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LOGARITHMIC AND RELATED MEANS

JÓZSEF SÁNDOR AND BARKAT ALI BHAYO

(Communicated by A. Horwitz)

Abstract. We offer new proofs, refinements as well as new results related to classical means of
two variables, including the identric and logarithmic means.

1. Introduction

Since last few decades, the inequalities involving the classical means such as
arithmetic mean A , geometric mean G , identric mean I , logarithmic mean L and
weighted geometric mean S have been studied extensively by numerous authors, see
e.g. [1, 2, 4, 7, 8, 15, 16, 17].

For two positive real numbers a and b , we define

A = A(a,b) =
a+b

2
, G = G(a,b) =

√
ab,

L = L(a,b) =
a−b

log(a)− log(y)
, a �= b,

I = I(a,b) =
1
e

(
aa

bb

)1/(a−b)

, a �= b,

S = S(a,b) = (aabb)1/(a+b).

For the historical background of these means we refer the reader to [2, 4, 5, 12, 15,
16, 17]. Generalizations, or related means are studied in [3, 8, 7, 10, 12, 14, 18].
Connections of these means with trigonometric or hyperbolic inequalities are pointed
out in [3, 13, 6, 14, 17].

The main results of this paper read as follows:

THEOREM 1.1. For all distinct positive real numbers a and b, we have

1 <
I√

I(A2,G2)
<

2√
e
. (1.2)

Both bounds are sharp.
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THEOREM 1.3. For all distinct positive real numbers a and b, we have

1 <
2I2

A2 +G2 < c, (1.4)

where c = 1.14 . . . . The bounds are best possible.

REMARK 1.5. A. The left side of (1.4) may be rewritten also as

I > Q(A,G), (1.6)

where Q(x,y) =
√

(x2 + y2)/2 denotes the root square mean of x and y . In 1995,
Seiffert [25] proved the first inequality in (1.2) by using series representations, which
is rather strong. Now we prove that, (1.6) is a refinement of the first inequality in (1.2).
Indeed, by the known relation I(x,y) < A(x,y) = (x+ y)/2, we can write

I(A2,G2) < (A2 +G2)/2 = Q(A,G)2,

so one has:

I > Q(A,G) >
√

I(A2,G2). (1.7)

As we have I(x2,y2) > I(x,y)2 (see Sándor [15]), hence (1.7) offers also a refinement
of

I > I(A,G). (1.8)

Other refinements of (1.8) have been provided in a paper by Neuman and Sándor [10].
Similar inequalities involving the logarithmic mean, as well as Sándor’s means X and
Y , we quote [3, 13, 14]. In the second part of paper, similar results will be proved.

B. In 1991, Sándor [16] proved the inequality

I > (2A+G)/3. (1.9)

It is easy to see that, the left side of (1.4) and (1.9) cannot be compared.
In 2001 Sándor and Trif [21] have proved the following inequality:

I2 < (2A2 +G2)/3. (1.10)

The left side of (1.4) offers a good companion to (1.10). We note that the inequality
(1.10) and the right side of (1.4) cannot be compared.

In [25], Seiffert proved the following relation:

L(A2,G2) > L2, (1.11)

which was refined by Neuman and Sándor [10] (for another proof, see [8]) as follows:

L(A,G) > L. (1.12)

We will prove with a new method the following refinement of (1.11) and a counterpart
of (1.12):
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THEOREM 1.13. We have

L(A2,G2) =
(A+G)

2
L(A,G) >

(A+G)
2

L > L2, (1.14)

L(I,G) < L, (1.15)

L < L(I,L) < L · (I−L)/(L−G). (1.16)

COROLLARY 1.17. One has

G · I/L <
√

I ·G < L(I,G) < L, (1.18)

(L(I,G))2 < L ·L(I,G) < L(I2,G2) < L · (I +G)/2. (1.19)

REMARK 1.20. A. Relation (1.18) improves the inequality

G · I/L < L(I,G),

due to Neuman and Sándor [10]. Other refinements of the inequality

L < (I +G)/2 (1.21)

are provided in [19].
B. Relation (1.16) is indeed a refinement of (1.21), as the weaker inequality can

be written as (I−L)/(L−G) > 1, which is in fact (1.21).

The mean S is strongly related to other classical means. For example, in 1993
Sándor [17] discovered the identity

S(a,b) = I(a2,b2)/I(a,b), (1.22)

where I is the identric mean. Inequalities for the mean S may be found in [15, 17, 20].
The following result shows that I and S(A,G) cannot be compared, but this is not

true in case of I and S(Q,G) . Even a stronger result holds true.

THEOREM 1.23. None of the inequalities I > S(A,G) or I < S(A,G) holds true.
On the other hand, one has

S(Q,G) > A > I, (1.24)

I(Q,G) < A. (1.25)

REMARK 1.26. By (1.24) and (1.25), one could ask if I and I(Q,G) may be
compared to each other. It is not difficult to see that, this becomes equivalent to one of
the inequalities

y logy
y−1

< (or >)
x

tanh(x)
, x > 0, (1.27)

where y =
√

cosh(2x) . By using the Mathematica Software [11], we can show that
(1.27) with “<” is not true for x = 3/2, while (1.27) with “>” is not true for x = 2.
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2. Lemmas and proofs of the main results

The following lemma will be utilized in our proofs.

LEMMA 2.1. For b > a > 0 there exists an x > 0 such that

A
G

= cosh(x),
I
G

= ex/ tanh(x)−1. (2.2)

Proof. For any a > b > 0, one can find an x > 0 such that a = ex ·G and b =
e−x ·G . Indeed, it is immediate that such an x is (by considering a/b = e2x ), x =
(1/2) log(a/b) > 0. Now, as A = G ·(ex +e−x)/2 = Gcosh(x) , we get A/G = cosh(x).
Similarly, we get

I = G · (1/e)exp(x(ex + e−x)/(ex − e−x)),

which gives I/G = ex/ tanh(x)−1 . �
Proof of Theorem 1.1. For x > 0, we have I/G = ex/ tanh(x)−1 and A/G = cosh(x)

by Lemma 2.1. Since

log(I(a,b)) =
a loga−b logb

a−b
−1,

we get

log(
√

I((A/G)2,1)) =
cosh(x)2 log(cosh(x))

cosh(x)2 −1
− 1

2
.

By using this identity, and taking the logarithms in the second identity of (2.2), the
inequality

0 < log(I/G)− log(
√

I(A/G)2,1) < log2−1/2

becomes
1
2

< f (x) < log2, (2.3)

where

f (x) =
x

tanh(x)
− log(cosh(x))

tanh(x)2 .

A simple computation (which we omit here) for the derivative of f (x) gives:

sinh(x)3 f ′(x) = 2cosh(x) log(cosh(x))− xsinh(x). (2.4)

The following inequality appears in [6]:

log(cosh(x)) >
x
2

tanh(x), x > 0, (2.5)

which gives f ′(x) > 0, so f (x) is strictly increasing in (0,∞) . As limx→0 f (x) = 1/2,
and limx→∞ f (x) = log2, the double inequality (2.3) follows. So we have obtained a
new proof of (1.2). �

We note that Seiffert’s proof is based on certain infinite series representations.
Also, our proof shows that the constants 1 and 2/

√
e in (1.2) are optimal.
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LEMMA 2.6. Let

f (x) =
2x

tanh(x)
− log

(
cosh(x)2 +1

2

)
, x > 0.

Then
2 < f (x) < f (1.606 . . .) = 2.1312 . . . . (2.7)

Proof. One has (cosh(x)2 +1)/2 f ′(x) = g(x) , where

g(x) = sinh(x)cosh(x)3 − xcosh(x)2 + sinh(x)cosh(x)− x

−cosh(x)sinh(x)32sinh(x)cosh(x)− xcosh(x)2 − x,

by remarking that

sinh(x)cosh(x)3 − cosh(x)sinh(x)3 = sinh(x)cosh(x).

Now, a simple computation gives

g′(x) = sinh(x) · (3sinh(x)−2xcosh(x)) = 3sinh(x)cosh(x) · k(x),
where k(x) = tanh(x)−2x/3 As it is well known that the function tanh(x)/x is strictly
decreasing, the equation tanh(x)/x = 2/3 can have at most a single solution. As
tanh(1)= 0.7615 . . .> 2/3 and tanh(3/2)= 0.9051 . . .< 1 = (2/3)·(3/2) , we find that
the equation k(x) = 0 has a single solution x0 in (1,3/2) , and also that k(x) > 0 for
x in (0,x0) and k(x) < 0 in (x0,3/2) . This means that the function g(x) is strictly in-
creasing in the interval (0,x0) and strictly decreasing in (x0,∞) . As g(1)= 0.24... > 0,
clearly g(x0) > 0, while g(2) = −3.01... < 0 implies that there exists a single zero x1

of g(x) in (x0,2) . In fact, as g(3/2) = 0.21... > 0, we get that x1 is in (3/2,2) .
From the above considerationwe conclude that g(x)> 0 for x∈ (0,x1) and g(x) <

0 for x ∈ (x1,∞) . Therefore, the point x1 is a maximum point to the function f (x) .
It is immediate that limx→0 f (x) = 2. On the other hand, we shall compute the limit
of f(x) at ∞ . Clearly t = cosh(x) tends to ∞ as x tends to ∞ . Since log(t2 + 1)−
log(t2) = log((t2 + 1)/t2) tends to log1 = 0, we have to compute the limit of l(x) =
2xcosh(x)/sinh(x)−2log(cosh(x))+ log2. Here

2x
cosh(x)
sinh(x)

−2log(cosh(x)) = 2log

(
exp(xcosh(x)/sinh(x))

coshx

)
.

Now remark that (xcosh(x)−xsinh(x))/sinh(x) tends to zero, as xcosh(x)−xsinh(x)=
xexp(−x) . As exp(x)/coshx tends to 2, by the above remarks we get that the the
limit of l(x) is 2 log2 + log2 = 3log2 > 2. Therefore, the left side of inequality
(2.7) is proved. The right side follows by the fact that f (x) < f (x1) . By Mathematica
Software R© [11], we can find x1 = 1.606 . . . and f (x1) = 2.1312 . . .. �

Proof of Theorem 1.3. By Lemma 2.1, one has (I/G)2 = exp(2(x/ tanh(x)−1)) ,
while (A/G)2 = cosh(x)2 , x > 0. It is immediate that, the left side of (2.7) implies the
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left side of (1.4). Now, by the right side of (2.7) one has I2 < exp(c1)(A2 + G2)/2,
where c1 = f (x1)−2 = 0.13 · · · . Since exp(0.13 · · ·) = 1.14, we get also the right side
of (1.4). �

Proof of Theorem 1.13. The first relation of (1.14) follows from the identity

L(x2,y2) = ((x+ y)/2) ·L(x,y),

which is a consequence of the definition of logarithmic mean, by letting x = A , y = G .
The second inequality of (1.14) follows by (1.12), while the third one is a consequence
of the known inequality

L < (A+G)/2. (2.8)

A simple proof of (2.8) can be found in [12]. For (1.15), by the definition of logarithmic
mean, one has

L(I,G) = (I−G)/ log(I/G),

and on base of the known identity

log(I/G) = A/L−1

(see [15, 22]), we get

L(I,G) = ((I−G)/(A−L))L < L,

since the inequality (I−G)/(A−L) < 1 can be rewritten as

I +L < A+G

due to Alzer (see [15]).
The first inequality of (1.16) follows by the fact that L is a mean (i.e. if x < y

then x < L(x,y) < y), and the well known relation L < I (see [15]) For the proof of last
relation of (1.16) we will use a known inequality of Sándor ([15]), namely:

log(I/L) > 1−G/L. (2.9)

Write now that L(I,L) = (I −L)/ log(I/L) , and apply (2.9). Therefore, the proof of
(1.16) is finished. �

Proof of Corollary 1.17. The first inequality of (1.18) follows by the well known
relation L >

√
GI (see [2]), while the second relation is a consequence of the classical

relation L(x,y) > G(x,y) (see e.g. [15]) applied to x = I , y = G . The last relation is
inequality (1.14).

The first inequality of (1.19) follows by (1.14), while the second one by L(I2,G2)=
L(I,G)·(I+G)/2 and inequality L < (I+G)/2. The last inequality follows in the same
manner. �
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Proof of Theorem 1.23. Since the mean S is homogeneous, the relation I > S(A,G)
may be rewritten as I/G > S(A/G,1) , so by using logarithm and applying Lemma 2.1,
this inequality may be rewritten as

x
tanh(x)

−1 >
cosh(x) log(cosh(x))

1+ cosh(x)
, x > 0. (2.10)

By using Mathematica Software R© [11], one can see that inequality (2.10) is not true
for x > 2.284 . Similarly, the reverse inequality of (2.10) is not true, e.g. for x < 2.2.
These show that, I and S(A,G) cannot be compared to each other. In order to prove
inequality (1.24), we will use the following result proved in [20]: The inequality

S > Q (2.11)

holds true. By writing (2.11) as S(a,b) > Q(a,b) for a = Q , b = G , and remarking
that Q(a,b) =

√
(a2 +b2)/2 and that (Q2 +G2)/2 = A2 , we get the first inequality of

(1.24). The second inequality is well known (see [15] for history and references).
By using I(a,b) < A(a,b) = (a+ b)/2 for a = Q and b = G we get I(Q,G) <

(Q + G)/2. On the other hand by inequality (a + b)/2 <
√

(a2 +b2)/2 and (Q2 +
G2)/2 = A2 , inequality (1.25) follows as well. This completes the proof. �
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[8] E. NEUMAN AND J. SÁNDOR, On the Schwab-Borchardt mean II, Math. Pannonica, 17 (2006), no. 1,

49–59.
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[10] E. NEUMAN AND J. SÁNDOR, On certain means of two arguments and their extensions, Intern. J.

Math. Math. Sci., 2003:16, 981–993.
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