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WHILE LISTENING TO MUSIC, PEOPLE OFTEN

unwittingly break down musical pieces into constituent
chunks such as verses and choruses. Music segmentation
studies have suggested that some consensus regarding
boundary perception exists, despite individual differ-
ences. However, neither the effects of experimental task
(i.e., real-time vs. annotated segmentation), nor of musi-
cianship on boundary perception are clear. Our study
assesses musicianship effects and differences between
segmentation tasks. We conducted a real-time experi-
ment to collect segmentations by musicians and nonmu-
sicians from nine musical pieces. In a second experiment
on non-real-time segmentation, musicians indicated
boundaries and their strength for six examples. Kernel
density estimation was used to develop multi-scale seg-
mentation models. Contrary to previous research, no
relationship was found between boundary strength and
boundary indication density, although this might be con-
tingent on stimuli and other factors. In line with other
studies, no musicianship effects were found: our results
showed high agreement between groups and similar
inter-subject correlations. Also consistent with previous
work, time scales between one and two seconds were
optimal for combining boundary indications. In addition,
we found effects of task on number of indications, and
a time lag between tasks dependent on beat length. Also,
the optimal time scale for combining responses increased
when the pulse clarity or event density decreased. Impli-
cations for future segmentation studies are raised con-
cerning the selection of time scales for modelling
boundary density, and time alignment between models.
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L ISTENERS PARSE THE STRUCTURE OF MUSIC BY

focusing attention on musical feature change and
repetitions of sequences. They can spontaneously

predict and detect relevant changes that demarcate the
beginning and end of verses, choruses, and other types
of musical structures. Many gaps in our knowledge on
temporal processing of perceptual streams such as
music, speech, and movement still need to be bridged.
Indications of musical change are complex to study,
since they stem from our memory-guided perception
and cognition of points deemed to be musically salient
(Deliège, 2007). The role of musicianship in the listener
remains an important question, as it can help explain
possible transfer effects of music learning. In addition,
the difference between listeners’ real-time and non-real-
time (‘‘annotation’’) indications of change is still
unclear, although this difference can shed light on the
assimilation of musical structure as a temporal process.
Moreover, the study of the perceived structure in music
can encourage developments in automatic systems to
facilitate music editing and playback, such as adding
music to family videos.

Perceived contrasts, discontinuities, changes, and
repetitions at multiple hierarchical levels commonly
serve as heuristics that guide the identification of musi-
cal segment boundaries (Addessi & Caterina, 2000).
Studies in automatic segmentation often refer to these
musical novelty points simply as instants of significant
change (Foote, 2000). In this paper we will use segment
boundaries and instants of significant change inter-
changeably, since we will investigate a particular aspect
of music segmentation that is more related to musical
change than to repetition or similarity.

As a general rule, people share a common sense of the
instants at which the music in a piece changes in a sig-
nificant way (Clarke & Krumhansl, 1990). This asser-
tion is backed by evidence from listening studies on
segmentation that shows a consensus despite varying
frequency of indications (Bruderer, 2008; Clarke &
Krumhansl, 1990; Koniari, Predazzer, & Mélen, 2001).
Besides boundary indication time points, analyzed seg-
mentation data in these studies include verbal justifica-
tions of segment boundaries, judged time positions, and
duration of segments. In particular, boundary indications
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have been defined according to perceived tension
(Addessi & Caterina, 2000; Krumhansl, 1996), expecta-
tions and closure (Peebles, 2011), descriptors (Bailes &
Dean, 2007; Krumhansl, 1996), and grouping rules
(Clarke & Krumhansl, 1990; Deliège, 1987; Frankland &
Cohen, 2004; Temperley, 2001). Automatic segmentation
systems have been implemented in corpus-based studies;
these systems were based on musical features (Hargreaves,
Klapuri, & Sandler, 2012; Sanden, Befus, & Zhang, 2012;
Smith, Chuan, & Chew, 2013), sets of rules (Bruderer,
2008; Cambouropoulos, 2006; Lartillot & Ayari, 2009; Lar-
tillot, Yazıcı, & Mungan, 2013), or probabilistic methods
(Ferrand, Nelson, & Wiggins, 2003; Lattner, Grachten,
Agres, & Chacón, 2015; Pearce, Müllensiefen, & Wiggins,
2010), and generally compared against ground-truth data
(cf. Paulus, Müller, & Klapuri, 2010; Peeters & Deruty,
2009). Bruderer (2008), Wiering, de Nooijer, Volk, and
Tabachneck-Schijf (2009), and Pearce et al. (2010) have
compared the performance of some segmentation sys-
tems. Other work on segmentation includes a neural study
on finding working memory triggers (Burunat, Alluri,
Toiviainen, Numminen, & Brattico, 2014) and a perfor-
mance study on improvisational structure (Dean, Bailes,
& Drummond, 2014). Outside our scope, work on musical
closure has explored the role of musicianship and experi-
ence on boundary perception of classical music (Peebles,
2011; Sears, Caplin, & McAdams, 2014).

Recently, Bruderer (2008) investigated participants’
perceptual segmentation of music in three formats:
polyphonic audio, MIDI melodic lines, and polyphonic
MIDI. This work tackled the effect of polyphony in
music on segmentation, the role of perceived boundary
strength on segmentation, and the prediction of percep-
tual segmentation via different melodic parsing models.
The main findings by Bruderer included: 1) a similar
pattern of results for all three versions of the stimuli, 2)
a positive relationship between the frequency of indica-
tions of boundaries and their perceived strength ratings,
3) a positive relationship between the actual segmenta-
tion by listeners and three segmentation cues of parsing
models: timbral changes, rest onsets, and attack-points
(i.e., a long note in between two short notes). Bruderer
also investigated the effects of musicianship on segmen-
tation, but the approach was limited mainly by small
sample size and a lack of professional musicians in the
sample. In addition, the time scale parameter (see
below) used for modelling boundary density across par-
ticipants was adjusted based on multiple segmentation
trials. Due to the need of several trials from the same
participant, this method could result in rather lengthy
data collection tasks if the issue under study does not
involve repeated segmentation.

In this study, which can be considered a follow-up to
the work by Bruderer (2008), we suggest a novel
approach for modelling segmentation boundary density.
We apply a comparable methodological approach (i.e.,
based on kernel smoothing) to study effects of music
training upon participants’ segmentation of polyphonic
audio stimuli. We introduce alternatives to find optimal
segmentation boundary density parameters (compari-
son between groups or tasks, and estimation of
model-to-data fit; see Results).

Regarding the issue of experimental segmentation
tasks, various methods have been used to gather seg-
mentation boundary data, as there is no established
approach and data collection method and comparison
studies are scarce. Examples of segmentation tasks
include listening to the example once followed by three
consecutive real-time segmentation trials (Bruderer,
2008), and segmenting into two clusters online during
listening (Peretz, 1989) or offline after listening
(Deliège, 1987). Another study asked subjects to listen
to the example, segment in real-time, and make changes
or deletions to their boundary profiles to obtain a pre-
cise, non-real-time annotation for use in further experi-
ments (Clarke & Krumhansl, 1990). Previous work on
melodic clustering suggests the possibility that the data
collection method has an effect on the boundary indica-
tions by listeners: Peretz (1989) compared an explicit
segmentation task with an offline retrospective recogni-
tion memory task and an online prospective probe rec-
ognition task. Differences were found between tasks in
the role of critical boundaries upon probe identification,
suggesting that the mnemonic role of clustering for tune
recognition is task dependent, and that similar tasks
may, however, capture distinct stages of musical analysis.
Several studies investigated the differences between
repeated segmentations of the same stimuli, and reported
an increase in the number of indications over repeated
segmentations of the target stimulus (Bruderer, 2008;
Deliège, 1987; Deliège, Mélen, Stammers, & Cross,
1996; Krumhansl, 1996). However, this trend did not
reach statistical significance, and it was found for audio
but not for MIDI versions of the stimuli (Bruderer, 2008).
Frankland and Cohen (2004) asked listeners to parse
MIDI melodies in three consecutive trials, and found
an increase of within-subject correlation throughout
repetitions. Koniari et al. (2001) compared children who
listened to stimuli once prior to segmentation with chil-
dren who had listened to the stimuli three times; no
statistically significant effects of familiarization with the
target stimuli were found over the segmentation profiles.

Regarding the role of musicianship on boundary per-
ception, studies have reported effects of music training

Multi-scale Modelling of Segmentation 193



on subject agreement and on number of indications.
Results from studies rooted on the Generative Theory
of Tonal Music (GTTM, see Lerdahl & Jackendoff,
1983) suggest the possibility that both musicians and
nonmusicians can represent the hierarchical structure
of the music from its perceived surface, but these repre-
sentations would differ due to differences in musical
skills (Deliège, 1987; Koniari & Tsougras, 2012; Peretz,
1989). Children (Koniari et al., 2001) and adults (Bru-
derer, 2008) with music training exhibited higher
within-subject agreement: they showed more consis-
tency across repeated segmentations of a target stimulus
than untrained listeners. As regards inter-subject con-
sistency, Schaefer, Murre, and Bod (2004) reported
higher agreement between musically experienced listen-
ers than between inexperienced ones. In addition, stud-
ies focusing on different aspects of segmentation have
reported that participants with music training indicate
roughly twice the number of boundaries than untrained
ones (Bruderer, 2008; Deliège, 1987). Other studies
investigated agreement of the segmentation with respect
to Gestalt or GTTM rules, with the hypothesis that these
rules would better predict musicians’ segmentation.
Subjects with music training segmented more in accor-
dance with GTTM rules than untrained ones (Deliège,
1987; Koniari & Tsougras, 2012; Peretz, 1989), but the
direction was inverse for general Gestalt rules (Schaefer
et al., 2004).

An unsolved methodological issue in music segmen-
tation studies is how to combine boundary indication
profiles from multiple participants to obtain a represen-
tative model. This is not a trivial step since participants
can greatly differ from one another with respect to the
location of segment boundaries and to the number of
indications. Moreover, it can be problematic to system-
atically match boundaries from different listeners that
are close in time, since it requires researchers to deter-
mine whether listeners were indicating the same musi-
cal change. In order to estimate the temporal proximity
between participants’ indications that correspond to the
same perceived event, the time constant or time scale of
the segmentation should be optimized; for instance, if
listeners’ indications of the same musical change are
quite distant in time from one another, larger time scales
will be required for their aggregation, and vice versa.
Since there is no common modelling approach to reliably
obtain aggregate distributions of point process data or to
measure their similarity (Dauwels, Vialatte, Weber, &
Cichocki, 2009), multiple methods have been used in
music perception, from sampling responses that are
roughly close enough in time (Koniari & Tsougras,
2012; Koniari et al., 2001) to summing indications within

each musical beat (Krumhansl, 1996) and note (Deliège,
1987; Deliège et al., 1996; Frankland & Cohen, 2004).
These models are best suited for monophonic music,
especially for discrete events in the symbolic domain, but
not for polyphonic audio music, which involves overlap-
ping events and frequent timbral change.

An alternative approach that has not received enough
attention in music segmentation studies is Gaussian
kernel smoothing. This method models segmentation
data by placing a Gaussian curve at each boundary to
estimate an underlying probability density function
(Silverman, 1986). The result is a curve of perceptual
segment boundary density over time; its local peaks
represent regions where multiple boundary indications
are close enough in time. The smoothness of this rep-
resentation can be modified by increasing the width of
the Gaussian kernel used. If participants’ indications of
the same musical change are not close enough, the
smoothness parameter of the curve should be increased
to reduce its noisiness. However, very high smoothness
results in an inaccurate curve that would represent dif-
ferent musical changes with only one peak. To offer an
optimal representation of perceived musical change
across multiple listeners, an appropriate level of smooth-
ness needs to be found. Segmentations at a high time
scale are optimally represented with larger kernel widths,
and vice versa.

Smooth density profiles of 1 s (Burunat et al., 2014)
and 1.25 s (Bruderer, 2008) have been suggested for
modelling the distribution of boundary indications.
Burunat et al. (2014) found after repeated optimization
trials that a time scale parameter of 1 s could optimally
group together motif-level segmentation data of a stim-
ulus. Using six stimuli, Bruderer (2008) found an opti-
mal width of 1.25 s based on differences between
individual data for three consecutive segmentation
trials. This method yields a length at which most win-
dows include marks for all trials, but least windows
include more than one mark within any trial. This
approach exhibits some limitations: it requires each par-
ticipant to segment the same stimulus multiple times,
uses an arbitrary number of trials, and assumes similar-
ity of profiles across trials. One of the main findings
obtained via this approach was that the estimated
boundary density corresponded to boundary strength
ratings, since the rated strength of a subset of indicated
boundaries correlated strongly with the frequency of
indications, as previously predicted by Clarke and
Krumhansl (1990) and Frankland and Cohen (2004).
Another approach to obtaining a representation of seg-
mentation density would be to use multi-scale models;
these have been applied for music visualization and
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analysis of structure (Kaiser & Peeters, 2013; Martorell
Dominguez, 2013; Mauch, MacCallum, Levy, & Leroi,
2015). Multi-scale models of density offer a more com-
prehensive representation of hierarchical aspects of seg-
mentation than density profiles.

The literature shows at least three aspects of segmen-
tation that remain to be tackled regarding musicianship,
experimental tasks, models, and stimuli. First, the effect
of music training remains an open question in phrase-
level segmentation. One reason for this is the lack of
assessment of differences in music training among par-
ticipants (Krumhansl, 1996). Another issue is small
sample size. Bruderer (2008) included only 7 partici-
pants in the sample, none of whom were professional
musicians. Other related questions, such as relative
delay between participant groups, were not investigated.
Understanding the role of music training on partici-
pants’ segmentation can yield clues on transfer effects
of musicianship and guide recruiting of participants
for further music listening studies. Second, listeners in
segmentation tasks get familiar with target stimuli in
initial ‘‘listening only’’ or practice trials. This procedure
is based on the assumption that a complete hierarchical
mental representation of a stimulus can only be
achieved after it is heard in its entirety (Lerdahl & Jack-
endoff, 1983), hence boundary indication tasks require
a familiarization step. According to this principle, real-
time segmentation tasks should be preceded with ‘‘lis-
tening only’’ trials or repeated multiple times with the
same stimulus, and offline segmentation tasks would pro-
vide a more complete representation of the perceived
structure. It has been shown that repetition of real-time
segmentation increases within-subject consistency, sug-
gesting an effect of retrospective aspects upon segmenta-
tion. However, to our knowledge few studies have
investigated the effect of real-time compared to offline
segmentation, particularly when it comes to clustering of
relatively large examples into multiple parts. The effect of
task should be further explored to, for instance, compare
real-time brain activity during music listening against
expert annotations of musical structure. Third, few per-
ceptual segmentation models based on indications by
participants have been suggested, and versatile strategies
are required to find optimal time scales for modelling.
The relationship between the optimal segmentation time
scale of a stimulus and its musical characteristics also
remains a question. Robust models of multiple segmen-
tations oriented towards naturalistic stimuli can provide
further insights on perceived structure and be advanta-
geous for automatic structural analyses.

The aims of this study, which investigates the con-
tribution of music training and segmentation task in

phrase-level segmentation, and estimates optimal time
scales for segmentation modelling, can be condensed
into the following questions:

1. What is the effect of music training on the indica-
tion of musical segment boundaries by listeners in
a real-time type of experimental setup?

2. What are the differences between a first impres-
sion of musical structure as it unfolds over time
and an offline, more knowledge-driven music
segmentation?

3. Which global characteristics of musical stimuli
modulate the optimal time scale for modelling per-
ceptual segmentation?

Regarding the first question, we expected to find dif-
ferences between segmentation profiles due to music
training. We hypothesized that nonmusicians’ segmenta-
tion would be delayed compared to musicians’ segmen-
tation, due to lower recognition delay of boundaries
found for musicians and attributed to processing of
shorter auditory time-spans (Tierney, Bergeson-Dana,
& Pisoni, 2008). We also expected that musicians would
exhibit higher inter-subject correlation compared to non-
musicians, who would be less likely to segment in accor-
dance with internalized perceptual rules regarding
musical form (Koniari & Tsougras, 2012). Also, it was
expected that nonmusicians would indicate more bound-
aries than musicians, as previously suggested by Bruderer
(2008) and Deliège (1987). Another specific hypothesis
derived from previous studies was that some dissimila-
rities between musicians’ and nonmusicians’ multi-scale
segmentation models would be exhibited, as previous
differences have been shown; for example, in segmenta-
tion of short melodies (Deliège, 1987; Peretz, 1989). We
also expected to find differences in optimal segmentation
time scales due to musicianship: segmentation by non-
musicians would be optimally represented by lower levels
of smoothness (short time scales), under the assumption
that they would focus predominantly on lower levels of
the hierarchical grouping structure, including changes of
loudness, timbre, pitch, and duration. In contrast, we
expected high smoothness (large time scales) to be more
suitable for estimation of boundary distribution from
musicians as they would focus not only on dynamics,
instrumentation, register, and pace, but also on higher
structural levels (chord and key changes, metric modu-
lation, multiple concurrent changes). For instance, a study
on perceived closure of classical cadences (Sears et al.,
2014) showed that nonmusicians focus mainly on the
leading voice, whereas musicians pay attention to multi-
ple voices, suggesting greater salience of harmonic
change for musicians. (Tierney et al., 2008).
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For the second research question, we expected to find
an effect of experimental task on segmentation: the real-
time task was expected to prompt more inaccurate and
incomplete segmentations than the annotation task.
Since certain aspects of segmentation might only be
perceived in retrospect, the real-time task should make
it difficult for listeners to anticipate development or
repetition of ongoing phrases, and hence to decide
whether to indicate a boundary or not. Specifically,
real-time segmentation contexts should exhibit rela-
tively delayed boundaries due to the time required by
participants to recognize musical changes as significant
and respond by indicating them: if the musical context
does not facilitate boundary anticipation, listeners
might need to pay attention to subsequent musical
events in order to recognize and indicate a boundary.
We also expected that real-time task segmentations
would be more dissimilar with each other than non-
real-time segmentations due to variation among parti-
cipants in their ability to anticipate boundaries and in
their delay to respond to recent musical changes. Also,
the non-real-time task would probably exhibit more
boundary indications, such as those prompted by ret-
rospectively perceivable musical changes, whereas in the
real-time task only stark musical contrast (e.g., simulta-
neous change in instrumentation, harmonic function,
melodic contour, and rhythmic patterns) would be indi-
cated. We hypothesized, however, that both tasks would
share some commonalities. First, the perceived strength
ratings of a boundary in the non-real-time task would
somewhat reflect the proportion of participants that
indicated it in the real-time task. For example, the
real-time task would mostly prompt indication of stark
and predictable boundaries, which should be among
those boundaries perceived as strongest in the annota-
tion task. We also expected that, at a general level, both
tasks would exhibit relatively high similarity since the
real-time task would still yield a broad representation of
the perceived musical structure. These tasks would
become comparable when using large time scale para-
meters, because high levels of smoothness would reduce
differences between tasks caused by recognition delay
and retrospective aspects of segmentation (which are
only compensated in the annotation task). Each task,
in this sense, was expected to involve different optimal
time scales for its representation: real-time segmenta-
tions should describe simultaneous change of multiple
musical attributes, which would be optimally estimated
with large time scales. In contrast, comprehensive, non-
real-time annotation tasks might induce segmentation
at multiple hierarchical grouping levels, ranging from
beats to larger patterns such as melodic sequences. This

type of annotation would be comparable to a GTTM
time-span reduction; according to this, a single time scale
cannot suffice for density estimation, but small time
scales can still offer an appropriate representation of the
trend across listeners towards frequent segmentation.

Regarding our third research question, we expected
that optimal segmentation time scales for modelling
responses across participants would relate to global
rhythmic description cues of each stimulus, such as
estimated beat length, pulse clarity, duration, and num-
ber of note events. The underlying assumption was that
the optimal time scale for modelling responses would
not be stimulus invariant; it would instead depend on
rhythmic properties of each stimulus, such as ability to
evoke a sense of beat and meter. For instance, musical
pieces with lower rhythmic stability would induce less
precise annotations by participants, so larger time scales
would be required for modelling segmentation density.
Similarly, segmentation of music with a relatively low
number of events should hinder listeners’ boundary
anticipation, resulting in sparser boundary profiles that
would require higher levels of smoothness for density
estimation. Support for this hypothesis would shed light
on the relationship between perceptual boundary data
and audio rhythmic features, and lend validity to the
proposed modelling approach for estimation of optimal
time scales for segmentation.

Method

We conducted two listening experiments on perceptual
segmentation at the Music Department of the University
of Jyväskylä. Figure 1 illustrates the computer interfaces
that were utilized to collect segmentation responses.

Experiment 1: Real-time Task

The first experiment collected significant instants of
change that were indicated by participants as they lis-
tened to unfamiliar stimuli. Our general aim for this
experiment was to capture a fresh, ‘‘live’’ description
or first impression of the music as it unfolded over time.

APPARATUS AND STIMULUS MATERIALS

We collected real-time segmentation responses, stimuli
familiarity, and background information from subjects
via a Max/MSP computer patch. The stimuli used in the
experiment were 18 excerpts from 9 multi-instrumental
and polyphonic piano musical pieces (see Appendix for
abbreviations and information) comprising various
styles. The musical examples were mainly excerpts
extracted from longer pieces, and their duration ranged
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from 2 to 8 min. We trimmed the 8-min examples into
chunks of around 2 min for an even length distribution
and to avoid fatigue of participants. In order to contex-
tualize the section ends and beginnings, these were
overlapped with each other by 3 s, which corresponds
to the duration of the echoic memory store (Toiviainen
& Krumhansl, 2003). After the experiment we concate-
nated the segmentation data from these chunks to
obtain sets of boundary data for entire musical exam-
ples. The root mean square (RMS) energy level was
normalized for the level of the stimulus with the lowest

value, and the peak intensity was adjusted for each stim-
ulus. The whole set thus exhibited approximately homo-
geneous loudness so participants could listen via
headphones at comfortable volume levels.

The musical pieces that were selected for the experi-
ments do not only differ in style; the temporal structure
varies in quantity and type of dimensions that manifest
musical progression: harmony (Morton), instrumenta-
tion, and harmony (Dream Theater), tempo and har-
mony (Couperin), dynamics, instrumentation and
harmony (Genesis), tempo, instrumentation, and

FIGURE 1. Upper image (Experiment 1): Trial instructing listeners to indicate instants of significant change while listening to the music. Lower image

(Experiment 2): Part of an annotation segmentation performed by a musician for the stimulus Ravel; vertical bars indicate marked boundaries, and

numbers situated next to the bars indicate perceived boundary strength ratings.
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harmony (Smetana), dynamics, tempo, and harmony
(Ravel), and dynamics, tempo, instrumentation, and
harmony (Dvořák, Piazzolla, Stravinsky). Other criteria
were also used for selecting the stimuli; we focused on
polyphonic material, in the sense of music containing
simultaneous note events, to prompt segmentation rely-
ing on processes of texture change. We included only
music without lyrics since these were found to have an
important effect on boundary perception (Bruderer,
2008), and hence would have posed difficulties for esti-
mation of general trends across stimuli. The duration of
the stimuli had to be long enough to invoke segmenta-
tion (over a minute of music), but short enough to avoid
fatigue of participants (our upper limit was of 10 min).
Besides the selection of multiple musical idioms, we
aimed to obtain more generalizable results by including
stimuli with varying structural complexity, and whose
boundaries would be induced by different musical ele-
ments (timbre, rhythm, harmony) or interactions
thereof. We also considered the availability and ade-
quacy of MIDI versions of the stimuli for future work
that could take advantage of symbolic musical descrip-
tions (large interonset intervals in Smetana and Dvořák,
long rests in Morton, Ravel, and Piazzolla). We included
music that would induce segmentation due to complex
processes such as similarity (Genesis, Morton, Couperin,
Dvořák, and Piazzolla), symmetry (Dvořák) and texture
change (Genesis, Stravinsky, and Dream Theater). More-
over, in most cases the stimuli presented in the real-time
task would not be known to the participants in order to
reduce artifacts due to familiarity.

We believe that some of the stimuli might be relatively
more challenging to segment, particularly in real-time
contexts. Stravinsky and Ravel are characterized by
unexpected but highly contrasting musical changes in
loudness, texture, rhythm, and tonality. For Couperin,
on the other hand, some boundaries are more subtle
and can only be anticipated due to underlying tonal
context. The rhythmic organization of this piece also
induces phrase grouping, but some local temporal dis-
continuities might be difficult to anticipate in real-time
contexts. Morton is also characterized by rhythmic dis-
continuity, here perceived as sudden breaks followed by
long pauses, which are likely very hard to anticipate
during the first listening. Also, the introduction of Piaz-
zolla could sound erratic due to lack of key clarity and
abrupt changes and pauses.

SUBJECTS

We obtained segmentation data from 18 nonmusicians
(11 males, 7 females) and 18 musicians (10 females,
8 males). One of our aims was to collect data from

even-participant samples regarding demographic infor-
mation (gender and age) and musical styles played by
musicians. The mean age was similar across groups: non-
musicians ¼ 27.28 years (SD ¼ 4.64), musicians ¼ 27.61
years (SD ¼ 4.45). The subjects were local and foreign
students and graduates from the University of Jyväskylä
and Jyväskylä University of Applied Sciences. The musi-
cians had an average of 14.39 years (SD ¼ 7.49) of music
training and played classical (12 participants) and non
classical musical styles (6 participants) such as rock. The
main instruments played by the musicians were piano
(5), guitar (4), flute (2), bass guitar, clarinet, saxophone,
cello, violin, viola, and voice. All the musician partici-
pants considered themselves either semiprofessional (12
participants) or professional (6 participants) musicians
with 6 or more years of training. All nonmusicians self-
reported as untrained, and none of the participants
reported skills in dance or sound engineering.

PROCEDURE

The experiment took place in two sound-attenuated
rooms with a computer. The average duration was
around 50 min for nonmusicians and 47 min for musi-
cians. The main experiment task was described to par-
ticipants as follows: ‘‘Your task is to mark instants of
significant musical change by pressing the space bar of
the computer keyboard. Whenever you find an instant
of significant change, please press the spacebar key to
mark it as you listen to the music. You will not have
a chance to listen to the whole example before you start
marking. Instead, during your first and only listen of
each example, you will give us your ‘first impression.’’‘
After reading instructions and completing a trial, they
segmented each of the musical stimuli, which were pre-
sented in randomized order. Participants did not have
an opportunity to listen to the whole example before-
hand. The interface had a play bar that offered basic
visual-spatial cues regarding the beginning, current time
position, and end of the stimuli. After the segmentation
of each target stimulus, participants indicated their
familiarity with it via a 5-point Likert scale.

After the segmentation of all the target stimuli, parti-
cipants filled out a questionnaire including demo-
graphic and music-related questions. We gathered
information regarding music training, weekly frequency
of music listening, and favorite musical genres of the
participants. Participants who reported music training
accessed an additional questionnaire regarding musi-
cianship and including professional status. This ques-
tionnaire also asked about main instrument and other
instruments played, musical styles played, and number
of years of training. This information was further
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utilized to match participants from both groups, remove
outliers, and include a diverse sample of participants
(e.g., different kinds of instrumentalists and styles per-
formed). After this, the experimenter asked subjects for
some feedback on the task and rewarded them with
a movie ticket.

Experiment 2: Annotation Task

We conducted a second experiment with the purpose of
obtaining a more comprehensive and precise set of seg-
mentations from participants. For this experiment, we
recruited musicians who had participated in Experi-
ment 1 and who had reported experience in audio edit-
ing tasks. We did not include nonmusicians in this
experiment because only a small number of them had
reported previous audio editing experience. In this
experiment, each target stimulus was presented for lis-
tening before the segmentation task to prompt more
deliberate indications. Subjects were asked to mark
instants of significant change while listening to stimuli,
similar to what they had done in Experiment 1. The last
steps were to correct imprecise time locations or discard
unwanted marks, and to rate the perceived strength of
each boundary. Participants were asked not to add new
marks at that point, under the assumption that they
would tend to over-segment while focusing on short
excerpts of the stimuli (following Krumhansl, 1996).

APPARATUS AND STIMULUS MATERIALS

We prepared an interface in Sonic Visualiser (Cannam,
Landone, & Sandler, 2010) to collect time points and
strength ratings of indicated boundaries from 6 musical
examples. Participants used headphones to playback the
music at a comfortable listening level and a keyboard
and mouse for the segmentation task. To keep the total
duration of Experiment 2 at around one hour, we used 6
stimuli from Experiment 1 that lasted around 2 min
each. We did not include Piazzolla, Dream Theater or
Stravinsky in Experiment 2 since these were 6 min lon-
ger than the other stimuli.

SUBJECTS

The same 18 musicians of Experiment 1 participated in
Experiment 2, and they were all familiar with the use of
audio editing software.

PROCEDURE

The experiment was conducted in a room with a com-
puter with the exception of two subjects who participated
at the same time in a computer laboratory. Contrary to
Experiment 1, which did not require assistance, in this

case the experimenter remained in the room during the
training to make sure that the task was clear. The exper-
imenter read each step of the instructions together with
the participant and occasionally answered questions
regarding the task. The participant performed the task
via two trial stimuli by following the instructions, and
after this the experimenter left the room. The written
instructions included a presentation of the interface tools
and a task description, which consisted of the following
steps:

1. Listen to the complete musical example.
2. Listen to the complete example, and at the same

time mark instants of significant change by press-
ing the Enter key.

3. Freely playback the musical example from differ-
ent time points and correct marked positions to
make them more precise, or remove them if these
were added by mistake. Do not to add any new
marks at this stage.

4. Mark the strength of the significant change for
each instant with a value ranging from 1 (not
strong at all) to 10 (very strong).

5. Move to the next musical example and start over
from the first step.

The interface showed stimuli waveforms over which
subjects would play back the music, add marks, reposi-
tion them, and rate their strength. The waveforms could
bias participants towards boundary indications based
on amplitude changes, so they were asked to focus on
the music rather than on visual content. These visual-
spatial cues, which are often used for expert annotation
of structure in Music Information Retrieval (MIR), were
needed due to the detailed audio editing that was
needed for the task. After the participants completed
the task, which lasted an hour on average, they provided
feedback and were rewarded with a movie ticket.

Results

Table 1 includes information about age, training, and
listening habits of participants. The mean listening
habits (music listening hours per week) of participants
were significantly higher for the group of musicians,
t(34) ¼ 2.26, p < .05, although they showed more dis-
persion in this respect (two musicians explained that
they seldom listen actively to music as a primary activity
although their whole day is usually consumed with musi-
cal activity). Five musicians and one nonmusician were
familiar with at least one target stimulus, but nobody
reported having performed any of the examples. The
mean familiarity rating (1 ¼ not at all familiar; 5 ¼ very
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familiar) per stimulus across participants was 2.4 (mean
SD ¼ 1.4) for musicians and 2.1 (mean SD ¼ 1.1) for
nonmusicians. The most familiar pieces for musicians
were Stravinsky (x ¼ 3.1, SD ¼ 1.3), Piazzolla (x ¼
2.9, SD ¼ 1.6), and Ravel (x ¼ 2.4, SD ¼ 1.4). Regarding
nonmusicians, they were most familiar with Stravinsky
(x ¼ 2.7, SD ¼ 1.5), Dream Theater (x ¼ 2.6, SD ¼ 1.1),
and Piazzolla (x¼ 2.4, SD ¼ 1.4).

The responses collected from participants were fur-
ther processed in order to enable comparisons between
the data structures of each task. For the trimmed 8-min
examples, we corrected overlapped chunk ends and
beginnings by discarding data from the first 3 s of each
chunk, except for the initial chunk. For each of these
examples, we then concatenated the data across chunks
to obtain a set of boundary indications for the full musi-
cal example length.

Subsequently, we organized the data as three main
sets based on the music training of the participants and
the segmentation task that was performed. We allocated
162 segmentations per participant group in the real-
time task, since 18 participants per group segmented 9
musical stimuli. For the annotation task set, we allo-
cated 108 segmentations by 18 musicians as each subject
segmented 6 musical examples. For brevity’s sake we
abbreviate the real-time task by nonmusicians to NMrt
and by musicians to Mrt, and for musicians in the anno-
tation task to Ma (see Table 2).

To yield global trends across listeners, we utilized
a systematic and multi-hierarchical approach. For each
group and task we computed segment boundary prob-
ability curves using Kernel Density Estimation (KDE,

Silverman, 1986). KDEs are comparable to histograms,
which are also density estimators, but yield smooth dis-
tributions because a kernel function is applied to each
data point (in this case each boundary indication)
instead of separating data points into bins. For distribu-
tion smoothing, we chose a normal kernel function fol-
lowing previous studies (Bruderer, 2008; Burunat et al.,
2014). To compare different participant groups and
experimental tasks, we obtained perceptual segment
boundary density curves at varying smoothing band-
widths; these corresponded to 16 time scales logarith-
mically ranging from .5 s to 10 s in order to model
multiple hierarchical levels. Previous studies (Bruderer,
2008; Burunat et al., 2014) showed that short time scales
are optimal for segmentation, so we chose logarithmic
scales to efficiently cover these in detail while also pro-
viding information regarding larger time scales. We
combined single-scale models of different time scales
to build matrices in which each row included a percep-
tual segment boundary density curve at a given time
scale, and each column included boundary density for
a given time point at different time scales. This multi-
scale model of segmentation follows previous work on
tonality (Martorell Dominguez, 2013) and musical nov-
elty description (Kaiser & Peeters, 2013; Mauch et al.,
2015). We obtained a multi-scale model for each stim-
ulus and segmentation task; Figure 2 shows each of the

TABLE 1. Age, Performance Training, and Listening Habits (Hours Per Week) of Participants

Group x age (SD) Range x years training (SD) Range x hours/week listening (SD) Range

NM 27.28 (4.64) 20 - 34 0 0 10.7 (8.6) 1 - 30
M 27.61 (4.45) 22 - 36 14.39 (7.49) 4 - 32 19.9 (15.7) 2 - 70

TABLE 2. Sets of Indicated Boundaries Used For Segmentation
Modelling and Their Respective Abbreviations

Nonmusicians Musicians

Real-time Task NMrt Mrt
Annotation Task
Annotation

Taskboundary strength weights

Ma
Maw

Note: NMrt ¼ boundary indications by nonmusicians in the real-time task (Exper-
iment 1). Mrt ¼ boundaries indicated by musicians in the real-time task (Experi-
ment 1). Ma ¼ boundary indications by musicians in the annotation task
(Experiment 2). Maw ¼ indications by musicians in the annotation task with the
addition of perceived boundary strength weights (Experiment 2).
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FIGURE 2. Each of the four sets of indicated boundaries was modelled

via a multiple time scale approach. The kernel density over time of

stimulus Morton is represented for 16 time scales.
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four multi-scale models obtained for stimulus Morton.
Within each KDE matrix there are 16 single-scale mod-
els, which are ordered along the vertical axis based on
their time scale (�), which ranges from 0.5 s to 10 s.

We included an additional data set with responses by
musicians in the annotation task to analyze the role of
perceived boundary strength; this set was abbreviated as
Maw. To generate Maw, each of the single-scale models
of the annotation task (Ma) was weighted based on
listeners’ boundary strength ratings. This fourth set
contained boundary indications at the same time
instants as Ma, allowing to estimate the boundary
strength effect. We mapped for each participant sepa-
rately minima and maxima strength values to 1 and 10,
since only a few subjects used the full range of values.

NUMBER OF BOUNDARY INDICATIONS

We looked at the total number of indicated boundaries
by each participant with the primary purpose of remov-
ing outliers from the sample. We found that all partici-
pants were located within 3 standard deviations from
the mean, so no sample subjects were removed. Figure 3
compares segmentation tasks and participant groups
based on the number of boundary indications per min-
ute for each stimulus. In this and the following box
plots, whiskers describe about +2.7 SD (for normally
distributed data), hence covering 99.3% of the total
data; mean values are shown with diamond marks. For
the first 6 stimuli, the number of boundary indications
per example by musicians ranged in the real-time task
between 0 and 49, and in the annotation task between 1
and 47. Regarding the real-time task, the number of
indicated boundaries for each of the 9 musical stimuli
ranged between 0 and 90 for nonmusician participants

and between 0 and 64 for musicians. All participants
indicated at least a total of 14 boundaries in the real-
time task. Some participants mentioned after the task
that they indicated few musical changes due to focus on
those that were sufficiently significant; four musicians
and two nonmusicians segmented once or not at all in
some of the segmentation trials, comprising 7% of the
324 collected trials in the real-time task.

We compared the mean number of boundary indica-
tions for each segmentation task and participant group
(Figure 4). The task comparison showed that partici-
pants indicated nearly double the number of boundaries
in the annotation task (x ¼ 11.33, SD¼ 8.06) compared
to the real-time task (x ¼ 5.81, SD ¼ 4.09) for the six
stimuli that were common to both. We computed paired
samples, two-tailed t-tests to determine whether the
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difference between tasks was statistically significant
(H0: mean difference between tasks in the number of
boundary indications by participants is equal to zero).
We found that musicians indicated significantly more
boundaries in the annotation task than in the real-time
task for 5 out of 6 stimuli; the difference was significant
at a ¼ .01 for the stimulus Couperin, t(17) ¼ 3.33, p <
.01, and at a ¼ .05 for the examples Genesis, t(17) ¼
2.32, p < .05, Smetana, t(17) ¼ 2.14, p < .05, Morton,
t(17) ¼ 2.83, p < .05, and Ravel, t(17) ¼ 2.24, p < .05.
However, we did not find a statistically significant dif-
ference between tasks for the example Dvořák, t(17) ¼
1.77, p > .05, since p slightly exceeded .05. The group
comparison showed that nonmusicians indicated more
boundaries (2285) than musicians (2076), but the dif-
ference between groups was not statistically significant
for any of the stimuli.

BOUNDARY STRENGTH RATINGS AND LOCAL BOUNDARY DENSITY

Subsequently, we focused on the possible relationship
betweeen perceived boundary strength and segment
boundary density in order to estimate the external valid-
ity of the main finding by Bruderer (2008). We investi-
gated whether musicians’ ratings of boundary strength in
the annotation task corresponded with the modelled den-
sity from the real-time task. For each considered time
scale, we correlated the perceived boundary strength
values with the real-time task model values at the respec-
tive time points (H0: no correlation between boundary
strength and segmentation density values of boundary
indications); for this analysis we used a version of the
real-time task model that was time-aligned with the
annotation task model (see below). In addition, we
included a time scale of 1.25 s into the KDE matrix for
this analysis, since this value was considered optimal by
Bruderer (2008) for single-scale modelling of boundary
data. We obtained weak mean correlation (around r ¼
.20) across stimuli for all the 17 time scales (Figure 5),
although the stimulus Smetana exhibited moderate cor-
relations —peaking at a time scale of 1.11 s, r(159)¼ .54,
p < .001 — for time scales below 5.5 s, and weak results
above this time scale. We repeated this procedure for the
boundary density in the annotation task to find out
whether the rated strength of a boundary correlated with
its corresponding density value. The overall correlation
between perceived strength values and boundary density
at the respective time points was in this case very low
(around r ¼ .10). In sum, the obtained results suggest
that boundaries perceived as strong were not more likely
to be indicated by participants.

Since these findings contradicted previous research, it
was hypothesized that in the annotation task

participants did not limit their segmentation to signifi-
cant instants of change only, but indicated boundaries at
multiple hierarchical levels instead. The reason for this
would have been that the task induced participants to
modify their segmentation strategies, because partici-
pants were aware from the instructions that they would
have to rate the strength of each boundary after the
segmentation. To test this possibility, we calculated the
distribution of boundary indications into each strength
rating, expecting a large frequency of low strength
annotations. The results (1 ¼ 14%, 2 ¼ 11%, 3 ¼
14%, 4 ¼ 10%, 5 ¼ 15%, 6 ¼ 6%, 7 ¼ 4%, 8 ¼ 8%,
9 ¼ 4%, 10 ¼ 13%) showed indeed a tendency towards
low strength boundary indications, since the strength of
49% of the indications was rated between 1 and 4. This
suggests that participants tended to indicate all possible
boundaries, not only the most significant ones, and thus
might explain why boundary strength ratings did not
correlate with boundary density. Altogether, we could
not find a relationship between boundary strength rat-
ings by participants and boundary density at indicated
instants. Because of this, we left the weighted data out of
most of the subsequent analyses to focus on the effect of
training and task on segmentation.

MEAN INTER-SUBJECT CORRELATION

Next, we examined the degree of cohesion in each seg-
mentation set; to this aim we calculated the mean cor-
relation between subjects within each set and for each
example. For each segmentation set and stimulus we
computed 18 individual multi-scale models, one model
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per participant, and correlated each pair (H0: the mean
inter-subject correlation is equal to the mean of empir-
ical distribution). Figure 6 presents, for each stimulus,
the inter-subject correlation coefficient of each segmen-
tation task and group of participants; high mean inter-
subject correlation coefficients indicate similar segmen-
tations between most or all participant pairs within a set.
Regarding segmentation tasks, the annotation task
yielded higher mean inter-subject correlations than the
real-time task for all 6 stimuli. Apart from two excep-
tions, the addition of boundary strength weights to the
annotation task led to an increase in cohesion, particu-
larly for 3 stimuli for which the mean inter-subject cor-
relation reached over r ¼ .50.

In contrast, the profiles between participant groups
were highly alike; nonmusicians, however, exhibited
lower mean inter-subject correlations than musicians
did for the musical stimulus Ravel. All the reported
mean inter- subject correlations were significant at
a ¼ .001 after the adjustment of p values for multiple
comparisons via a Benjamini-Hochberg correction pro-
cedure (q¼ .05). For each pair of participants and stim-
ulus, p values here indicate the probability of obtaining
the actual results if the boundaries corresponding to one
of the participants had been randomly placed. To obtain
the p values, we performed a Monte Carlo simulation
with 10,000 iterations for each of the stimuli and task: 1)
we produced 18 random segmentations (the number of
boundaries of each segmentation matched the total
number of boundaries marked by each participant); 2)
we obtained 18 multi-scale models, each one based on
a random segmentation; 3) we computed their mean
inter-subject correlation. These steps were repeated
10,000 times to generate a random distribution of mean

inter-subject correlation. Finally, we calculated how
many times this random distribution yielded larger
values than the mean inter-subject correlation obtained
from participants, and divided this result by the length
of the distribution (10,000).

TIME SCALE FOR BEST MODEL FIT TO BOUNDARY INDICATIONS

Subsequently, we focused on which time scales were
optimal for obtaining aggregate segment boundary data
distributions. To this aim, we estimated the level of
smoothing that provided an optimal fit of single-scale
model to the boundary data for each segmentation set
and musical example. For each subject, we obtained the
log-likelihood between each single-scale model and
individual data. To find which level of smoothing would
offer the best fit to the data, for each time scale we
summed the individual estimates together, and subse-
quently selected the time scale with the maximum sum
of log-likelihoods. To avoid overfitting, the estimates
were obtained with a leave-one-out procedure, such that
for each subject we computed a model that did not
include that subject. Figure 7 shows maximum likeli-
hood time scales for each of the 6 stimuli that are com-
mon to all segmentation sets.

Comparing groups, musicians exhibited in average
higher time scales than nonmusicians. We computed
paired samples t-tests to find out whether the maximum
likelihood time scales of musicians and nonmusicians
were significantly different from each other (H0: mean
difference between the maximum likelihood time scales
of nonmusicians and musicians is equal to zero). We did
not find a significant difference between groups for the
first 6 stimuli, t(5) ¼ 1.02, p > .05, nor for all 9 stimuli,
t(8) ¼ 1.79, p > .05. Comparing segmentation tasks, the
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maximum likelihood time scale of each stimulus was
larger in the real-time task than in the annotation task.
A paired samples t-test between tasks was computed to
find out whether their maximum likelihood time scales
differed (H0: mean difference between the maximum
likelihood time scales of real-time and annotation task
is equal to zero). We found a significant difference
between real-time and annotation tasks, t(5) ¼ 3.39,
p < .05; the optimal time scales were hence significantly
larger for the real-time task than for the annotation task.

ALIGNMENT BETWEEN TASKS AND GROUPS

Our next objective was to examine whether different
segmentation models were aligned with each other.
We estimated the delay in the real-time task with respect
to the boundary placements in the annotation task. To
this end, for each musical example we computed a two-
dimensional cross-correlation between the real-time
and annotation task models. We found that the real-
time task was lagged from the annotation task and
a mean optimal time lag between tasks across stimuli
at 1.05 s (SD ¼ 0.15). For subsequent analyses, we
shifted backward the real-time task indications by 1.05
s for all stimuli because the optimal time lag variation
among stimuli was small (from 0.9 s to 1.3 s).

We also investigated whether musicianship had an
effect upon relative lags in the real-time task indications.

We therefore compared musicians and nonmusicians
in the real-time task via the aforementioned cross-
correlation procedure. We found high alignment
between segmentations made by musicians and nonmu-
sicians in this task, as shown in Table 3; the mean align-
ment between groups for each stimulus at a time scale of
1.6 s was 0 s (SD ¼ 0.33). The delays found were min-
imal and did not follow a particular trend, even for
other considered time scales, suggesting no time lag
between groups.

Continuing, we assessed whether the variability of the
optimal time lag among stimuli could be attributed to
rhythmic differences between examples. We extracted
global rhythmic descriptions from the music (beat
length, average note duration, event density, and pulse
clarity, using MIRToolbox 1.5, see Lartillot & Toiviainen,
2007) and compared these with the optimal time lags of
the stimuli between segmentation tasks (H0: no corre-
lation between rhythmic features and optimal time lag).
We found a significant correlation, r(4) ¼ .87, p < .05,
between optimal time lag and stimulus global beat
length (BL ¼ 60

tempo). This result indicates that real-
time and annotation data are more closely aligned to
each other for stimuli with shorter beat length, and vice
versa. A simple linear regression was done to examine
the impact of beat length on the optimal time lag
between tasks (H0: beat length does not predict optimal
time lag). Beat length significantly predicted optimal
time lag, �1 ¼ .72, t(4) ¼ 3.48, p < .05; �2 ¼ .66, t(4)
¼ 5.5, p < .01. Beat length also explained a significant
proportion of variance in optimal time lag, adjusted R2

¼ .69, F(1, 4) ¼ 12.10, p < .05. The obtained simple
linear regression equation (� ¼ .72 � BL þ .66), and
particularly the nonzero intercept suggests that the lag
in the real-time task can be explained not only by a delay
dependent on beat length, but also by a constant time
lag among stimuli. Figure 8 illustrates the prediction of
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TABLE 3. Optimal Time Lag For Alignment Between Groups

Stimulus Optimal Time Lag (�) Delayed Group

Genesis 0.6 M
Smetana 0 —
Morton 0.2 NM
Ravel 0.4 NM
Couperin 0.2 M
Dvořák 0.2 NM
Piazzolla 0.4 M
DT 0.2 NM
Stravinsky 0.2 NM
Mean (SD) 0 (0.33) —

Note: KDE time scale ¼ 1.6 s, M ¼ delay by musicians,
NM ¼ delay by nonmusicians.
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optimal alignment between real-time and annotation
segmentations based on beat length. Correlations with
other rhythmic features were not significant, although
correlation directions were as expected; average note
duration: r(4) ¼ .71, p > .05; pulse clarity: r(4) ¼ �.31,
p > .05; event density: r(4) ¼ �.25, p > .05.

SIMILARITY BETWEEN TASKS AND GROUPS

Our following analyses focused on the similarity
between segmentation sets for different participant
groups and tasks; multiple approaches can be imple-
mented to investigate this. One possible way to perform
this analysis involves a detailed exploration of the seg-
mentation profiles for particular excerpts based upon
GTTM or other rules. For instance, Figure 9 illustrates
the location in the score of some of the boundary indi-
cations for the example Morton. This fox-trot piano
piece consists of a 4-bar introduction followed by
a 12-bar blues progression. Differences between the
profiles of musicians and nonmusicians in the real-
time task include a boundary indication from a nonmu-
sician at bar 15 (eleventh bar of the blues progression),
which was probably elicited by the V7-I progression of
the last two beats. Since the motif of bar 14 is repeated in
bar 15, this segmentation is in agreement with GPR 6
(Parallelism), according to which parallel musical seg-
ments should be analyzed as parts of groups, and not as
forming entire groups. This individual-level difference
does not clearly show up from the multi-scale models,
because the proposed approach highlights segmentation

responses at a group level. Interestingly, two musicians
in the real-time task indicated a boundary at the begin-
ning of the triplet in bar 14, perhaps due to boundary
perception evoked by the C9-D9 chord change. In con-
trast, the annotation task exhibits a rather different
multi-scale model and boundary profile, with two dis-
tinct boundary regions. The first region lies around the
second note of bar 14 whereas the second region,
located in bar 16, can be predicted by the parallelism
rule; both boundary regions are in agreement with the
attack-point proximity rule (GPR 2b). The annotation
task profile suggests that boundary indications between
these regions in the real-time task correspond to
delayed responses, at least in the case of musicians.

CORRELATION BETWEEN MULTI-SCALE MODELS

In this study we opted to focus on a similarity analysis at
a global level in search of trends based on whole musical
stimuli. This choice is motivated, among other reasons,
by the fact that real-world polyphonic music is not opti-
mally suitable for rule-based approaches, or at least not
as much as monophonic music in the symbolic domain
is. For each musical stimulus, we compared each pair
of multi-scale models; Figure 10 presents obtained
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correlations between groups, between tasks, and
between alignment strategies (H0: the correlation
between models equals the mean of empirical distribu-
tion). For groups, we found strong correlations between
multi-scale models corresponding to musicians and
nonmusicians. The task comparison also showed mostly
strong correlations between real-time and annotation
tasks by musicians for aligned segmentation models.
For time alignment, the correlations between tasks for
nonaligned models were weaker; the mean correlation
reached r ¼ .58 compared to r ¼ .81 for aligned models.
The reported p values (***p < .001) were drawn from
a Monte Carlo simulation and were later adjusted for
multiple testing using Benjamini-Hochberg correction
(q ¼ 0.05).

CORRELATION BETWEEN SINGLE-SCALE MODELS

We also examined the relationship between groups and
between tasks at each time scale separately to determine
which time scales yielded highest similarity between
models. To this end, for each stimulus and time scale
we computed correlations between participant groups
and between segmentation tasks. A bias in the correla-
tion coefficients caused by the smoothing of boundary
indications was removed by using Monte Carlo simula-
tion (10,000 iterations). We computed a correlation
baseline for each combination of example and time
scale, and then subtracted it from the original correla-
tion. Figure 11 shows the mean and standard deviation
of the debiased correlations across musical examples at

each time scale; the markers correspond to mean opti-
mal time scales across stimuli for comparison between
segmentation models. Figure 11a shows the similarity
between musicians and nonmusicians at each of the 16
time scales that were used for segmentation modelling.
The mean correlation between musicians and nonmu-
sicians in the real-time task ranged from high to mod-
erate, and peaked at a time scale of 1.7 s. Figure 11b
shows the mean debiased correlation between tasks
across stimuli for both nonaligned and aligned analysis.
The exhibited correlations were higher for aligned mod-
els than for nonaligned models, with peaks at time
scales of 1.4 s and 2.5 s, respectively. Comparing Figure
11a and Figure 11b, the correlation between groups was
higher than the correlation between tasks, which yielded
higher dissimilarity for both aligned and nonaligned
models.

LINK BETWEEN OPTIMAL TIME SCALE FOR SET COMPARISON AND

RHYTHMIC FEATURES

Following this analysis, we investigated the possible
relationship between optimal time scales for segmenta-
tion and global rhythmic descriptions of each stimulus.
We calculated the similarity between optimal time scales
found for comparing tasks and four acoustic features.
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For each musical stimulus we estimated pulse clarity
(underlying rhythmic pulsation), event density (average
frequency of events), average note duration (inverse of
event density), and global tempo using MIRToolbox 1.5;
subsequently we correlated the optimal time scales for
task comparison with each feature (H0: no correlation
between optimal time scales for task comparison and
rhythmic features). We obtained strong negative correla-
tions between the optimal time scales for task compari-
son and both pulse clarity, r(4)¼�.83, p < .05, and event
density, r(4) ¼ �.82, p < .05; the left and right plots in
Figure 12 show the inverse link between optimal time
scales and pulse clarity and event density, respectively.
We obtained lower correlations with the other rhythmic
features, namely average note duration, r(4) ¼ .66, p >
.05, and tempo, r(4)¼�.11, p > .05, and these results did
not reach significance.

Discussion

From a methodological viewpoint, this study contri-
butes to state of the art research in boundary perception
on a number of accounts. We introduced a real-time
data collection task in order to analyze spontaneous
boundary indications. Compared to previous work, here
the target stimuli were heard for the first time in the
segmentation step, rather than during previous listening
only conditions or practice trials. Another novel aspect,
which aimed to illuminate the difference between intu-
itive and more conscious boundary indications, was to
thoroughly compare how the examples were segmented

by the same listeners in this task and in an annotation
task that resembles previous data collection methodol-
ogies (Clarke & Krumhansl, 1990; Wiering et al., 2009).
In addition, we expanded previous studies on musician-
ship by collecting spontaneous indications from musi-
cians and nonmusicians using diverse stimuli. Unlike
previous work that included only a small number of
nonprofessional musicians (Bruderer, 2008), we aimed
to reach optimal validity for group comparisons by
using stringent criteria for musicianship.

Another contribution of our study for music segmen-
tation was the implementation of a multi-scale analysis
approach to represent the boundary indications of the
participants as Kernel Density Estimation matrices. In
comparison to the approach used by Bruderer (2008),
we did not need to obtain repeated segmentations of the
same stimulus from each participant to find an optimal
time scale of the segmentation, because multi-scale
modelling allows the estimation of which time scales
offer optimal fit based on a single segmentation trial.
In contrast to previous studies, via this approach we
investigated how optimal time scales for segmentation
and inter-task delays are linked to rhythmic character-
istics of the audio stimuli.

NUMBER OF INDICATIONS

Our analysis of mean number of boundary indications
for each group and task revealed no significant differ-
ences between participant groups (Figure 3). We did not
find a significant effect of music training on the number
of indications per minute for any of the examples. It must
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be noted, however, that nonmusicians indicated in total
9.1% more segments than musicians (which could be
partly attributed to the outliers of Figure 3). Although
the median of participants in Figure 4 showed an oppo-
site trend for the mean number of indications across
stimuli, this result should not be disregarded. For
instance, Bruderer (2008) reported, for a smaller partic-
ipant pool, that musically trained participants indicated
significantly fewer boundaries. Also, following the event
segmentation theory (see Peebles, 2011), it could be that
some nonmusicians have difficulties predicting goals and
intentions in the music, and hence segment into shorter
units. For example, the exposition of the Piazzolla theme
(1:08 - 1:26) is highly ornamented, which camouflages its
symmetry and underlying melodic parallelism (equal
duration and durational values but different note
pitches). Nonmusicians probably failed to integrate
non-neighboring patterns, since they tended to cluster
the ornaments, and divided the theme into more frag-
ments than musicians. In contrast, musicians’ schematic
knowledge might have enabled them to anticipate future
changes and group the melodic line together, instead of
stumbling on local surface discontinuities elicited by
embellishments. However, musicians segmented more
than nonmusicians in Couperin, a stimulus that exhibits
few musical changes other than those prompted by
underlying tonal context. Regarding this, it is possible
that nonmusicians tend to segment into larger units if
they have difficulties discovering changes in the music.
Overall, we did not find effects of musicianship at a global
level of analysis, but some effects may be evidenced via
exploration of specific musical passages.

Regarding the task comparison, we found that musi-
cians indicated more boundaries in the annotation task
than in the real-time task for all 6 stimuli, a trend that
reached significance for most examples; this suggests an
effect of the data collection task upon the number of
boundary indications. We put forward three possible
explanations for these (and other) differences between
segmentation tasks. The first one is that during the exe-
cution of the second task, participants discovered other
plausible boundaries for indication, perhaps due to
familiarity with the underlying musical structure; in this
vein, the number of listeners’ judgments of section ends
has been found to increase throughout progressively
shorter presentations of the same piece (Krumhansl,
1996).

Another possibility is that the annotation task
instructions biased listeners towards frequently indicat-
ing boundaries to be later able to give different ratings of
boundary strength. The salience rating instructions may
have influenced listeners in the annotation task to

annotate as many boundaries as possible and at multiple
time scales, whereas in the real-time task listeners may
have indicated boundaries at a single time scale, perhaps
at a rather large one due to focus on significant changes.
If this was the case, then listeners may not have utilized
the same concept of segmentation across tasks, lowering
the validity of the annotation segmentation data; this
might explain the extreme outliers in the annotation
task (Figure 3). To address this, future segmentation
task instructions should ask participants to indicate
boundary strength ratings only after they have seg-
mented all the stimuli, and they should not be informed
about the salience rating step beforehand.

A third explanation is that the real-time task not only
involves more sustained attention and concentration
than the annotation task, but also hinders segmentation
based on repetition and other retrospective aspects of
segmentation. Some musical events are recognized
a posteriori as instants of significant change due to the
effect of ulterior events; for example, two motives can be
identical except for a local difference (e.g., an alteration)
in the middle of the second motif that, when perceived,
prompts boundary perception between motives. Also,
the use of ornamentation during cadences such as the
trills in Morton (0’25’’) might disguise imminent musi-
cal changes, which become more evident retrospec-
tively; this might partly explain the notable difference
between tasks shown in Figure 3. Future work could
analyze which particular time points of the stimuli
exhibit high contrast in boundary density between tasks
by subtracting segmentation models from one another;
also, initial and final positions of boundaries in the
annotation task can be recorded to explore boundary
replacements.

BOUNDARY STRENGTH AND DENSITY

We next examined the relationship between boundary
strength ratings and boundary density. We investigated
whether model density, which is a local estimate of fre-
quency of boundary indications, correlated with bound-
ary strength ratings. The mean correlation across
stimuli was low for all time scales (Figure 5), although
Smetana exhibited moderate correlations. This suggests
in principle no relationship between rated strength and
frequency of indications, although this could be contin-
gent on the stimuli.

We calculated the distribution of boundary indications
into boundary strength ratings under the hypothesis that
the annotation task instructions indirectly induced par-
ticipants to indicate all possible boundaries so that these
could be assigned different strength ratings. We found
that about half of the indicated boundaries were given
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relatively low strength ratings, which suggests that the
correlation between strength ratings and density is low
because participants indicated both highly significant
boundaries and less salient ones. This result may also
explain why participants indicated twice as many bound-
aries in the annotation task than in the real-time task.

Since the annotation task seemed to include addi-
tional ‘‘weak’’ boundaries compared to the real-time
task, we investigated whether subjects agreed more
about the location of boundaries rated as strong than
about those rated as weak. We then correlated strength
ratings in the annotation task with boundary density in
the same task at the respective time points. We obtained
a lower correlation than for the comparison between
strength in the annotation task and density in the
real-time task. This suggests that boundary strength
informs more about the frequency of boundary indica-
tions for strong boundaries than for weak boundaries,
and that participants agreed more about the location of
boundaries rated as strong than about boundaries rated
as weak. We remark that a visual comparison of the
segmentation models suggested that all the boundaries
with high density in the annotation task with added
weights also showed high density in the real-time task;
future studies should restrict the annotation task model
to boundaries with the highest strength ratings to find
out whether this creates an increase in the correlation
between tasks.

According to our findings, the relative frequency of
boundary indications does not predict the boundary
strength ratings. Bruderer (2008) compared frequency
of indications for a subset of boundaries within a win-
dow of 1.25 s with mean ratings of boundary salience. In
contrast to our findings, Bruderer did find moderately
high to high correlations across diverse musical stimuli,
but our analysis is not identical. Bruderer restricted the
analysis to a subset of boundary peaks with different
indication frequencies, whereas we analyzed complete
boundary data. In addition, we did not choose bound-
ary indications via analysis windows but picked density
values corresponding to each boundary. Also, most of
the stimuli utilized by Bruderer (2008) were popular
music with lyrics; this could have induced a relatively
high agreement regarding boundary strength ratings,
and could partly explain why we found difficulties in
replicating his finding with instrumental and more var-
ied musical stimuli. Overall, it is possible that partici-
pants were biased by the task instructions or that they
had difficulties in assigning relative weights to bound-
aries. Alternatively, it could be that the frequency of
indications does not inform about boundary strength:
a stark drum pattern change should be indicated by

multiple participants, but in order to be rated as strong
it may need to be accompanied by silences, modal
change, changes of instrumentation, musical novelty,
or other aspects evoking boundary perception. Also,
boundaries prompted by diminished triads or musical
quotation may be indicated by few participants but still
be rated as strong.

INTER-SUBJECT CORRELATION

We next compared the relationship between subjects for
different groups and tasks via the correlation of pairs of
individual segmentation models. Regarding tasks, we
found the annotation task to exhibit higher mean
inter-subject correlation than the real-time task (Figure
6). This suggests an effect of task on inter-subject cor-
relation: in the real-time task, probably participants
could not anticipate some boundaries and missed indi-
cating them if the stimuli were relatively unpredictable
(unlike Smetana, which exhibited similar inter-subject
correlation across tasks). We also observed an improve-
ment of the inter-subject correlation for the annotation
task with added weights for Smetana, Dvořák, and Gen-
esis. This suggests that for these stimuli listeners
assigned similar strength ratings (or gave weak strength
ratings to boundaries that others did not indicate). In
contrast, a more ‘ambiguous’ stimulus (Couperin)
exhibited an opposite trend: inter-subject correlation
dropped for the model with added strength.

Comparing groups, both musicians and nonmusi-
cians exhibited very similar mean inter-subject correla-
tion. This result, in line with previous findings
(Bruderer, 2008), suggests that musicianship may not
have an effect on inter-subject correlation. It should
be noted, however, that the relatively complex stimulus
Ravel exhibited relatively higher inter-subject correla-
tion for musicians. An exploration of the multi-scale
models for a subtle tonal change that is induced by rapid
arpeggios (1’ 34’’, Un peu marqué) shows differences
between groups. The boundary density corresponding
to this change is relatively higher for musicians than for
nonmusicians, suggesting higher consensus between
musicians. Hence, no effects of musicianship were
found but further qualitative analyses are required to
observe possible effects when focusing on particular
musical motives.

Overall, for both groups and tasks, we found low
mean inter-subject correlations and great variability of
the obtained coefficients. In principle, this suggests that
participants were attending to different features (such as
change in timbre or tonality) or to different hierarchical
levels of segmentation; however, the approach used is
sensitive to small timing variations between profiles.
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This is because, unlike multi-scale models across parti-
cipants, individual multi-scale models involve high den-
sity peaks of relatively short time spans. Because of this,
small differences in the perceptual delay of participants
can have a considerable effect on their inter-subject
correlation; hence, participants who exhibited very high
inter-subject correlation did not only segment the same
musical changes, but were also highly synchronized
with each other. In any case, future studies should fur-
ther examine variance in inter-subject correlation and
in number of boundary indications, considering that
different participants may pay attention to different
hierarchical levels (suggested by Bruderer, McKinney,
& Kohlrausch, 2006), musical features, interactions of
features, or top-down structural aspects (similarity,
symmetry, and so forth). For instance, participants
could be clustered into subgroups to explore the validity
of grouping them based on i.e., musicianship or
instrument.

TIME SCALE FOR BEST MODEL FIT TO INDICATIONS

We next estimated an optimal time scale for each exam-
ple and set for modelling boundary data across partici-
pants; these optimal time scales correspond to the
segmentation models that obtained the best fit to parti-
cipants’ boundary indications. The group comparisons
for the real-time task (Figure 7) showed higher mean
optimal time scales for musicians, although we did not
find significant differences. The result is difficult to
interpret since two stimuli exhibited opposite trends,
but it could be that for most stimuli musicians focused
on higher levels of the hierarchical grouping structure
(such as changes of key, and of rhythmic and metrical
patterns), or that they were less isochronous in their
indications. The results were clearer for the task com-
parison, since we found larger optimal segmentation
time scales for the real-time task and this difference was
significant. This suggests that participants segmented at
multiple levels of grouping or at relatively lower levels in
the annotation task compared to the real- time task. We
highlight, however, two outliers that exhibited a similar
pattern across segmentation sets: the optimal time scale
for Genesis was the largest for all segmentation sets,
whereas Morton exhibited relatively low time scales for
all sets. The music of Genesis combines multiple exper-
imental sounds and effects within relatively long, homo-
geneous melodic-harmonic sections, and in this respect
a segmentation at large time scales would be expected.
Conversely, shorter time scales for Morton could be
explained by ambiguity in harmonic progression, which
has been found to decrease feeling of completion
(Cuddy, Cohen, & Mewhort, 1981) and hence might

induce boundary perception due to expectancy
violation.

ALIGNMENT BETWEEN TASKS AND GROUPS

We investigated the degree of alignment between real-
time and annotation task segmentation; this possible lag
in the real-time task compared to the annotation task is
evidenced in Figure 2, which shows that the models are
not perfectly aligned. We found that the indications
obtained from the task were delayed, and a mean opti-
mal time lag across stimuli at 1.05 s for alignment of
real-time and annotation tasks. In other words, it took
participants an average of 1.05 s in the real-time task to
recognize perceived boundaries and respond to these by
pressing a key on the computer, suggesting that in this
task they were usually unable or did not intend to antic-
ipate upcoming musical changes.

Another goal was to find out whether the optimal
time lag between tasks was dependent on temporal
characteristics of the stimuli. Our results showed that
global beat length (and, equivalently, global tempo) of
the stimuli can predict the dispersion of the optimal
time lag (Figure 8). This means that faster stimuli with
shorter beat length would yield higher alignment
between real-time and annotation task segmentation,
and vice versa. In addition to the regression coefficient
from which we derived this interpretation, the regres-
sion equation included a nonzero constant term, in
other words a stimulus invariant time lag. This suggests
that boundary indications in the real-time task are
delayed at least by a number of beats (stimulus depen-
dent) plus a constant time lag (stimulus independent).
A plausible interpretation of the regression equation
(� ¼ .72 � BL þ .66) is that the real-time segmentation
lag might stem from a recognition delay of around 3=4 of
a beat and a response delay of about 2=3 of a second:
listeners possibly required less than a beat (between
0.4 s and 0.9 s depending on stimulus) to pass in order
to recognize a perceived change as significant, and over
half a second to respond to the change by indicating
a boundary. Future work should compare the time lag
between tasks for different portions of the stimuli to
find out if the lag is reduced as engagement with the
stimulus increases during real-time segmentation.

We also analyzed the level of alignment between
musicians’ and nonmusicians’ segmentation models.
We expected nonmusicians to be delayed compared to
musicians, due to the effects of music training in audi-
tory working memory. For example, musicians seem to
be faster in capturing the statistical structure of per-
ceived streams (François, Jaillet, Takerkart, & Schön,
2014) and exhibit larger auditory memory spans
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(Tierney et al., 2008) than nonmusicians. However, we
found the overall lag between musicians and nonmusi-
cians to be practically zero, and focusing on the lag for
each stimulus did not show a trend towards any partic-
ular group. These results suggest that music training has
no effect upon indication time lag, as the negligible lags
reported in Table 3 could be attributed to noise. This
should, however, be explored in future studies including
more varied stimuli such as highly predictable pop bal-
lads and contemporary classical music with unexpected
changes, and also assessing whether the delay increases in
the initial stimuli sections but progressively decreases.

SIMILARITY BETWEEN TASKS AND GROUPS

Correlation between multi-scale models. We examined
the relationship between groups, tasks, and alignment
strategies by computing correlations based on the multi-
scale models of the collected boundary data. It was
found (Figure 10) that boundary data from musicians
and nonmusicians yielded very similar multi-scale
models for all stimuli. This result suggests that music
training did not have an effect on the real-time multi-
scale segmentation models, and that musicians and
nonmusicians indicated similar structural descriptions,
at least at a general level.

Regarding tasks, we observed for the aligned multi-
scale models that musicians segmented very similarly in
both real-time and annotation tasks. This suggests that
if both tasks are time-aligned, the effect of segmentation
task is not that evident. We also observed that the cor-
relations were overall lower for the aligned task com-
parison than for the group comparison. Possible
dissimilarity factors in the annotation task include the
chance to indicate perceivable boundaries retrospec-
tively, reduce perceptual delays via reposition of bound-
aries, and also the task instruction requirement to rate
perceived strength, which could have led to the afore-
mentioned bias. Another finding regarding the effect of
alignment strategy was that the similarity between tasks
was notably lower for nonaligned models; this suggests
that alignment is needed for comparisons between real-
time and annotation tasks in order to compensate for
the latency of participants in the real-time task.

Correlation between single-scale models. We further
investigated mean similarity between segmentation
models at each time scale. As shown in Figure 11, the
optimal time scale for comparison between tasks was
larger for the nonaligned models (2.5 s) than for the
group comparison (1.7 s). In other words, relatively
large time scales are optimal for comparison between
tasks, whereas smaller segmentation time scales yield

dissimilarity between tasks, which is probably due to
recognition delay and retrospectively perceivable
boundaries. Also, we found that the peak correlations
were higher for the group comparison than for both
aligned and nonaligned task comparisons. This means
that the similarity between participant groups was
higher than the similarity between tasks, which suggests
effects of segmentation task but no effects of group. In
addition, we obtained mean optimal time scales across
stimuli for group comparison and aligned task compar-
ison at 1.4 s and 1.7 s respectively. These rather low
optimal time scales suggest that both participant groups
focused on chord, dynamics, pulse, and other relatively
frequent changes rather than key or melodic bound-
aries. Also, these mean time scales are possibly indica-
tive of the relative variance between subjects regarding
the indication of single boundaries; for instance, indica-
tions within a 1.7 s span may relate to the same bound-
ary, whereas those that are further apart might
correspond to different perceived boundaries.

Optimal time scale for set comparison and rhythmic fea-
tures. We additionally investigated whether there was
a relationship between optimal time scales for task com-
parison and musical rhythm descriptors. We found
moderate to strong links between the optimal time
scales of the stimuli and three descriptors: pulse clarity,
event density, and average note duration. Our results
suggest that the time scale for comparison between seg-
mentation tasks can be measured in terms of rhythmic
clarity, event density, or average note duration rather
than in seconds: short time scales are optimal to com-
pare segmentations for music, characterized by a clear
pulse and a relatively large number of short note events.
It can be further argued that music with high global
pulse clarity and event density facilitates forecast of
boundaries because large interonset intervals and long
rests (common cues for melodic segmentation) may
appear more contrasting. Future work could test this
possibility by estimating whether pulse clarity and event
density predict segmentation model entropy, although
other structural features such as loudness, instrumenta-
tion, cadences, and tonal closure might play a more
prominent role.

Finally, we investigated a possible link between musi-
cal tempo and optimal time scale for comparison
between tasks. It was expected that music with fast
tempo would exhibit short optimal time scales for task
comparison, and vice versa. We found only a weak neg-
ative correlation between optimal time scales and global
tempo, although the direction of the relationship was
according to our expectation and in line with findings
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suggesting general increase of asynchrony with lower
metronome tempo in finger tapping tasks (Repp & Su,
2013).

General Discussion

Regarding the first hypothesis of the study, our findings
did not provide support for an effect of music training
on musical segmentation. Musicians exhibited very high
model alignment with nonmusicians, which is inconsis-
tent with our prediction that nonmusicians would be
delayed compared to musicians and also with findings
suggesting differences in auditory memory spans
between groups (Tierney et al., 2008). Another unex-
pected result was the similar inter-subject correlation
for both groups; musicians did not exhibit higher con-
sensus than nonmusicians, hence musicians’ schematic
knowledge may not increase group homogeneity
regarding segmentation. Furthermore, multi-scale
model similarity analyses showed very strong resem-
blance between musicians and nonmusicians in the
real-time task, suggesting a relatively similar pattern
of segmentation responses between groups. We also
found that musicians and nonmusicians’ time scales for
optimal model-to-data fit were similar, which, unlike
our expectation, suggests that both groups segmented
at similar time scales. Moreover and also contrary to our
expectations, we did not find a significant difference
between groups in the number of boundary indications,
although nonmusicians indicated more boundaries than
musicians in the real-time task. This suggests no effect
of musicianship on number of boundaries, although
future studies should investigate in what musical con-
texts nonmusicians segment more often than musicians,
and the contribution of expectation violation to this
phenomenon.

In sum, we could not find sufficient evidence to reject
the null hypothesis (no difference between segmenta-
tion from musicians and nonmusicians); hence, only
limited implications can be derived from these findings.
Perhaps musical boundary data analysis in the context
of real-time segmentation does not reveal effects of
music training despite having different representations
of musical structure; it could also be that effects of
musicianship can be only identified for shorter musical
passages; alternatively, music training may not modu-
late musical structure representations. The first possi-
bility assumes that differences due to musicianship only
become apparent in implicit segmentation scenarios
(Bigand & Poulin-Charronnat, 2006). The second alter-
native is supported by findings indicating group effects
in melodic segmentation of short tunes (Peretz, 1989).

On the other hand, the third possibility implies that
structure boundary perception is independent of instru-
ment skills and of cognitive loads associated with inten-
sive training. We remark, however, that nonmusicians
indicated more boundaries than musicians; future stud-
ies should gain further understanding on the additional
boundaries indicated by nonmusicians via analysis of
boundary taxonomies. Related to this, musicians tended
to exhibit overall larger optimal time scales for data
modelling; this finding requires future investigation
since it suggests that musicians could pay attention to
higher-level musical features.

In line with our second hypothesis, we did find effects
of experimental task on perceptual segmentation. As
expected, the real-time task set was delayed with respect
to the annotation task. This finding suggests that during
real-time segmentation listeners did not segment impul-
sively but ensured themselves that their predictions
were correct before indicating a boundary. Related to
this finding, rhythmic characteristics (global beat
length) of the stimuli had an effect on the magnitude
of the real-time task lag. This suggests that the latency of
participants’ responses in the real-time task consists of
a recognition delay dependent on stimulus beat length,
plus a constant response delay. We also found that lis-
teners’ segmentations were more similar to each other
in the annotation task than in the real-time task. This
suggests that they indicated boundaries less isochro-
nously in the real-time task, because some boundaries
could only be retrospectively perceived, or because of
individual differences in perceptual delay. Moreover,
listeners indicated significantly more boundaries in the
annotation task than in the real-time task. This is
a highly expected result since the annotation task offers
more time to determine boundaries in finer detail, but
also suggests that listeners focused not only on a single
and large time scale, but also on other time scales of the
segmentation, providing support to the aforementioned
GTTM postulate (Lerdahl & Jackendoff, 1983). We also
found that the alignment of real-time and annotation
task models notably increased the correlation between
them. This suggests that the real-time task lag made
a major contribution to the task effect; further studies
should consider other segmentation alignment strate-
gies as well. In addition, single-scale model analyses
showed that relatively long time scales (2.5 s) were opti-
mal for comparison between segmentation tasks. This
result suggests that time scales below 2.5 s are not
smooth enough for task comparison, probably due to
response delays in the real-time task and retrospective
aspects of segmentation. Furthermore, we found that
the time scale for optimal fit of the single-scale models
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to the data was shorter in the annotation task than in the
real-time task. This suggests that boundaries tend to be
indicated in the real-time task within a larger time span,
following simultaneous change of multiple musical fea-
tures. In contrast, the annotation task may prompt clus-
tering patterns at different hierarchical levels. A related
issue, for which we could not replicate previous findings
(Bruderer, 2008), was the relationship between per-
ceived strength in the annotation task and the density
of the real-time task segmentation model at the respec-
tive time points. Since we failed to find a link between
these two, the frequency of indications of a boundary
may not necessarily inform about its mean salience rat-
ing, but about acoustic or contextual aspects of segmen-
tation. However, our results elicited questions about
a possible bias due to the annotation task instructions,
which might at least partly explain differences between
tasks and require further investigation. Overall, among
the main contributors to the effect of task we could find
the real-time task lag and the differences in number of
boundary indications. The lag depends to some extent
on rhythmic characteristics of the stimuli, whereas the
differences in number of boundaries are due to the
impossibility to indicate boundaries retrospectively in
the real- time task, and possibly to the strength rating
task, which encouraged over-segmentation.

Regarding optimal segmentation time scales for task
comparison, we found, in accordance with our third
hypothesis, a dependence on global rhythmic pulsation,
on amount of events, and on duration of events. This
suggests that the time scale for modelling perceptual
segmentation could be measured in terms of these
rhythmic characteristics rather than in seconds; for
instance, segmentation of music with unclear pulse and
few note events of usually long duration requires to be
modelled at large time scales. Noteworthy, rhythmic
features extracted from the audio stimuli can be used
to systematically predict aspects of segmentation from
participants, as evidenced by analyses on optimal time
scale and task alignment. Further work on alternatives
to fixed time scales such as variable density estimation
methods could gain new insights regarding this issue,
because rhythmic features are not static but dynamic.

CONSIDERATIONS FOR FUTURE RESEARCH

An assessment of the validity of our findings should
note that these are restricted to segmentation based
on musical contrast, and to the assumption that signif-
icant musical changes prompt perception of structural
boundaries. Future work could compare our operational
definition of musical boundaries (significant instants
of change in the music) with more complex definitions

including metaphors (‘‘landmark points while taking
a walk in an unfamiliar forest,’’ Deliège et al., 1996; ‘‘listen
to the music as if it was a story and mark its punctua-
tion,’’ Koniari et al., 2001; ‘‘tell how strong the punctua-
tion was,’’ Deliège, 2007) and musicological terms (‘‘press
space-bar when you hear a segment boundary [phrase,
section, passage],’’ Bruderer et al., 2006); the effect of
a given definition on the resulting boundary profiles
should be analyzed. In addition, work on implicit tasks
related with segmentation (see Peretz, 1989) could pro-
vide insights on retrospective, memory, repetition-based,
and other top-down processes that underlie explicit seg-
mentation. For example, we should further examine
whether perception of short musical material should suf-
fice to prompt higher-level groupings of longer material
(see cue-abstraction theory, Deliège et al., 1996).

Further segmentation studies should overcome meth-
odological issues concerning the validity of the partici-
pant sample by including an established questionnaire,
such as the Goldsmith’s Musical Sophistication Index
(Gold-MSI, see Müllensiefen, Gingras, Musil, & Stewart,
2014), which has been recently used for assessments in
musicianship studies (Carey et al., 2015; Schaal, Banissy,
& Lange, 2015). This can be helpful not only for com-
paring research findings but also for improving recruit-
ment and classification: Gold-MSI takes into account
that training may not determine musical abilities such
as perception of form (Bigand & Poulin-Charronnat,
2006; Lalitte & Bigand, 2006), and also that some musi-
cal skills do not result from formal music training
(Müllensiefen et al., 2014). It is also recommended for
future studies to employ full factorial designs to inves-
tigate effects of musicianship and experimental task.
Collecting segmentation data by nonmusicians in the
annotation task would enhance our understanding of
commonalities and differences between groups and
tasks. Although our sample of nonmusicians reported
having no experience in audio editing software, it is very
likely that they could have completed the task without
problems. Many youth and adults possess the editing
skills required for structural annotation tasks as it is
common to record and edit videos for web sharing and
social networking. Also regarding the effect of musi-
cianship on segmentation, many confounding variables,
including level of attention, current state of participants,
and aspects of musical structure could have contributed
to our negative results. In our view, replication with
other participant samples and more musical stimuli is
required to understand whether these findings are gen-
eralizable to other scenarios. It is possible that local
group differences did not show up in the reported global
results; for instance, it could be that specific musical
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passages may show interesting group differences with
respect to accordance with grouping preference rules or
indication delays. These and other results remain to be
approached at a finer scale to allow for more musically
interesting insights; also, new experiments should be
devised to understand the role of specific local Gestalt
rules and other factors upon segmentation of a rich real-
world dataset. Another issue that deserves further study
is why the correlations between groups in both single-
scale and multi-scale similarity analyses are not higher;
as illustrated above, small dissimilarities between mod-
els from musicians and nonmusicians might derive
from systematic differences between groups with
respect to particular aspects of segmentation such as
parallelism, instead of from data noise.

Future studies are needed to also clarify the role of
experimental task on segmentation, since methodological
issues could have hampered our results. Contrary to the
annotation task, in the real-time task listeners did not
hear the music before responding, they could not amend
their responses after segmentation, and they were not
asked to rate boundary strength. Future studies should
compare different versions of the real-time task that vary
only in one way to understand the contribution of dif-
ferent factors. For instance, four real-time segmentation
versions could be compared: 1) real-time segmentation,
2) familiarization with stimulus followed by real-time
segmentation, 3) real-time segmentation and subsequent
boundary reposition, and 4) real-time segmentation fol-
lowed by boundary strength indication.

New perceptual segmentation modelling approaches
should be developed to clarify the interpretation of our

results regarding optimal segmentation time scales and
contribution of musical features. Our multi-scale mod-
elling method yields ambiguous results, because small
optimal time scales for segmentation may indicate any
or both of these propositions: 1) participants pay atten-
tion to low hierarchical levels of the musical structure,
2) participants are isochronous in their indications. It is
difficult to know whether participants pay attention to
low grouping levels (e.g., segmenting each note), or
exhibit little timing dispersion in their indications; also
both cases could also be correct. Further research
should also focus on which specific rhythmic, metrical,
and grouping structure rules are emphasized via our
modelling approach. Finally, systematic time series
comparisons between different musical features and
perceptual segmentation models could provide thought-
ful insights upon description cues involved in segmen-
tation for different tasks and groups.
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Appendix

Musical Stimuli - List of Abbreviations

Genesis Banks, T., Collins, P. & Rutherford, M. (1986).
The Brazilian. [Recorded by Genesis]. On Invisible
Touch [CD]. Virgin Records. (1986)

Spotify link: http://open.spotify.com/track/7s4hAEJup
ZLpJEaOel5SwV

Excerpt: 01:10.200-02:58.143.

Smetana Smetana, B. (1875). Aus Böhmens Hain und
Flur. [Recorded by Gewandhausorchester Leipzig -
Václav Neumann]. On Smetana: Mein Vaterland
[CD]. BC - Eterna Collection. (2002)

Spotify link: http://open.spotify.com/track/2115JFwiN
vHxB6mJPkVtbp

Excerpt: 04:06.137-06:02.419.

Morton Morton, F. (1915). Original Jelly Roll Blues. On
The Piano Rolls [CD]. Nonesuch Records. (1997)
Spotify link: http://open.spotify.com/track/6XtCier
LPd6qg9QLcbmj61

Excerpt: 0-02:00.104.

Ravel Ravel, M. (1901). Jeux d’Eau. [Recorded by Mar-
tha Argerich]. On Martha Argerich, The Collection,
Vol. 1: The Solo Recordings [CD]. Deutsche Grammo-
phon. (2008)

Spotify link: http://open.spotify.com/track/27oSfz8D
KHs66IM12zejKf

Excerpt: 03:27.449-05:21.884

Couperin Couperin, F. (1717). Douzième Ordre / VIII.
L’Atalante. [Recorded by Claudio Colombo]. On Fra-
nçois Couperin: Les 27 Ordres pour piano, vol. 3
(Ordres 10-17) [CD]. Claudio Colombo. (2011)

Spotify link: http://open.spotify.com/track/6wJyTK8SJA
mtqhcRnaIpKr

Excerpt: 0-02:00

Dvořák Dvořák, A. (1878). Slavonic Dances, Op. 46 /
Slavonic Dance No. 4 in F Major. [Recorded by Phil-
harmonia Orchestra - Sir Andrew Davis]. On Andrew
Davis Conducts Dvořák [CD]. Sony Music. (2012)

Spotify link: http://open.spotify.com/track/5xna3brB1
AqGW7zEuoYks4

Excerpt: 00:57.964-03:23.145
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Piazzolla Piazzolla, A. (1959). Adiós Nonino. [Recorded
by Astor Piazzolla y su Sexteto]. On The Lausanne
Concert [CD]. BMG Music. (1993)

Spotify link: http://open.spotify.com/track/6X5Szblo
yesrQQb3Ht4Ojx

Excerpt: 0-08:07.968
Used for Experiment 1 only. Presented to participants as

four musical examples: 0-02:00, 01:57-03.57, 03:54-
05:54, 05:51-08:07.968

Dream Theater Petrucci, J., Myung, J., Rudess, J. &
Portnoy, M. (2003). Stream of Consciousness (instru-
mental). [Recorded by Dream The- ater]. On Train of
Thought [CD]. Elektra Records. (2003)

Spotify link: http://open.spotify.com/track/3TG1GHK8
2boR3aUDEpZA5f

Excerpt: 0-07:50.979

Used for Experiment 1 only. Presented to participants as
four musical examples: 0-02:00, 01:57-03.57, 03:54-
05:54, 05:51-07:50.979

Stravinsky Stravinsky, I. (1947). The Rite of Spring
(revised version for Orchestra) Part I: The Adoration
of The Earth (Introduction, The Augurs of Spring:
Dances of the Young Girls, Ritual of Abduction).
[Recorded by Orchestra of the Kirov Opera, St.
Petersburg - Valery Gergiev]. On Stravinsky: The
Rite of Spring / Scriabin: The Poem of Ecstasy [CD].
Philips. (2001)

Spotify link: http://open.spotify.com/album/22LYJ9
orjaJOPi8xl4ZQSq (first three tracks) Excerpts:
00:05-03:23, 0-03:12, 0-01:16 - total duration:
07:47.243.

Used for Experiment 1 only. Presented to participants as
four musical examples: 00:05-02:05, 02:02-04:02,
03:59-05:59, 05:56-07:52.243
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