𝑌𝑡 at this point. 

If the 𝑗-th gram contains label 𝑖, the 𝑗-th component of the 𝑖-th session centroid 𝑀𝑖
𝑡 is modified as 

follows: 

 𝑀𝑖𝑗
𝑡 = ∑ 𝑀

𝑖,𝑓(𝑗,𝑝𝑖𝑎
𝑡 ,�̅�𝑖

𝜏)

𝑡

𝑞

𝑎=1

. (18) 

Similarly, elements of matrix 𝑆(𝑃𝑖
𝑡) are modified: 

 

𝑆𝑗𝑙(𝑃𝑖
𝑡) = ∑ 𝑆

𝑓(𝑗,𝑝𝑖𝑎
𝑡 ,�̅�𝑖

𝜏),𝑙
(𝑃𝑖

𝑡), 𝑙 ∈ {1, … , 𝑘𝑛},

𝑞

𝑎=1

𝑆𝑙𝑗(𝑃𝑖
𝑡) = ∑ 𝑆

𝑙,𝑓(𝑗,𝑝𝑖𝑎
𝑡 ,�̅�𝑖

𝜏)
(𝑃𝑖

𝑡), 𝑙 ∈ {1, … , 𝑘𝑛}.

𝑞

𝑎=1

 (19) 

If the 𝑗-th gram contains label 𝑖𝑎 ∈ {1, … , 𝑖𝑞} and does not contain label 𝑖, the 𝑗-th component of 

the 𝑖-th session centroid 𝑀𝑖
𝑡 and elements of matrix 𝑆(𝑃𝑖

𝑡) become equal to zero: 

 𝑀𝑖𝑗
𝑡 = 0 (20) 

and 



 
𝑆𝑗𝑙(𝑃𝑖

𝑡) = 0, 𝑙 ∈ {1, … , 𝑘𝑛},

𝑆𝑙𝑗(𝑃𝑖
𝑡) = 0, 𝑙 ∈ {1, … , 𝑘𝑛}.

 (21) 

The rest of the components do not change. Thus, we update information about session partitions to 

represent modifications in 𝑛-grams caused by the compression of connection clusters. 

Once session partitions 𝑃𝑖
𝑡, where 𝑡 ∈  {1, . . . , 𝜏} and 𝑖 ∈ {1, . . . , 𝐾}, have been updated, these 

𝜏 ×  𝐾 partitions are compressed to new 𝐾 clusters with the same technique as the one was applied 

for connections. For each resulting partition �̅�𝑖
𝜏, we store in memory its centroid 

  𝑚(�̅�𝑖
𝜏) = �̅�𝑖

𝜏, (22) 

the number of feature vectors associated with this centroid 

 𝑤(�̅�𝑖
𝜏) = ∑ 𝑤(𝑥)

𝑚(𝑥)∈�̅�𝑖
𝜏

, (23) 

and matrix 𝑆(�̅�𝑖
𝜏), the (𝑗, 𝑙)-th elements 𝑆𝑗𝑙(�̅�𝑖

𝜏) of which is defined as follows: 

 𝑆𝑗𝑙(�̅�𝑖
𝜏) = ∑ 𝑆𝑗𝑙(𝑥)

𝑚(𝑥)∈�̅�𝑖
𝜏

. (24) 

 

6.3 Attack detection 
 

The final model of normal user behavior consists of minimal 𝑥𝑚𝑖𝑛,𝑗 and maximal 𝑥𝑚𝑎𝑥,𝑗 feature 

values, centroids 𝜇𝑖 = 𝑚(𝑝𝑖), numbers of vectors assigned 𝑤𝑖 =  𝑤(𝑃𝑖) and sums of squared feature 

values 𝜍𝑖 = 𝜍(𝑃𝑖) for 𝑘 connection partitions 𝑝1 , . . . , 𝑝𝑘 and centroids 𝑀𝑖 = 𝑚(𝑃𝑖) , numbers of 

vectors assigned 𝑊𝑖 = 𝑤(𝑃𝑖) and matrices 𝑆𝑖 = 𝑆(𝑃𝑖) for 𝐾 session partitions 𝑃1, … , 𝑃𝐾 . 

First, we recalculate conversation centroids and sums of squared feature values according to 

values 𝑥𝑚𝑖𝑛,𝑗 and 𝑥𝑚𝑎𝑥,𝑗 used for the standardization: 

 

𝑚𝑖𝑗 =
𝜇𝑖𝑗 − 𝑥𝑚𝑖𝑛,𝑗

𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑚𝑖𝑛,𝑗

,

𝑠𝑖𝑗 =
𝜍𝑖𝑗 + 𝑤𝑖(𝑥𝑚𝑖𝑛,𝑗

2 − 2𝑥𝑚𝑖𝑛,𝑗𝜇𝑖𝑗)

(𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑚𝑖𝑛,𝑗)2
,

 (25) 

where 𝑖 ∈ {1, … , 𝑘}. 
For each partition 𝑝𝑖  we calculate radius 𝑟𝑖 and diameter 𝜓𝑖  in a similar manner they are calculated 

for cluster features in [26]: 

 

𝑟𝑖 = √
𝑒𝑇𝑠𝑖

𝑤𝑖

− 𝑚𝑖
𝑇𝑚𝑖  ,

𝜓𝑖 = √
2𝑤𝑖𝑒𝑇𝑠𝑖 − 2𝑤𝑖

2𝑚𝑖
𝑇𝑚𝑖

𝑤𝑖(𝑤𝑖 − 1)
 ,

 (26) 

where 𝑒 is vector of the same length as 𝑠𝑖 each element of which is equal to 1. 

Similarly, for each partition 𝑃𝑖  we calculate radius 𝑅𝑖 and diameter Ψ𝑖as follows: 

 

𝑅𝑖 = √
𝐸𝑇𝑆𝑖

𝑑𝑖𝑎𝑔

𝑊𝑖

− 𝑀𝑖
𝑇𝑀𝑖  ,

Ψ𝑖 = √
2𝑊𝑖𝐸

𝑇𝑆𝑖
𝑑𝑖𝑎𝑔

− 2𝑊𝑖
2𝑀𝑖

𝑇𝑀𝑖

𝑊𝑖(𝑊𝑖 − 1)
 ,

 (27) 

where 𝑆𝑖
𝑑𝑖𝑎𝑔

 is the vector which consists of diagonal elements of matrix 𝑆𝑖 and 𝐸 is vector of the 

same length as 𝑆𝑖
𝑑𝑖𝑎𝑔

 each element of which is equal to 1. 

If the distance 𝑑 between standardized feature vector 𝑥 extracted from a new connection and the 

closest centroid 𝑚𝑖(𝑥) is greater than the following linear combination of 𝑟𝑖(𝑥) and 𝜓𝑖(𝑥): 



 𝑑(𝑥, 𝑚𝑖(𝑥)) >  𝑟𝑖(𝑥) + 𝛼𝜓𝑖(𝑥), (28) 

then this connection is classified as an attack. 

Similarly, if the distance 𝑑 between feature vector 𝑦 extracted from a new session and the closest 

centroid 𝑀𝑖(𝑦) is such that: 

 𝑑(𝑦, 𝑀𝑖(𝑦)) > 𝑅𝑖(𝑦) + 𝛽Ψ𝑖(𝑦), (29) 

then this user session is classified as an attack. Parameters 𝛼 > 0 and 𝛽 > 0 are supposed to be tuned 

during the model validation stage in order to guarantee the highest detection accuracy. 

 

7 Algorithm evaluation 
 

In order to evaluate the detection approach proposed, first, we briefly overview our virtual 

network environment used to generate some realistic end user network traffic and various DDoS 

attacks. Then, we evaluate the cost of the clustering on the training data. Finally, we present results of 

the detection of three different DDoS attacks. 

 

7.1 Test environment and data set 
 

To test the DDoS detection scheme proposed in this study, a simple virtual network environment 

is designed. The environment botnet consists of a command and control (C2) center, a web server, 

and several virtual bots. C2 stores all necessary information about bots in a data base and allows to 

control bots by specifying the traffic type, the pause between two adjacent sessions and the delay 

between connections in one session. The web server has several services including a web bank 

website, file storage, video streaming service and few others. Each bot is a virtual machine with 

running a special program implemented in Java that allows the bot to receive commands from C2 and 

generate some traffic to the web server. It is worth noting that all the traffic is transferred by using 

encrypted SSL/TLS protocol. 

In this research, we concentrate on the analysis of incoming and outgoing traffic of the bank web 

site that allows a client to log in and do some bank operations, see Figure 1. In order to generate a 

normal bank user traffic, we specify several scenarios that each bot follows when using the site. Each 

scenario consists of several actions following each other. These actions include logging in to the 

system by using the corresponding user account, checking the account balance, transferring some 

money to another account, checking the result of the transaction, logging out of the system, and some 

other actions. Each action corresponds to requesting a certain page of the bank service with all of its 

embedded content. Pauses between two adjacent actions are selected in a way similar to a human user 

behavior. For example, checking the account’s balance usually takes only a couple of seconds, 

whereas filling in information to transfer money to another account may take much longer time. 

 



 
Figure 1. Test setup 

 

In addition to the normal traffic, several attacks are performed against the bank web service. First 

DDoS attack tested is Sslsqueeze. During this attack, attackers send some bogus data to the server 

instead of encrypted client key exchange messages. By the moment the server completes the 

decryption of the bogus data and understands that the data decrypted is not a valid key exchange 

message, the purpose of overloading the server with the cryptographically expensive decryption has 

been already achieved. 

The second attack is Slowloris. In the case of this attack, each attacker tries to hold its connections 

with the server open as long as possible by periodically sending subsequent HTTP headers, adding 

to-but never completing-the requests. As a result, the web server keeps these connections open, 

filling its maximum concurrent connection pool, eventually denying additional connection attempts 

from clients. Moreover, we carry out a more advanced DDoS attack with the attackers that try to 

mimic the browsing behavior of a regular human user. During this attack several bots request 

sequences of web pages with all of their embedded content from the service. Unlike the normal user 

behavior, these sequences are not related to each other by any logic but generated randomly. 

Finally, an intrusion detection system (IDS) prototype that relies on the proposed technique is 

implemented in Python. The resulting program analyzes arriving raw packets, combines them to 

conversations, extracts necessary features from them, implants the resulting feature vectors to the 

model in the training mode and classifies those vectors in the detection mode. The IDS is trained with 

the traffic that does not contain attacks by using the online training algorithm proposed. After that, 

the system tries to find conversations and clients that are related to the attacks specified above. 

The resulting program analyses arriving raw packets, combines them to conversations, extracts 

necessary features from them, implants the resulting feature vectors to the model in the training mode 

(Figure 2) and classifies those vectors in the detection mode (Figure 3). 

 



 
Figure 2. IDS in the training mode 

 

 
Figure 3. IDS in the detection mode 

 

7.2 Clustering evaluation 
 

In order to evaluate the clustering scheme, we generate a portion of normal user traffic as 

described above. The duration of the simulation is 10 minutes, during which 45 bots communicate 

with the web bank server. The pause between two adjacent sessions varies from 15 to 45 seconds. To 

train the system we use the time window of length 5 seconds. Cluster centroids in the model are 

compressed every 10 time windows. 

In order to evaluate the clustering scheme, we calculate the average cost 𝐶 of dividing the 

resulting set of vectors 𝑋 into clusters with centers m as follows: 

 𝐶 =
1

|𝑋|
∑ 𝑚𝑖𝑛𝑦𝜖𝑚𝑑(𝑥, 𝑦)

𝑥𝜖𝑋

. (30) 

First, we compare the cost of clustering vectors that represent conversations by offline and online 

approaches. The comparison results for different numbers of clusters are presented in Figure 4. As 



one can see, the cost of clustering these vectors online is comparable with the cost in the offline case 

and the difference between costs reduces when the number of clusters grows. When the number of 

clusters is equal or greater than 15, the difference between costs is only about 1.4%. 

 

 
Figure 4. Average cost of clustering conversations 

 

Similar results are obtained for 𝑛-gram vectors that represent normal user session approximations. 

It is worth noticing that, for session clusters built in the online mode, 𝑛-grams are constructed based 

on the clustering conversation vectors in online mode, and correspondingly, for session clusters 

obtained in offline mode, 𝑛-grams are constructed based on the clustering conversation vectors in 

offline mode. The comparison results for different numbers of clusters are presented in Figure 5. As 

one can notice, the cost of clustering in the online case is again comparable with the offline approach. 

 

 
Figure 5. Average cost of clustering ”sessions” 

 

7.3 Detection accuracy 



 

In order to evaluate attack detection accuracy, we employ the training dataset described above. 

The IDS is trained with the traffic that does not contain attacks by using the training algorithm 

proposed. Once the training has been completed, several attacks are performed to evaluate true 

positive rate (TPR), false positive rate (FPR) and accuracy of the algorithms. Since one of the most 

important drawbacks of an anomaly-based detection system is high numbers of false alarms, we are 

only interested in results when the false positive rate is below 1%. 

We expect that trivial DDoS attacks such as Sslsqueeze and Slowloris can be detected by 

analyzing feature vectors extracted from conversations. Since almost every conversation between a 

client and the web server takes few milliseconds, the time window size is selected to be 1 second. 

Since, we could not find any other anomaly-based attack detection method for the encrypted network 

traffic, we compare our results with the offline version of the algorithm proposed in this study. In 

[17], we compared several well-known batch clustering algorithms for the problem of trivial DDoS 

attack detection. It turned out, that such algorithms as k-means, self-organizing maps and fuzzy c-

means allow one to detect slow HTTP attacks with high accuracy. In this study, we use k-means 

combined with k-means++ as the offline version of our approach. 

Figure 6 shows how TPR depends on FPR when detecting Sslsqueeze for different numbers of 

conversation clusters in the model of normal user behavior and different values of parameter 𝛼. As 

one can notice, for low values of FPR both variants of the algorithm are able to detect almost all 

conversations related to the attack. In particular, we are able to detect 98.5% of intrusive 

conversations with no false alarms and 99.9% of such conversations with FPR equal to 0.8%. 

 

 
Figure 6. Dependence of true positive rate on false positive rate of Sslsqueeze detection for different 

clustering parameters 

 

Dependency of TPR on FPR when detecting Slowloris is presented in Figure 7. As previously, 

different numbers of conversation clusters in the model of normal user behavior and different values 

of parameter 𝛼 are used to obtain the results. As one can see, both variants of the algorithm are able 

to detect almost all conversations related to the attack (TPR > 99%) without false alarms. 

 



 
Figure 7. Dependence of true positive rate on false positive rate of Slowloris detection for different 

clustering parameters 

 

Finally, we carry out a more advanced DDoS attack with the attackers that try to mimic the 

browsing behavior of a regular human user. During this attack several bots request a random 

sequence of web resources from the server. Since all those requests are legitimate, the corresponding 

conversations are classified as normal. However, the analysis of 𝑛-gram vectors that represent 

approximations of user sessions allow us to detect the most part of the attacking attempts. In this 

simulation, 2-gram model is applied. Figure 8 shows how TPR depends on FPR for different values 

of the time window size. When the time window duration is only 1 second, there is no possibility to 

detect the attack since the number of conversations in all user sessions is not enough to distinguish a 

legitimate user’s sessions from attacker’s ones. However, when the size of the time window grows, 

normal user sessions become more and more distinguishable from the sessions related to the attack. 

As one can see, when the time window size is 4 seconds, almost all intrusive sessions can be detected 

(TPR = 97%) without false alarms. When the time window size is 8 seconds, all sessions related to 

the attack can be detected (TPR = 100%) with few false alarms (FPR = 0.93%). 

 



 
Figure 8. Dependence of true positive rate on false positive rate of more advanced DDoS attack 

detection for different time window sizes and clustering parameters 

 

Table 1 shows the accuracy of detection of these three DDoS attacks for the cases when clustering 

parameters are selected in an optimal way, i.e. when the detection accuracy is maximal. 

 

Table 1. Detection accuracy 

Attack Time window size 

1 second 2 seconds 4 seconds 8 seconds 

Sslsqueeze 99,89 % 

Slowloris 99,77 % 

Intermediate 

DDoS 

63,29 % 85,21 % 98,52 % 99,34 % 

 

7.4 Discussion 
 

The detection approach proposed in this study allows us to detect trivial as well as more advanced 

DDoS attacks. However, the detection accuracy strongly depends on the clustering parameters 

selected for the model of normal user behavior. For this reason, these parameters should be carefully 

selected. For example, the number of conversation clusters should depend on the number of web 

pages of the web service considered. For completely different pages there should be different clusters 

whereas similar pages can be combined to the same cluster. Moreover, since clustering vectors that 

represent user sessions requires analysis of matrices of size 𝑘𝑛  ×  𝑘𝑛, where 𝑘 is the number of 

conversation clusters and 𝑛 is the number of grams in the 𝑛-gram model, value of k should be limited 

depending on available memory. For the same reason, number of grams in the 𝑛-gram model should 

be small. As we can see from the results presented above, 2-gram model allows us to detect almost all 

intrusions. The number of ”session” clusters should depend on the number of different scenarios how 

the web service can be used by some user. Parameters 𝛼 and 𝛽 are recommended to lie between 0 and 

1. If these parameters are close to zero, the number of true positives is the highest. When these 

parameters grow, the number of false alarms decreases. Finally, the size of time window should 

depend on the average duration of a normal user session in order to increase the accuracy of the 

detection of intermediate DDoS attacks. 

It is also worth to notice, that despite our approach allows us to distinguish attacks from the 

normal user traffic with high accuracy, the traffic we label as normal would be classified as an 



advanced DDoS attack by [10], because this traffic consists of sequences of HTTPS requests which 

are carefully chosen so as to better mimic the browsing behavior of regular human users. For this 

reason, in the future, we are going to test our method on some real end user traffic. 

 

8 Conclusion 
 

In this research, we considered the problem of timely detection of different sorts of application-

layer DDoS attacks in encrypted high-speed network traffic by applying an anomaly detection-based 

approach to statistics extracted from network packets. Our method relies on the construction of the 

normal user behavior model by applying a data stream clustering algorithm. The online training 

scheme proposed allows one to rebuild this model every time when a new portion of network traffic 

is available for the analysis. Moreover, it does not require a lot of computing and memory resources 

to be able to work even in the case of high-speed networks. In addition, an IDS prototype that relies 

on the proposed technique was implemented. This prototype was used to test our technique on the 

data obtained with the help of our virtual network environment that generated realistic traffic patterns 

of end users. As a result, almost all DDoS attacks were properly detected, while the number of false 

alarms remained very low. 

In the future, we are planning to improve the algorithm in terms of the detection accuracy, and test 

it with a bigger dataset which contains real end user traffic captured during several days. In addition, 

we will focus on the simulation of more advanced DDoS attacks and detection of these attacks by 

applying our anomaly-based approach. 
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