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ABSTRACT

Global warming is one of the greatest threats that mankind has to face in the
beginning of this century. Affiliated with it is the incontrovertible mass loss of
glacier ice in the polar regions worldwide. As a consequence, understanding the
behaviour of large ice masses is crucial for estimating and, in best cases, hindering
the propagation of mass loss. Traditionally, continuum models have been used
to numerically study glacier dynamics. They are based on the assumption of
continuous material with no substructure, therefore cracks and fragmentation are
difficult to model. However, fracturing and fragmentation are inherent properties
of a material as brittle as ice. Thus, better understanding of its behaviour requires
incorporation of these brittle properties into the simulation model.

To tackle this shortcoming in the world of numerical physics, a new dis-
crete element model (DEM) for studying viscoelastic materials with fracture is
introduced. In DEM models, material is comprised of a large number of parti-
cles that are bound together with interaction potentials e.g. springs or beams.
Fracture and fragmentation come naturally in these kinds of models through the
assignment of a breaking threshold of an interaction. With the proper setting of
the properties of the particles themselves and the interaction potentials between
them, the material can be made to realise a wide variety of elastic, plastic and also
viscoelastic behaviour.

The main focus of this study is to establish a new way to simulate vis-
coelastic materials with fracture. Therefore much of the work is concentrated
in the validation of the model against known principles of viscoelastic and brit-
tle materials. The model has also been used to study glacier calving and other
glacier-ice related applications. Amongst other things, it was demonstrated that
the behaviour of a surging glacier is strongly affected by the basal friction, that
the fragment size distribution of a calving event can be a combination of frag-
mentation and grinding and that termini of calving glaciers can be considered as
self-organized critical systems.

Keywords: discrete element method, glacier dynamics, fragmentation, fracture,
viscoelastic
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1 INTRODUCTION

The recurring glacial and interglacial periods have altered the living conditions
and evolution for plants and animals through the history of our planet. Thus the
solid state of our precious water has been a subject of human interest since the
dawn of our species. Whether discussing annual variations or long-term trends
of ice accumulation worldwide, the subject influences life on earth profoundly.
Consequently, it is not a surprise that ice has intrigued already the more primi-
tive societies and has been studied in a more organized fashion since the scien-
tific revolution. Even so, still in the recent years new discoveries concerning the
crystalline phases of ice has been made (Salzmann et al. 2006) and the study of
mechanical properties of ice and glaciers are active fields of research.

During the last decades, the on-going increase of global average tempera-
ture has raised growing concern. A clear indicator of its effects is the negative
mass balance i.e. mass loss of glacier ice worldwide. The World Glacier Moni-
toring Service reported in 2013, based on more than 100 glaciers worldwide, that
there are ever decreasing number of glaciers with positive mass balance and that
there has been no net annual positive mass balance of all the reference glaciers
combined in almost three decades (Zemp et al. 2013). The mass is lost through
many different processes such as melting, sublimation, evaporation and ice calv-
ing. A significant portion of the mass loss in marine terminating ice fronts results
from calving (Burgess et al. 2005; Walter et al. 2010; Depoorter et al. 2013). Calving
also further accelerates global warming through reduction of sunlight reflecting
surface. Therefore, now more than ever, the understanding of glacier ice behavior
is of utmost importance.

In the past, glaciers have been widely studied using analytical methods
(Bahr 1996) and continuum based numerical models (Gilbert et al. 2014; Jarosch
2008; Le Meur et al. 2004). For example, analytically derived shallow ice equation
has been used to predict the flow behaviour of an ice slab on inclined bedrock
(Liithi 2013). The equation is based on well established physical laws such as con-
servation of mass, force balance and Glen’s flow law. Similarly, continuum based
numerical models like finite element method (FEM) can be used to study the same
behavior but are not restricted to simple geometries as the analytical methods of-
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ten are. As long as ice can be considered as continuous material, the continuum
based numerical methods are useful in predicting its behaviour. These condi-
tions are met within the elastic and viscous limits of ice. Ice is however a very
brittle material and even relatively small strain rates will induce fracturing and
fragmentation. Continuum models can be accommodated for this for example
by modifying the constitutive equations used for describing the material. In this
way, the effects of fracturing can be simulated by reduced viscosity and stiffness.
Even though this approach is useful amongst the continuous models, it can not
realistically simulate the true discontinuity of fragmenting ice mass.

The main objective of this work was to build a numerical model capable
of reproducing the elastic, viscous and also brittle behaviour of glacier ice. To
this end, discrete element modelling (DEM) was adopted instead of continuum
modelling. The basis of the DEM concept was laid by Cundall in the 1970s (Cun-
dall 1971, 1974, 1978; Cundall and Strack 1979) but few models exist that describe
all the aforementioned components necessary to simulate glacier ice. To the au-
thor’s best knowledge, no such implementations in the field of glaciology have
been constructed. The idea of discrete element modelling is to construct the sim-
ulated material from a large number of individual grains or particles that interact
through collisions and cohesive interparticle potentials. The interparticle poten-
tials can be given a maximum threshold of stress, strain or energy which allows
the material to fracture and fragment in a natural way. Moreover, if the potentials
are described in a suitable fashion, the material can be made to realise also elastic
and viscous behaviour.

This thesis is structured as follows: A brief introduction to discrete element
methods is given in Chapter 2. In the beginning of Chapter 3 the basic properties
of glacier ice are introduced as the basis for glacier ice model construction. The
rest of the chapter is used to present the glacier ice model. In Chapter 4 the sim-
ulation model is applied to selected glacier specific applications and their results
are presented. In Chapter 5 the ending remarks and a brief outlook is given.



2 DISCRETE ELEMENT METHOD

The discrete element method, also called the distinct element method, is a numer-
ical method used to simulate granular materials. The model description starts
with a collection of discrete particles of varying shape and size and the forces
between them. During a simulation the Newtonian dynamics of each individual
particle is calculated forward by using a time integration scheme.
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The use of DEMs became possible in scientific research in the early 1970s with the
microcomputer revolution. At the same time, Cundall published his paper where
he introduced the method (Cundall 1971). In the years that followed, Cundall re-
fined his method (Cundall 1974, 1978) and at the end of 1970s the method was val-
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idated against experimental findings in his renowned paper (Cundall and Strack
1979). The number of published papers started to increase steadily as better algo-
rithms and methods were developed and the method became more widespread
(Fig. 1).

Nowadays, DEM models are used across disciplines in a great number of
different applications ranging from earth and planetary sciences (Johnson et al.
2015; Kazerani 2013; Bidgoli et al. 2013) through chemical engineering (Freire-
ich et al. 2015; Thornton et al. 2015; Wolff et al. 2013) to fragmentation of brittle
and plastic materials (Carmona et al. 2014; Timar et al. 2012; Astrom 2006; Kun
and Herrmann 1999). In addition to the Cundall type DEM model, many differ-
ent kinds of models belonging to the DEM family have been developed, namely
the generalized discrete element method (Williams et al. 1985), the discontinuous
deformation analysis (DDA) (Shi 1992) and the combined finite-discrete element
method (FDEM) (Munjiza 2004). In this thesis the investigation is restricted only
to the Cundall type of model. Even with this restriction a large variety of choices
can be made about the model description. Nevertheless, there are some common
features in the models that can be recognized. In this chapter these basic features
are presented. Before going into the details of properties of DEM models, it is em-
phasized that the presentation here is not comprehensive and for further details
the reader is encouraged to explore the references given in the following sections.

2.1 Particles

A single particle is the most basic constituent of any DEM model. The particles
can be made virtually any shape or size. The most usual choice is to use spheres in
three dimensions (Pal et al. 2014; Kun et al. 2014, 2013; Timar et al. 2010; Carmona
et al. 2008) and disks in two (Sator and Hietala 2010; Sator et al. 2008; Astrém and
Herrmann 1998). Besides spheres and disks, particle shapes such as triangles
(Zhang et al. 2013; Kazerani et al. 2010), higher order polygons (Nouguier-Lehon
et al. 2003; Kun and Herrmann 1996), pills, cubes (Munjiza 2004) and clumped
particles (Gao et al. 2012; Rong et al. 2013) are used. In general, more complex
particles can be regarded to produce more realistic simulations but with a higher
computational cost. The most usual particle shapes used in DEM models are
shown in Table 1.

The reason for the lower computational cost of more simple particles lies
in the simple collision detection and force calculation algorithms. For example,
spheres can be guaranteed not to overlap if their relative distance is greater than
the sum of their radii, regardless of their orientation. The same kind of simple
rule cannot be formed for more complex particle shapes like cubes or tetrahe-
drons. Also, forces between spherical bodies usually work parallel or perpendic-
ular to the line joining the sphere centres. This simplifies calculations and boosts
efficiency. Two particle shapes from Table 1 should be pointed out. The general
polygon cannot be given a single estimate of computational cost because it de-
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TABLE1 Most common particle shapes in DEM models.

Dimension Shape S;)STputatlonal Example reference

2D Disk ' Low Sator et al. (2008)

2D Triangle A Moderate Zhang et al. (2013)
General . Kun and Herrmann

2D Polygon . Moderate - High (1996)

3D Sphere o Low Kun et al. (2013)

3D Tetrahedron A Moderate Smeets et al. (2015)

3D Cube O Moderate Smeets et al. (2015)

3D Clumped @  Low-High Gao et al. (2012)
particle & '

pends on the number of vertices. The higher the number, the slower the compu-
tation. The same applies to the case of a clumped particle that reduces to a sphere
if the subparticle number reduces to unity. Contrary to polygons, for clumped
particles the computational cost does not emerge from slower collision detection
algorithms because single sphere algorithms can be used. The increase in compu-
tational cost emerges in this case as a result of higher number of particles. After
the choice of particles, the minimum requirement for any sensible particle system
is the inclusion of contact interaction to the model. These interaction forces are
the subject of the next section.

2.2 Contact interactions

In the course of a DEM simulation particles may, and usually will, come close
enough to each other to make a mechanical contact. For simulations to be phys-
ically realistic and useful, the particles cannot go through each other without in-
teraction. In this section simple interaction force schemes for spherical bodies
are presented. Consider the case of two three-dimensional spheres that are in a
mechanical contact and restricted to three degrees of freedom, of which one is ro-
tational and two are translational (see Fig. 2). Fully three-dimensional treatment
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has more degrees of freedom but the treatment is similar and not presented here
for the sake of clarity.

O

FIGURE 2 Two three-dimensional spheres in contact restricted to two-dimensional
plane. In typical simulations the overlap ¢ is very small compared to the
particle size, in this image it has been exaggerated for clarity.

As was mentioned earlier, there is a simple rule to determine if spheres (or disks
in two dimensions) are in contact which can be expressed as

Cip=Ri+Ry— | —13| >0, (1)

where the symbols refer to ones given in Fig. 2. Equation (1) does not only give

a condition for mechanical contact but also a quantitative measure which can

be used to calculate the forces between the particles, namely the overlap ¢ (see

section 2.2.1). The total force applied to one of the particles of any shape and

dimension in a particle pair can be described by

ﬁlg _ {F{E + Flsz, if 612 >0 (2)
0, otherwise.

Of course the other particle feels a force of the same magnitude but opposite
direction. For the spheres in Fig. 2 the normal and tangential components in Eq.
(2) can be written in the form

Fi, = F, figp E, = F, 812, (3)
with unit vectors
A ?2 - 7;]. PN A]/ AX
Ny = 5——=— S1p = (—nN n . 4
2= TR 12 = (—fiyy, 175) (4)

In the following, we always refer to the two-sphere system described in Fig. 2
and the subscript 12 is omitted. In the next subsections some ways to model the
normal and tangential forces for two-sphere geometry are presented.
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2.2.1 Normal forces

One of the simplest ways used to model normal force between two spheres in
contact is the linear spring-dashpot model (Péschel and Schwager 2005) given by
equation

F" = Cel + Cal, (5)

where C, and C; are the elastic and dissipative constants, respectively. Without
the dissipative term the colliding particle system would not be able to lose kinetic
energy and would keep moving endlessly. The time derivative of the overlap is
the difference in normal velocities between the spheres i.e. the relative normal
velocity

(=" 0" = (0 —01) -7, (6)

where once again the symbols refer to Fig. 2. The simplest model is not usually
the most accurate one. This becomes obvious when the restitution coefficient
derived from the basis of this model is examined. The restitution coefficient is
defined as the ratio of postcollisional and precollisional normal relative velocities
v and v/, respectively. For the case of Eq. (5) it is presented in the form (Shéfer et

al. 1996)
_1/2
e=v—/—ex Ca [ Ce —( Ca )2 (7)
v Pl Drttegr \ e 2 ’

where megs = mymy / (my + my) is the effective mass of the colliding particles 1 and
2. From Eq. (7) it can be seen that € is independent of the impact velocity. This,
however, is not supported by experimental results according to which € decreases
with collision velocity (Miiller et al. 2013; Shéfer et al. 1996). For a more realistic
normal force, the results of the Hertz theory of elastic contact (Johnson 1985) can
be used for spheres to yield

F” _ 2Y\/Reff §3/2’

3(1—12) ®

where Reif = R1Ry/(R1 + Ry) is the effective radius of the spheres in contact, Y
is the Young’s modulus of the material and v its Poisson’s ratio. For dissipative
behaviour, Eq. (8) must be coupled with a term which is a function of the time
derivative of the overlap ¢. By choosing

n_ 2YVRetf 230~ 2
F —m@ Cag, )

we get a restitution coefficient that increases with collision velocity which still
contradicts experimental evidence (Shéfer et al. 1996). A better match with ex-
periments is achieved with the form
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n_ 2YVReff 2372 & 21724
F' = 3(1 o UZ)g CdC Cl (10)

where C, is a function of sphere radii and two coefficients of bulk viscosity (Bril-
liantov et al. 1996). The properties of the force schemes presented here are not
studied systematically, but a few points are worth mentioning. As in computa-
tional physics in general, a compromise between precision and efficiency has to
be made. In the case of normal forces, it means that the seemingly obvious solu-
tion of choosing Eq. (10) with the most realistic behaviour for € is not necessarily
the most useful option. It is possible that the importance of efficiency outweighs
the difference in precision. Thus, the goals of the research dictate which force
models should be preferred. Secondly, the difference between a linear and non-
linear dependence on the overlap ¢ (e.g. Egs. (5) and (10)) diminishes with very
small values of ¢. In a simulation setup where the forces driving the spheres to-
gether are small compared to the elastic stiffness, the overlaps will remain small
and the choice of normal force scheme is irrelevant. In these circumstances it
pays to choose the more efficient approach. Thirdly, as Poschel and Schwager
(2005) points out, the force laws presented here may lead to an artifact of attrac-
tive normal force at some point of the collision. This results from the fact that
the damping term in a force law may grow larger than the elastic part giving a
negative net force. This does not happen in real particles as they do not overlap,
but deform. In the receding part of the collision, the particles move away from
each other faster than the deformation recovers and the particles actually detach
before the damping term would grow large enough for the total force to be nega-
tive. This can be compensated in the simulations by assigning minimum normal
force as zero.

2.2.2 Tangential forces

It can be justified to use only the normal forces presented in section 2.2.1. For
example, if it is expected that the studied system has only a small number of par-
ticle clusters with less than two particles (see Section 2.4) the system possesses
intrinsic friction due to the surface roughness of many-particle agglomerates.
The same is true for simulation models where unbreakable clustered particles
are used. However, it is usually preferable to include tangential forces in parti-
cle contacts to simulate friction. A simple form for tangential force often used in
DEM models is

F® = —u |F"| sign(v°®), (11)
where y is the coefficient of friction and v° the tangential component of the rela-
tive velocity between sphere surfaces i.e.

v° =05 — 0] + Rywy + Rpwy = (02 — 1) - § + Ryw1 + Rowy. (12)
For the symbols, see Fig. 2. The tangential force scheme given by Eq. (11) is suffi-
cient in dynamic simulation setups but does not take into consideration the case
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of static friction. When trying to simulate static arrangements of non-attached
particles (like sand heaps) with Eq. (11), stable configurations can not exist. Equa-
tion (11) allows the particles to slide past each other and the system slowly dif-
fuses. To remedy this shortcoming, different schemes that incorporate static fric-
tion has been developed. Probably the most well-known of these schemes is the
one proposed by Cundall and Strack (1979) and later used by many others (Lee
1994; Tsuji et al. 1992; Zhang and Campbell 1992), namely

F* = —min([ksg|, |pF"|) - sign(c), (13)

where k; is the tangential stiffness and ¢ is the tangential displacement accumu-
lated from the time fy when the particles first came into contact, described math-
ematically as

c(t) = / o (¢)dF. (14)

The scheme given by Eq. (13) is able to reproduce static and dynamic friction.
Thus, this or similar schemes should be used if static friction is relevant in the
application. As in the case of normal force schemes, a more realistic presentation
of the force comes with added complexity and higher costs of computation. In
the case of Eq. (13) one has to add data structures for handling the tangential
displacements and additional computation is needed to decide in each time step
the precedence of the two possible values for the tangential force.

The force schemes for more complicated particles are not presented in this
thesis but more information can be found from e.g. Pdschel and Schwager (2005),
where in particular a rigorous treatment of contact forces for triangular particles
is presented. In this and the previous section the simple contact force schemes
for spherical particles were presented and Eq. (1) was used as a rule to determine
whether the particles are in contact. To calculate the overlap of each particle pair
in a simulation of thousands or even millions of particles is, however, very time-
consuming and soon becomes the bottle-neck of the program. The next section
focuses on this problem.

2.3 Nearest neighbour detection algorithms

2.3.1 Brute force nearest neighbour algorithm

A straightforward way to calculate the effects of particle-particle interactions
would involve computing the contact forces for all particle pairs in the system
(Verma et al. 2014). Such an approach may be useful for small number of parti-
cles as the implementation is by far easier than any of the competing methods and
the absolute computational time may not be excessively long. For larger systems,
this method becomes impractical. To illustrate the point, let us consider the case
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of N disks of equal radius. Each disk in this system has N — 1 other disks which
it can collide with. Because each interaction between two disks is calculated only
once there are N(N — 1) /2 force calculations. In a two-dimensional system of
equal sized disks, each particle has a maximum of 6 direct neighbours. Then the
total amount of necessary calculations is roughly 6N /2 if the boundary effects of
the lattice are omitted. Now the efficiency of brute force nearest neighbour algo-
rithm (BFNNA) as a function of disk number can be defined as the ratio of actual
calculations and the necessary calculations as

6N/2 6N 6 (15)
N(N-1)/2 N(N-1) N-1
The graph of the efficiency of the BENNA together with other algorithms that we
will discuss in the following subsections are shown in Fig. 3. As can be seen from
the image, the efficiency of the BENNA drops quickly after 10 disks and at 1000
disks it is already pretty useless. Modern computers can still run easily with 1000
disks but a lot of time is wasted on unnecessary calculations. Of course, for every
non-contacting disk only a single if-statement is evaluated compared to the full
contact force calculations of contacting ones. This increases the efficiency by a
constant factor but does not change the overall behaviour.

Epr =

I B:rute forcelalgorithm I
Modified brute force algorithm

0.8 - Kd-tree algorithm -------- .
2 Linked cell algorithm e
&
o 06 |
"'a_) el T S Wb i g o e o i e A R
D [ R B S S
2 04 Ff .
®©
(&)
o

0.2 -

0 . i il 4 i Al = 1 M PR s T
1 10 100 1000 10000 100000 1e+006

Disk number

FIGURE 3 Efficiencies of different nearest neighbour algorithms as a function of disk
number. Efficiency is evaluated as the ratio of actual calculations and neces-
sary calculations.

2.3.2 Modified brute force nearest neighbour algorithm

To keep this simple approach to nearest neighbour search but to increase its effi-
ciency, the modified brute force nearest neighbour algorithm (MBFNNA) can be
used. In this approach, the neighbour search is done only occasionally and the
nearby disks of each disk are saved in a data structure. This approach relies on
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the valid assumption that disks that are close to each other at one moment will
remain close to each other for a number of future time steps (the subject of time
integration and time steps will be addressed in section 2.5). In a typical procedure
the distances between all the disk pairs are calculated and for each disk a list of
disks closer than a predescribed threshold distance dy;, are saved. The evaluation
of a suitable number of time steps between updates can be made in many ways.
One possible way is to find the maximum speed vmax amongst all the disks in
the system at a certain time step and then calculate the time steps necessary for
two disks at the edge of dy, moving at maximum velocity to reach each other.
For example, if the maximum velocity in the lattice at time step 0 is found to be
Umax = 10 m/s, the threshold distance is assigned as dy, = 3 m, the radii of all the
disks are r; = 0.5 m and the time step length is At = 0.0001 s, we can evaluate the
number of time steps between updates to be

. dgw —2r;  3m—2-05m
" 2VmaxAt  2-10m/s - 0.0001 s

Notice that in the numerator of Eq. (16) the disk radii are subtracted from the
threshold distance. This is done because the distance is usually evaluated be-
tween the centres of the disks but the contact starts when the edges collide. This
approach is not infallible, however. The disk velocities are evaluated in the be-
ginning of an update-free period and of course they can accelerate. One has to
be aware of this possibility and an application specific safety factor can be used.
For example, a factor of 2 could be used in Eq. (16) and an update interval of 500
time steps would be achieved, still a lot faster than the pure BFNNA.

Another safe method for assigning the update interval is to keep track of
each disk during the simulation. When any of the disks has moved a distance
of (dy, — r;)/2 the update is initiated. This approach is safe since in the worst
case scenario another disk has moved exactly the same distance towards the first
disk and the two are just starting to collide provided that they were exactly the
distance dy, apart in the beginning of the update free period. The probability
for this to happen in a simulation of thousands of disks is diminishingly small.
Therefore a weaker condition can be used, for example by doubling the distance
required for any of the disks to move before update. This of course destroys the
unerringness of the approach but increases its efficiency. No general guidelines
can be given about the preference of maximum velocity or disk tracking approach
since the overall computational cost depends a lot on the actual implementation
and application.

The efficiency of the maximum velocity approach can be estimated as fol-
lows: The update step takes as long as one step in the BENNA but its cost can be
divided equally to steps with no updates. Also, at every time step, the neighbour
list for all N disks is processed. Let us use an update interval of 1000 time steps.
The total efficiency for the MBFNNA is then given by

= 1000. (16)

6N
N 6000

Emer = yv 3 64N N — 1+ 6000A’ (17)
2 1000 2
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where A is a factor related to the calculation of forces for one disk using the neigh-
bour list. If the value of dy, is small enough only the nearest neighbours are cal-
culated and A = 1. However, this leads to a smaller number of update free time
steps. In Fig. 3 a value of A = 2 has been used. It is evident that the modification
of the BENNA is highly profitable. Nevertheless, as the disk number increases
the time taken by the update step starts to dominate and eventually the efficiency
drops close to zero. The efficiency drop results from the O(N?) complexity of the
nearest neighbour detection algorithm. To reach larger values of particle number,
an algorithm with lower complexity must be used. In the following sections two
more efficient methods are introduced.

2.3.3 K-dimensional tree algorithm

The k-dimensional-tree (k-d tree) algorithm is based on division of space into
smaller regions so that nearest neighbours are searched for only in the immedi-
ate surroundings of the particle in question (Verma et al. 2014). Here the algo-
rithm is presented for a system of disks of equal size. Generalisation to a case
of three-dimensional spheres of random size is straightforward. The process has
two stages. First, the disks are arranged in a binary tree structure according to
their locations. Second, the tree is used to find neighbours for each disk by navi-
gating in space using the constructed tree as a map. To build the tree, consecutive
divisions of space in x- and y-directions are performed. In Fig. 4 the first three
steps of such a process in a 9 disk system are presented.

@
o 5P D
OO0 Oewv G(p

(a) (b) (c)

1 ole ol ﬁgg
O DD
o ¢

FIGURE 4 Division of disks in regions according to k-d tree algorithm. In (a) the middle
disk in the x-direction is used as the centre point of division. In (b) and (c)
the same is done for the subregions in y- and x-directions, respectively.

The first spatial division is done either in x- or y-direction. In Fig. 4 x-direction
is used. The disk acting as a divider is chosen by sorting the disks according
to their x/y-coordinates and choosing the one in the middle. If there is an even
number of disks, then the first of the middle pair is chosen. This division with
alternating horizontal and vertical lines continues until there are no disks left in
the subdomains. The first divider disk becomes the root node of the k-d tree
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and every following divider becomes a parent in its own layer. To illustrate the
buildup of a k-d tree, the tree is shown in Fig. 5 for each of the three steps of Fig.
4.

Layer 1: X- @ o o

division

Layer 2: Y- @ 6 @ 9

division

doion D ® ® ©
(a) (b) (c)

FIGURE 5 Phases (a), (b) and (c) corresponding to the three phases shown in Fig. 4

The k-d tree is constructed in a way that the nearest neighbours of any disk are
found by processing only a very small fraction of the entire tree. For example, if
we are interested in the neighbours of disk 6 in Fig. 4 and the nearest neighbour
distance is set as 3 7;, it is impossible that such neighbours could be found in
the right branch of the tree. Similar assessments can be made for most of the
branches and it turns out that the complexity of finding the neighbours of any
single disk is on average O(logN). Next we derive the total efficiency of the k-d
tree algorithm. First, we have to build the tree to be able to use it. In every layer
of the tree the disks have to be arranged according to their x- or y-coordinates.
In this example, we assume that merge-sort algorithm for sorting is used. The
complexity of merge-sort is O(NlogN). For each layer the sorting has to be done
to each new subregion, so the total cost for building the tree is

Crp = BNlogN + 2B - glogg +4B - %log% +-e, (18)

where B is a constant representing all the operations related to the sorting. It
can be assumed that the total amount of these operations is proportional to the
total amount of particles to be sorted. The value for B cannot be given a single
value, it depends a lot on the actual implementation. In the tail of Eq. (18) there
will be deviation from the pattern due to uneven division of particles but here
it is assumed that the particles are evenly divided. This assumption simplifies
the calculations and has no effect on the overall efficiency. Equation (18) can be
further modified to yield
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Crg = B.N<logN+logg+log%+...>

N N
= B-N(log[N-?Z---D. (19)

The square brackets in Eq. (19) contain logN terms and can be expressed in the
form

C - NlosN, (20)
where the constant C is
logN (1+logN)
C—2 1)

Further modifications of Eq. (19) leads to

Crg = BN(log(C- N"98N)) = BN(logC + logN'°&N)
= BNlogC + BNlog?N. (22)

By substituting C from Eq. (21) and modifying we finally arrive at

Crg = %] (logzN - logN) . (23)
Complexity of searching from the tree was already mentioned before and for N
disksits cost is Cst = DNlogN, where D is constant number of operations related
to searching neighbours for one disk. Finally the efficiency can be calculated by
using the same idea as in the MBFNNA that updates are done only once in 1000
time steps to yield

6N
Expr = w5z 2
= (log"N—logN )+DNlogN 6N
2 1000) + A%
6N 1000
2 E¥ (1og?N — logN ) + DNIogN +3000AN

6000
B (10g?N — IogN ) + DlogN + 60004

(24)

The parameters A,B and D affect the efficiency curve but do not change its basic
shape. In Fig. 3 we have used A = 2 as in the case of MBFNNA, B = 5 and
D = 25. As can be seen from Fig. 3 the efficiency of k-d-tree algorithm follows
the MBFNNA curve up to roughly 1000 particles, but with particle systems larger
than that it becomes more efficient. There is however a price to pay for better
efficiency and it is added complexity. Programming kd-tree algorithm involves
using several data structures and usually use of recursive algorithms which are
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a lot harder to comprehend than the simple algorithms described earlier, usually
based on iterative calculations. Another method, which is sort of a combination
of BFNNA and k-d tree algorithms, is presented in the next section.

2.3.4 Linked cell algorithm

The basic idea behind the linked cell algorithm (LCA) is similar to k-d tree al-
gorithm but the approach is simpler (Pdschel and Schwager 2005). Instead of
building a tree to help navigating the space, the whole disk region is covered
with a grid such as that exemplified in Fig. 6. Let us consider the case of finding
nearest neighbours of the purple disk in Fig. 6. First, each disk is assigned in
exactly one cell of the grid. It doesn’t matter if some cells are left empty but the
grid should be large enough to cover the whole region where the disks reside.
In the next step, the distance from the purple disk to every other disk in its own
and the nearest cells is calculated (green and yellow cells in Fig. 6). If the dis-
tance is less than a predescribed threshold distance, the disk in question is saved
in the nearest neighbour list of the purple disk. The procedure is astonishingly
simple and, as we shall see, also very efficient with large values of disk number.
The complexity for assigning disks to cells is a linear process where each disk
is accessed, its coordinates are read and the correct cell is determined. Thus the
complexity for this process is O(N). As might be expected the inspection of near-
est neighbours is also a linear process of complexity O(N). The constants B and
C are related to the operations in assigning disks to cells and finding the disks
in the nearest cells, respectively. The constant C depends on the size of the cells.
The larger the cells, the more work is done checking them and correspondingly
larger the factor C. Using these estimates we are ready to calculate the efficiency
of the whole algorithm, and once again we will do the update only once in every
1000 time steps. The efficiency can be written as

6N
Erca = <B+C)N2 6N

w00~ T A%

6N 1000 3000

2 (B+C)N+3000AN ~ B+ C+3000A" 25)
Notice that the efficiency for LCA does not depend on the number of disks. Thus,
for very large systems LCA appears to be the obvious choise. In Fig. 3 the effi-
ciency of the LCA is plotted with B = 5, C = 25 and as in earlier cases A = 2.
At this point it should be emphasized that the preferential order of nearest neigh-
bour algorithms at certain disk number as portrayed by Fig. 3 is only approx-
imate. The parameters for each curve are highly dependent on the actual im-
plementation. Of course, eventually when the disk number is increased the ap-
proach that does not depend on the disk number prevails.

In conclusion, pure BENNA is hardly ever a practical option but its modified
version might be quite sufficient for small systems. With large systems, the k-d
tree algorithm or LCA should be preferred. However, there are other reasons



FIGURE 6 Grid used in linked cell algorithm.

that make LCA even more appealing compared to k-d tree algorithm. Firstly, it
is conceptually simpler and easier to program. Secondly, because of its simplicity
the parallellisation is quite straightforward.

2.4 Cohesive interactions

In addition to the forces described in section 2.2, cohesive interactions can be for-
mulated to simulate intact solid materials. The force schemes used in this context
are as numerous or even more so than in the case of contact interactions. In this
section, some simple cohesive force schemes are presented and more complicated
ones are discussed.

2.4.1 Linear spring model

One of the simplest ways to model a cohesive interaction between individual
particles is the linear spring model illustrated in Fig. 7 (a). The model is moti-
vated by the fact that many materials behave linearly as a function of elongation
and compression when the deformation is small (Sadd 2009). This applies quite
accurately to brittle materials until failure.

The mathematical description of the scheme is actually almost identical to
the spring-dashpot model given by Eq. (5) in section 2.2.1. In this case however,
the overlap ¢ is replaced by the deformation length d of the spring and the force
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FIGURE 7 (a) Schematic presentation of forces in linear spring force scheme. Multiple
row (b) and a single row (c) cantilever beam simulated with linear spring
model. Green disks are rigid and the red lines represent springs.

is calculated both in compression and in elongation. If disks 1 and 2 are attached
to each other with a linear spring (see Fig. 7 (a)), the forces felt by the disks are

Fi = (ked+kyd)?
B = —(ked+kyd)?, (26)

where ks and k; are the elastic stiffness coefficient and damping coefficient, re-
spectively. The damping term k;d is used to dissipate energy, otherwise the ma-
terial would oscillate endlessly when disturbed. The actual choice of the elastic
and damping coefficients depends on the simulated material. Coupling of the pa-
rameters to glacier ice specific properties is presented in section 3.2. The scheme
is certainly appealing due to its simplicity and resulting computing efficiency.
Nevertheless, the scheme has some serious drawbacks. As the forces apply only
in the axis joining the disk centres, there exists no bending stiffness. This might
not be a serious problem in systems where chains of disks connected with single
springs rarely appear, but if they do, rather unrealistic behaviour occurs. To il-
lustrate this behaviour, two-dimensional cantilever beams under the influence of
gravity are simulated using multiple and single rows of disks (Fig. 7 (b) and Fig.
7 (c), respectively). As can be seen, the multiple row beam can withstand shear
stresses and attains a stable bent configuration. The chain of disks and beams
in Fig. 7 (c), on the other hand, behaves like a string with weights bound to it.
There is no need to emphasize that it models the cantilever beam behaviour quite
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unrealistically. There is no difference in the behaviour of single springs in the
two cases. As a whole the multirow case acts more realistically however because
the diagonal springs stiffen the beam so that it cannot bend freely. To attain a
greater level of reality, the linear spring model must be expanded with bending
stiffnesses. Usually, with this addition the springs are no longer called springs
but beams.

2.4.2 Shear beam model

A simple addition to the linear spring model to attain bending stiffnesses involves
retaining forces proportional to the bending angles 6; and 6, of the disks away
from the beam axis. A deformation event according to this scheme is shown in
Fig. 8.

6,

deformation ,

’
%

FIGURE 8 A beam between disks 1 and 2 in its equilibrium state and after deformation.

The forces for disks 1 and 2 in interaction are calculated similarly to the case of a
linear spring model, but additional terms are included i.e.

Fi = (ksd + kgd)? — ws = b, (27)
where ks and k;, are the axial and bending stiffness parameters, respectively. The
damping coefficient from Eq. (26) is renamed as k;; to distinguish it from the
other damping coefficient needed in this approach but its meaning remains the
same. The directions of the unit vectors # and § are shown in Fig. 8 and d is the
difference in beam length between equilibrium and deformed statei.e. d =1 —I.
The description of the force scheme with Egs. (27) is not complete because torques
have to be also considered. They can be expressed in the form

T = kyb1 — kb
T = kb2 — kg0, (28)

where kj, is the bending damping coefficient. The second term in the right hand
side of Eq. (28) is used to damp the rotational degree of freedom. Although the
shear beam model can induce bending stiffness and the stiffness parameters can
be adjusted for a large system of beams to yield desired elastic parameters (see
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section 3.2), a single beam has the same properties regardless of its cross-sectional
area and length. It is obvious that these geometrical aspects affect the behaviour
of a single beam and for a better level of reality the programmer might use Euler-
Bernoulli or Timoshenko beams (Seon et al. 1999). Both of these models take into
consideration the properties of individual beams but Timoshenko beams model
shearing behaviour more realistically (Ghugal and Sharma 2011). By using con-
tinuous potentials like Lennard-Jones potential (Thomson et al. 2014) for contact
interaction, no additional cohesive interaction model is needed since the contact
interaction scheme models both cohesion and repulsion. Plastic and viscoelas-
tic cohesive force models are not presented here but an example of a viscoelas-
tic model is presented in section 3.2 for glacier ice in which the viscoelasticity
is achieved by using breaking and reforming beams. Interaction breakdown in
general is the subject of the next section.

2.4.3 Interaction breakdown

One of the appealing properties about DEM models is that fracturing of brittle
materials is easy to implement into the simulation model. For the case of con-
tinuous potentials e.g. Lennard-Jones potential, the breakdown comes naturally
as the cohesive force between the particles vanishes continuously. For harmonic
potentials e.g. shear-beams introduced in Section 2.4.2, the retaining force grows
linearly as a function of distance and the beam will not break unless otherwise
stated. The removal of the beams from the simulation is simple and straightfor-
ward procedure but the removal cannot be made at random. There has to be a
physical rule that controls the breakdown. As usual for DEM models, the choice
of this rule is not unambiguous.

In the following we will focus only on tensile stress states in two dimen-
sions. Compressive and three dimensional cases are treated similarly but not
handled here. There are many fracture criteria used with DEM models. One of
them is the maximum normal stress criterion (Sochor 1998)

Omax Z 00, (29)

where 0max is the maximum normal stress and oy is the critical normal fracture
stress. This condition is realized only when the fracture surface is perpendicu-
lar to the applied normal stress (Zhang and Eckert 2005). A schematic view of
a two-dimensional tensile stress scenario is shown in Fig. 9 with fracture sur-
faces produced with different fracture criteria. The Tresca failure criterion gives
a failure condition as (Zhang and Eckert 2005)

Tmax = T0, (30)

where T,y and 1y are the maximum shear stress and the shear fracture stress.
The maximum shear stress occurs on a plane inclined by 45° with respect to the
tensile stress axis. Another criterion for tensile failure is the Mohr-Coulomb stress
criterion, which postulates that the shear failure depends on both the shear and
normal stress i.e.
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FIGURE 9 Fracture plane angles produces by different fracture stress criteria.

T+u-0> 1, (31)

where y is a positive constant with range 0 < p < oo giving a fracture plane
angle 45 < 6 < 90 thus never reaching 45 or 90 degrees exactly. Yet another stress
criterion, called von Mises stress criterion, has the fracture plane at 60° from the
tensile stress axis. All the stress criteria given above contain some shortages.
Maximum normal, Tresca and von Mises stress criteria all depict a failure event
where the fracture surface is at a given angle compared to the tensile stress axis.
According to experimental evidence (Lee et al. 2004; Zhang et al. 2003; Inoue et al.
2001; Liu et al. 1998), a wide variety of fracture angles have been observed. Thus,
any of the three mentioned criteria alone is not valid for general material. Mohr-
Coulomb stress criterion on the other hand is more suitable for a wide variety of
materials but cannot explain the limiting case of & = 90°. Due to these limitations
Zhang and Eckert (2005) propose a more general criterion called ellipse criterion
which can be expressed in the form

2 2
o T
—+—>1 (32)
% T

According to this criterion the tensile failure of the material is controlled both
by normal stress ¢ and the shear stress T but not in a linear way like in Mohr-
Coulomb criterion. The ratio & = 7y/0p can be used to yield a failure plane angle
of 45 < 0 < 90 thus unifying all the criteria in a single rule.

The preferred definition of stresses ¢ and T depends on the particular DEM
model used. For example, in the case of beams the normal and shear stresses
come naturally from the beam stress state and can be used in Eq. (32). Alter-
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natively to the stress based criteria described in this section, energy thresholds
can be used. This approach is not presented here but an example is presented in
section 3.2 during the glacier ice DEM model formulation.

2.5 Time integration

So far we have established how to calculate the forces that apply to particles in
DEM simulations and how to make sure that only necessary interactions are con-
sidered. But how are these forces translated to physical movement of the particles
that mimics the way particles behave in real physical world. Let us consider an
example of an object in a one-dimensional free fall scenario starting from the rest.
The wind resistance and all other possible forces except gravity are neglected. In
this scenario it is a task of rudimentary physics to derive the equation of motion
of the particle as

[

y(t) = 38t 33)

where g is the acceleration of gravity and t is the elapsed time. The direction of
y-coordinate is chosen to point in the direction of gravity, so that the value of g is
9.8 m/s. To find out the y-coordinate at any moment of time ¢ it is easily calcu-
lated with Eq. (33) as it is a continuous function of time. Computer programs are
not however continuous, they are discrete. The program must be given specific
instructions on how to acquire the value of particle location in the next time step
based on its current position. A simple scheme to use in the free fall case could
be to consider the acceleration and velocity of the particle to remain constant for
the duration of the time step. This would give us update rules in the form

Uppat = U+ AL
Yerar = Y+ AL, (34)

where At is the length of the time step. Because acceleration is constant, this ap-
proach gives exact values for the velocities but the positions are approximations.
In Fig. 10 the exact value for the y-coordinate along with four curves representing
different choices for the time step At are shown.

As is evident, the accuracy of the approximation gets better with decreasing
time step length At, which can be stated as a rather general rule amongst all
the time integration schemes. Of course, in the case of free fall, a higher order
integration scheme could have been used to yield exact solutions with all values
of At, but this was only presented as an example. In typical DEM simulations
the actual equations of motion might be highly complicated and approximate
schemes must be used. In the following, a few of these schemes are presented. A
more comprehensive presentation of the schemes presented here, and additional
ones, is shown in Kruggel-Emden et al. (2008).
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FIGURE 10 Accuracy of time integration algorithm of Eq. (34) with different time step
sizes.

Time integration schemes can be divided into three different categories, namely
the one-step, multi-step and predictor-corrector algorithms. Actually we already
saw an example of one-step algorithm in the case of time integration of freely
falling body. The algorithm in question was the forward Euler method which can
be expressed in a general form as

Proar = Tt + 0t
Tipar = U +adiAt. (35)

Here and hereafter 4 is the acceleration caused by all the possible forces described
in earlier sections on a particle with mass m i.e. @ = Eror/ my. The forward Euler
method is certainly appealing due to its simplicity and it has been widely used
in a large number of papers like Di Renzo and Di Maio (2004); Melheim (2005);
Taguchi (1992a). The forward Euler scheme is actually a truncated Taylor series
restricted to the first two terms. To have a more accurate scheme, more terms can
be added to the series. For example, a scheme referred to as TY2 (Kruggel-Emden
et al. 2008) can be expressed as

— — — 1—)
Frant = Tt + OiAt+ EatAtz

Tipar = U +diAt. (36)

It has been applied for example in Taguchi (1992b). Arbitrarily high order ex-
pansions can of course be constructed but the computational cost increases with
every additional term. Another one-step scheme is the central difference or Verlet
algorithm which can be presented in the form
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Uriaty2 = TOi_atyo + (7, Tp_ar2) At
Pronr = Tt + TparaAt. (37)

As opposed to the integration schemes above, in Verlet algorithm velocities and
positions are calculated for time steps that are At/2 apart. If the scheme is applied
to force calculations that depend on the position and velocity, as they usually do
in DEM simulations, forces need to be calculated based on velocities and posi-
tions that are At/2 apart. The Verlet algorithm is in use in many applications
such as Cundall and Strack (1979); Kwapinska et al. (2006); O’Sullivan and Bray
(2004).

In multi-step algorithms, the results from previous time steps are stored and
used to calculate values of future velocities and positions. For example the fifth
order Adams-Bashford scheme can be expressed in a form

Pronr = 11+ NH(010r — 020 ar + 0301—2ar — 04T_3a¢ + O501—ant)
Tppar = O + At(018r — 6oy pr + 038¢—onr — Oaliy—3ar + O5d;—ant),  (38)

where the constants §; — J5 are 61 ~ 2.64, 6 ~ 3.85, 03 =~ 3.63, §; =~ 1.77 and
J5 ~ 0.35. Different order of schemes are constructed by changing the number of
terms and adjusting parameters §;. The Adams-Bashford time integration scheme
has been used amongst many others by Takeuchi et al. (2004); Sundaram and
Collins (1996).

Predictor-corrector algorithms use an initial prediction of the solution in an
upcoming time step which is then altered with the corrector phase to arrive at
more accurate solution. The initial prediction is based on an explicit scheme. For
example, in the Gear schemes the predictor step involves calculations of Taylor
series expansions. From these expansions the positions and their higher deriva-
tives are acquired i.e.

N oL 1, 1- 1.
Tepatp = Tt Ut At + EatAtz + gbtAt3 + ﬂCtA#

~ . 1- 1,

Utyatp = Op+aiAt+ EbtAtz + ECtAtS

- S 1,

Ariaty = G+ biAt+ ECtAtz

EH—At,p = by + Gt

Ciratp = Ct. (39)
The first and second derivatives of the acceleration in Eq. (39) depend on the
order of the Gear scheme used. For the third (GPC3) and fourth order (GPC4)
Gear predictor corrector algorithms they are calculated as by = did/dt,¢; = 0 and

by = da/dt,¢; = db/dt, respectively. Finally, the predictor results are used to
calculate the positions and their higher derivatives as
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— — — 2
Troat = Trratp + 01AGAL
Tiiat = Upyarp + 02000t
Arrat = dipatp +U3Ad
bt+At = bt+At, U4——
PP AL
Ceat = Crpart U555 (40)

where Ad = @y, nr — diyarp and the values for v; — vs are listed in Table 2. Only
third and fourth order Gear scheme parameters are presented in Table 2 but
higher order schemes also exist. Gear’s schemes are highly accurate and are used
in many applications (Balevicius et al. 2006; Peters et al. 2005; Behera et al. 2005;
Thompson and Grest 1991).

TABLE 2 Gear Predictor corrector algorithm parameters vy — vs

Scheme U1 (%) U3 U4 Us
GPC3 1/12 5/12 1 1 0
GPC4 19/240 3/8 1 3/2 1

There is no simple rule for choosing an appropriate time integration scheme. The
higher order schemes have higher computational costs per time step but usually
they can be used with longer time steps, which decreases the amount of total cal-
culations. A typical criterion for the size of the time step states that the collision
time of two particles should be long compared to the time step size. Often a ratio
of 100 is used. The choice of integration scheme should be made for each applica-
tion specifically. Many times such a systematic and laborious evaluation of each
scheme is not possible and an educated guess has to be made. To back up the
choosing process, studies where different schemes are compared can be explored
(Kruggel-Emden et al. 2011, 2008; Rougier et al. 2004; Fraige and Langston 2004).

2.6 Generation of the simulation lattice

In the preceding sections all the necessary components for a discrete element sim-
ulation of granular materials are presented. For a granular flow simulation, the
particles can be given a random and loose non-overlapping starting geometry
using several methods not presented here. Instead, we will focus on approaches
to produce different kinds of starting configurations for densely packed granular
materials. Together with the cohesive interactions of section 2.4, these starting
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configurations can be used to study solid materials. The methods can be roughly
divided into static and dynamic methods. In static methods, the particles are
given starting locations based on predescribed geometrical arrangement. In dy-
namic methods, the time integration schemes presented earlier are used together
with appropriate body forces to arrive at the desired configuration. In Fig. 11
three different simulation lattices produced with static methods are shown. The
lattices are easy to produce because the coordinates of each sphere results from
exact mathematical formula. With this method very large lattices can be pro-
duced with very small computational cost. All lattices in Fig. 11 are produced
with equal sized disks or spheres but polydisperse particles can also be used.
For example, the interstitial sites of regular packings can be filled with smaller
particles.

(a) (b) (c)

FIGURE 11 Two-dimensional (a) cubical and (b) hexagonal and three-dimensional (c)
face-centred-cubic (Elliot 2000) packing arrangements.

The problem with the arrangements shown is that the material that the
model tries to simulate becomes highly anisotropic. For example, when fracture
and fragmentation of brittle materials is simulated, the fracture surfaces have
a tendency to follow the surfaces induced by the regular packing. To remedy
this shortcoming for static lattice generation methods, one can use mesh genera-
tion programs that rely on triangulation algorithms like Delaunay triangulation
(de Berg et al. 2008). In Fig. 12 the mesh generated by a program called Netgen is
shown together with a discrete element lattice produced based on the mesh. The
lattice is produced by placing a sphere in each vertex of the mesh. In the genera-
tion of the lattice monodisperse particles are used, but a tighter packing could be
achieved by increasing the sphere sizes in each location as long as the particles
do not overlap.

The dynamic method presented is a simple sedimentation scheme used in
many applications (Wigcek and Molenda 2014; Rubio-Largo et al. 2015; Pél et al.
2014). The idea in the method is that the particles are first arranged in a relatively
loose vertical column above a container of desired shape. After that, gravity or
similar body force is applied to the particles and the system is driven forward
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(a) (b)

FIGURE 12 Triangular mesh generated with Netgen program (a) and a sphere lattice
for the use of DEM simulation (b) based on the Netgen mesh.

with the force and time integration schemes presented in the earlier sections. The
dissipative force terms allow for dissipation of energy. Finally the system of par-
ticles lies in a dense random packed form in the bottom of the container. In this
approach the particles can be made polydisperse and it is actually recommended
if isotropic lattice is desired. The monodisperse collection will have a tendency
to pile up in a regular lattice which once again creates anisotropic behaviour. The
buildup of a sedimented granular lattice is illustrated in the image series of Fig.
13.

...:ﬂ...‘ 1

.S

FIGURE 13 Four time steps of a dynamic sedimentation lattice generation simulation

Another dynamic method widely used is very similar to the sedimentation type
of lattice generation. Here, a similar initial configuration of loose particle pack-
ing is used. In this case, the particles can be scattered evenly in every direction
around a desired centre point. Next, a centripetal force that drives all the parti-
cles to the direction of centre point is induced. Once again the damping dissipates
kinetic energy and the resulting geometry has a spherical shape. Further geomet-
rical restrictions can be applied to remove particles from the acquired spherical
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aggregate to yield desired lattice shapes.

So far the general guidelines of building a typical DEM model has been pre-
sented but no attention is paid on how to describe a specific material within the
DEM framework. In the next chapter, a specific DEM application is presented
where the model description and simulation parameters are chosen to yield spe-
cific material behaviour. With the acquired model, some numerical experiments
are performed to validate the model and to gain insight into some glacier-related
problems.



3 GLACIER DEM

3.1 Glacier ice

Ice has 18 different crystal structures and three amorphous states (Chaplin 2016).
The form that exists under the typical temperature and pressure conditions of
glaciers and ice sheets is termed as ice Ih (Greve and Heinz 2009). The letter h
stands for hexagonal because water molecules in this type of crystalline form are
arranged in layers of hexagonal rings. The hexagonal plane is referred to as the
basal plane and perpendicular to this plane is the optic axis or c-axis (see Fig. 14

(a)).

C- axis@

(a) (b)

FIGURE 14 Ice at different scales. (a) Crystal hexagonal structure of ice Ih and (b) poly-
crystalline ice formed from distinct ice crystals. In (a) the circles represent
oxygen atoms of H,O molecules and in (b) the lines represent directions of
c-axes.
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As one might expect, the elastic and brittle properties of the hexagonal crystal
structure are highly anisotropic. The Young’s modulus is highest when measured
in the direction of the c-axis and uniaxial tensile strength is strongest when load
is applied perpendicular to it (Schulson and Duval 2009). Such direction specific
properties would require a quite complicated DEM model but fortunately large
ice masses do not occur in single crystals but as an aggregate of them i.e. as poly-
crystalline ice (see Fig. 14 (b)). Inside a single crystal of polycrystalline ice the
c-axes are more or less oriented in the same direction (variations occur due to
crystallographic defects) but in a large collection of randomly oriented crystals
the anisotropy of single crystals is averaged out and the material becomes effec-
tively isotropic. The typical size of crystals or grains is of sub-millimetre scale
in freshly formed or highly deformed ice, to tens of centimetres in very old or
slowly moving ice (Greve and Heinz 2009). In a glacier measured in hundreds of
meters or kilometres the isotropy assumption is well justified.

Based on the above reasoning, the elastic properties of glacier ice can be
described with only two independent constants chosen from Young’s modulus
Y, the shear modulus G, Poisson’s ratio v, the bulk modulus K and the Lames
first parameter A (Sadd 2009). In our investigations we have chosen the Young's
modulus, which is the ratio of stress along an axis to strain along that same axis,
and the Poisson’s ratio defined as the ratio of transverse strain to axial strain. The
experimental values reported for glacier ice Y have relatively large scatter. Gam-
mon et al. (1983) report a value as high as 9.33 GPa, while Weeks and Assur (1967)
on the other hand report a scatter from 1.7 GPa to 9.1 GPa. In general, Young's
modulus depends on temperature and brine volume as well as other more mi-
nor factors. It should also be noted that ice is not purely elastic material but also
viscous, a fact that we will discuss more below. The important thing to realize is
that the result of mechanical measurement of Young’s modulus depends on the
loading rate as the viscous effect comes into play. Therefore the reported values
for Y acquired with mechanical methods should be used with caution. Instead,
values acquired with measurements of propagation of elastic waves or ultrasonic
methods should be preferred. A range of values for Y for homogeneous poly-
crystalline ice is shown in Table 3 together with other ice properties that will be
discussed shortly. At this point, it is emphasized that ice is a highly diverse ma-
terial and the properties listed in Table 3 depend greatly of numerous factors like
temperature, salinity, porosity, microcrack density and so on. The parameters
listed are used as general guidelines in the model formulation and should not be
considered as constant material properties.

Poisson’s ratio also has a large scatter depending on loading rate, temper-
ature, grain size, state of microcracking etcetera (Timco and Weeks 2010). The
value used often in literature is 0.325 reported by Gammon et al. (1983) for poly-
crystalline ice at —16 °C. The range for v in Table 3 is given based on the tem-
perature correction function given in the same reference applied to temperature
range —50°C - 0°C. It is noteworthy however that this range widens drastically if
anisotropy in the ice is present (Schulson and Duval 2009).

According to Timco and Frederking (1996), based on a large number of ex-
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TABLE 3 Ice properties

Property Symbol Unit Value

Young’s modulus Y Nm 2 (1-10) - 10’
Poisson’s ratio v - 0.309 —0.332

Density 1Y kg/m3 720 — 940

Tensile strength ot MPa 05-1.0

Flexural strength oy MPa 04-11

Shear strength s MPa 1.1

Compression strength o, MPa 1.3 -13.0

Fracture toughness Kic kPam!/2 50 — 500

Arrhenius factor A s~ 1Pa~3 36-107% —4.9.107%

perimental measurements, the density of sea ice varies from 720 kg/m? to 940
kg/m3 with an average of 910 kg/m3. There are variations due to brine and air
volumes, temperature, water submersion and inaccurate measuring techniques.
The tensile strength of sea ice given by Timco and Weeks (2010) is in the range
from 0.5 MPa to 1.5 MPa. They report also lower values for first-year sea ice
but the values for old ice are more appropriate for glacier ice. The flexural and
shear strength of old ice also falls into the same range as tensile strength but
according to Timco and Weeks (2010) there are no reported values available in
the literature. Estimates based on Timco and Weeks (2010) are shown in Table 3.
Compressive strength is, as is common for many materials, considerably higher
than tensile strength. Richter-Menge et al. (1987) report values roughly in the
range (1.3 — 13.0) MPa depending on strain rate and temperature. Mode I frac-
ture toughness of glacier ice based on 20 experiments conducted by Andrews
(1985) is in the range 57 — 142 kPam!/2. The effect of temperature is not however
treated in that study and can have significant effect on the values. That can be
seen from the experiments conducted by Liu and Miller (1979) who report frac-
ture toughness values for fresh-water ice in the range 86 — 471 kPam'/2. Based
on these values a large range is presented in Table 3.

In addition to the brittle and elastic behaviour, ice has also a viscous regime
where the ice mass slowly flows under applied pressure. The schematic presen-
tation of ice flow behaviour is shown in Fig. 15. When a constant stress is applied
on an ice sample, it results immediately in a reversible elastic deformation. If the
stress is not released the ice starts to deform irreversibly. This behaviour can be
divided into three flow regimes as shown in Fig. 15, the primary, secondary and
tertiary creep. The secondary creep has been a subject of a large number of stud-
ies and a mathematical description for it has been given already over 60 years ago
by Glen (1955). The law bears the name of its inventor and is thereby called the
Glen’s flow law and is presented in the form
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tertiary creep

(accelerating) ¢

mdary creep

primary creep

Shear angle, y

«—
T :

elastic deformation

Time, ¢

FIGURE 15 Shear behaviour of polycrystalline ice. The ice block is sheared with a con-
stant shear stress T and it results in shear angle y in a time ¢ (from Greve
and Heinz (2009)).

D = A(T)o" 1P, (41)

where A(T) is a temperature dependent Arrhenius factor, o is the second invari-
ant of the deviatoric stress tensor, D is the strain-rate tensor, tP is the deviatoric
stress tensor, and n ~ 3. The Arrhenius factor depends on the temperature and it
varies from 3.6 - 107% s 1Pa 3 at —50 °C t0 4.9 - 10~ % s 1Pa 2 at —10 °C. There-
fore the flow velocity of a glacier is highly dependent on the temperature.

3.2 DEM model for glacier dynamics

In Chapter 2, a brief description of discrete element methods and in Section 3.1,
the properties of glacier ice were presented. Here, they are combined to yield
a numerical model for glacier ice. The model consists of two-dimensional poly-
disperse collection of disks. The dispersion (range of disk sizes) was kept high
enough to avoid crystallization but low enough to keep the computational cost
relatively low. Based on numerical experiments, a good ratio between the largest
and smallest diameters of the disks was found to be 1.33. The obvious difference
in the isotropy between monodisperse and polydisperse collection can be seen
in Fig. 16 (a) and (b). Since the goal was to simulate isotropic polycrystalline
glacier ice, the polydisperse collection is favoured. Otherwise, the simulated ma-
terial would be predisposed to fracture and deform in the direction of symmetric
crystal orientations shown in Fig. 16 (a). The simulation lattices have been con-
structed with the sedimentation scheme explained in section 2.6. After the sedi-
mentation simulation has come to rest, the possible beam connections are found



40

with Delaunay triangulation algorithm. A beam suggested by the triangulation
is accepted as a beam if it connects disks that are close enough to each other. This
acceptance condition is expressed in the form

d < C(r+mr), 42)

where d is the distance between disks, C is a constant larger than unity, and r; and
rp are radii of disks that are candidates to be connected. A choice C = 1 results
in a low coordination number (average number of connecting beams for a single
disk) of the lattice and therefore to a too weakly connected material. However,
C cannot be very large (C < 2) because long connections generated by Delaunay
triangulation at the edges of the lattice and also elsewhere can form connections
between disks with an unconnected disk in between them (see Fig. 16 (b)).

(b)

FIGURE 16 Monodisperse (a) and polydisperse (b) collection of disks. In (a), the yellow
arrows represent symmetric crystal orientations and in (b), connections ac-
quired from Delaunay triangulation algorithm are shown with lines. Red
lines are not accepted as beams in the simulations.

The shear beam model presented in section 2.4.2 with small variations was used
to calculate interactions between the disks. The formulation of the beam interac-
tions starts with the elastic energy of a single beam,

1 1
Eiot = Eksez + Ekb(Q% +63), (43)

where €, 01, and 60, are the axial strain and rotation angles of the two ends relative
to the axis of the beam, respectively, and ks and k;, are the corresponding stiffness
parameters. Eq. (43) can be used to derive the forces and torques acting on the
two ends of the beam in the form
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2 kse, k(61 +62),

lo
- kse . kp(01+6>) .
f2 — _li b( 11 Z)S,
0
T = kb,
B = kb, (44)

where [y and [ are the equilibrium and deformed length of the beam, respectively.
These equations are almost identical to Eq. (27) in section 2.4.2, but are slightly
altered to match with Eq. (43). The unit vectors 7 and $ have the same meaning
as in Fig. 8. Deformation of the beam in the direction of the beam axis is damped
by forces

fil = sul?, = —sul?, (45)
and off-axis deformations are damped by torques

T o= —bb, T =—buby, (46)
where dots represent time derivatives. Coefficients s, and b, are chosen to yield
slightly underdamped deformation. When no mutual beam interaction exists be-
tween two disks, the repulsive part of the beam force is used as a contact potential
to keep the disks from overlapping. The collisions are made inelastic with a sim-
ilar damping term as associated with the axial beam force. A maximum value
for beam elastic energy was chosen as a fracture criterion. Because E ~ ¢2, the
fracture criterion can be identified as a Zhang and Eckert stress criterion (32). To
allow for viscoelastic behaviour, the beams were allowed to break also before the
energy threshold was reached with a stress dependent probability. Also, new
beams were allowed to be formed between already disconnected disks. These
fracture rules are explained in more detail in section 3.2.1. The forward Euler
time integration scheme (34) presented in section 2.5 was used to drive the dy-
namics of the system forward. For repetition, the scheme for translational and
rotational degrees of freedom can be expressed in the form

ﬁ;ot(t)/mi
;(t — At) + & (t) At (47)
7i(t — At) +;(t) At

S
—~
~
~—

I

By

—

~~ ~~

~— —
|

ai(t) = T(t)/];
@i(i’) = (T)i(i' — At) + &i(i’)Ai’ (48)
0;(t) 0;(t — At) + @;(t)At,

where m; = 7mpr? is the mass of disk i with material density p and radius ;. In
Egs. (47), f}ot is the sum of all forces acting on disk i, and 4;, 7;, and 7; are the ac-
celeration, velocity, and position of disk 7, respectively. Similarly in Eqgs. (48),the
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angular acceleration, angular velocity, and rotation angle of disk i are denoted by
&;, w;, and é}, respectively. The total torque acting on disk i is 7, and [; = %npr;}
is its moment of inertia. Time step At can be evaluated based on the resonance
frequency of a simple harmonic oscillator given by f,.s = 1/(27)v/k/m, where k
is the spring constant for the oscillator and m the oscillating mass. The time step
can be scaled as period of oscillation which is simply the reciprocal of frequency
At ~ T = 2m/m/k. In two-dimensional system with unit depth the spring con-
stant can be associated with Young’s modulus Y of the material as k ~ Y7rr and m
with the mass of a single disk as m ~ p7tr?. Thus, the time step At can be scaled
as At ~ /pr/Y. Typical time step values in our simulations were in the range of
107> —10"*s.

3.2.1 Adjustment of elastic moduli

Owing to the polydispersity of the disks, the elastic properties of the model are
heterogeneous and anisotropic in a scale comparable to the disk size. In larger
scales, however, parameters ks and k; that control the beam stiffness can be cho-
sen to yield desired Young’s modulus and Poisson’s ratio of the material in ques-
tion. We start the derivation by considering an uniform two dimensional strain
field in a lattice of points connected with beams. The deformation of a single
beam in such a lattice is shown in Fig. 17.

deformation

I— | |, = lo(1+€,)sin

prl >~
w

|, = 1,(1+€,)cosB,

FIGURE 17 The configuration of a single beam in a uniform strain field before and after
deformation.

The length [ of the beam after the deformation as a function of its initial orienta-
tion angle 6y can be expressed as

=B+ = \/lg(l + €x)2 cos? 0 + 12(1 + €,)? sin® 6. (49)
Because strains, especially for a brittle material like ice, can be assumed small
€2 = €2 = 0. Also, by using a trigonometric identity, sin”6 + cos?# = 1, and a
Taylor-series approximation, v/1 + 2x = 1 + x, we find that

=€ =
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I = Ip(1 + cos® fpex + sin® fpey ). (50)
Thus the axial strain of the beam can be presented as

11
€ = lo

~ cos? fpe, + sin? Boey. (51)

The average strain energy of a beam can be calculated using Eq. (43) and inte-
grating over all possible beam orientations,

1 "%
ws = = / ~ kee2d6,
7T 2
—7/2
2 n(Z
ﬁ / cos*0y 6326 + 2c0s?sin’6y €x€y + sin*6, 65 dfy
—nt/2

k 37T T 3
= S (—632( -+ —€x€y + §€;>

Eq.(51)

27\ 8 4

k
- = (36,% +2ere, + 365) : (52)

The average energy associated with rotational degree of freedom can be deter-
mined similarly. The angle 6 can be expressed in the form

! lpsinBp(1 +€y) 1+e
—tan- 1 (V) a1 (0 0 Y\ _ il Yy
0 = tan <1x> tan (lo cosOo(1+ €x)) tan (tan 901 T €x> . (53)

The term on the right hand side of Eq. (53) can be further modified by treating

(14 €y)/(1+€y) as a variable and representing it as a Taylor series around point
1. This yields

1+e tan 6 1+e
tan! ( tanf ) ~0 Y'—1). 54
an (an 01+€x> 0+1+tan290 <1+€x > 54
—_———

sin 6 cos 0y

By combining Eqgs. (53) and (54) we find that

6— 6y — AG — sinfy cosfy |- 1 55
0= = sin 6y cos b Tre . (55)
X

As in the case of axial deformation, the average energy of rotations can then be
calculated by integrating the beam energy over all possible beam orientations,
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1 /2
u, = ; / kbAQZdQO
—7/2
/2
ky (1+¢€y ? ) 2
= — —1
p- <1+€x ) / sin” 0y cos” 6, db
—t/2
k
~ gb(ex—ey)2. (56)

The last form is approximative since again the strains are assumed to be small in
the derivation. In the case of brittle materials this condition is usually met. By
adding Egs. (56) and (52), multiplying by beam density p, and rearranging gives
the total strain energy density as

ks k
F= o (5+77) @+
+ k_ & (2 + 2¢exe, + €2) (57)

The beam density p, = cc/r? is the number of beams per unit area. The param-
eter cc depends on the beam length parameter of Eq. (42) and r is the average
beam size. Eq. (57) serves now as a tool to couple the simulation parameters
to elastic parameters of a real material. This is done by comparing Eq. (57) to
continuum strain energy of the plain-strain deformation (Landau 1970),

_ Y 2 2
b= 2(1+1/)(€X+€y)
Yv 2 2
2 . 58
T A v S T2ty 8)

From Egs.(57) and (58) we find that

5kZ + 8kyks — 4k?
b

and
1k

To test if the coupling presented above satisfactorily induces realistic elastic prop-
erties for the simulation model, a test simulation setup was investigated. A 45 m
x 45 m material block of 17570 disks with uniform size distribution between
0.3 m and 0.4 m was constructed. The right edge of the lattice was held in place
in the x-direction and a tensile stress of 100 kPa was applied to the left edge. The
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stress was applied only in x-direction. Thus, a vanishing stress in y-direction can
be required, yielding

_9F _
= 56, =

By substituting Eg. (58) to Eq. (61) we get for the strain ratio

oy 0. (61)

__V

e —14+v
In a similar way, the stress in the x-direction can be solved as a partial derivative
of F with respect to €, to find

(62)

_OF Y v(ex +e€y)
‘T"_a_ex_1+v<€x+ 1-2v ) (63)
Substitution of Eq. (62) into Eq. (63) and rearrangement gives
Yy = (1 -12). (64)
€x

By using glacier ice properties guided by Table 3, we can test how well the model
is able to reproduce the desired material properties. The values chosen for elastic
parameters are Y = 5 GPa and v = 0.2. Notice a value of v a little lower than
typical for glacier ice (Table 3). This choice has been dictated by model descrip-
tion because Eq. (60) can not produce values higher than 0.25 with any choice of
ks and k;. Values relatively close to glacier ice can still be achieved. In Fig. 18
values for Y and v derived straight from the simulations are shown as functions
of relative beam length C.

5.2 0.33
© 5 b " 0.32
S 48 0.31
> Young’s modulus —— 4 0.3
o 46 Strain ratio ----+--- '%
=y N=594 m - 029 =
B ) N=5.60 ® 4 028 &
E 42 N=491 @ &
@ N=420 @& - 027
= 4 = -4 0.26
> 38 T e bt 0.95

3.6 ' L L 0.24

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
C

FIGURE 18 Effect of maximum relative beam creation length C, defined in Eq. (42), on
the elastic properties of a 17570-disk lattice. Expected value for the strain
ratio was 0.25 corresponding to a Poisson’s ratio of v = 0.2 (see Egs. (60)
and (62)), and the expected value for the Young’s modulus was ¥ = 5.0
GPa (Eq. 59). The values of the coordination number, N, are shown for
some values of C. (Modified from paper II Fig. 5.)
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It can be seen from the results that the parameter C strongly controls the elastic
properties of the material. With a value of C = 1.01 we get 30 % deviations from
the accurate values but with a choice of C = 1.6 the deviations drop down to
roughly 1 %. The deviation is induced by nonaffine deformations in the low C
limit that result from low values of coordination number N (see Fig. 18). An plau-
sible description of elastic properties can thus be obtained by using a sufficently
high value of parameter C.

3.2.2 Adjustment of fracture properties

The fracture properties were studied with energy considerations in a quasistatic
simulation setup. In the model, fracture energy per unit length, G, includes the
deformation energy of broken beams along the crack given by Eq. (43). This
energy density can be approximated as ,/p,E., where E. is the critical fracture
energy of the beam. Energy is also dissipated in the surroundings of the broken
beams, the amount of which is comparable to the elastic energy of the beam. With
the above reasoning, we can state the breaking limit of a beam in the form

Ge
Vo'

where ¢y is a constant that accounts for the energy sinks mentioned above, and
can be found from simulations presented below. The simulation setup consisted
of an edge cracked material block which was stressed in the direction perpen-
dicular to the crack surface (see Fig. 19 (a)). The physical size of the simulated
block was 30 x 60 m? and it consisted of 15543 disks with an average diameter
of 0.35 m. The elastic properties were selected as in the previous chapter and
E. =~ 2]. The beam density was roughly 26 beams/ mZ2.

According to Zehnder (2012), the critical energy release rate G, for a plane-strain
situation is

EC = Cf (65)

_ K3-(1—v?)
e

The critical stress intensity factor Kjc on the other hand can be presented for an
edge cracked specimen with dimensions of Fig. 19 (a) in the form (Hertzberg
1996)

Ge (66)

=B

N\

)2 — 38.48(

a
W

a
W

a

Kic = 0:/a [1.99 - 0.41(%) +18.7( =

)3 + 53.85( )4], (67)
where a and W are the length of the edge crack and the width of the specimen,

respectively. By combining Egs. (66) and (67) and rearranging we get

GY

21— 2B (68)

UC —
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FIGURE 19 (a) The simulation setup for studying the fracture properties of the model.
Stress intensity is visualized by showing the elastic energy Epe,m of indi-
vidual beams. (b) The critical stress as a function of initial crack length.
Simulated values together with theoretical predictions are shown. (Modi-
fied from paper II Fig. 6)

The stress oy was slowly increased in the simulation setup until a catastrophic
failure occurred. The stress at this point was recorded and the values as a function
of crack length are plotted in Fig. 19 (b). For each crack length the values for G,
were determined from the simulations and together with Eq. (68) the theoretical
values for critical stress were obtained. In principle, the values for G. do not
depend on crack length, however the granular nature of the simulation lattice
creates small variations. In Fig. 19 (b), the theoretical values for o, with individual
values of G, and a curve with average G.4 ~ 42 J/m are shown. Based on
Ge,ao, the value of ¢ £ in Eq. (65) is roughly c £~ 0.24. Fracture toughness can be
estimated based on the average value of strain energy release rate G4, by using
Eq. (66) to yield Kjc ~ 468 kPam!/2. The value is relatively high but in the range
given in Table 3. The adjustment of fracture properties was restricted to the case
of fracture toughness but tensile, flexural, shear and compression strengths of ice
could also be adjusted through simulation parameters to yield values listed in
Table 3.

Another test to see if the model material exhibits realistic brittle behaviour
is to study the fragment size distributions (FSD) of fragmentation events. A sim-
ple simulation setup was constructed where a material block was subjected to a
uniform 10 kN radial-inflation force field. According to Astrom (2006), Astrom
et al. (2000) and Kekildinen et al. (2007), FSD of a fragmentation process can be
expressed in the form

n(s) < (1—pB)s™* exp(—(Z/w)Ds) + ,Bexp(—sal(sl/Dw)D), (69)

where 7 is the number of fragments of size s. The first part of the distribution
originates from the fragments formed within the damage zones around the paths
of the propagating main cracks, and the second part corresponds to merging of
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these main cracks. The relative normalization of the two parts of the distribution
is controlled by parameter 8, « = (2D — 1)/D with D the spatial dimension of
the space (here D = 2), w is the width of the damage zones, and s( represents
the typical size of large fragments formed by merging of main cracks. In the
simulations, a material block constructed from 13902 disks was used. The phys-
ical size of the block was 100 x 100 m?. Other parameters were Y = 0.1 GPa,
v = 0.2, and G, =~ 800 J/m. Two simulations were conducted with different val-
ues of damping parameters s, and b,. The damping parameters affect the crack
branching and therefore influence the form of the FSD curve. With weak damp-
ing (s, ~ 100 Ns/m? and b, ~ 10 Ns/m?), the crack branches can propagate far
from the main cracks and large damage zones can be formed (see Fig. 20 top).

10000 : .
Simulation results ~ +
Theoretical curve «------+ 1
1000 | ]
ok ]
4 ]
100 | ey ]
T, 1
kMg Y ]
+ 4%,
-+ +"’.':“*.-
1F kg ]
+ 5
F
++* "
0.1k 4 ]
vy
0.01 L L " iy
1 (I 100 1000
100000 v , . .
Simulation results ~ +
Theoretical curve -------- i
10000 ]
1000 | . ]
" 3
< 100 £ e _
*(:H»
o *mm ;
i3 e ]
*.
+-
E
0.1 1 1 | (i3
1 10 100 1000 10000

FIGURE 20 The top row displays a simulation result with a minimal damping together
with the corresponding FSD. The dashed line is a fit by Eq.(69). The cor-
responding figures for the case of high damping are shown below these.
(From paper II Fig. 8.)

With strong damping (s, ~ 10000 Ns/m? and b, ~ 1000 Ns/m?) the side branches
quickly die out and the fragmentation process is dominated by the main cracks
(Fig. 20 bottom). It is clearly seen from Fig. 20 that the simulation model is able to
reproduce the theoretically predicted behaviour of fragmenting bodies and that
simulation parameters can be used to alter this behaviour for fragmentation of
different kinds of materials.
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3.2.3 Viscous behaviour

Two different mechanisms produce viscosity in our simulation model. The first
one is related to damping of elastic beams. To damp elastic vibrations quickly, the
damping parameters (Egs. (45, 46)) should be chosen close to their critical values,

syt & 2ry/pY

byt~ 2r%/pY, (70)
which can be derived from properties of the simulated system and from the the-
ory of simple harmonic oscillators. The damping parameters were chosen slightly
below the values given by Eq. (70) to yield weakly subcritical damping of beams.
The second mechanism, contrary to beam damping, allows the material to de-
form irreversibly. It involves two new rules for beams: 1) Beams are allowed
to break before the breaking threshold has been reached and 2) new beams can
be formed between disconnected disks. If the probabilities for such events have
suitable stress-dependency, the material is able to flow according to Glen’s flow
law (Eq. (41)). The scaling analysis is started by assuming that melting events
are random and uncorrelated, which implies a probability P,, = 1 — e~ =4 for
a beam to break (melt) during time step At, where A, is the melting rate (melt-
ing events per second). Each broken beam is associated with relaxation of its
elastic strain, € ~ ¢/Y. Here o approximates the stress in the beam. Thus, the
strain rate of the simulated material can be expressed as ¢ ~ A;;,0/Y. By choosing
Am = AY0o" ! we obtain ¢ ~ Ac" 1o which is similar to the tensorial form of
Glen’s law, Eq. (41) since o ~ tP. Because the elastic energy, E, of the beam is the
elastic-energy density (~ ¢2/Y) multiplied by the effective volume of the beam
(~1?),ie., E ~ 0?r?/Y, we find the melting rate, Ay, = cy AYV EY/an_l, in terms
of the energy of the beam. In particular, Ay, = ¢y AY?E /7> for n = 3. Correspond-
ingly, the dynamic viscosity is given by p ~ A_i ~ ﬁ. The coefficient c) can be
obtained from simulations.

In addition to the melting rule, a refreezing probability Py = 1 —e¢
used, where At is length of one time step and Ay is the freezing rate. Refreezing,
implemented in the simulation by creation of a new beam between two disks, can
take place if the requirement of Eq. (42) is fulfilled. This means that new beams
may be formed between disks that are not strictly in contact. If refreezing is ap-
plied only between disks that are compressed against each other, the coordination
number would reduce, and the material would slowly degrade. The current rule
allows the material to undergo viscous flow such that the lattice retains its aver-
age coordination number.

We select the rate of refreezing so that it is slow compared to dynamic crack
propagation, but fast compared to the melting rate, i.e., A > Am, which means
that the viscous flow rate is determined dominantly by the melting rate. If a
beam is under compression, only its bending deformation energy can break it.
This, together with the elastic repulsions between the disks, makes the viscous
flow essentially incompressible in agreement with the Glen’s law.

—AfAt is
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A simple simulation setup was constructed to test the viscous properties of
the model. A material block with same elastic properties as before, but added
with viscous properties presented above, was constructed. The right wall of the
material block was made rigid and a constant shear stress was applied to the left
wall (see inset of Fig. 21).
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FIGURE 21 Simulation results for viscosity as a function of shear stress. The fitted curve
(dotted line) is Glen’s flow law. (From paper II Fig. 7.). In the inset, a
schematic illustration of the simulation setup for investigating the viscous
behaviour is shown.

Five different shear stresses were used and for each case the viscosity was calcu-
lated from

T F/A. Fy

D u/y Au

where T is the shear stress, D is the strain rate, F is the shear force, A, is the cross-
sectional area of the block (unit width times height in this case), u is the shear
velocity, and y is the distance between the sheared and rigid edges. The results
of viscosity as a function of shear stress are shown in Fig. 21. As can be seen,
the results are consistent with the behaviour described by Glen’s flow law. The
Arrhenius factor in these simulations was in the order of 10717 s~!Pa~3 which is
many orders of magnitude larger than for ice at —10°C (Table 3). This choice of
lower viscosity has been dictated by the restrictions of DEM models. The time
step can not be made very large to keep the simulations stable. Therefore, the
realistic time scale of glacier flow can not be reached. This is not necessarily a
serious problem, however, because the time scales of viscous deformation and
brittle fracture are still well separated even though viscous flow is speeded up.

(71)



4 GLACIER SIMULATION RESULTS

4.1 Calving of glacier ice

Glacier ice has been numerically studied almost exclusively by continuum meth-
ods, which treat ice as a continuous material with uniform or smoothly varying
properties. Fracturing, however, is not continuous and the continuum models
take into account the effects of fracturing through simple parameters such as
depth of fracture penetration (Benn et al. 2007a,b; Nick et al. 2010), bulk "dam-
age" (Jouvet et al. 2011; Borstad et al. 2012) or ice softness (Vieli et al. 2006). Even
though these approaches are useful for many purposes, they are limited to be
used only in certain kinds of continuous glacier simulations. Glacier calving, for
example, is a highly discontinuous process which can be simulated in a straight-
forward and natural way with a DEM model. A better understanding of glacier
calving is important because a large proportion (40 — 50 %) of mass loss in marine
terminating ice fronts results from calving (Burgess et al. 2005; Walter et al. 2010;
Depoorter et al. 2013). Thus, it has a major impact to the rise of sea level in the
following decades and centuries.

Calving processes were studied extensively in our papers I, II and III. The
method used in paper Il is presented here in detail and from the other papers only
the results are shown. The simulation setup consisted of a 100 m high ice block
formed of 13902 disks (Fig. 22 (a)) resting on a slightly inclined plane. Water level
at the front of the block was 80 m high and and gravity which caused a down-
ward acceleration of 9.8 m/s?, was applied. The water was simulated only as a
simple buoyancy force for disks whose centres were below the water level. Other
relevant parameters were Y = 5GPa, v = 0.2,and G, =~ 970 ] /m (ks ~ 3.4 - 1087,
kp ~ 3.4-107 ], s, ~ 8.0-10° Ns/m?, b, ~ 8.0-10° Ns/m?, and E; ~ 120]). It
is important to notice that higher values of fracture energy, E;, were used in the
dynamic fragmentation simulations compared to the quasi-static case described
in section 3.2.2. This is because the smallest fragments that can be formed in
the simulations are single disks which are roughly one meter in size. In reality,
the smallest fragments are typically of the grain size, which for glacier ice is of
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the order of a few millimetres. Formation of a large quantity of millimetre-size
fragments would demand a lot of crack-surface formation, which would absorb
a vast amount of energy. To compensate for the missing energy sink, fracture en-
ergy, E., has to be increased in the simulations. Without this, nearly all the bonds
would break and the material behaviour would more resemble sand than ice.
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FIGURE 22 Snapshots of simulations and FSDs from the results of paper II (a), I (b) and
I (c). The graphs in (a) and (b) show simulation results in early and late
times of calving events together with theoretical curves. In (c) the results of
simulations are compared to empirical findings from Bonavista Bay.

In Fig. 22 (a) a series of snapshots from these simulations are shown together with
the FSDs required from early and late times of the simulation. In Fig. 22 (b) corre-
sponding images from the results of paper I are shown. In that case a regular lat-
tice like the one shown in Fig. 16 (a) was used. In Fig. 22 (c) the results of paper I1I
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are shown where a three-dimensional lattice was used. The FSDs shown are from
simulation results and also from experimental data acquired from chunks calved
from icebergs in Bonavista Bay, Newfoundland. Each subplot in Fig. 22 has been
fitted with Eq. (69) and for all of the cases except for the late moments of simula-
tion (a) the power law exponent coincides with the value predicted by theory. The
exception can be explained by the presence of grinding where subsequent colli-
sions break the material into smaller pieces. Supported by experimental data and
the majority of the simulations, one can propose that the FSD in glacier calving is
usually formed in the initial breakup scenario and does not change significantly
at later times. However, ice may become substantially weaker and more vul-
nerable to grinding when external conditions are favourable, for example in the
vicinity of 0°C temperature. Also, glaciers that have a longer sub-aerial height
are more prone to grinding because they have more potential energy that must
be dissipated during a calving event until the system has come to rest.

4.2 Self-organized criticality of calving termini

In a calving event, ice fractures from glacier terminus when the strength of ice
can no longer withstand the stress induced by its own weight. The propagating
cracks trigger an ice ‘avalanche” and a rapid burst of kinetic energy is observed
together with corresponding loss of potential energy. Models describing such
punctuated instabilities include the sandpile models, maybe the simplest sys-
tems that exhibit self-organized criticality (5OC). A distinguishing characteristic
for SOC systems is the slow steady accumulation of instability which is followed
by a fast relaxation through events of any possible size. For glacier calving, these
events range from small local events that have insignificant effect on the overall
shape of the terminus to system-wide collapse where the entire ice-cliff collapses.
SOC systems have a sub-critical regime with infrequent and small events which
leads to instability buildup over time. The other extreme is the super-critical
regime where the instability relaxes through large events. They spontaneously
self-organize towards a stable critical point between these two regimes. In the
vicinity of this critical point, the system becomes scale invariant. For Abelian
sandpile models (ASM), this behaviour is manifested as pure power laws for the
mass distribution of avalanches n(m) o« m~7T and the waiting time distribution
between consecutive avalanches #n(J) o< 6~7. The exponents T and ¢ are the criti-
cal exponents for each distribution.

To see if termini of calving glaciers can be considered as SOC systems, a
broad experimental data set spanning 12 orders of magnitude in size was anal-
ysed from glaciers and ice shelves worldwide. The data sets were acquired from
Svalbard, Alaska, Greenland and Antarctica with variety of methods. In Svalbard
and Alaska, the data were collected by visual observations at the glacier terminus,
by using seismographic methods and with time-lapse monitoring. In Greenland
and Antarctica, satellite imaging was used. To back up the experimental results,
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FIGURE 23 Waiting time distributions between consecutive calving events for
Tunabreen, Paierlbreen, Kronebreen and Sveabreen Glaciers in Svalbard
and Columbia Glacier in Alaska (Astrom et al. 2014) together with simu-
lation results in 2 and 3 dimensions. (From paper III Fig. 2 a)

simulations in 2 and 3 dimensions were conducted.

The first result indicative of SOC behaviour is the power law behaviour in
waiting time distributions of calving events. Shown in Fig. 23 are the waiting
time distributions from several glaciers in Svalbard and Alaska and simulation re-
sults from two- and three-dimensional implementations of the glacier DEM code.
Asis evident from the figure, the numerical and experimental waiting time distri-
butions agree well with theory. The best-fit exponent for all data is o = 1.67 £ 0.3
which coincides well with ASM findings (Paczuski et al. 2005).

Secondly, SOC behaviour is backed up by the power law behaviour of calv-
ing volume (or equivalently mass) distributions. In Fig. 24 (a) the calving vol-
ume distributions for glaciers and ice shelves in Svalbard, Alaska, Greenland and
Antarctica are shown. The data represents two distinct groups of relatively small
and large calving volumes. The group with smaller calving volumes between 10
and 10° m? are grounded tidewater glaciers in Svalbard and Alaska and the group
with volumes between 10% and 10!> m3 are floating ice shelves in Antarctica and
the large near-floating outlet glaciers in Greenland.

Both groups are reasonably well described by a power law with exponent
T = 1.2 but the group with smaller calving volumes has an exponential cut-off at
roughly 10* m®. The exponential cut-off reflects the fact that the size of the calv-
ing event is limited by the physical size of the terminus of a grounded glacier.
Bridging the gap between the two groups is the Columbia glacier during a tran-
sition from grounded to a floating terminus. This implies that grounded glaciers
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FIGURE 24 The calving volume distributions for (a) observed data and (b) simulated
data with two-dimensional simulation model (From paper III Fig. 2 b and

Q).

are less prone to large scale events than floating ice shelves. By combining all
calving volume data, a power law exponent of T = 1.26 = 0.2 is found, which is
consistent with different variations of ASM (Dhar 1999, 2006).

The two-dimensional glacier DEM model was also used to study the calving
volume distributions. In Fig. 24 (b) the distributions are shown for three differ-
ent initial conditions. In these distributions the kinetic energy of a single event is
used as a proxy for the amount of calved mass. The decision to use kinetic energy
as opposed to mass directly is justified because the velocities of the calving par-
ticles have approximately the same range in any calving scenario and kinetic en-
ergy (Exin =1/ 2mo?) is directly proportional to the mass and thus after rescaling
approximates a similar distribution. Moreover, when comparing the simulation
results to observed ones, a better comparison is achieved when only events with
kinetic energy (i.e. non-zero velocity) are counted. This is because experimen-
tally only detachment of ice mass from the glacier can be observed compared to
simulations where a fragmented mass which has not calved can also be recorded.
The critical fracture strain of a single beam was used as an adjustment parameter
to yield different criticality regimes. As evident from Fig. 24 (b) the behaviour is
distinctly different with varying initial conditions. In the sub-critical regime rel-
atively small events occur and an exponential cut-off similar to that in observed
data is seen. In the critical regime, large fluctuations and events ranging roughly 7
orders of magnitude are seen. The form of the distribution in this critical regime
is approximated by a power law with exponent T = 1.2 and is thus consistent
with observations. In the super-critical regime the distribution is dominated by
large events and typically results in the failure of entire ice cliff in a single event.
As expected for a SOC process, the event size distribution exhibits a pure power
law in the critical point and distinctively different behaviours on either side of it.

Self organized criticality was further analysed by using a 3 dimensional
version of the glacier ice simulation model. The initial conditions were varied
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FIGURE 25 (a) The kinetic energy distribution of 3D simulation code with close to crit-
ical sub- and supercritical initial conditions and (b) distributions of calving
event sizes in Tunabreen glacier observed in periods of high and low calv-
ing rate. (From paper III Fig. 2 and Fig. 3)

to yield near critical sub- and super-critical conditions. The resultant distribu-
tions for calving event sizes are shown in Fig. 25 (a), where the distributions
approximatively follow a power law until the sub-critical distribution decays ex-
ponentially. The super-critical distribution on the other hand shows non-zero
frequencies also for larger events. These distributions can be compared to the
observations made in Tunabreen glacier. Tunabreen glacier is 100 m thick surg-
ing tidewater glacier subjected to local tidewater variations of less than 1 meter.
Even though the tidal variation is a very small fraction of the glacier thickness,
it has a strong influence on the calving rate at Tunabreen terminus. In the pe-
riod of high tide the calving events are infrequent and small and in low tide they
grow substantially in size and number thus resembling sub- and supercritical
SOC regimes, respectively. In Fig. 25 (b) the event size distributions for these
high and low calving rate regimes are shown which closely resemble results of
Fig. 25 (a).

4.3 Viscous flow of glacier ice

To verify the flow behaviour of the glacier DEM model, its results were visually
compared to ones given by the continuum ice model Elmer/Ice (Gagliardini et
al. 2013; Gagliardini and Zwinger 2008; Zwinger and Moore 2009). In both sim-
ulation models, an ice block of size 30 m x 30 m was placed on a flat surface
with little friction, and gravity was applied to drive the system forward. The
state of the glacier DEM model in four different time steps is shown in Fig. 26
together with outlines from Elmer model for corresponding time intervals. As
was pointed out earlier, the time step size in the DEM model cannot be made
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large enough to reach the actual time scale of a deforming ice block or a glacier.
Instead, the viscosity is made many orders of magnitude (in this case 10° times)
lower than in real physical ice flow, and correspondingly higher strain rates are
reached.

0 yr’|‘|‘l+||‘E 3yr
S5yr 7yr

FIGURE 26 Snapshots of glacier DEM simulations with outlines from Elmer/Ice model
(red markers). The time stamps refer to Elmer/Ice simulation model. In the
glacier DEM model the time span is roughly 10° times shorter with corre-
spondingly lower viscosity. (From paper I Fig. 5)

Even with this enhanced pace of flowing ice, the time scale of quickly propagating
cracks is not reached and the two processes are kept well apart. As a proof of the
validity of the model, the results shown in Fig. 26 closely resemble the Elmer/Ice
results. The largest discrepancies can be seen in the early time steps, probably
due to partial jamming of the granular material.

Another simulation setup was constructed to show that the model is capable
of reproducing the analytical results given by shallow-ice equation. This equation
gives the velocity of an ice sheet flowing down an inclined plane as a function of
depth from the ice surface. It can be presented in the form (Liithi 2013)

_2A

n+1
where A and n are the Arrhenius factor and stress exponent of the Glen’s flow
law, respectively. Inclination angle of the plane is denoted by «, p is the mass
density of ice, g the acceleration caused by gravity, H the height of the ice block,
and v}, the depth dependent sliding velocity. The velocity profile was acquired
from the middle part of a simulated down slope ice block from the area marked

(pgsina)"(H"* — (H — 2)"*) + v, (72)

vp(2)
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with black thick lines in Fig. 27 (a). Equation (72) is formulated for an ice sheet of
infinite width and length so an ice block with large aspect ratio (30 m x 200 m)
was used and the values were acquired from the middle part to diminish the
boundary effects. The results of the simulation are shown in Fig. 27 (b) and they
follow the theoretical predictions of Eq. (72) quite closely. The velocity increases
towards the ice surface, but with a slowing rate due to the stress-dependent flow
rate.
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FIGURE 27 (a) The simulation setup for an ice sheet flowing down an inclined surface.
The blue curve represents a contour of constant velocity. In (b) the corre-
sponding velocity profile from the middle part of the ice block averaged
over the area marked with black lines in (a) is shown. The dotted line is a
fit done by using Eq. (72) (Edited from paper II Fig. 10)

As a proof of the model versatility, an ice fall scenario was considered where all
the model properties are relevant, namely viscous flow, fracture and fragmenta-
tion at the glacier front. Anice fall is a part of a glacier which rapidly moves down
a slope partly flowing and partly fracturing. A typical signature of an icefall is a
chaotic crevassed surface.
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FIGURE 28 Time series of an icefall simulation. The numbers refer to the chronological
order of images. (Edited from paper II Fig. 11)
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To see if the model is able to qualitatively reproduce typical icefall characteristics,
a two-dimensional ice block on a steepening slope was simulated. Four instants
of time in such a simulation are shown in Fig. 28. In the beginning (step 1 in Fig.
28) the block is placed in top of the slope and gravity is applied to induce flowing
and fragmentation. After some period (step 2) of deformation the stresses in the
ice grow too large and a piece of ice is fragmented from the glacier front. In step
3 the detached piece has propagated away from the observed region and the flow
continues. As seen moving on from step 3 to step 4 the thinner glacier terminus is
less prone to form new fragments and the glacier is able to flow further without
detachment. Also, the typical icefall feature of strongly crevassed top surface has
become visible.

(a) (b)

FIGURE 29 Snapshots from surging glacier simulations with frictional contacts (red
markers) only in the upper part of the slope (a) and with additional fric-
tional contacts also in the lower part (b). The green colour represent elastic
areas where contacting beams are still intact whereas grey areas contain
only particles and the beams are broken. (From paper I Fig. 6 and Fig. 7)

The stress dependent breaking and reforming of beams is not the only approach
to simulate a viscoelastic material. For some cases it might be sufficient to allow
beams to break according to the chosen fracture criterion and the viscous flow
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results from the inherent resistance to flow in a granular DEM material. This ap-
proach was tested in a simulated surging glacier scenario where a 200 m x 50 m
ice block was placed on a 18° slope (Fig. 29). Glacier surges are short-lived
events where a glacier advances in a substantially greater velocity than normally
(Sevestre 2015).

The viscosity was measured in a separate simulation where all the beams
were removed and the material was subjected to a shearing force. With this
method a viscosity of 10° times lower than in realistic surging glacier was achieved.
It is thus expected that the strain rates are an equal factor higher and the time scale
can be roughly re-scaled from seconds to days (24 hours = 0.864 x 10°s). Two dif-
ferent simulations with different bedrock friction configurations were studied. In
the first setup (Fig. 29 (a)) the red line in the upper part of the glacier marks a
high friction contact whereas in Fig. 29 (b) additional frictional anchors are dis-
tributed along the length of the glacier. In addition, a pressure corresponding to
the over-burden pressure was applied to the left face of the glacier to simulate the
pressure induced by a slab of ice of the same thickness upstream. In Fig. 29 (a)
the high friction contact in the upper part is not sufficient to keep the glacier in
place and it breaks near the substrate and flows downhill. If the time is re-scaled
according to the above explanation the velocity in this scenario reaches roughly
5 m/day which is close to the typical values observed for surging glaciers (Cuffey
and Paterson 2010).
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FIGURE 30 Kinetic energy as a function of time for different initial conditions for multi-
ple simulations of setup shown in Fig. 29. The cases with constant surging
or quiescent behaviour, discrete markers are used. For the cases of phase
transition, continuous lines are used. (From paper I Fig. 8)
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In the other case (Fig. 29 (b)), where additional frictional anchors are used, the
glacier cannot slide downhill. Instead, only a small part of it near the terminus
fractures, fragments and flows a limited distance. As the fragmented layer flows,
it gets thinner and the driving force decreases slowing down the flow.

To quantify the above behaviour, kinetic energy (Ej;,) for multiple simula-
tion runs with varying frictional contact in the slope were recorded. The results
are shown in Fig. 30. Two different phases can be recognized according to the
kinetic energy of the system. In the low kinetic energy region the system is in a
quiescent phase where only a small part of the system fractures and flows down-
hill (Fig. 29 (b)). In the opposite limit, the entire glacier surges (Fig. 29 (a)) and
the resultant kinetic energy reaches much larger values. There exist cases where a
process similar to phase transition emerges, when the system starts as a quiescent
glacier but during the simulation suddenly starts to surge with a corresponding
increase in kinetic energy. Cases where a part of the glacier surges can also be rec-
ognized. In these cases, the kinetic energy reaches a value between those typical
to quiescent and surging phases.

As seen from the previous approach to surging glaciers, the intrinsic vis-
cosity of granular DEM material can be used in some instances to study viscous
behaviour of a material. However, the behaviour is quite uncontrollable as com-
pared to the melting/refreezing kind of viscosity. The granular viscosity exists
only when all the beams are broken and elasticity is totally vanished. Thus, a cer-
tain single value for viscosity is achieved. In the more elegant melting/refreezing
approach presented in section 3.2.3, the viscosity can be controlled much more
precisely.



5 CONCLUSIONS

5.1 Summary

In conclusion, a new kind of simulation model was constructed to study the me-
chanical behaviour of glacier ice. Moreover, the simulation parameters can be
freely adjusted to yield a wide variety of material behaviour. The beam stiffness
parameters can be controlled to yield elastic properties from soft rubber all the
way to the hardest metals. The threshold parameters for individual beams on the
other hand can be used to control the material brittleness ranging from sand-like
materials to unbreakable substances. In addition, the viscous nature of the mate-
rial can be controlled via the probabilities for beam breaking and reforming. Even
though the modelling of the viscous behaviour was motivated by the Glen’s flow
law, the probability functions can be easily adjusted to yield a different kind of
stress dependence if such is needed. After adjustment of the simulation parame-
ters for glacier ice, the model was used to study multiple glacier ice applications.

The calving behaviour of marine terminating ice fronts, and more specifi-
cally the fragment size distribution produced in it, was studied extensively. It
was observed that the distributions follow the typical power-law behaviour pre-
dicted by crack branching-merging theory of fragmenting materials. It was also
observed in some cases that the power-law exponents deviate from the theoret-
ical values of pure crack branching-merging behaviour in the late moments of
the calving event indicating the presence of grinding processes. Motivated by
this behaviour, a separate more general study beyond the subject of this thesis
was conducted to study the grinding behaviour between two shearing surfaces
(paper 1V).

The waiting time and event size distributions in the calving events were also
studied, using simulation results and data acquired from actual glaciers. It was
observed that the distributions exhibit power-law behaviour and the power-law
exponents are consistent with the exponents of Abelian sandpile models thus in-
dicating that glacier termini can be considered as self-organized critical systems.
In this context, a three-dimensional version of the glacier DEM code was also
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used but without the viscous behaviour. The focus here was the calving pro-
cesses which are separated by many orders of magnitude in time compared to
viscous flow. Thus omitting the viscous behaviour was well justified.

Several simulations were also conducted to partly validate the viscous flow
behaviour of the model and partly to better understand flow of glacier ice. It was
seen that the model can reproduce the results given by the analytical shallow-
ice equation, that the model material in an icefall scenario strongly resembles the
observed behaviour and that surging glacier behaviour is highly dependent on
the frictional properties of the bedrock-ice interface.

5.2 Outlook

The results obtained in the preceding sections imply that the glacier DEM model
is capable of reproducing a large variety of different glacier ice behaviour. Nev-
ertheless, the model in its current state leaves room for further development. The
most obvious deficiency is the restriction of the full elastic-brittle-viscous model
to two dimensions. There are no fundamental barriers however to make the full
version work in three dimensions.

The problem that cannot be fully corrected at this point is the conflict be-
tween small DEM time step and a long time span of glacier flow. To keep the
simulations stable, a very small time step has to be used and no modern com-
puter can calculate the necessary time span of years in a reasonable time. As was
stated previously, however, the brittle and viscous regimes can be kept well apart
even though they are brought closer together than in real life glaciers. It is also
possible to couple the simulation model with an appropriate FEM model. In this
approach the long periods of ice flow could be simulated with the FEM model
and when the criteria of fracture are met, the system could be switched to DEM
model and vice versa. Some tests to achieve this have already been made but for
a fully working and automatic simulation model more work is needed.

Another problem is related to the grain size of the simulated material. In
the viscous regime of ice deformation, real ice can flow with relatively little resis-
tance because ice can be considered almost continuous in the size scale of glaciers
(the grain size or crystal size is in the sub-millimetre or millimetre scale). For
any sensible simulation however, the grain size has to be in the range of meters.
This induces typical granular effects such as jamming, which was seen in the
early stages of benchmark simulations when compared to Elmer /Ice FEM model.
To overcome this problem, the limit of very small particles can be pursued. Of
course, with the ongoing development of computer efficiency, this becomes more
achievable every day. Alternatively, different approaches where the granularity
does not create problems for viscous flow, could be developed. For example,
in the field of mining sciences a smooth joint model has been used to simulate
the joint between two shearing rock surfaces (Lambert and Coll 2014). In this
approach the intrinsic roughness between two spherical grains is eliminated by
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allowing the particles to slide past each other without over-riding one another.
Allin all, the glacier DEM model provides an alternative to more traditional con-
tinuum models in glacier modelling. It has strengths and weaknesses but appears
a viable option for describing the behaviour of brittle ice.
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