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ABSTRACT 
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Reduction reactions with heterogeneous metals are one of the most important
catalytic methods in synthetic organic chemistry. The reduction products are widely
used in academic, pharmaceutical, cosmetics, agro-, and fine-chemical industries. A
significant challenge for these reactions is to control chemo-, regio-, and stereoselectivity.
Although heterogeneously catalyzed reductions are operationally simple, the origins of
selectivity are largely unknown, due the lack of understanding of reaction mechanisms
on the metal nanoparticles/colloids.

The first chapter of this thesis presents a short introduction to the heterogeneous
metal catalysis and a brief discussion about the past and future research of this field. The
chapter includes a preview of the fundamental mechanisms and different selectivities
obtained with heterogeneous catalysis. The chapter also reviews different experimental
and theoretical methods of studying the mechanism of the heterogeneous catalytic
reactions.

The second chapter outlines different methods of controlling chemo-, regio-, and
stereoselectivity in reduction reactions with heterogeneous transition metal catalysts.
The focus of the review is on how the geometry of substrate can affect the reduction
reaction in chemo-, regio-, and stereoselective manners. The discussion is divided into
two parts: (1) a basic understanding of the factors that affect the substrates’ adsorption
geometry, and (2) organic modifiers that interact with the substrate by stabilizing
transition states and/or reactive conformations. In each case, selective examples are
given; however, the main focus is to understand the underlying reaction mechanisms
and origin of the selectivity.

The third chapter consists of research performed by the author towards the
understanding of the mechanism of stereo- and chemoselective 1,4-hydrosilylation of
enals and enones with heterogeneous palladium catalysts, and further development of
the hydrosilylation protocol to a robust and applicable method for industrial use. The
chapter also includes studies on selectivity and byproduct formation: (1) first-principle
calculations for the mechanism of hydrogenation of acrolein on Pd and Pt, and (2) 3,4-
hydroperoxidation of α-substituted enals with heterogeneous palladium catalyst. The
research has been performed by the author by combining experimental and theoretical
(i.e. DFT) methods. All results are covered more detail in articles I–IV.

Keywords: hydrosilylation, hydrogenation, hydroperoxidation, reaction
mechanism, DFT, heterogeneous, palladium
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ex situ Latin for “outside; off site; or away from the natural location” 
et al. Et alii (Latin for “and others”) 
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FS final state 
FT Fourier transform 
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GGA generalized gradient approximation 
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i- iso 
I intermediate 
i.e. Id est (Latin for “that is”) 
in situ Latin for “in position; on site; on the premises” 
IR infrared 
IS initial state 
IUPAC International Union of Pure and Applied Chemistry 
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where the ligands appear in a clockwise order according to Cahn–
Ingold–Prelog priority rule 

re a stereoheterotopic face of a trigonal atom on which the ligands 
appear in a clockwise order according to Cahn–Ingold–Prelog 
priority 

ref reference 
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S Sinister (Lati for “left”), used in the nomenclature of enantiomers. 

The designations of absolute configuration of stereogenic centers on 
which the ligands appear in a counterclockwise order according to 
Cahn–Ingold–Prelog priority rule 

SAM self-assembled monolayer 
s-cis used in the representation of arrangement of two conjugated double 

bonds about the intervening single bond, s-cis if the double bonds 
are synperiplanar 
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Prelog priority 

SI Supporting Information 
s-trans used in the representation of arrangement of two conjugated double 

bonds about the intervening single bond, s-trans if the double bonds 
are antiperiplanar 

syn used in the representation of a stereochemical relationship. Syn 
means “on the same sides” of a reference plane 

t time 
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plane 
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1 INTRODUCTION 

1.1 Catalysis 

In the early nineteenth century, a Swedish chemist, Berzelius, defined a 

term, “catalyst,” to identify a compound that increases the rate of a chemical 

reaction without itself being consumed.1  Consequently, the catalyst is both a 

reactant and product of the reaction. In a thermodynamic sense, the catalyst 

increases the rate of the reaction by affecting the kinetics of the transformation 

(Ea), not by modifying the overall standard Gibbs energy change (ΔH) in the 

reaction (Figure 1).2 

 

Figure 1. A hypothetical exothermic chemical reaction. 
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The process in which catalysts are used is called catalysis. Catalysis has 

been an essential part of most industrial processes since the industrial 

revolution,3 including the manufacture of petro-, agro-, and fine chemicals, and 

the production of pharmaceuticals, cosmetics, foods, and polymers.4 Catalysis is 

also in the center of the development of the cleaner energy and bio-based 

chemicals and plays a key role in the breakdown of environmental pollutants and 

reducing the amount of waste produced in industrial processes.4, 5 , 6  At the 

moment, over 80 % of chemical industrial processes use catalysis. The economic 

contribution of catalysis is impressive, creating global sales of 1500 billion dollars 

a year. Estimates are that catalysis contributes directly or indirectly to over 35 % 

of the world’s GDP.4,7 

From the early stages of catalysis research, the main focus has been on 

improving the activity of the catalyst.8 For example, altering the size and stability 

of metal particles in the heterogeneous catalyst also affects catalytic activity.8 

Increasing environmental concerns require industrial processes to consume less 

material and produce less waste. These concerns have shifted the focus of 

catalysis research from improving the activity to improving selectivity as well. 

Catalytic reactions that are highly selective minimize the use of reactants and 

prevent the formation of byproducts, i.e., waste. Further, the separation of 

byproducts from the desired products might need expensive and more waste-

producing clean-up procedures. Altogether, more selective processes should 

ultimately lead to “greener” and in many cases cheaper chemistry than before.8 

1.2 Heterogeneous metal catalysis 

Catalysis can be classified into two subdivisions: heterogeneous catalysis 

and homogeneous catalysis. Homogeneous catalysis includes soluble catalysts 

such as enzymes (biocatalysts), organocatalysts, and homogeneous metal 

catalysts. The common factor in homogeneous catalysis is that only one phase is 

involved during the reaction. In contrast, heterogeneous catalysis occurs at or 
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near the interface of two phases, most familiarly solid versus liquid or gas, but 

also for example liquid versus gas or oil versus water. 

Most of the catalysts used in industrial processes are heterogeneous. The 

easy separation and recyclability together with low cost makes the heterogeneous 

catalysts desirable over homogeneous catalysts.4,8 The most typical 

heterogeneous catalyst consists of finely dispersed metal particles adsorbed onto 

the solid support, such as carbon, alumina, or silica. 9 , 10 , 11  Other types of 

heterogeneous catalysts are, for instance, crystalline solids such as zeolites;12 the 

so-called heterogenized catalysts, in which the homogeneous catalysts are 

immobilized onto the solid support; 13  and the catalysts in which the 

heterogeneous phase serves as a reservoir for the true homogeneous catalysts, 

i.e., leached metal atoms.14,15 

Traditional heterogeneous metal catalysts typically consist of finely 

dispersed metal particles. However, only a small fraction of the metal atoms, i.e., 

surface atoms, in the metal particles are active for catalysis. These surface atoms 

can exist in a variety of different coordination on the metal particle (Figure 2). 

However, only a small fraction of the coordination sites might be active for the 

desired transformation, while all the others might be active for the undesired 

ones. In contrast, homogeneous catalysts usually contain only a single active site, 

which might explain why they are generally more selective than the 

heterogeneous catalysts. 

 

Figure 2. Examples of possible coordination sites on 111-surface. On left, a top view, and on 
right, a side view of the lattice: a) top-site, b) bridge-site, c) hollow-site, d) step-site, e) edge-site, 

and f) vacancy-site. 

The recent progress in last few decades in spectroscopic and computational 

methods has advanced the rational design of catalysts to produce single-site 
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heterogeneous catalysts.16 To take full advantage of the well-defined surfaces, it 

is essential to identify the active sites of the catalyst. The identification of the 

active sites and further development of the catalytic process requires a molecular-

level understanding of the reaction mechanism. 

1.3 Fundamental mechanisms in heterogeneous metal catalysis 

As discussed in the previous section, the design of new catalysts with high 

selectivity requires a better understanding of the underlying mechanism behind 

catalytic reactions. Commonly, the first step in every mechanism on the metal 

surfaces is the activation of the reactant molecule by adsorption. The two types 

of adsorptions on the surface are called chemisorption and physisorption. In 

chemisorption, the molecule forms a covalent bond with the surface atom or 

atoms, and in physisorption the molecules interact with the surface through the 

van der Waals forces.  

In the early years of catalysis, several propositions for the fundamental 

reaction mechanisms on the metal surface were discussed.17 Today, the most 

common and well-established fundamental mechanisms are the Langmuir-

Hinshelwood and Eley-Rideal mechanisms (Scheme 1).18 
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Scheme 1. Fundamental mechanisms on the metal surface: a) Langmuir-Hinshelwood 

mechanism and b) Eley-Rideal mechanism. 

In the Langmuir-Hinshelwood mechanism, each reactant is first adsorbed 

onto the surface, after which they diffuse towards each other. Contact between 

the reactants leads to the formation of a new bond or bonds and yields the 

product, which ultimately desorbs from the surface (Scheme 1a). In contrast, in 

the Eley-Rideal mechanism, only one of the reactants is initially adsorbed onto 

the surface. The other reactant, which is still in the solution or gas phase, interacts 

with the adsorbed reactant, forming the product that desorbs from the surface 

(Scheme 1b). 

In addition to the fundamental mechanisms presented in Scheme 1, more 

detailed mechanisms have also been proposed for heterogeneous metal catalysis. 

As an example, the reduction of unsaturated compounds on the metal surfaces 

proceeds through the well-established Horiuti-Polanyi mechanism (Scheme 2).19 

With most transition metals, the syn-addition product is mainly obtained from 

the reduction of di-σ(CC) or π(CC) adsorbed compound (the latter is not shown 

in Scheme 2).20 However, with many metals, such as palladium, the anti-addition 

products are often obtained to a large extent. The isomerization leading to anti-

addition is discussed in more detailed in Section 2.1.2.1. 



19 
 

 

Scheme 2. Horiuti-Polanyi mechanism for the hydrogenation of alkenes on transition metal 
surfaces: an example of two possible mechanistic pathways leading to syn- and anti-products. 

1.4 Selectivity of the catalytic reaction 

Catalysts alter only the kinetics of the chemical reaction, not the standard 

Gibbs energy change.2 In other words, the catalyst enables the reaction to proceed 

via new kinetic pathway to the desired product (i.e. by lowering the amount of 

needed external energy, Ea; see Figure 1). The possibility to introduce new kinetic 

pathways to the reaction via catalyst also leads to the possibility to modify the 

selectivity of the reaction. 

The term “selectivity” refers to the ratio of products obtained from the 

reactants.2 In catalysis, selectivity is a broad concept that includes a wide range 

of selectivities, such as chemoselectivity and different kinds of stereoselectivities 

(Scheme 3).  
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Scheme 3. a) Example of chemoselectivity and b) examples of different stereoselectivities. 

The energy differences that distinguish the selectivity of the reaction are 

generally low compared with the magnitude of ΔEa-value induced by the catalyst 

in Figure 1. For example, an energy difference of 6 kJ/mol between two pathways 

leads to a roughly 1:10 difference in product ratio at room temperature.21  In 

addition, the methods that have been traditionally used to control the activity, 

such as pressure, temperature, and the size of the metal particles, usually have 

similar effects on the different pathways that determine the selectivity of the 

reaction.4 As such, alternative (and more specific) methods are required to 

control the selectivity of the catalytic reaction. This all leads back to 

understanding the mechanism of the reaction at the molecular level. If we know 

all the elementary steps leading to the desired and undesired products, we 

should be able to rationally alter the reaction conditions to completely favor the 

desired product, i.e., the selectivity of the reaction. 



21 
 

1.5 How to study mechanisms of heterogeneous catalytic 
reactions 

The energy difference that determines the selectivity of a reaction is 

generally very small. To be able to modify the reaction to favor a certain kinetic 

pathway, it is important to know the exact mechanism of the reaction at the 

molecular level. However, finding a mechanism to the heterogeneously 

catalyzed reaction can be challenging. The heterogeneous catalysis occurs at the 

solid phase on a relatively large metal particle (compared with the size of the 

reactant). This makes it very difficult to characterize and distinguish the reaction 

intermediates during the catalytic reaction. 

Mechanistic studies of surface reactions are most often made by using ex 

situ investigations, such as labeling experiments.11 However, as indicated in 

Section 1.2, the heterogeneous metal catalysts contain a broad distribution of 

different coordination sites that interact differently with the reactants.8 This, 

together with the lack of knowledge of the intermediates of the reaction, makes 

the determination of the precise reaction mechanism for the surface reaction 

problematic. The surface reaction is like a black box into which the reactants are 

put and out of which the products come, but all the steps in between are 

speculative. Viewed this way, the development of selective heterogeneous metal 

catalysts is more like trial and error rather than a rational design. 

In recent decades, the development of different spectroscopic methods18,22 

has made possible the in situ investigation of surface reactions. These advances, 

combined with the progress of computational chemistry (especially DFT) have 

enabled researchers to distinguish between the different intermediates and 

transition states of the surface reaction. This allows for the possibility to 

determine the reaction mechanism, which ultimately could lead to rational 

design of the catalytic process towards 100 % selectivity.8  
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2 SELECTIVE REDUCTION REACTIONS WITH 
HETEROGENEOUS TRANSITION METAL 
CATALYSTS 

Reduction reactions are arguably one of the most important catalytic 

methods in synthetic organic chemistry, both in academia and 

industry.9,23,24,25,26,27,28 The scope of functional groups that can be reduced with 

heterogeneous transition metals is wide, including functionalities, such as 

alkynes, alkenes, carbonyls, nitro groups.11 In addition, reduction reactions can 

be used to synthesize complex molecules in stereo-, enantio-, and 

diastereoselective manners. 29  Stereochemically complex molecules are highly 

valuable in academic, fine-chemical, pharmaceutical, and cosmetic industries.4 

However, due the large scope of reducible functionalities, a significant problem 

is the control of selectivity in reduction processes. This is especially important in 

industrial settings, where even the traces of byproducts need to be analyzed and 

characterized. 

The selective reduction reactions with heterogeneous transition metals have 

been covered in numerous books and reviews. 18,22,30,31,32,33,34,35,36,37 The traditional 

strategies used to control the selectivity are, for instance, modifying the size and 

shape of the metal particles, using inorganic modifiers or different supporters, or 

alloying the metal particles with other metals.30,31,32,33,34,35,36,37 The modification of 

the size and shape, i.e., the morphology of the metal particle, that commonly 

affects the number of a different active sites in the catalyst. In turn, inorganic 

modifiers and supporters induce Lewis acidic or basic sites to the catalyst and 

alloying affects the redox potential of the catalyst. 30,31,32,33,34,35,36,37 

Selectivity can also be controlled by more sophisticated methods, such as 

those commonly used in homogeneous catalysis, e.g. ligands, auxiliaries, and 

cocatalysts. 38  These additives alter either the steric environment around the 

substrate or/and by activating the reducing functional group. In heterogeneous 

catalysis, a large number of these methods already exist in a subclass of organic 
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modifiers.36 However, because a new trend of single-site catalysts is arising, a 

more rational approach is possible in a development of selective heterogeneous 

catalyst systems.16 This, however, requires a much deeper understanding of the 

reaction mechanisms on the metal particle, and one of the first steps is to find out 

how closely the mechanisms of heterogeneous catalysts parallel those established 

within homogeneous catalysis.4,39 

2.1 Adsorption geometry as a key to selectivity  

The adsorption geometry of any substrate on the metal surface depends 

strongly on several parameters, such as the coordination of the active sites, 

coverage, hydrogen pressure, solvent, and temperature.11 Most often, the initial 

conformation in which the substrate adsorbs onto the metal particle also 

determines the reaction selectivity.30,31,32,33,34,35,36,37 However, in some cases, the 

barriers between alternative adsorption geometries or binding modes can be 

considerably lower than the activation barriers of the reduction steps.11 This leads 

to possibility that the initial adsorption geometry or the most stable adsorption 

geometry might not always lie on the major reaction pathways.20 Consequently, 

all possible conformations, adsorption geometries, and binding modes for the 

reactant, intermediates, and product need to be considered when trying to 

determine all the kinetically relevant pathways. This is especially important 

when one attempts to understand the product distribution of the selective 

reactions. 

In each of the following subsections, some selected examples of selective 

reductions are given. The aim is to find some generality in how the molecules 

interact with the surface depending on their structures. For example, although 

Section 2.1.2 focuses on the reduction of alkenes, it should be noted that identical 

adsorption structures and intermediates can also be found in the reduction of 

other functionalities, such as carbonyls, amines, and nitro groups.11 The factors 

that affect selectivity, such as steric adsorbate-surface interactions, dissociative 
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and associative isomerization mechanisms, and influence of the chiral centers are, 

at least to some extent, universal for reducing any functional group.11 

2.1.1 Chemoselective reductions 

The factors that affect the chemoselectivity in reduction reactions with 

heterogeneous transition metal catalysis mainly depend on the functional groups 

that are presented in the molecule. For example, if the activation energy to reduce 

a particular functionality is considerably lower than the energy required to 

reduce other functionalities (e.g. C=C bond versus phenyl group), most often the 

optimization of reaction time, hydrogen pressure, temperature, or catalyst 

loading is sufficient to obtain high selectivities. However, if the activation 

energies are close to each other, both functional groups might be reduced during 

the process. In particular, the differentiation of the same (e.g. C=C) or similar (e.g. 

C=C and C≡C) functionalities is a difficult task.  

Some molecules that contain the same or similar functionalities can be 

reduced with high chemoselectivity if one of the functionalities is sterically 

crowded.34 The steric crowding lowers the adsorption energy of the particular 

functionality and in most cases this leads to a lower reduction rate by the Sabatier 

principle, which connects the binding energy to the reaction rate.8 The 

explanation for the lower adsorption energy is that, in order to form the geometry 

for an optimal metal-substrate bond, the repulsive adsorbate-surface interaction 

leads to the deformation of the molecule and surface. These deformations are 

energetically costly. The energetic cost directly lowers the adsorption energy of 

the particular functionality, as illustrated in Figure 3 for DFT calculated 

adsorption energies for crotonaldehyde (8) and prenal (9) on Pt(111) surface.40 
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Figure 3. The lower adsorption energy of prenal (9) compared with crotonaldehyde (8) is 
mainly due to the repulsive adsorbate-surface interaction of methyl substituents. This leads to 
the higher deformation of the molecule in order to form the geometry for optimal bonding.40  

The effect of the steric crowding on the chemoselectivity is illustrated in 

selected examples in Scheme 4. The selectivity toward reducing only the 4-nitro 

group of the 1-substituted-2,4-dinitrobenzene 10 increases hand in hand with the 

bulkiness of the substituent near the 2-nitrogroup (Scheme 4a).41 The reason for 

the increased selectivity is that the molecule can easily adapt an adsorption 

geometry in which the interaction between the 4-nitro group and the catalyst 

surface is not disturbed by the substituent.42 However, the interaction between 

the 2-nitro group and the catalyst surface is inevitably affected by the size of the 

substituent at the 1-position. This leads to a lower reduction rate of the 2-nitro 

group simultaneously as the size of the substituent increases. 

The steric crowding also affects the chemoselectivity in hydrogenation of 

α,β-unsaturated aldehydes (Scheme 4b). 43  Although the origins of the 

chemoselectivity are still under debate,44,45,46 it has been found that the reduction 

rate of the C=C double bond is lowered by the steric crowding around it. With 

increased steric crowding of the C=C bond, the chemoselectivity changes 

towards C=O double bond reduction (Scheme 4b).43 
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Scheme 4. a) The bulkiness of the R-group affects the chemoselectivity of the reduction reaction. 
b) The steric crowding reduces the rate of C=C bond reduction, which induces the 

chemoselectivity of the reaction. 

2.1.2 Stereoselective reductions 

The stereoselectivities of reduction reactions are highly dependent on the 

reaction mechanisms. As discussed in Section 1.3, the hydrogenation on the metal 

particles usually occurs by syn-addition. However, in some cases anti-addition is 

observed, which results from the isomerization during or after the reaction.  

Typically, a mixture of E/Z isomers are observed in reductions, in which a 

C=C double bond is left in the product. Such reactions include the reductions of 

alkynes and semireductions of conjugated double bonds, allenes, and cumulated 

trienes and polyenes. Diastereoselectivity, in turn, becomes possible with 

substrates containing chiral centers. The chiral center present in the substrate 

influences the direction of the hydrogen addition. The influence is much more 

apparent in the case of rigid cyclic compounds than acyclic ones. Most of the 

examples of diastereoselective reductions are hydrogenations of C=C, C≡C, C=O, 

or C=N bonds. In these reductions, the structural/conformational factors 

affecting the selectivity are very similar, such as E/Z isomerization and double 

bond migration.11 
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2.1.2.1 Isomerization mechanisms 

To understand the stereoselectivities of reduction reactions with 

heterogeneous transition metal catalysts presented in the literature, it is 

important to distinguish among different mechanistic pathways leading to the 

different product isomers. In general, the reduction reactions on metal surfaces 

proceed via syn-addition (see Scheme 2 in Section 1.3). However, depending on 

the reaction conditions, in most cases an anti-addition product is obtained as a 

result of isomerization. Isomerization mechanisms include dehydrogenations, 

rehydrogenations, and σ-bond rotations, which enable the substrate to adapt 

thermodynamically the most stable geometry at the TOF-determining 

intermediate (TDI).47 In other words, if any dehydrogenation or σ-bond rotation 

has a reaction barrier smaller than or equal to either of the H-additions of the 

hydrogenation sequence, by the Curtin-Hammett principle,2 some extent of 

isomerization will occur. Generally, the isomerization ratio varies with different 

metals in the sequence Pd>>Pt,Ru,Rh>Os>Ir (Scheme 5a).11,48 
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Scheme 5. a) Reduction of 1,2-dimethylcyclohexe (17) with different heterogeneous transition 
metal catalysts. b) The semihydrogenated intermediate I2 resembles the gas phase product. 

Consequently, the thermodynamic intermediate leads to thermodynamic product trans-18. c) 
Reduction of 1,3-dimethylcyclohexe (19) with heterogeneous palladium and platinum catalysts: 

Cis-20 is both a thermodynamic and kinetic product.  

With platinum, ruthenium, rhodium, osmium, and iridium catalysts, the 

adsorption of the starting material is the TDI and the reduction produces a kinetic 

product cis-18 by syn-addition (Schemes 5a and 5b). However, in the case of 

palladium, the semihydrogenated intermediate is the TDI, and the 

thermodynamically more stable intermediate I2 builds up on the surface by 
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isomerization. The intermediate I2 binds to surface only from the one carbon 

atom, and consequently, this geometry resembles the thermodynamically most 

stable product trans-18 in solution or gas phase. As a result, in the case of 

reduction of 1,2-dimethylcyclohexene (17) with palladium, a trans isomer is 

obtained as the major product by anti-addition (Scheme 5b).37 However, in the 

reduction of 1,3-dimethylcyclohexene (19), with both palladium and platinum 

catalysts, the cis product (cis-20) is obtained as the major isomer, because it is 

both a kinetic and thermodynamic product (Scheme 5c, see also Section 2.1.2.3.).49 

The isomerization discussed above can take place via many different 

mechanisms, or it might be a combination of several of them. One type of 

isomerization is migratory isomerization, i.e., double bond migration.11 For 

example, if the functionality that binds to the metal catalyst, such as C=C double 

bond, is sterically very hindered, it is possible that one of the allylic C-H bonds 

contacting the metal surface is cleaved, leading to dissociative adsorption 

(intermediate I4, Scheme 6a). 50  This leads to double bond migration, which 

enables the molecule to adopt an energetically more stable and structurally 

different adsorption geometry I5 with less steric adsorbate-surface interaction 

than in I3 (see Figure 3 in Section 2.1.1.).11 Hydrogenation of the structurally 

different molecule, even by syn-addition, might lead to a different isomer product 

than the hydrogenation of the starting molecule, as presented in Scheme 7. This 

eventually appears as “anti-addition” product and results in lower 

stereoselectivity of the reaction. In addition, the migratory isomerization can also 

occur associatively via semihydrogenated intermediate I6 (Scheme 6b).11 
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Scheme 6. a) The dissociative migratory isomerization of alkenes and b) the associative 

migratory isomerization of alkenes. 

 
Scheme 7. Dissociative migratory isomerization during the reduction of 1,2-methylcyclohexene 

(17) with a nickel catalyst. The cis:trans ratio of the product 18 reflects isomer distribution 
obtained in the reduction of mixture of molecules 23, 24, and 25. 

Alkenes can also undergo dissociative and associative E/Z isomerization 

(Scheme 8). For example, at the reductive conditions the acyclic alkenes can 

undergo an associative isomerization with σ-bond rotation at the half 

hydrogenated intermediate I14 (Scheme 8b).11 This leads to change in the E:Z 

ratio of the starting material and eventually to erosion in stereoselectivity of the 

reduction reaction. As an example, this mechanism is believed to be the main 

reason for the appearance of (E)-isomer in the semireduction of alkynes to 

alkenes with the heterogeneous metal catalyst (see Section 2.1.2.2).11 
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Scheme 8. a) The dissociative E/Z isomerization of alkenes and b) the associative E/Z 

isomerization of alkenes. 

In addition to the mechanism illustrated in Schemes 6 and 8, it is possible 

that the isomerization occurs via “roll-over” mechanism.51,52,53 This mechanism is 

especially relevant if the molecule contains oxygen. The “roll-over” mechanism 

is illustrated in Scheme 9 with the reduction of two different oxygen-containing 

compounds 30 and 32. The hydrogenation of 2-methylcyclohexanone (30) and 

the hydrogenolysis of 1,2-epoxy-1-methylcyclohexan (32) 54  share a similar 

intermediate I17 along one of the possible mechanistic pathways (Scheme 9a). In 

both reactions, this intermediate I17 (Scheme 9b) can “roll over,” presumably via 

formation of alkoxide ion or alcohol (by protonation). This leads to different 

adsorption geometry I18 and, eventually after the H-addition, to a different 

product isomer. 
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Scheme 9. a) The hydrogenation of 2-methylcyclohexanone (30) and the hydrogenolysis of 1,2-
epoxy-1-methylcyclohexane (32) share a similar intermediate I17 along the possible reaction 

pathway. b) The intermediate I17 can “roll over,” leading to intermediate I18, and eventually to 

the opposite isomer. See the main text for more detailed discussion. 

2.1.2.2 Stereoselective reductions of alkynes, dienes, and cumulated allens 
and polyenes 

E/Z-isomeric products are obtained in selective reductions in which the 

product contains a C=C double bond. The most well-known example is the 

reduction of the C≡C triple bond to C=C double bond (Scheme 10). The (Z)-

isomer is the main product, because the syn-addition occurs predominately on 

the metal surfaces. However, the formation of the anti-addition product, i.e., (E)-

isomer, is usually observed as a minor product, as a result of E/Z-isomerization 

(Scheme 10).11 

 
Scheme 10. The stereoselective hydrogenation of alkynes results mainly in (Z)-alkenes and 

secondarily (E)-alkenes. 

In the semihydrogenation of conjugated double bonds, such as 1,3-

butadiene (34), the main product is 1-butene by a 1,2-addition.55 However, the 

formation of the side-product 2-butene (35) by 1,4-addition is theoretically 

interesting, because the newly formed monoene exists mainly as a (E)-isomer and 

only traces of (Z)-isomer are detected (Scheme 11).55 
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Scheme 11. Stereoselective formation of the side-product in the semihydrogenation of 1,3-

butadiene (34). 

1,3-butadiene (34) can exist in two rotamers s-trans and s-cis, and the syn-

addition to these rotamers yields (E)- and (Z)-isomers, respectively. The 

adsorption energy difference between two rotamers is too small to explain the 

observed isomer distribution of the product.55 In addition, the s-trans to s-cis 

rotation on the catalyst surface would require the desorption of either C=C 

double bond. However, in the experiments, the E:Z ratio of the 2-butene (35) was 

found to mimic the gas-phase ratio of two rotamers of the 1,3-butadiene (34).55 

This leads to the conclusion that the stereoselectivity of the reaction is determined 

by the stability of the gas-phase conformations of the starting material 34. Similar 

reasoning can also explain the stereoselective 1,4-hydrosilylation of enals and 

enones on a palladium surface (see Article IV). 

Allenes and cumulated trienes are adsorbed on the metal surface only via 

one of the C=C double bonds as a result of the π-orbital geometry (Scheme 12a).55 

The steric hindrance around the double bonds affects the binding energy, as 

discussed in Figure 3 in Section 2.1.1. Primarily, the allenes and cumulated trienes 

are adsorbed through the least hindered double bond and from the least hindered 
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facet of it. This selection explains why 1,2-hydrogenation of 3-substituted allenes, 

such as 36, mainly produces (Z)-37 (Scheme 12b).56 Moreover, the cumulated 

trienes, such as 38, are mainly hydrogenated to produce (Z,Z)-39 (Scheme 12b).57 

Semihydrogenation of other cumulated polyenes proceeds analogously to the 

cumulated triene hydrogenation.58 

 
Scheme 12. a) The geometry of the π-orbitals and the steric hindrance affects the adsorption 

geometry. b) Stereoselective semihydrogenation of allene 36 and cumulated triene 38. 

2.1.2.3 Diastereoselective reduction of disubstituted cyclohexenes 

Most of the diastereoselective reactions on metal surfaces are C=C, C=O, or 

C=N double bond reductions.11 High diastereoselectivities can be obtained if 

both of the prochiral centers are presented in the reducing functionality (see 

Scheme 5a in Section 2.1.2.1). Moreover, if the substrates already have chiral 

centers in the structures, it can influence the direction from which the hydrogen 

addition occurs to the reducing double bond. The closer the chiral center is to the 
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reaction center, the more influence it will have on the selectivity. The influence is 

much more apparent in the case of rigid cyclic compounds than with acyclic ones. 

Consequently, most of the high diastereoselective reductions with heterogeneous 

transition metal catalysts are obtained with cyclic compounds, such as 

cyclohexenes.11 Herein, we present a selected example of how the position of the 

chiral center and the size of the substituent affects the diasteroselectivity. 

Cyclohexene (40) can adsorb on the metal surface in various conformations 

(Figure 4).59,60,61 Although the half-chair conformation is the most stable in the 

solution and gas phases, experimental investigations59 and DFT calculations61 

suggest that, for example, on the Pt(111) surface, the di-σ bonded boat-up (Figure 

4c) conformation is 12 kJ/mol more stable than the second most stable geometry 

chair di-σ (Figure 4a). This has been rationalized by the steric adsorbate-surface 

interactions (see Figure 3 in Section 2.1.1). In the boat conformation, the bulkiest 

groups next to the C=C double bond (i.e. methylenes) are farthest away from the 

surface, and the molecule and surface are least deformed. In other words, the 

stabilizing energy gained from the less deformed molecule and surface 

overcomes the energy difference of chair and boat conformations. 
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 Figure 4. Different adsorption modes and calculated adsorption energies for cyclohexene (40) 

on a Pt(1 1 1) surface: a) chair di-σ, Eads = -69.2 kJ/mol, b) boat di-σ down, Eads = -63.8 kJ/mol, c) 
boat di-σ up, Eads = -81.1 kJ/mol, d) trans-di-σ, Eads = -68.0 kJ/mol, e) π A, Eads = -31.9 kJ/mol, f) 
π B, Eads = -43.4 kJ/mol. Adapted with permission from Saeys, M.; Reyniers, M.-F.; Neurock, M.; 

Marin, G. B. Surf. Sci. 2006, 600, 3121–3134. DOI: 10.1016/j.susc.2006.05.059, Copyright © 2006 
Elsevier B.V. All rights reserved. 

With transition metals, such as platinum, that have a low isomerization rate 

(see Section 2.1.2.1), the observed diastereoselectivities of the reduction of 

substituted cyclohexenes can be rationalized with the most stable adsorption 

geometry. Generally, the substituted cyclohexenes can adsorb onto the metal 

surface, as boat-up conformation, from two different faces of the C=C double 

bond (Scheme 13).62 The substituents R3 and R6 can adapt either a “bowsprit” or 

a “mast” position, and the substituents R4 and R5 can adapt either an endo or an 

exo position in the boat-up conformation. 
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Scheme 13. Two possible adsorption geometries of substituted cyclohexenes as a boat-up 

conformation. 

The substituents R3 and R6 in Scheme 13 prefer to adapt the “bowsprit” 

position, in which it faces outward from the molecule itself and is tilted away 

from the surface. In the “mast” position, the substituent would experience steric 

hindrance from the other “mast” position and from the metal surface (the 

interaction with the surface can be envisioned better from Figure 4c). In general, 

larger substituents in the R3 or R6 positionw lead to better diastereoselectivities 

(Schemes 14a–c).62,63  

The R4 and R6 have only minor influence on the stereoselectivity, because 

the substituent can rather easily (i.e., without a large difference in steric 

hindrance) adopt either an exo or endo position (Schemes 14d and 14e).62 More of 

trans isomer is observed with the 2,4-disubstituted 49 than with 1,4-disubstituted 

cyclohexene 47. The steric interaction of the 4-methyl substituent in the endo 

position with the 2-methyl (Scheme 14e) substituent is higher than with the 1-

methyl substituent (Scheme 14d). Changing the methyl substituent to t-butyl in 

the R4 position drives the selectivity further to the trans product, but with only 

moderate diastereoselectivity (Scheme 14f).62  
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Scheme 14. Hydrogenation of several disubstituted cyclohexenes on Pt-catalyst, and adsorption 
geometry-based rationalization for the observed diastereoselectivity. 

  
The above analysis is not universal for each substituted cyclohexene, and 

with every molecule all of the conformation should be considered when one tries 

to understand the observed selectivities. For example, in the case of 2,3-di-t-

butylcyclohexene (53), a boat-down adsorption geometry (Figure 4b) explains the 

observed diastereoselectivity of the reduction reaction (Scheme 15).64 In the boat-



39 
 
up adsorption geometry (Figure 4c), the t-butyl group at the “bowsprit” position 

would experience a high torsional angle strain with the R2-t-butyl. Moreover, at 

the “mast” position, the bulky t-butyl would experience high steric interactions 

with the surface. Consequently, the most stable adsorption geometry is boat 

down, in which the methylene-group of the cyclohexene skeleton is at the “mast” 

position, and the t-butyl group is tilting away from the molecule at “bowsprit” 

position (I34 in Scheme 15).64 

 
Scheme 15. Hydrogenation of the 2,3-di-t-butylcycloxene (53), and the adsorption geometry-
based rationalization for the observed diastereoselectivity. The adsorption geometry I34 that 

explains the obtained diastereoselectivity is highlighted.  

In addition to the above exception, some functional groups, such as 

hydroxyl, ether, amine groups, and carboxylic acids, can interact with the surface 

and assist the substrate to a certain conformation.11 This is especially significant 

with Ni catalyst, which has a strong affinity for oxygen and nitrogen.65  The 

anchoring effect of the hydroxyl and amine group on the diastereoselectivity is 

illustrated in Scheme 16.49,65,66 It should be noted that nickel catalysts also readily 

promote the isomerization of the substrate, which affects the isomer distribution 

presented in Scheme 16a.11 
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Scheme 16. Hydrogenation of the 1,3-disubstituted cyclohexenes with the nickel catalyst, and 
the adsorption geometry-based rationalization for the observed diastereoselectivity.  

As mentioned at the beginning of the section, the structural/conformational 

factors affecting the selectivity are very similar to the reduction of C=C and C=O 

double bonds. A similar adsorption structures, as in the reduction of the C=C 

double bond, can also be found along the reaction pathway of reduction of 

substituted cyclohexanones (Scheme 17).67  

 
Scheme 17. The simplified reaction mechanism of the hydrogenation of the 4-cyclohexanone 

(61) in basic and acidic mediums. The medium affects the adsorption geometry of the molecule 
and the diastereoselectivity of the reaction. 
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2.2 Organic modifiers that interact with the substrate 

In this chapter, we discuss only the organic modifiers that interact with the 

substrates and assist them to certain conformations/orientations on the surface 

to enable selective reduction. Most of the published data, mainly patents, contain 

organic modifiers that act as promoters, poisons, or traps for the desired 

product.36 Promoters are modifiers that increase the activity of the catalyst, and 

poisons are modifiers that decrease the activity, both by changing the catalyst 

redox potential.68 In addition, poisons may be used to block the undesired sites 

of the catalyst. A classic example of such a poison is the addition of quinoline 

during the hydrogenation of alkynes to alkenes with Lindlar catalyst.69 Quinoline 

acts as an electron donor to the metal particle, which inhibits the alkene 

interaction. Additionally, it also inhibits the oligomerization reaction by 

competing with alkyne for the adsorption sites. The large size of the quinolone 

leaves isolated small ensembles on the metal surface, in which only a single 

alkyne can adsorb and further react.69 An example of using organic modifiers as 

a trap is adding acetic anhydride to the reaction mixture in the reduction of 

nitriles. The acetic anhydride trap the primary amines as an amide and prevent 

the further reactions to secondary amine.70 

The organic modifiers discussed herein are the ones that interact with the 

substrate by weak interactions, by inducing steric hindrance, or by covalently 

bonding to the substrate. These interactions assist the substrates to certain 

conformations/orientations and enable either chemo- or stereoselective 

reductions on the transition metal particle. The most studied class of this type of 

organic modifiers are cinchona alkaloids and their derivatives, 71,72,73,74,75,76,77, 

78,79,80,81 and the latest are self-assembled monolayers (SAMs).82 

2.2.1 Cinchona alkaloids and their derivatives 

An intensively studied class of organic modifiers that interact with the 

reactants in heterogeneous catalysis are cinchona alkaloids (Figure 5).73,74,76,77 



42 

These modifiers adsorb onto the metal (usually Pt or Pd) surface and form chiral 

sites, enabling the reactant to be hydrogenated in an enantioselective manner. In 

the chiral sites, the other enantioface of the prochiral substrate is usually favored 

only by the energy difference of a few kJ/mol.77 However, a precise mechanism 

of the system is difficult to determine, because the heterogeneous metal catalyst 

has atoms with different coordinations. In other words, the 

enantiodifferentiating sites may not be uniform and there could be several 

different types of active sites. The energy difference between the pathways 

leading to two enantiomers may vary or even reverse in different sites. 

Additionally, some of the sites may remain unmodified, which leads to racemic 

reaction pathways.75,77 

 
Figure 5. The list of natural cinchona alkaloids used as organic modifiers in heterogeneous 

catalysis. 

Despite the difficulties in determining the active site structures, numerous 

systematic studies have been carried out for the requirements of cinchona 

alkaloid-modified catalyst systems.71,72,75, 83  These studies have generated the 

collection of natural alkaloids derivatives and structurally simpler synthetic 

modifiers that mimic the properties of cinchona alkaloids (Figure 6).78,79,80,81 

However, the natural cinchona alkaloids are still the most versatile, and in most 

cases the most selective, modifiers that exist.75,77 
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Figure 6. Selected synthetic cinchona-mimics used as organic modifiers. 

In general, cinchona-platinum systems are commonly used to reduce C=O 

double bonds and the cinchona-palladium systems are used to reduce α-

functionalized C=C double bonds. Scheme 18 presents selected examples of the 

substrates that give high ee’s with cinchona-platinum84,85,86,87,88 and –palladium 

systems.89,90 
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Scheme 18. Selected examples of enantioselective hydrogenations with cinchona modifiers. 

2.2.1.1 Requirements for cinchona alkaloid modifiers 

The basic requirements for the cinchona alkaloid modifier are (i) an anchor 

that adsorbs to the metal surface, (ii) an amine functionality that interacts with 

the carbonyl group, and (iii) a stereogenic center or centers that induces the 

enantioselectivity to the reduction reaction.75,77 

(i) The purpose of the anchor group is to adsorb on the metal particle and 

form a chiral site where the enantioselective reaction can occur. The anchor needs 

to cover the surface to ensure that only chiral sites are present during the reaction. 
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If the anchor is only weakly adsorbed to the metal particle, racemic sites, i.e., not 

modified sites, are also present during the reaction. This may lead to poor 

enantioselectivity. However, too-strong adsorption leads to the complete 

coverage of the metal particle with the modifier, and consequently to inhibition 

of the reaction. The anchor is usually an aromatic ring, and the most suitable 

groups found in the experiments are quinoline, naphthalene, and anthracene.77 

Smaller anchors, such as benzene, pyridine, or aromatic systems that are not flat, 

show no or very low chiral induction.77 An example of the size effect of the anchor 

group on the enantioselectivity is presented in Scheme 19.80,91,92 

Scheme 19. a) Three similar modifiers with different anchor groups. b) Size of the anchor group 
affects the enantioselectivity in the hydrogenation of ethyl pyruvate with Pt/alumina. 

 (ii) The interaction with the amine and the carbonyl group of the reactant 

is crucial for the enantiodifferentiation. The surface complex (1:1 

substrate:modifier) formed via hydrogen bonding (N-H⋯O) between the 

protonated N-atom of the modifier amine group and O-atom of the reactant 

carbonyl group is one of the proposed interaction modes. In addition, other 

hydrogen bonds can also be involved with the interaction between substrate and 

modifier. However, these interactions depend on the substrate, modifier, and 

reaction conditions. The possible interaction modes are discussed in more detail 

in the next section. 
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(iii) The strongest influencing factor on the enantioselectivity with cinchona 

alkaloids is the steric environment on the O–C9–C8–N part (Figure 5). In recent 

theoretical studies of the reduction of carbonyl compounds on the platinum 

surface, the absolute configuration of the product was found to depend on the 

configuration of the C8. The C9 position was less influential and only affected the 

rate and enantiomeric excess, even if the absolute configuration of the C9 was 

changed. 93  In palladium-catalyzed hydrogenation of olefins, the 

enantiodifferentiation is more sensitive, and only a right combination of the C8 

and C9 configurations has found to lead good enantioselectivities.93 

2.2.1.2 Origin of enantioselectivity 

While the requirements for the modifier are rather simple to understand, to 

be able to design an efficient and robust modifier with a large substrate scope is 

a demanding task. A rational design of new modifiers needs a full understanding 

of the mechanism on the metal particle. However, the chosen metal, different 

sites in the catalyst, support, hydrogen pressure, and solvent all have effects on 

the mechanism and outcome of the reaction.75,77 Consequently, most of the 

cinchona systems are very specific and resemble the lock-and-key interaction of 

enzymatic catalysis.77 For example, cinchonidine (63) is generally the best 

modifier with platinum; however, with nickel and ruthenium, it is more or less 

ineffective.71,94  

Most of the mechanistic studies have been done on the reduction of 

activated ketones with cinchonidine (63) modified platinum surface.77 Through 

the years, a variety of different mechanisms have been proposed for the 

enantiodifferentiating interaction at the chiral site (Figure 7).95,96,97,98 Some of the 

models assume a N-C (Figure 7a and 7b) and others a N-H⋯O (Figure 7c and 7d) 

type interaction. Lately, it has been shown that the proton in the N-H⋯O type 

interaction originates either from protonation (protic solvents) or from 

dissociatively adsorbed H2 (aprotic solvents).99,100 Nevertheless, N-alkylation of 

the amine group leads to a complete loss of the enantioselectivity.71,72  
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Figure 7. Different mechanisms proposed for the modifier-substrate interaction on cinchonidine 

(63) modified Pt surface: a) by Bartók I45, b) by Augustine I46, c) by McBreen I47, and d) by 
Baiker I48. 

Only a few studies have attempted to explain the preferred adsorption of 

the re or si face of the reacting ketone.75,77 The most recent studies show that the 

directing effect is a combination of steric and electronics.101,102 However, the steric 

effects have a lesser role, because the outcome of the reaction seems to be 

independent of the relative hindrance of the substituents (Scheme 20).101,102 The 

dominant effect that determines the energy difference of the re and si face is 

believed to be an asymmetric electron distribution in the reducing carbonyl 

group (Figure 8). This asymmetry directs the substrate to adsorb from the other 

face and ultimately leads to enantioselective reduction on the surface.102 With 

very rough DFT calculations without the metal slab, the Pro(R) complex was 

found to be 0.5 kcal/mol lower in energy than the Pro(S) complex (Figure 9).102 

The calculated energy difference is believed to originate from the charge-dipole 

interaction. 
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Scheme 20. The relative size of the substituents does not affect the absolute configuration in the 

hydrogenation of α-ketoesters with Pt and cinchona alkaloid 63. 

 
Figure 8. Calculated dipole moments (vectors) of several of ketones and trifluoroacetophenone. 
In prochiral fluorinated ketones the vector of the dipole moment strongly deviates from the axis 
of the keto-carbonyl group. Adapted with permission from Vargas, A.; Hoxha, F.; Bonalumi, N.; 

Mallat, T.; Baiker, A. J. Catal. 2006, 240, 203–212. DOI: 10.1016/j.jcat.2006.03.022, Copyright © 
2006 Elsevier Inc. All rights reserved. 

 
Figure 9. The interaction model between cinchonidine (63) and trifluoroacetone using surface 

constraints to force the quinoline ring and the ketone to be coplanar. Adapted with permission 
from Vargas, A.; Hoxha, F.; Bonalumi, N.; Mallat, T.; Baiker, A. J. Catal. 2006, 240, 203–212. DOI: 

10.1016/j.jcat.2006.03.022, Copyright © 2006 Elsevier Inc. All rights reserved. 

2.2.2 Other organic modifiers 

In addition to cinchona alkaloids and their derivatives, other modifiers have 

also been successfully used in enantioselective reductions with heterogeneous 

transition metal catalysis.75 For example, Raney nickel–tartaric acid–NaBr system 
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gives high enantioselectivities in reduction of β-ketoesters and unfunctionalized 

ketones to alcohols (Scheme 21a).103 The origin of the enantiodifferentiation is 

much more complicated and less understood than with cinchona alkaloids. 

However, with β-ketoesters, the enantioselection is believed to originate from the 

“two-point interaction” (I49), and with unfuctionalized ketones, from “one-point 

interaction” (I50) with the assistance pivalic acid (88) (Scheme 21b).104 

 
Scheme 21. The selected examples of enantioselective reductions with Raney nickel–tartaric 

acid–NaBr system: a) reduction of β-ketoesters and unfunctinalized ketones and b) proposed 
interaction for the enantiodifferentiation. 

The other example is the use of proline derivatives in the reduction of 

isophorone (89) with heterogeneous palladium (Scheme 22).105,106 In this reaction, 

the proline (90) acts as a chiral auxiliary that forms a precomplex with the 

reactant. This precomplex is further hydrogenated in an enantioselective manner 

on the metal particle. Recent studies have shown that under certain reaction 
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conditions, the enantiomeric excess originates from the chiral resolution after the 

hydrogenation.107,108 In other words, the enantiodifferentiation is not completely 

surface mediated. Nevertheless, later studies have led to the development of 

proline derivatives possessing a thio-group anchor that forms a covalent bond 

with the metal catalyst (Scheme 23).109 

 
Scheme 22. Enantioselective reduction of isophorone (89) with Pd catalyst and (S)-proline 

modifier (90). 

Scheme 23. The enantioselective reduction of isophorone 89) with thio-group anchored proline 
derivatives as modifiers for Pd/C: a) List of thio-group anchored proline derivatives and b) 

their use in the enantioselective reduction of isophorone. 

Although currently the enantioselectivities of these reductions are only 

moderate, the concept of covalently anchoring a modifier onto the metal surface 

is new and interesting, and it has also been extended to cinchona alkaloid 

derivatives. 110  The benefit of the system is that now the catalytic system is 

completely heterogeneous and no further separation is needed, as in the case of 
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traditional solution-phase modification. The disadvantage is that both of the C-S 

bonds can dissociate rather easily on the metal catalyst. Consequently, the 

modifier binds more strongly to the catalyst, which in this case leads to the 

inhibition of the catalyst (see Sabatier principle in Section 2.1.1) and the formation 

of a self-assembled monolayer.109,110 

2.2.3 Self-assembled monolayers (SAMs) 

In contrast to the previous examples, in which the organic modifiers were 

added to the reaction mixture, an alternative method of enhancing the selectivity 

of the heterogeneously catalyzed reduction reactions is to pretreat the metal 

catalyst with covalently bonding organic modifiers to form a self-assembled 

monolayer (SAM).82 Traditionally, SAMs have been used as sensors or etch 

resists, or to stabilize nanoparticles.82 However, the use of SAMs as catalyst 

modifiers is a rather new research area.111,112 

At the moment, SAMs have been successfully used to induce steric 

hindrance onto the metal particles in catalytic reductions. The steric hindrance 

affects the geometry/orientation in which the reactant can approach the metal 

surface. For example, with the unmodified heterogeneous Pd-catalyst, the 

chemoselective reduction of 1-epoxy-3-butene (98) to 1-epoxybutane (99) 

produces only 11 % of the desired product.113 However, with the SAM-modified 

catalyst (Figure 10), the reaction selectivity towards the 1-epoxybutane (99) 

jumps up to 94 % (Scheme 24). The reason for the increased chemoselectivity is 

that SAMs induce steric hindrance on the surface and decrease the ensemble-

adjusted surface atoms. Consequently, the 1-epoxy-3-butene (98) interacts and 

adsorbs only via the C=C double bond (I53) to the surface. Eventually, only the 

C=C double bond is reduced and the epoxy group remains unreduced (Scheme 

24).114 
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Figure 10. An example of a SAMs-modified surface. Adapted with permission from Marshall, S. 
T.; O’Brien, M.; Oetter, B.; Corpuz, A.; Richards, R. M.; Schwartz, D. K.; Medlin, J. W. Nat. Mater. 

2010, 9, 853–858. DOI: 10.1038/nmat2849, Copyright © 2010, Rights Managed by Nature 
Publishing Group.  

 
Scheme 24. Chemoselective reduction of 1-epoxy-3-butene (98) to 1-epoxybutane (99) with 

unmodified and SAMs-modified Pd-catalyst. Steric hindrance induced by SAMs prevents the 
epoxy-group from interacting with the Pd surface. 

Another example of using SAMs to enhance the chemoselectivity is the 

reduction of cinnamaldehyde (100) to cinnamyl alcohol (101) with heterogeneous 

Pt-catalyst (Scheme 25a). On the unmodified platinum surface, the 

cinnamaldehyde (100) favors adsorption via the C=C double bond.115 This leads 

predominately to C=C double bond reduction as discussed in Section 2.1.1, and 

cinnamyl alcohol (101) is obtained with only 25 % selectivity. However, when the 

Pt catalyst is modified with SAM of 3-phenyl-1-propanethiol I59, the cinnamyl 

alcohol (101) obtained is over 90 % selectivity.116 



53 
 

 

 
Scheme 25. a) Three products of the hydrogenation of cinnamaldehyde (100) and b) effect of 

SAMs on the geometry/orientation of the cinnamaldehyde molecule on the surface of 
palladium metal. 

The reason for such a drastic change in the chemoselectivity can be 

rationalized similarly as in the previous example: the SAMs lower the number of 

an ensemble and the adjusted surface atoms. In this case, the adsorption via the 

C=C double bond becomes less favorable. Additionally, the chemoselectivity is 

further increased with non-covalent interaction (π-π stacking) between the 

reactant and a SAM (Scheme 25b).116 The π-π stacking holds the C=C double bond 

away from the surface, which prevents it from the reduction. The effectiveness of 

the non-covalent interaction is illustrated by varying the length of the SAMs alkyl 

chain. The best selectivity was obtained with SAM of 3-phenyl-1-propanethiol 

I59, which is roughly the same size as the cinnamaldehyde (100) (Figure 11).116 
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Figure 11. a) A list of different SAMs explored in the chemoselective reduction of 

cinnamaldehyde (100) and b) selectivity to cinnamyl alcohol (101) for the hydrogenation of 
cinnamaldehyde over Pt/Al2O3 catalysts with different SAMs. Figure 11b adapted with 

permission from Kahsar, K. R.; Schwartz, D. K.; Medlin, J. W. J. Am. Chem. Soc. 2014, 136, 520–
526. DOI: 10.1021/ja411973p, Copyright © 2014, American Chemical Society 

2.3 Conclusions 

As has been presented in the above pages, the reduction reactions with 

heterogeneous transition metals catalysts can be used to synthesize complex 

molecules in chemo-, regio-, and stereoselective manners. The tools available for 

selective reductions are extensive, such as catalyst morphology, inorganic 

modifiers, supporters, alloying, and organic modifiers. However, due to the 
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broad distribution of different coordination sites in the catalysts and with 

challenges in reaction monitoring, the determination of precise reaction 

mechanisms is difficult. Consequently, development of new and selective 

heterogeneous catalyst-systems is more like “trial and error” rather than a 

rational design. Nonetheless, as a new trend of single-site heterogeneous 

catalysts is arising, a deeper understanding of the reaction mechanisms is needed. 

As a result, one of the first steps is to find out how closely the mechanisms of 

heterogeneous catalysts parallel those established within homogeneous catalysis. 
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3 RESULTS AND DISCUSSION 

3.1 Aims and background of the work 

The aim of the work was to study the mechanism of our previously 

published reaction of stereo- and chemoselective 1,4-hydrosilylation of enals and 

enones with in situ generated colloidal palladium and triethylsilane (Scheme 

26a).117 With the knowledge that would be gained from the mechanistic studies, 

the plan was to further develop the protocol into a robust, industrially applicable 

method, and possibly to expand the concept for other similar reactions. 

Single enol silane stereoisomers are very valuable compounds in many 

stereospecific transformations, such as Mukaiyama aldol and Mannich reactions 

or transmetalation.118,119,120,121,122 The hydrosilylation protocols usually display a 

preference for (E)-enol silanes, and methods to uniformly produce (Z)-enol 

silanes are rare.123,124 Our protocol enabled access to (Z)-enol silanes from α-

substituted enals and (E)-enol silanes from β-substituted enals (Scheme 26a).117 

However, the most interesting aspect of the reaction was that the active catalyst 

was heterogeneous, and leached palladium atoms were not likely to be active in 

catalysis (Scheme 26b).14,15 The stereo- and chemoselective hydrosilylation 

reaction occurred on the surface of the in situ generated palladium colloids. As 

discussed in the previous sections, among the selective reduction reactions, the 

truly heterogeneous surface reactions are usually simple hydrogenations, in 

which the H2 is the e source.9,10,11 In this reaction, both the silyl-species and the 

H-species seemed to react with the substrate on the metal surface, as indirectly 

demonstrated by crossover experiments with two different silanes in Scheme 

26c.117 
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Scheme 26. a) Previously published protocol for the stereo- and chemoselective 1,4-
hydrosilylation of enals and enones. b) Proof of the heterogeneity of the active catalyst. c) 
Crossover experiments provide evidence for the dissociation of a silane on the palladium 

surface. 

3.2 Methods 

3.2.1 Experimental methods 

All reactions were carried out in screw cap glass vials or septum cap glass 

flasks under air or argon atmosphere. For more details, please see the supporting 

information of each publication. THF, Et2O, DCM, MeCN, and toluene were 

obtained by passing deoxygenated solvents through activated alumina columns 

(MBraun SPS-800 Series solvent purification system). Other solvents and 

reagents were used as obtained from the supplier; see articles’ supporting 

information for more details. Analytical TLC was performed using Merck silica 

gel F254 (230–400 mesh) plates and analyzed by UV light or by staining upon 

heating with vanillin solution (6 g of vanillin, 5 mL of conc. H2SO4, 3 mL of glacial 
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acetic acid, 250 mL of EtOH) or KMnO4 solution (1 g of KMnO4, 6.7 g of K2CO3, 

1.7 mL of 1 M NaOH, 100 mL of H2O). For silica gel chromatography, the flash 

chromatography technique was used, with Merck silica gel 60 (230–400 mesh) 

and p.a. grade solvents. A small pad of alumina (neutral) columns was prepared 

by filling plastic syringes (5–20 mL) with Sigma-Aldrich purum p.a. grade 

alumina. The 1H NMR and 13C NMR spectra were recorded in CDCl3 on Bruker 

Advance 500, 400, 300, and 250 spectrometers. The chemical shifts are reported 

in ppm relative to residual CHCl3 (δ 7.26) for 1H NMR. For the 13C NMR spectra, 

the residual CDCl3 (δ 77.16) was used as the internal standards. IR spectra were 

recorded on a Tensor27 FT-IR spectrometer. High -resolution mass spectrometric 

data were prepared using MicroMass LCT Premier Spectrometer. 

3.2.2 Computational methods 

The calculations in this thesis were performed using the density functional 

theory (DFT). In recent decades, as discussed in Section 1.5, DFT has become an 

important tool for investigating the mechanism of surface reactions. In this 

chapter, a very short introduction to the theory is given. A more detailed 

mathematical and theoretical discussion can be found in several books125,126,127 

and review articles.128,129 

The theoretical background of DFT is based on two Hohenberg-Kohn 

theorems.130 The first Hohenberg-Kohn theorem states that the external potential 

𝑉𝑒𝑥𝑡 and also the energy of the system are a unique functional of the electron 

density 𝜌(𝑟): 

𝐸[𝜌] = ∫𝑑𝑟𝜌(𝑟)𝑉𝑒𝑥𝑡(𝑟) + 𝐹[𝜌]    (1) 

𝐹[𝜌] is a universal functional that does not depend on external potential, 

𝑉𝑒𝑥𝑡. In other words, there cannot be two different external potentials yielding 

the same ground state density. The second theorem states that the ground state 

density can be achieved by minimizing the functional (1), and by the ground state 

density 𝜌0(𝑟) it is possible to obtain ground state energy 𝐸0. 
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The unknown universal functional, 𝐹[𝜌]  contains kinetic energy and 

electron-electron interactions. One way to address the unknown universal 

functional is by the Kohn-Sham approach,131 in which the universal functional is 

divided into fictive non-interacting particles. The non-interacting part generates 

the same density as any of the interacting particles.129,131 The non-interacting part 

can be calculated with the Kohn-Sham equation: 

(−
1

2
∇2 + 𝜐𝑒𝑓𝑓)𝜑𝑖(𝑟) = 𝜖𝑖𝜑𝑖(𝑟)    (2) 

𝜐𝑒𝑓𝑓 is effective potential where the electrons move. This creates a set of a 

non-interacting one-electron states (𝜑𝑖), i.e., Kohn-Sham orbitals. With the Kohn-

Sham equation, the large part of the kinetic energy can be calculated with good 

accuracy. The remaining part is mixed with the non-classical electron interaction. 

Now the universal functional 𝐹[𝜌(𝑟)] can be divided into: 

𝐹[𝜌(𝑟)] = 𝑇𝑠[𝜌(𝑟)] + 𝐽[𝜌(𝑟)] + 𝐸𝑥𝑐[𝜌(𝑟)]   (3) 

The kinetic energy, 𝑇𝑠[𝜌], describes the non-interacting particles, 𝐽[𝜌] is the 

Hartree energy and describes the classical Coulomb interaction, and the non-

classical part, 𝐸𝑥𝑐[𝜌], includes the exchange and correlation energies and the 

residual part of the kinetic energy. The exchange and correlation functional (𝐸𝑥𝑐) 

contains all the parts that need to be approximated. 

The exchange and correlation functional is the most important part of the 

DFT calculations. Even though the 𝐸𝑥𝑐 contribution to the total energy is very 

small (~6 %), the quality of the DFT calculation depends on the accuracy of the 

Exc approximation.132 Several different types of functionals have been developed 

over time to cover the XC effects.133 The simplest description of XC effects is local 

density approximation (LDA), which treats the XC energy as uniform electron 

gas with the same electron density.130 Most of the functionals used in surface 

calculations, such as PBE134 and RPBE,135 are based on a generalized gradient 

approximation (GGA), in which the XC energy is expressed as a function of 
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electron density and density gradient. To further improve the XC functionals 

from GGA, several approaches have been used.136,137 One approach has been to 

add a part of Hartree-Fock exchange to the XC functional. For example, B3LYP, 

which is routinely used in gas-phase calculations, is this kind of hybrid 

functional.138,139 

Density functional theory (DFT) calculations in this study were performed 

mainly with the GPAW code,140,141 which implements the projector augmented 

wave method (PAW),142 which is a generalization of the pseudopotential method. 

The PAW method implements a real-space grid, in which the Kohn-Sham 

equations are solved at each point of the real-space grid and no basis set is 

involved. The most important advantage of the real-space grid is that the 

parallelization of the calculation is easier, which makes it possible to use 

massively parallel supercomputers. The Kohn-Sham equations were solved self-

consistently using the RPBE135 or BEEF-vdW 143  to describe exchange and 

correlation effects. The metal particles were modeled with four-atom-layer-thick 

111-surface slabs using periodic boundaries in the x- and y-directions, while in 

the z-direction (perpendicular to the surface), a vacuum was used to separate the 

cells below and above the slab. The Brillouin zone was sampled with Monkhorst-

Pack k-points for the supercells. The transition states were determined using a 

Nudge Elastic Band (NEB) method144 or a constraint method, under which the 

interatomic distance of a forming bond is fixed to several values and the 

remaining degrees of freedom are relaxed. For the found transition states, 

harmonic frequencies were calculated and only a single imaginary frequency was 

obtained in each case. The visualization of the vibration mode showed bond 

stretching along a reaction coordinate. A small set of the calculations were 

performed at the B3LYP/6-31G(d) level with Jaguar from Schrödinger LLC.145 

Maestro was used as a graphical user interface to import or modify the input 

structures and generate the input files for Jaguar.145 A more detailed description 

of the computational methods used in this study can be found in articles’ 

supporting information. 
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3.3 Improving the protocol 

The previous PdNP protocol (see Section 3.1) was not fully chemoselective 

for the hydrosilylation reaction, as a significant amount of saturated aldehyde 

was formed as a side product.117 The other problem with the protocol was that 

the reaction failed to proceed if the nucleation of the catalyst did not initiate 

properly. Additionally, scaling up the protocol was difficult due to the fast 

aggregation of the active catalyst. 

3.3.1 Effect of the catalyst 

In the previous protocol, the best selectivity towards the hydrosilylation 

was obtained with the PdCl2/PCy3 catalyst combination (Table 1, entries 1–4). 

We screened several different colloidal palladium catalysts and the best results 

were obtained with Pd-PVP colloids and Pd-thioether colloids (entries 5 and 6). 

However, the chemoselectivity was only slightly improved with Pd-thioether 

colloids compared with the PdCl2/PCy3 catalyst system (entry 1). Above all, the 

practicality of the reaction was still questionable.  
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Table 1. The chemoselectivity of the hydrosilylation reaction with different palladium catalysts. 

 

Entry Catalyst Catalyst loadinga 

Productb 

105 107 

1 PdCl2/PCy3
 1.3 mg/4.2 mg 84 % 16 % 

2 Pd(OAc)2/PCy3
 1.1 mg/2.8 mg 50 % 5–10 % 

3 PdCl2/PPh3 0.9 mg/2.6 mg 20 % 5–10 % 

4 Pd/C (5 wt %) [Not Activated]c 2 mg 19 % 39 % 

5 Pd-PVP colloidsd 12 mg 29 % 42 % 

6 Pd-thioether colloidse 2 mg 90 % 10 % 

7 Pd/C (5 wt %) [Not Activated]f 2 mg 83 % 17 % 

8 Pd/C (5 wt %) [Vacuum]g 2 mg 91 % 8 % 

9 Pd/C (5 wt %) [Washed]h,i 2 mg 100 % 0 % 

10 Pd/C (5 wt %) + Acidj 2 mg 0 % 100 % 

Reaction conditions: 104 (44 mg, 0.30 mmol, 1.0 equiv), catalyst, triethylsilane (53 μL, 0.33 mmol, 1.1 equiv), 
THF (1 mL), room temperature. [a] Catalyst loading presented as a mass because the active catalytic surface 
differ with catalyst’s particle size. [b] Determined by 1H NMR analysis. 104 was also detected in the entries 2–
5. [c] Reaction done during the preparation of the ref 117 paper [d]. All of the details are provided in ref 117. 
[e] Catalyst was prepared using the procedure described by Obare et al. in ref 146.[f] Pd/C was taken from a 
different batch than in entry 4. [g] Pd/C was kept in a vacuum for 10 min. [h] Pd/C was washed three times 
with acetone and dried in a vacuum; see protocol in Article I: the Supporting Information. [i] The same 
selectivity was observed with five different batches of Pd/C (5–10 wt %) from different sources (Sigma-
Aldrich, Fluka and other suppliers). [j] Aq. H2SO4 or aq. HCl (20 μL, both 1 M). 

Another experiment with Pd/C unexpectedly gave completely different 

results compared with the previous screenings (compare entries 4 and 7). Even a 

small amount of water is enough to promote the formation of the saturated 

aldehyde 107 (Table 2). The charcoal can adsorb up to 55−60 wt % of water,147 

and presumably the amount of residual water varies with different Pd/Cs. We 

then tried to dry the charcoal as effectively as we could (Table 1, entries 8 and 9). 

Eventually, washing the Pd/C with acetone and drying it in vacuum (Table 1, 

entry 9) led to complete selectivity towards the hydrosilylation with α-
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substituted enal 104. In addition to solving the chemoselectivity problem, the use 

of activated commercially available Pd/C also solved the scale-up and 

practicality problems, as the reaction worked well in gram-scale with enal 104 

(3.3 g, 92 % (Z:E > 50:1)). 

3.3.2 Improving the transfer hydrogenation protocol 

The transfer hydrogenation conditions to produce the saturated aldehyde 

product 107 were also optimized. In the previous protocol, the reaction was 

completely selective toward the formation of 107 when 1:1 mixture of THF and 

water was used as the solvent system (Table 2, entry 1). With the same solvent 

mixture and Pd/C, surprisingly, the main product was the α-hydroperoxy 

aldehyde 108 (entry 2, see Section 3.6). The attempt to reduce the amount of the 

water in the solvent system failed (entry 3). However, in the previous protocol, 

the pH of the reaction mixture was 2.6 due to HCl generated from the PdCl2 

precatalyst.117 We then tried to add just a small amount of acid [aq. H2SO4 or aq. 

HCl (20 μL, both 1 M)] into the reaction mixture (entries 4 and 5). This changed 

the outcome of the reaction, and full conversion to the corresponding saturated 

aldehyde 107 was obtained in less than 5 minutes. 
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Table 2. The chemoselectivity of the transfer hydrogenation reaction with catalysts and solvent 
systems. 

 

Entry Catalyst Solvent system 

Producta,b 

107 108 

1 PdCl2/PCy3
 1 mL THF/H2O (1:1) 100 % 0 % 

2 Pd/C 1 mL THF/H2O (1:1) 40 %c 60 % 

3 Pd/C 1 mL THF/H2O (20 μL, 1 M)] 31 %c 69 % 

4 Pd/C 1 mL THF/HCl (20 μL, 1 M)] 100 % 0 % 

5 Pd/C 1 mL THF/H2SO4 (20 μL, 1 M)] 100 % 0 % 

Reaction conditions: 104 (44 mg, 0.30 mmol, 1.0 equiv), catalyst, triethylsilane (53 μL, 0.33 mmol, 1.1 
equiv), solvent system (1 mL), room temperature, reaction time: entries: 1–3 1 h and 4–5 5 min. [a] 
Determined by 1H NMR analysis. [b] Enol silane 105 were not detected in any entry. [c] For more details, 
see Section 3.6. 

3.3.3 Stereo- and chemoselectivity of the improved protocols 

With α-substituted enals, the stereoselectivities of the reaction were 

generally high, favoring the (Z)-enol silanes (typical Z:E > 50:1). With β-

substituted enals, the reaction favored the (E)-enol silanes; however, the 

stereoselectivity was considerably lower (typical Z:E was ca. 10:90). The substrate 

scope for the hydrosilylation and for the transfer hydrogenation was quite wide 

(see Article I). Both reactions worked well with enals and cyclic enones. However, 

in case of acyclic enones, only the transfer hydrogenation gave the desired 

product.  

Maybe the most interesting aspect of the study was that Et3SiH can be used 

as stoichiometric source of H atoms. Consequently, both reactions tolerated 

several reducible functional groups, such as non-conjugated C=C double bonds, 

benzyl protection, carbonyls, and nitro group (see substrate scope in Article I). In 

addition, other C=C double bonds, remote from the enal or enone functionalities, 
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were also successfully hydrogenated with 2.2 equivalents of Et3SiH (see substrate 

scope in Article I). 

3.4 Mechanistic studies of the hydrosilylation and transfer 
hydrogenation reactions 

The mechanism and the origin of the stereo- and chemoselectivity in the 

hydrosilylation reaction, together with the mechanism of the transfer 

hydrogenation reaction, were not completely understood. From the previous 

experiments, we knew that the hydrosilylation reaction was catalyzed by the 

heterogeneous palladium (Scheme 26c). We also knew that, in both the 

hydrosilylation and transfer hydrogenation reactions, the hydrogen atom 

(“hydride”) adding to the β-position of the α,β-unsaturated carbonyl was 

originated from the Et3SiH (Scheme 27, also see Article I). 

 
Scheme 27. Labeling experiments for the hydrosilylation and transfer hydrogenation reactions 

with Et3SiD. 

The mechanistic studies of the hydrosilylation and transfer hydrogenation 

reactions were carried out by combining experimental investigations and 

theoretical, i.e. DFT, calculations. 

3.4.1 Mechanism of the stereoselective hydrosilylation reaction 

In the previous experiments, we observed a clear trend in the 

stereoselectivity of the hydrosilylation reaction. The major isomer of the product, 

enol silane 105, corresponded to the s-trans conformation of the starting material 
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enal 104 (Scheme 28a). The observed isomer was the opposite of what Oshima et 

al. had previously obtained in similar reaction conditions.124 However, in their 

reaction, the active catalyst was homogeneous palladium and the 

stereoselectivity originated from the five-membered intermediate I61 (Scheme 

28b). 

 
Scheme 28. a) Our protocol: the enol silane isomer (E)-110 corresponds to the s-trans conformer 
of the starting enal 109. b) Oshima protocol: the enol silane isomer (Z)-112 originates from the 

five-membered intermediate I61. 

The stereoselectivity of the hydrosilylation reaction was addressed by DFT 

calculations, and the simplest α,β-unsaturated aldehyde, acrolein (4a in Figure 

12), was chosen as a model substrate. In summary, the DFT calculations 

suggested that the hydrosilylation reaction is not under a Curtin-Hammett 

control (Figure 12). The individual adsorbed enal conformers cannot equilibrate 

from a s-trans to s-cis conformer on the Pd-surface and the O-silylation 

elementary step is irreversible. This indicates that the stereoselectivity of the 

reaction is determined by the ratio of the s-trans and s-cis conformers of the enal 

in the solution phase. 
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Figure 12. Stereoselectivity of the hydrosilylation reaction of acrolein 4a is not under Curtin-
Hammett control: a) a close-up of the O-silylation step and b) full picture. (See the naming 

convention from the Article IV.) 

We then calculated the gas-phase energies of the s-trans and s-cis 

conformations of several α- and β-substituted enals, and found out that the 

Boltzmann populations of two conformers corresponded especially well with the 

isomer ratio of the enol silane products (see Article IV). In addition, in the control 

experiments with citral (113), a small solvent effect on the stereoselectivity was 

observed. The isomer ratio of the enol silane product could be affected with the 

choice of the solvent. 
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Interestingly, only the enol silanes formed from the β-substituted enals 

underwent isomerization after the completed reaction (see 1H NMR experiments 

in Figure 13). The isomerization of the enol silanes in the reaction conditions 

occurs associatively (Scheme 8c) from the β-position enol silane (see the 

Supporting Information in Article IV). With 2-substituted enol silanes (from β-

substituted enals), this mechanism leads to E/Z-isomerization. However, with 

the 2,2-disubstituted enol silanes (from the α-substituted enals), this mechanism 

always leads to the same isomer that initially adsorbs to the surface, and no 

isomerization can occur (see Article IV). 
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Figure 13. Isomerization during and after the hydrosilylation reaction. a) With α-substituted 
enol silane 105 and b) with β-substituted enol silane 114. 

The proposed mechanism for the hydrosilylation reaction is presented in 

Scheme 29. The catalytic cycle begins with the dissociation of the triethylsilane 

onto the Pd-surface. Onto this triethylsilyl- and hydride-covered surface an enal 

115 adsorbs from the C=C double bond. Before the individual enal can rotate 
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from s-trans to s-cis conformation or vice versa, it undergoes a rapid and 

irreversible O-silylation that “freezes” the original solution-phase conformation. 

The enol silane 116 then desorbs from the surface. The Z/E ratio of the product 

is then determined by the solution phase ratio of the enal s-trans and s-cis 

conformations, like in the case of 1,3-butadiene (34) hydrogenation (discussed in 

Section 2.1.2.2). 

Scheme 29. Proposed catalytic cycle for the 1,4-hydrosilylation of enals with triethylsilane and 
Pd/C. 

3.4.2 Mechanism of the transfer hydrogenation and chemoselectivity of the 
hydrosilylation reaction 

Under aqueous and acidic conditions (Table 2, entries 4 and 5), the studied 

reaction gives saturated aldehyde 117 as a major product. The proposed 

mechanism for the transformation is presented in Scheme 30. The catalytic cycle 

begins, like the hydrosilylation reaction, by the dissociation of the triethylsilane 

onto the Pd-surface. However, in aqueous conditions, the triethylsilyl on the 

palladium surface reacts with water to produce triethylsilanol (see Article III: the 
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Supporting Information). Formation of silanol from adsorbed silyl-species and 

water is a well-documented reaction in literature.148,149,150,151,152,153,154 This leads to 

the coverage of the surface with only hydrogen atoms. The enal 115 is then 

adsorbed via the C=C double bond. The hydrogen atom (“hydride”) attacks the 

β-position of enal, as the labeling experiments indicate (Scheme 27), followed by 

protonation and formation of enol 118 intermediate, either via a stepwise 

(showed in the Scheme 30) or concerted mechanism. The formation of the enol 

intermediate was observed in the 1H NMR experiments (see Article III: the 

Supporting Information). 

 
Scheme 30. Proposed catalytic cycle for the transfer hydrogenation of enals with triethylsilane and Pd/C. 

The formation of saturated aldehyde was also observed in the 

hydrosilylation conditions. At the beginning of the mechanistic studies, it was 

unclear whether the saturated aldehyde side-product was formed via the same 

or different mechanism as the saturated aldehyde product under the aqueous 
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conditions, i.e., transfer hydrogenation conditions. We then considered three 

different mechanistic pathways for 122 side-product formation: 1) via hydrolysis 

of enol silane 120, 2) via hydrogenation mechanism or 3) via transfer 

hydrogenation mechanism, i.e., via enol 121 (Scheme 31). 

 
Scheme 31. Three different mehanistic pathways considered for the saturated aldehyde 122 side 

product formation. 

The pathway 1 was not realistic, because the enol silanes were stable at the 

reaction conditions (see reaction monitoring in Article IV). According to DFT 

calculations, the O-silylation step had a significantly lower barrier than any of 

the H-additions to the acrolein. Consequently, pathway 2 could not compete with 

the hydrosilylation reaction (see Article IV). Additionally, in the labeling 

experiments with Et3SiD, a D-incorporation was observed only in the β-position 

of the isolated saturated aldehyde side-product (see Article IV). We concluded 

that in the hydrosilylation conditions, the side-product is most likely formed via 

the transfer hydrogenation mechanism (pathway 3) by the excess moister in the 

reaction mixture. 
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3.5 First principle calculations for the mechanism of 
hydrogenation of acrolein on Pd and Pt 

The chemoselective reductions of α,β-unsaturated carbonyl compounds to 

the corresponding allylic alcohols are important processes in the pharmaceutical 

and fine-chemical industries.155,156 However, the origin of the chemoselectivity 

(C=C vs. C=O reduction) with metals such as Pd and Pt is still largely 

unknown.44,45, 157  Experimentally, the simplest unsaturated aldehyde, acrolein 

(123), is reduced to propanal (124) with over 98 % selectivity with Pt catalyst 

(Scheme 32).43,158,159 

 
Scheme 32. Semihydrogenation of acrolein (123) leading to three isomeric products: propanal 

(124), allyl alcohol (125), and 1-propenol (126). 

During the DFT studies of the hydrosilylation of acrolein (123) on Pd(111) 

surface (Article IV), we calculated several different hydrogenation pathways 

leading to propanal (124) on the Pd(111) surface. However, by comparing the 

obtained results with similar studies on the Pt(111) surface,44,45 we noticed that 

the results did not completely engage, and we could present an alternative 

explanation for the observed chemoselectivity.  

What we found out was that although the reduction of C=O functionality is 

kinetically favored over the C=C reduction, the mechanistic pathways leading to 

the allyl alcohol (125) (i.e., the reduction of C=O functionality) require the 

involvement of an ensemble of three (possibly even four) surface metal atoms. In 

contrast, the reactions at the C=C functionality are less space intensive and the 

size of the ensemble is one or two metal atoms (see Article II: the Supporting 

Information). Under experimental conditions, the surface is partially covered 

with the strongly binding species, such as fragmented species, which might block 
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one or several adsorption sites at once. In other words, pathways requiring access 

to several adjacent metal atoms are strongly disfavored at high coverage. 

The calculations were done by varying the acrolein (123) coverage from 

1/16 ML to 1/3 ML. The results clearly indicate that, when the number of 

available surface metal atoms is lowered, the mechanisms that require more 

metal atoms are simultaneously disfavored (see Article II: the Supporting 

Information for more details). The trend is illustrated in Figure 14. 

 
Figure 14.The potential energy surfaces for the key elementary steps in acrolein (1, in this 

Figure) reduction a) on Pt(111) and b) on Pd(111) surfaces together with the key molecular 
structures. The solid line refers to the results at 1/3 (1/4) ML acrolein coverage on Pt (Pd) and 

the dashed line for 1/9 ML coverage. For naming convention and coding, see Article II: the 
Supporting Information. 
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The other aspect that we found was related to the transition state scaling 

(TSS) relationship. 160  Typically, the “noise” in the TSS line is identified as 

resulting from a local variation in adsorption geometries and differences in 

transition-state bond lengths.161 By carefully analyzing the reaction mechanism, 

and especially the internal electronic structures of the bound species, we found 

that the electronic structures of the initial or final state need to be similar to the 

transition state in order to form a TSS line. The scaling revealed that individual 

lines are formed for each type of mechanism (Figure 15). Even more specifically, 

we found that for similar mechanisms, the internal electronic structures of the 

bound species must be similar in order for the two elementary steps to form a 

single TSS line. For example, the internal electronic structures of the allyloxy and 

vinyloxy species differ, and thus a small variation in the TSS line is observed 

(Figure 16). 

 
Figure 15. TSS relation for different mechanisms: ■ olefin insertion (1,2-addition, R2 = 0.990), ♦ 

reductive elimination (4,3-addition and 3,4-addition, R2 = 0.969), ● PCET (1- addition, R2 = 
0.993), ▲ allyloxy protonation (2,1-addition, R2 = 0.989) and X hydride addition (2-addition, R2 

= 0.952). For more details, see Article II: the Supporting Information. 
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Figure 16. a) Electronically different structures do not form a single TSS relation while b) the 
electronically similar structures do. c) ● protonation of allyloxy species I2c and I2a (2,1-addition, 

R2 = 0.988) and ■ protonation of vinyloxy species I4c (4,1-addition, R2 = 0.896) on a Pt(111) 
surface. For more details, see Article II: the Supporting Information. 

3.6 3,4-Hydroperoxidation of α-substituted enals 

α-Hydroxylations of saturated carbonyl compounds are well-known 

reactions in organic synthesis.162,163 In these reactions, the α-hydroxycarbonyl 

products are usually obtained after reductive work-up from the corresponding 

α-hydroperoxycarbonyl intermediates. The hydroperoxy compounds are formed 

via oxidation of enolates or enols, which are obtained with acid or base treatment 

of the saturated carbonyl compounds. However, the formation of enols from 

saturated aldehydes is challenging due to their instability towards 

polymerization or aldol self-condensation under acidic or basic conditions.164 An 
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alternative way to produce enols is via conjugated reduction of α,β-unsaturated 

carbonyls.164,165,166 

During the improvement of the transfer hydrogenation protocol, we 

observed a new product that was formed in significant quantities under the 

aqueous conditions (Table 2, entries 2 and 3). 1H NMR experiments revealed the 

product to be an α-hydroperoxide aldehyde 129, which was formed via 

autoxidation of the initial reduction product enol 128 on a palladium surface. 

However, the new product was labile and could not be isolated, and full 

characterization was done for the reduced diol product 130 (Scheme 33). 

Scheme 33. a) The transfer hydrogenation of α-substituted enals 127, b) the autoxidation of the 
metastable enols 128 and c) the reduction of the α-hydroperoxides 129 to corresponding diol 

product 130. 

The key for the successful reaction was that the initial reduction on the 

palladium surface occurred in 1,4-fashion, which enabled the formation of the 

metastable enol 128, and consequently its autoxidation, leading to the formation 

of hydroperoxide 129. However, the hydroperoxidation reaction worked only 

with the α-substituted enals. The reaction tolerated several reducible functional 

groups, such as aromatic, non-conjugated alkenes, and acetal protection (see 

Article III).  
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SUMMARY AND CONCLUSIONS 

The aim of the work was successfully realized, and a mechanism of the 

stereo- and chemoselective 1,4-hydrosilylation of enals and enones with 

heterogeneous palladium catalyst and triethylsilane was revealed. The reduction 

proceeds on the palladium surface via O-silylation,H-addition-sequence, i.e., 1,4-

fashion. The stereoselectivity originates from the s-trans/s-cis ratio of the 

substrate in the solution phase, which is “frozen” by an almost barrier-less and 

irreversible O-silylation elementary step. The protocol was successfully 

improved to robust and highly chemoselective method to hydrosilylate and 

transfer hydrogenate enals and enones with stoichiometric amounts of 

triethylsilane as hydride source. 

The mechanism studies performed with DFT for hydrosilylation reaction 

revealed a possible reason for the contradictions with experimental results and 

DFT calculations in chemoselective hydrogenation of acrolein with the 

heterogeneous platinum catalyst. The optimization studies for the transfer 

hydrogenation reaction also revealed a new synthetic route to produce α-

hydroperoxide aldehydes from α-substituted enals with the heterogeneous 

palladium catalyst. The key for the reaction was that the transfer hydrogenation 

with triethylsilane and water occurs in 1,4-fashion, which enabled the metastable 

enol product to autoxidize to the corresponding hydroperoxide.  
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