
    

 

 

 
 
This is an electronic reprint of the original article.  
This reprint may differ from the original in pagination and typographic detail. 
 

Author(s): 

 

 

Title: 

 

Year: 

Version:  

 

Please cite the original version: 

 

 

  

 

 

All material supplied via JYX is protected by copyright and other intellectual property rights, and 
duplication or sale of all or part of any of the repository collections is not permitted, except that 
material may be duplicated by you for your research use or educational purposes in electronic or 
print form. You must obtain permission for any other use. Electronic or print copies may not be 
offered, whether for sale or otherwise to anyone who is not an authorised user. 

 

On FE-grid relocation in solving unilateral boundary value problems by FEM

Haslinger, Jaroslav; Neittaanmäki, Pekka; Salmenjoki, Kimmo

Haslinger, J., Neittaanmäki, P. & Salmenjoki, K. (1992). On FE-grid relocation in
solving unilateral boundary value problems by FEM. Applications of Mathematics, 37
(2), 105-122. Retrieved from https://eudml.org/doc/15703

1992



¡el+a
37 (ree2) APPLICATIONS OF MATHEMATICS No.2, 105-122
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UNILATERAL BOUNDARY VATUE PROBTEMS BY FEM

J. Heslrxcnn, P. NnttteÆ.rl,IÄxt and K. SelwN.loxI

(Received July 9, 1990)

Summary. We consider FE-grid optimization in elliptic unilateral boundary value prob-
lems. The criterion used in grid optimization is the total potential energy of the system.
It is shown that minimization of this cost functional means a decrease of the discretization
error or a better approximation of the unilateral boundary conditions, Design sensitivity
analysis is given with respect to the movement of nodal points. Numerical results for the
Dirichlet-Signorini problem for the Laplace equation and the plane elasticity problem with
unilateral boundary conditions are given. In plane elasticity we consider problems with and
without friction.

Keywords: FBgrid relocation, unilateral boundary value problem.

AMS clastifcation: 65N30

1. InrnonucrroN

In present literature on numerical analysis concerning the theory and application
of FEM one can see a growing interest, in improving the accuracy achieved by FEM
(mesh design [], 2, 11, l2], extrapolation methods [B], superconvergence [14]). In
this paper we conside¡ the improvement of accuracy by a-priori relocation of the FE-
grid (r-method) with fixed number of nodes and fixed degree p of elements (order of
approximation).

The traditional way to achieve higher accuracy is to use the l¿-method, refining the
mesh either uniformly or locally with afixed degree p of elementsf4,2,6]. Another
possibility is the p.method, which means increasing the degree p of the elements
either uniformly or selectively with a fixed mesh parameter h 12, 61. Remarkable
results have been obtained with the lrpmethod, which combines the best effects of
the l¿- and pmethods [6].

In this paper we state the relocation problem for the FE-grid and consider espe-
cially contacü problems, In [5] the r-method for linear, elliptic, second order partial
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diflerential equations with classical boundary conditions was considered rvith total
potential energy as the criterion of optimality. We shall show that this oiterion is

useful for our purposes as well: Moreover we show that this criterion enables us to
minimize the discretization error ll" - "¡ll' or to improve the approximation of the

contact set {u(c) = f (ø) on fc'} or to improve the approximation of the sliding and

non-sliding parts where f(ø) is the obstacle (or foundation) and l.c is the part of
the boundary of the domain Q with contact conditions. We shall present sensitivity
analysis needed in order to apply an efficient NLP(NonlinearProgramming)-solver
to minimize the criterion function.

2. FoRtvtulntloN oF THE oPTtltAL I\{ESH DESIGN PRoBLEM

2.1. The regular movi¡lg grid. Let O c R2 be a polygonal domain and let
7 be its triangulation. We denote by N - {r\}, 

^r 
= (¡¡,9'), the set of all nodes

of 7. In order to emphasize the dependence of T on N, we write 7(N) in what

follows. We also assume that all 7(il) are topologically equivalent. To keep the

triangulation admissible (i.e. regular) during the computation, some restrictions on

the location of N¡ must be added.
Let T be an initial triangulation, defined by nodes N; = (¿r, y;). Then we consider

relocations of .Òy'¡, denoted by 1{¡, satisfying

(2.1)

(2.2)

(P)

where U6(1() denotes a á-neighborhood of N' (ó > 0 sufficiently small).

The set of all N with the above mentioned properties will be denoted by /V

2.2. Optimal mesh design problem. In the FE-grid optimization problem

with a fixed number of nodes we wish to relocate the nodes N e M into a new

position Nt e .lvl in order to obtain a more close FE-solution u¡ for approximating u.

By a 6-neighborhood of a point ,fü¡ = (c¡, g¡) we mean the square ltr - ¡. ã¡ * ó] x

lvr-6,ùi*á],6>0.
In the next section we shall show that one por.ible rrav to do this is to solve the

following NLP-problem

,V e U61N,¡ lor interior Points N¡;

in the case ofboundary nodes N¡,
Nr€U,r(Nr)nôQ'' 

rvhich are not vertices of Q,

Find N' €.V such that

¿(^")<¿(¡') YNeM,

where 4(N) = J(u(N)), with u(.¡f ) being the FEM-solution of the problem consid-

ered depending on the positions of the nodes .|y'.
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There are several possibilities for the functional .I. The most appropriaüe choice
turns out to be the total potential energy of the system. To see this fo¡ the linear
elliptic problems we refer to [5]. In Section 4 we shall show that this is the case

suitable also for the elliptic unilateral boundary value problems.

Iü is easy to see that Problem (P) has at least one solution as yVl is compact and
I is continuous.

3. FoRuur,¡,uoN oF THE MoDEL pRoBLEMs

3.1. Case 1: Unilateral boundary value problem-scalar case. We shall
consider the problem of optimal mesh design for FEM in the case of the following
unilateral boundary value problem

(3. 1)

-A,u= I inO=(0,1)x(0,1)
u=0 on 11

u2o, !u>0, u5u=oon on
on 12,

li
I

i

I

I

{

where 12={n €R2 lc1 = 1, 0 <r2< 1},Ir -ôO\F2, f eLz(A)

l1

I1 c)

I1

I2

Fig. 3.1

Weak formulation of (3.1) is the following:
Find u € K - {9 e A1(O) lp =}on 11, g2 0 onl2} such that

(3.2) a(u,a-u)>(L,a-ul Ya€K,

where

a(u,a)= [vu.yadæ, (L,ol- [¡rar.Jn Jn
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It is well-known that the solution of (3.2) can be characterized as a minimizer of
the total potential energy functional "I:

(3.3) ü=argmin{J(r)},

where ,I(o) - lo(o,a) - (L,a).
Next, with any 7(N), N e M, we associate a closed, convex subset of a finite

dimensional space, defined by:

(8.4) K¡v = {t,ru e c(O) I ',vlz e h(T)Y T eT(N),
u/v=0on[, uN2}on12]

i.e. I(rv contains all piecewise linear continuous functions, vanishing on 11 and sat-
isfying unilateral boundary conditions on 12. The finite element approximation of
(3.2) is defined in the usual way:

(3.5)

or equivalently

(3.6)

Find u¡y € /(¡y such that

ø(u¡¡,a¡¡ - uN) ) (L,a¡y - u¡¡l V oiv € K¡v,

t¿N = argmin,I(o¡r)
uv€lfrv

For the proof of convergence of the FE solution z¡¡ and the error estimates we refer
to [10]. To emphasize the dependence of ury on the choice of N € M, we write u(N)
in what follows.

3.2. case 2: Elastic body on a rigid foundation. consider a body o sup-
ported by a rigid foundation Q = {(rt, ø2) | c2 ( 0}.

P
Xz

Al

a

rc(o)
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Let u = (ut,uz) denote the displacement field, We assume that the stress tensor
r(u) - {rt¡(")}?,.-, is related to the strain tensor e(u) = {e¿¡(u)}!,¡-, by means of
the linear Hooke's law

(3.7) r¡¡(u) = C¿¡¡¡e¡,¡(u), r

where

(3.8)

and the elasticity coefficients C¿¡¡¡ are symmetric and uniformly elliptic in O, C¡¡¡¡ €
¿*(o).

The equilibrium equation reads

(3.e)
aröi

ôrj *F¿=0 indl,i=7,2,

where f' - (Fr, f'2) denotes the vector of the body force.
We suppose a:la,bl - R is a non-negative piecewise linear continuous function

defining lç = {æ € R2 lc2 = o(n1), at €(a,b)}. fc is the part of the boundary
which may come in contact with the rigid foundation, see Fig.3.2. Moreover, O =
{(q,rz) €R'lalr:1 1b, o(rr) < xz17}, whereTisapositiveconstant.
Let the boundary ôQ be splitted up as follows: ôO = ToUTp UF6:, where ,l-¿

is a non-empty part of the boundary, where the body is fixed, .l-p is the part of
the boundary, where the surface tractions P = (Pt, P2) are given, and on 16: the
unilateral boundary conditions with given friction are prescibed:

(3.10)

u¿=0 onfp, i=1,2;
f;@) = r¿¡(u)n¡ - P¿ on lp, i = I,2;
uz(st,o(r1)) ) -"(rt) Vcr e (o,ò);

fz@)) 0 and (u2 *a)72(u)=g on lç, (contact)

,rr(r) = ; (
ôô

ôr"¿ + 

^"i

lrr(")l (g onlç;

lrt("Xr)l <s+ u1(c)-0;

lrr("Xr)l = s +lÀ(o) ) 0: u1(ø) = -À(o)"1(u)(c),

(friction )

where g is the coefficient of friction and n¡ are the components of the outward unit
normal. If 9 = 6 we have the case without friction.

Let

(3.11) K = {u €.V la2(x1,a(ør)) 2 -o(rt) V ,te (o,ö)},

1 Summation convention is used
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where

(3.12) V = {a = (vt,o2) e (f11(O))'lrt = 0 on l¿, i- 1,2}.

The weak formulation of the problem given by (3.9) and (3.10) is:

Find u € /( such that
(3.13) a(u,u-u)+i@)-i(")) (L,a-ul Y a €.1{,

where

a(u,u -u) = (r(u), e(u - u))o,n = [ ,;¡(u)e;¡(u - u) dx,
JO

(L,o)- [ ,,o,ar+ [ P¿u¡dsJn Jr,
and

j@)=s I lollds.Jr"
The problem (3.13) can be formulated equivalently as

(3.14) u = arg min ,I(o),

where

(3.15) J(u) = f,oþ,r) + j(a) - (L,o) .

Next, with any 7(N), N e M, we associate a closed, convex subset of a finit,
dimensional space, defined by:
(3.16)
I{¡¡= {ur e (c(0))'| ,rulr € (Pl("))'? vrerW), aN,i = 0onF¿, i -r,2,

a¡¡,2(øt,a(ø1)) 2 -a(æt) V ,r € [o, ô]],

i.e. /(iy contains all piecewise linear continuous functions, vanishing on FD an'
satisfying unilateral boundary conditions on l¿. The finite element approximatio
of (3.13) is defined in the usual way:

Find u¡v € /(ry such that
13.171

ø(u¡¡,v¡¡ -rrv) + j(u¡¡) - j("r) ) (L,o¡¡ -uyl Vr.riv € I(r
or equivalently

(3.18) "" = i:1?i"r(,,v)
with "I given by (3.15). For the proof of convergence of the FE-solution and th
error estimates we refer to [10]. To emphasize the dependence of ujv on the choic
of N € M, we write u(ff) in what follows.
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4. Tsp cosr FUNcTIoNAL oF r-METHoD

As mentioned in the introduction it is not evident (as in the case of classical bound-
ary value problems) how to choose the criterion function. In the case of Dirichlet
boundary conditions (for example), the minimization of the total potential energy

functional at the equilibrium state with respect to il € ,rV evidently minimizes the

discretization error in energy norm.
The case with unilateral boundary conditions is more involved. The aim in solving

Problem (P) is to control the following functionals:

(4.1)

and

(4.2)

I2(N) = lTz(u),u2(nr) + a) in Case 2 (problem (3.9)),

where (.,.) means the duality pairing between ¡t-112(fz) and Hrt2(lz), H-L/2(fc)
and Hr/2(fc), respectively [10]. In Case 2 we also control

r3(N) = l r"fulur{n)l 
+ 

"r(u)ur(.i.r)) 
ds.

For convenience we set 13(N) = 0 in Case 1.

To see this we prove

Theorem 4.L. Let N eM Then

11(¡f) + I¿(¡/) + 13(¡{) = L(N) - J (u),

where J is given as in (3.3) or in (3.15) and L(N) = /(u(,nf)).

P r o o f . In Case 1 we obtain by the Taylor-expansion

(4.3) L(N) = J(u) + J'(u,u(N)- u) + f,'rr(*l- u, u(1{) - u),

rvhere

(4.4) J'(u,u(N) - u) = ø(u, u(/ú) - u) - (L,u(N) - u).

Choosing u = 0 and a =2u in (3.2), we see that

(4.5) a(u,u) - (,f, u)q,ç = 0,

/2(N) = (*","(")) in case 1 (problem (3.1)),

I1 N) ø(u(,V) - u, u(N) - u)
1

2

111



so

(4.6) J'(u,u(N) - u) = ø(u, u(/ú)) - (/, u(/ú))0,o.

Now using Green's formula in (a.6) for problem (3.1) we have

(4.7) rt(u,u(N)- u) = (*",,(¡o)) ,

In Case 2 we have for "/e(u(1ü)) = /(u(¡ú)) - j(r(¡r)) as in (4.3) that

"r(u(.ar)) = /o(u(N)) + j(u(¡r))
(4'8) 

=./o(u) * J's(u,,rr(¡{) - e+f,"@ev) - u,u(N) - u) + j(,r(¡r))

with .I{(u, 
"(N) - u) analogous to (4.4). Using Green's formula for /o(u,u(nf ) - u)

and making use of the equations (3.9) and boundary conditions on .l-¿ and ì-p we

have

(4.e)

l'o@,u(N)- u) = l,l(&,,¡1u¡) (u;(n) -,,)] a'

* 
lun ,,(u)n¡ (u¿(/ú) - u¿) ds - (I, u(nr) - u)

= (T2(u),uz(N) - uzl + lr"rrlu){ur(rú) - u1) ds

So we have

(4.10)
1

J(u(,ar)) - J (") = ;a(u(N) - u, u(N)- ü) + \Tz("),u2(N) - u2l

t [ 
"1(u)(u1(N) 

- u1) ds + j(,,(¡r)) - j(u)

'r 
t'"

= io(u(N) - u, u(N) - u) + lTr("),u2(N) - u2l

r [ fufu{x)l+n(u)u1(N))¿r- / (gl,,l+fi(u)u1)ds

,t'" 
Jr'

= ,a(u(N) - u, u(1ú) - u) + (Tz(u),u2(1r) * a)

r I kþt(N)l +"r(u)u,(r{))ds
Jf.

again using the contact and boundary conditions (3.10).
Consequently,

11(^¡) + 12(¡r) + 13(¡ú) = L(N) - J(u)

in both cases.

TT2
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r2(N) = (ff,",",¡ = I"#.,(N) a,,= 
Iu,ffi.u@)dxz,

where i2 = {c e rytf¡*@> o}. ro, problem (8.9)

rz(Ð = lr.T2(u)(u2(N)* 
a) ds = I- 

"rr1u¡(uz(N) 
* o) ds

where i6 - {c € lç | T2(u(a)) > 0} provided f2@) e L2(tc). For rhe exacr
solutions of problems (3.1) and (3.9) we have

Remark 4.1

T"

and for the exact solution of (3.9) we have

T"

For problem (3.1), if ffe ûgr¡ m"n

ôu

ô" - 0 in Case I (problem (3.1))

T2(u)(u2 * a)) ds = 0 in Case 2 (problem (3.9)),

u

and

and 12(ltl) ) 0 for all u(lú) in both cases as o is polygonal. So in both cases 1 and 2
reduction of .[2 in fact means a better approximation of the contact surface obtained
by the FBsolution u(.òf).

For problem (3.9) we control by 13 better approximation of the sliding ¿ind non-
sliding zones, a"s

Ia(N) = lr"{durl|)l+ "r(u)ur(Ir)) 
ds ) 0

(sl"rl+ \fu)u)ds = 6
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5. SoNstrtvlTY ANALYSIS

5.1. case 1: Problem (3.1). In order to efficiently apply NlP-algorithms for

solving numerically Problem (P) we need information on the gradient of 4 with

,"rp".t to the change of N. We shall use a similar technique as in [5, 8] and 
-c-ompute

thegradient of f, intermsof anodal displacement vector V €. K = {V 1RD(N) 1U 2
0, i e Ir,],where 1¡, refers to the indices of nodes lying on 12, D(N) - p¡cardIr,
and p is equal to the number of internal nodes of f W)'

The algebraic analogue of (3'6) is

(5.1) U = U(N) = u.,gä'" {t1v,w¡ = t(v,A(N)V) - (¡'(¡ú)' v)}.

Here (.,.) denotes the inner product in RD(N),

(5.2) .4(N)=l f [-ve,(¡v)'vp¡(N)o')":"]' \rlrr*rlr /;,¡=r

denotes the global stiffness matrix and

r(¡ú) = t 1,rc,(N)d,)(5.3)
TeT(N)

D(iv)

j=l

is the force vector; ç¿(N) are the courant basis functions corresponding to T(N)'

\Me emphasize the dependence of ,4 and F on .ll by writing N as an argument. By

using this notation, the criterion function of problem (P) takes the form

(5.4) ¿(N) = /(Y(N)' N)'

Let N = (Iúr ,N2,...,N¿) = (tt,t,rz,t,..',t7,dtû2,d) e Rzd,.let N¡ = (æt,i'rz,i-)

be the nod".'of 7(.ôü) which'can be relocated, i.e. all nodal coordinates formin Cf @)
with the exception of the corners of O. Let Q e R'd. By T(N +tq),ú > 0 we denote

the new triangulation of O, nodes of which are given by

(5 .5)
t\,i=ît,iltui
æ'2,¿=rz,¿*tw¿'

where Q = (ot, 'trtt . . . ,u¿l,wd). We denote by

(5.6)
N +t8

rr4

L'(N) = Lt (N)Q = ,\to"+

L
t



the directional derivative of L at N in the direction Q; analogously U', A' and F'
are directional derivatives of U,,4 and F at N in the direction Q. Let us mention
that the corresponding derivatives exist (see [8]).

From (5.4) we obtain

L, (N) = (Ut (N),,4(N)¿/(N) - r(N))
(5.7) + (y(¡r), lil'çN¡uçn) - r'(N))

= (u(¡r), la,{u{¡uçu) - F,(¡r))

as (U/(N),,4(N)U(¡/) - r(¡r)) = 0 (see [8]). The terms.4'(1/) and F'(1/) can be
calculated in several ways: either one could use the finite difference or the analytic
derivation of the local stiffness matrix and the force vector in the usual manner ([8,
i5l ).

We close this chapter with a remark. As is well known in the case of variational
inequalities, the mapping N - {/(N) is not differentiable in general. However, in the
case of the cost functional of the total potential energy it was possible to compute
the gradient of l. This was possible due to the vanishing of the term where U'(N)
appears.

5.2. Case 2: Proble¡n (3.9). Again, let N = (1/r,ff2,...,N¿) = (rr,r,rr,r,
...,l¡7,d,æ2,¿) e R2d be the nodes of 7(ff) which can be relocated, i.e. all inT(N)
with the exception of the vertices of Q and let Q = (ot,.u)r,...,a¿,u¿) € R2d. The
syrnbol T(N +tq),t > 0 has exactly the same meaning as before.

Let F and P denote the discretizalion of the body force and surface traction,
respectively, and let ,4 be the FEM-stiffness matrix corresponding to the elasticity
problem. Problem (3.18) can be written in a matrix form

(5 .8)
Find U(1ú) € 1((¡'/) such that

J(U(N),N) < J(z,N) Y z e ri(N),

where

(5.e) J(2, N) = |{t, A(N)z)+ s t u¿(N)lz¡,| - (r(¡r) + p(N), z),
j;€It

with ø¿(N) > 0 being the weights of the quadrature formula used for numerical
approximation of j. The set 1{(1/) is given by

(5.10) 1i(N) = {Z e no(¡v) I Z¡,} -a(a¿) V j¿ €.Iz},

where o¿ denotes the c1-coordinate of the node lying on 16:. Here 1,12 are two
disjoint sets, containing indices of ø1- and o2-comporents of the displacement field
("r(l/), "r(N)) at nodes on 16:.

I
I
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(5.11)

tet É(N) = J(U(N),y'í), where U(nf) is the solution of (5'8). Following [8] we

get the directional derivatives of f, at /f in the direction Q e Rzd:

-1
L' (N , Ñ) = ;(U 

(N),A'(N)u(¡'/)) - (F'(N) + P/(¡r), U(¡r))

- D *,r,,(¡r) + s ! øi(.nr)lu¡,(.ar)1.

i ¿É.iz i ¿êit

f(q,u2) =

Here ir C h, iz C /z result from l, -I2, respectively, by deleting the indices cor-

responding to the 01- and ø2-components of the displacement field (u1(N), "r(¡f))
at fixed vertices lying on F¿, and r(N) is the residual vector r(N) =,A(N)U(N) -
r(¡r) - P(/ú).

6. Nutupntcar, EXAMPLES

6.L. Case 1: Problem (3.1). We have tested the optimal grid design method
presented above.

Example 6.1. Suppose that O is the unit square and

(6.1)
sin(2nø1) 14"'(t - ø2)3x2(-2r, - l) + 2 - (1 - 2o2)(6*2 - atz + T)

- è - x2)2(r2x2 - 4) -  ,,r+ A,,Z - 41, if ,, < ;
sin(|no1)(| - rr)'lta -zox,

- |n2 sin(|rrtXl - tz)(I - ,z)21, if x2 >. I
For this / the exact solution u of the unilateral boundary value problem (3.1) is

(6.2) u(n1,n2)- I 100(+ - ")' 
sin(2nc1)(2ø3 - z'3 * L"')' if c2 ( |

I roori"1l nø1)(1 - ,ù(T - xz)a, if x2>- l.
In Figure 6.1 the solution u is shown.

As the initial triangulationT¡ auniform grid with mesh size å = | has been used,

which in the grid optimization problem (P) gave 126 degrees of freedom'

For the tolerance parameter ó in conditions (2.1) and (2.2) we used the value

6 = 0,0275. For optimization we used the E04VDF-routine of NAGlibrary (SQp-

method). The initial value of "/o was "16 = -I.1246 and the value ,Ioo¡ of the optimized

grid was Jopt = -1.4445. For Nop¡ the box constraints became active. The value

ãf th" 
"rr"rgy 

for the exact solution can be computed symbolically to be -(ffi +

^*# 
* "uffitl¡ ¡¿ -1.e4b6.--f"-fig"t"Jé.2 

and 6.3 we see the initial grid and the optimized grid together with

the contour plots of the FDsolutions.
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Fig. 6.1 The solution u of (3.1)for / given by (6.1)
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Fig. 6.2 u(/úo)
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,//,

Fig. 6.3 u(N"pt)

The minimum and maxitnum values of the solution of (3.1) for / given by (6.1)

are

umin = -#=-0.512 ,^^*= #.
The corresponding values computed by using the initial grid and the optimized grid

are
u-in(No) - -4.549' 10-1 u-u*(No) = 4'753' 10-1

u-in(Nopt) - -5.178 ' 10-1 u-.*(Nopt) = 5.263 ' 10-1.

We find that the FE-solution has been improved in this sense as well.

6.2. Case 2: Problem (S.S). Here we use simple rectangular domains as ex-

amples, but the analysis applies to any polygonal domains provided the corners

defining the domain are kept fixecl. Solving the grid relocation problem (P) one has

a non-linear minimization problem with constraints. As above, the SQP (Sequential

Quadratic Programming)-method was used (NAG routine E04VDE).

The material was assumed to be homogeneous and isotropic with Lamé's coefÊ-

cients À - l'15 'I04Nrn-2,p = 0.83 'l04Nrn-z. The body force F' is taken to be

F = (0,0) and surface tractions P are applied on the top of O, only. Boundary

nodes (except corners and nodes lying on the top of ôA) are allowed to move in one
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direction. Here we assume that not only the corners, but also the nodes on the top
of ðf) are kept fixed. In such a case P is the same for all 1/ e ,,V1.

Exar'ple 6.2. Letol = (0,4) x (0.05, t) , p ={ 1:'o'-ï-Ío'').: {.t} ..,. we
t (0, -57.5) on (2,4) x {t}

take the ó-neighbourhood of F; 1in (2.1)) to be the square lã¿-6,,î¿*6,1x[V¿-
6s,A;* ár], where ó" = 0.15667,6v = 0.07333. In Fig.6.4 we see the domain Qr with
the initial grid both before the deformation and after the deformation. In Fig.6.5
we have the FE-grid after the application of grid optimization, plotted both before
and after the deformation. The energy value of the initial grid was Jo = -4.Bb4l
and the value for the optimized grid was /opt = -4.9188.

Fig. 6.4

In Fig. 6.6 the contact stresses for the initial grid and the optimized grid are shown

Exarnple 6.3. Inthe last example we consicler a case with fr.iction, We take O2 =
f 1o,o¡ on (0,2) x {t}(0,a) x (0, 1), P = { )-' ::.'.-;;',';: .. ... anrl e = I0. Ser á" = 0.0888J,
| (-Sz.f , -s7.5) on (2,4) * { l} 

"" v ^v'

ðy = 0.04166. Figs. 6.7 ancl 6.8 show the initial gricl ancl the optinrizecl gricl fo¡
Oz l¡oth in the undeforrned and deformed state. Fig.6.9 shows the correspouclirrg
cotrtact stresses ancl Fig.6.10 shows the correspouclirrg taugential stresses. I¡or e2
the errergy value of the initial gricl was /o = -0.60gg anct the value for the optirnizecl
grid was Jopt = -0.621l.
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