



### This is an electronic reprint of the original article. This reprint *may differ* from the original in pagination and typographic detail.

Author(s): Valkonen, Arto; Koivukorpi, Juha; Lahtinen, Manu; Kolehmainen, Erkki

Title: 3a-hydroxy-N-(3-hydroxypropyl)-5b-cholan-24-amide

Year: 2009

Version:

### Please cite the original version:

Valkonen, A., Koivukorpi, J., Lahtinen, M., & Kolehmainen, E. (2009). 3a-hydroxy-N-(3-hydroxypropyl)-5b-cholan-24-amide. Acta Crystallographica Section E, E65, o650.

All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.

### organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### $3\alpha$ -Hydroxy-*N*-(3-hydroxypropyl)-5 $\beta$ cholan-24-amide

## Arto Valkonen,\* Juha Koivukorpi, Manu Lahtinen and Erkki Kolehmainen

University of Jyväskylä, Department of Chemistry, PO Box 35, FIN-40014 Jyväskylä, Finland

Correspondence e-mail: arto.m.valkonen@jyu.fi

Received 20 February 2009; accepted 24 February 2009

Key indicators: single-crystal X-ray study; T = 123 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.067; wR factor = 0.135; data-to-parameter ratio = 10.9.

The title compound,  $C_{27}H_{47}NO_3$ , is a (3-hydroxypropyl)amide derivative of naturally occurring enantiopure lithocholic acid  $(3\alpha$ -hydroxy-5 $\beta$ -cholan-24-oic acid). The molecule contains four fused rings: three six-membered rings in chair conformations and one five-membered ring in a half-chair form. The two terminal six-membered rings are cis-fused, while other rings are trans-fused. The structure contains an intramolecular O-H···O hydrogen bond and a similar hydrogen-bond to the corresponding framework deoxycholic and chenodeoxycholic acid derivatives. Intermolecular O- $H \cdots O$  and  $N - H \cdots O$  interactions are also present in the crystal. This compound seems to have at least two polymorphic forms from a comparison of the X-ray powder pattern simulated from the present structure of the title compound and that previously obtained for the powder sample.

#### **Related literature**

For general background, see: Tamminen *et al.* (2000); Valkonen *et al.* (2004); Valkonen (2008). For related structures, see: Valkonen *et al.* (2007, 2008).



Monoclinic, P21

a = 11.4462 (5) Å

#### Experimental

Crystal data  $C_{27}H_{47}NO_3$  $M_r = 433.66$  b = 7.5998 (3) Å c = 14.3286 (6) Å  $\beta = 102.055 (2)^{\circ}$   $V = 1218.94 (9) \text{ Å}^{3}$ Z = 2

### Data collection

Bruker Kappa APEXII diffractometer Absorption correction: none 9113 measured reflections

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.067$   $wR(F^2) = 0.135$  S = 1.05 3155 reflections 289 parameters 4 restraints  $0.30 \times 0.10 \times 0.06 \text{ mm}$ 

Mo  $K\alpha$  radiation

 $\mu = 0.08 \text{ mm}^{-1}$ 

T = 123 K

3155 independent reflections 2207 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.091$ 

H atoms treated by a mixture of independent and constrained refinement 
$$\begin{split} &\Delta\rho_{max}=0.32 \text{ e } \text{\AA}^{-3} \\ &\Delta\rho_{min}=-0.32 \text{ e } \text{\AA}^{-3} \end{split}$$

## Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H      | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|----------|--------------|--------------|--------------------------------------|
| $027 - H27O \cdots O24$     | 0.86 (4) | 1.98 (2)     | 2.810 (4)    | 164 (5)                              |
| $O3 - H3O \cdots O24^{i}$   | 0.84 (2) | 2.05 (2)     | 2.880 (5)    | 171 (5)                              |
| $N24 - H24 \cdots O3^{i}$   | 0.89 (2) | 2.20 (3)     | 3.032 (5)    | 155 (4)                              |

Symmetry code: (i)  $-x + 1, y + \frac{1}{2}, -z$ .

Data collection: *COLLECT* (Bruker, 2008); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN*; program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2003); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* and *Mercury* (Macrae *et al.*, 2006).

BSc student Mirka Kaariste is gratefully acknowledged for her help with the synthesis of the title compound. AV is grateful to Academy Professor Kari Rissanen and the Academy of Finland for funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2393).

#### References

Bruker (2008). COLLECT. Bruker AXS Inc., Delft, The Netherlands.

- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tamminen, J., Kolehmainen, E., Haapala, M., Salo, H. & Linnanto, J. (2000). Arkivoc, i, 80–86.
- Valkonen, A. (2008). PhD thesis, University of Jyväskylä, Finland.
- Valkonen, A., Kolehmainen, E., Lahtinen, M., Sievänen, E., Noponen, V., Tolonen, M. & Kauppinen, R. (2007). *Molecules*, 12, 2161–2178.
- Valkonen, A., Lahtinen, M. & Kolehmainen, E. (2008). Steroids, 73, 1228–1241.
- Valkonen, A., Lahtinen, M., Virtanen, E., Kaikkonen, S. & Kolehmainen, E. (2004). Biosens. Biolelectron. 20, 1233–1241.

# supporting information

Acta Cryst. (2009). E65, o650 [doi:10.1107/S1600536809006862]

### $3\alpha$ -Hydroxy-*N*-(3-hydroxypropyl)- $5\beta$ -cholan-24-amide

### Arto Valkonen, Juha Koivukorpi, Manu Lahtinen and Erkki Kolehmainen

### S1. Comment

The title compound is a lithocholic acid (LCA) derivative which was supposed to be a potential organogelating agent (Valkonen *et al.*, 2004). However, in gelation studies these properties were found to be too weak for utilization in any purposes. Although single crystals of analogous deoxycholic (DCA,  $3\alpha$ ,  $12\alpha$ -dihydroxy- $5\beta$ -cholan-24-oic acid) and chenodeoxycholic (CDCA,  $3\alpha$ ,  $7\alpha$ -dihydroxy- $5\beta$ -cholan-24-oic acid) acid amide derivatives were easily obtained during gelation tests (Valkonen *et al.*, 2004; Valkonen *et al.*, 2007; Valkonen *et al.*, 2008), the crystals of the title compound were very thin needles and far too small for crystallographic data collection. Methanol, which is unacceptably good solvent for the title compound and analogues in gel formation (Valkonen *et al.*, 2004), showed to be a good solvent for growing of reasonable size crystals of the title compound for X-ray diffraction studies. The molecular structure of the title compound is shown in Fig. 1.

The simulated powder diffraction pattern by Mercury (Macrae *et al.*, 2006) from the single crystals of title compound in Fig. 2 is not congruent with the powdery sample pattern previously investigated (Valkonen *et al.*, 2004), indicating the title compound to have more than one polymorphic form. However, the single-crystal structure of title compound is isostructural to analogous DCA and CDCA derivatives, *N*-(3-hydroxypropyl)  $3\alpha$ ,  $12\alpha$ -dihydroxy- $5\beta$ -cholan-24-amide and *N*-(3-hydroxypropyl)  $3\alpha$ ,  $7\alpha$ -dihydroxy- $5\beta$ -cholan-24-amide, as also seen from the simulated powder diffraction patterns in Fig. 2. These compounds have also similar unit-cell parameters, an intramolecular O—H…O hydrogen bond between hydroxyl group (O27—H270) at the end of the side chain and amide carbonyl (O24) (Fig. 1 and Table 1) as well as similar *ttt* is ide chain overall conformation (Valkonen *et al.*, 2008; Valkonen, 2008). The intermolecular H-bond frameworks are also identical, which is possible due to the lack of the acceptors for the extra O—H donors in structures of DCA and CDCA derivatives.

### **S2. Experimental**

The first step was a preparation of methyl lithocholate from lithocholic acid according to literature method (Tamminen *et al.*, 2000). In the second step methyl lithocholate (1.69 g, 4.33 mmol) and 3-amino-1-propanol (3.25 g, 43.3 mmol) were dissolved in 20 ml of methanol. The resulting mixture was heated with an oil bath and stirred at 70–80 °C for 2 days. Cooled solution was poured into 50 ml of water, the precipitate was filtered and washed twice with water. The obtained product was dried and recrystallized from acetonitrile. Yield was 1.48 g (79%).

Suitable single crystals for X-ray diffraction were obtained by very slow evaporation of analytical sample from NMR-tube, where methanol-d<sub>4</sub> was used as a solvent. The melting point of these single crystals (186–188 °C) was found to be in agreement with the one for powdery product (184–185 °C, Valkonen *et al.*, 2004).

### **S3. Refinement**

In the absence of significant anomalous scattering effects Friedel pairs have been merged. The meaningless Flack parameter is not reported. All H atoms were visible in electron density maps, but those bonded to C were placed at idealized positions and allowed to ride on their parent atoms at C—H distances of 0.98 Å (methyl), 0.99 Å (methylene), and 1.00 Å (methine), with  $U_{iso}$ (H) of 1.2 times  $U_{eq}$ (C) (or 1.5 times  $U_{eq}$ (C) for methyls). The N—H proton was found in the electron density map and it was fixed in place by *DFIX* restraint at distance of 0.91 (2) Å from N atom, and  $U_{iso}$ (H) value of 1.2 times  $U_{eq}$ (N) was used. The O—H protons were also found in the electron density map, restrained by *DFIX* [0.84 (2) Å from O] and  $U_{iso}$ (H) factors set to values of 1.5 times  $U_{eq}$ (O).



#### Figure 1

View of the molecule of (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.



### Figure 2

The experimental powder diffraction pattern of powdery sample and the simulated pattern from the single-crystal structure of title compound. The simulated patterns of analogous DCA and CDCA derivatives are also presented for comparison.

### $3\alpha$ -Hydroxy-*N*-(3-hydroxypropyl)- $5\beta$ -cholan-24-amide

| Crystal data                                    |                                                                     |
|-------------------------------------------------|---------------------------------------------------------------------|
| C <sub>27</sub> H <sub>47</sub> NO <sub>3</sub> | F(000) = 480                                                        |
| $M_r = 433.66$                                  | $D_{\rm x} = 1.182 {\rm Mg} {\rm m}^{-3}$                           |
| Monoclinic, $P2_1$                              | Melting point = $459-461$ K                                         |
| Hall symbol: P 2yb                              | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å               |
| a = 11.4462 (5)  Å                              | Cell parameters from 4982 reflections                               |
| b = 7.5998 (3) Å                                | $\theta = 0.4 - 28.3^{\circ}$                                       |
| c = 14.3286 (6) Å                               | $\mu=0.08~\mathrm{mm}^{-1}$                                         |
| $\beta = 102.055 \ (2)^{\circ}$                 | T = 123  K                                                          |
| $V = 1218.94 (9) Å^3$                           | Block, colourless                                                   |
| Z = 2                                           | $0.30 \times 0.10 \times 0.06 \text{ mm}$                           |
| Data collection                                 |                                                                     |
| Bruker Kappa APEXII                             | 3155 independent reflections                                        |
| diffractometer                                  | 2207 reflections with $I > 2\sigma(I)$                              |
| Radiation source: fine-focus sealed tube        | $R_{\rm int} = 0.091$                                               |
| Graphite monochromator                          | $\theta_{\rm max} = 28.0^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$ |
| Detector resolution: 9 pixels mm <sup>-1</sup>  | $h = -15 \rightarrow 15$                                            |
| $\varphi$ and $\omega$ scans                    | $k = -8 \rightarrow 10$                                             |
| 9113 measured reflections                       | $l = -16 \rightarrow 18$                                            |
|                                                 |                                                                     |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier          |
|-------------------------------------------------|-----------------------------------------------------------|
| Least-squares matrix: full                      | map                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.067$                 | Hydrogen site location: inferred from                     |
| $wR(F^2) = 0.135$                               | neighbouring sites                                        |
| S = 1.05                                        | H atoms treated by a mixture of independent               |
| 3155 reflections                                | and constrained refinement                                |
| 289 parameters                                  | $w = 1/[\sigma^2(F_o^2) + (0.0324P)^2 + 0.9968P]$         |
| 4 restraints                                    | where $P = (F_{o}^{2} + 2F_{c}^{2})/3$                    |
| Primary atom site location: structure-invariant | $(\Delta/\sigma)_{\rm max} < 0.001$                       |
| direct methods                                  | $\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$ |
|                                                 | $\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$  |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|      | x          | у           | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|------------|-------------|-------------|-----------------------------|--|
| 03   | 0.1237 (2) | 0.3301 (5)  | 0.2779 (2)  | 0.0286 (7)                  |  |
| H3O  | 0.098 (4)  | 0.433 (4)   | 0.267 (4)   | 0.043*                      |  |
| O24  | 0.9728 (3) | 0.1814 (4)  | -0.2630 (2) | 0.0254 (7)                  |  |
| O27  | 1.1324 (3) | 0.1259 (5)  | -0.3848 (2) | 0.0321 (8)                  |  |
| H27O | 1.076 (3)  | 0.128 (8)   | -0.354 (3)  | 0.048*                      |  |
| N24  | 0.9619 (3) | 0.4638 (5)  | -0.3142 (2) | 0.0228 (8)                  |  |
| H24  | 0.961 (4)  | 0.576 (3)   | -0.296 (3)  | 0.027*                      |  |
| C1   | 0.4412 (3) | 0.4854 (6)  | 0.3733 (3)  | 0.0174 (9)                  |  |
| H1A  | 0.4387     | 0.4852      | 0.4419      | 0.021*                      |  |
| H1B  | 0.4853     | 0.5920      | 0.3608      | 0.021*                      |  |
| C2   | 0.3124 (4) | 0.4976 (6)  | 0.3147 (3)  | 0.0194 (9)                  |  |
| H2A  | 0.2734     | 0.6048      | 0.3329      | 0.023*                      |  |
| H2B  | 0.3132     | 0.5051      | 0.2459      | 0.023*                      |  |
| C3   | 0.2436 (3) | 0.3357 (6)  | 0.3338 (3)  | 0.0208 (8)                  |  |
| Н3   | 0.2402     | 0.3336      | 0.4030      | 0.025*                      |  |
| C4   | 0.3066 (4) | 0.1691 (5)  | 0.3105 (3)  | 0.0171 (9)                  |  |
| H4A  | 0.2625     | 0.0651      | 0.3264      | 0.021*                      |  |
| H4B  | 0.3044     | 0.1660      | 0.2411      | 0.021*                      |  |
| C5   | 0.4362 (4) | 0.1573 (6)  | 0.3644 (3)  | 0.0179 (9)                  |  |
| Н5   | 0.4350     | 0.1483      | 0.4338      | 0.021*                      |  |
| C6   | 0.4926 (4) | -0.0133 (6) | 0.3366 (3)  | 0.0209 (9)                  |  |
| H6A  | 0.5668     | -0.0375     | 0.3843      | 0.025*                      |  |
| H6B  | 0.4368     | -0.1121     | 0.3386      | 0.025*                      |  |
| C7   | 0.5222 (4) | -0.0058 (6) | 0.2371 (3)  | 0.0197 (9)                  |  |

| H7A            | 0.5658     | -0.1139                | 0.2264              | 0.024*               |
|----------------|------------|------------------------|---------------------|----------------------|
| H7B            | 0.4471     | -0.0016                | 0.1883              | 0.024*               |
| C8             | 0.5982 (4) | 0.1547 (5)             | 0.2259 (3)          | 0.0150 (8)           |
| H8             | 0.6760     | 0.1446                 | 0.2729              | 0.018*               |
| С9             | 0.5346 (3) | 0.3249 (6)             | 0.2484 (2)          | 0.0149 (7)           |
| Н9             | 0.4543     | 0.3255                 | 0.2044              | 0.018*               |
| C10            | 0.5113 (3) | 0.3215 (6)             | 0.3519 (3)          | 0.0162 (8)           |
| C11            | 0.5986 (4) | 0.4930 (6)             | 0.2267 (3)          | 0.0193 (9)           |
| H11A           | 0.6721     | 0.5084                 | 0.2765              | 0.023*               |
| H11B           | 0.5461     | 0.5952                 | 0.2303              | 0.023*               |
| C12            | 0.6329 (4) | 0.4923 (6)             | 0.1274 (3)          | 0.0205 (9)           |
| H12A           | 0.5593     | 0.4972                 | 0.0769              | 0.025*               |
| H12B           | 0.6810     | 0.5983                 | 0.1213              | 0.025*               |
| C13            | 0.7040 (3) | 0.3283 (6)             | 0.1135 (2)          | 0.0150 (7)           |
| C14            | 0.6243 (4) | 0.1675 (5)             | 0.1261 (3)          | 0.0153 (9)           |
| H14            | 0.5458     | 0.1856                 | 0.0812              | 0.018*               |
| C15            | 0.6835 (4) | 0.0112 (5)             | 0.0885 (3)          | 0.0210 (9)           |
| H15A           | 0.6244     | -0.0823                | 0.0652              | 0.025*               |
| H15B           | 0.7478     | -0.0382                | 0.1388              | 0.025*               |
| C16            | 0.7354 (4) | 0.0897 (6)             | 0.0050 (3)          | 0.0198 (9)           |
| H16A           | 0.8204     | 0.0563                 | 0.0120              | 0.024*               |
| H16B           | 0.6904     | 0.0452                 | -0.0571             | 0.024*               |
| C17            | 0.7229 (3) | 0.2934 (5)             | 0.0104 (3)          | 0.0161 (9)           |
| H17            | 0.6474     | 0.3272                 | -0.0349             | 0.019*               |
| C18            | 0.8249(3)  | 0.3242(7)              | 0.1850 (3)          | 0.0213 (8)           |
| H18A           | 0.8689     | 0.2179                 | 0 1745              | 0.032*               |
| H18B           | 0.8112     | 0.3237                 | 0.2502              | 0.032*               |
| H18C           | 0.8717     | 0.4284                 | 0.1757              | 0.032*               |
| C19            | 0.6794(3)  | 0.3191 (7)             | 0.1737<br>0.4273(3) | 0.0219 (8)           |
| H19A           | 0.6765     | 0.4238                 | 0.4196              | 0.033*               |
| H19R           | 0.6749     | 0.2132                 | 0.4189              | 0.033*               |
| H19C           | 0.6117     | 0.3188                 | 0.4914              | 0.033*               |
| C20            | 0.8261(4)  | 0.3916 (6)             | -0.0206(3)          | 0.0201 (9)           |
| H20            | 0.9017     | 0.3593                 | 0.0250              | 0.0201 ())           |
| C21            | 0.8120 (5) | 0.5929 (6)             | -0.0172(3)          | 0.024                |
| H21A           | 0.8120 (5) | 0.5929 (0)             | 0.0172(3)<br>0.0472 | 0.0305(11)           |
| H21R           | 0.7400     | 0.6285                 | -0.0631             | 0.046*               |
| H21C           | 0.8820     | 0.6286                 | -0.0336             | 0.046*               |
| C22            | 0.8320     | 0.3326 (7)             | -0.1215(3)          | 0.0700 (8)           |
| С22<br>H22A    | 0.8381 (3) | 0.3320 (7)             | -0.1234             | 0.0200 (8)           |
| H22A<br>H22B   | 0.7663     | 0.2025                 | -0.1684             | 0.024                |
| C23            | 0.7003     | 0.3710                 | -0.1506(3)          | 0.024                |
| U23<br>Н23 Л   | 0.9302 (4) | 0.5382                 | -0.1518             | 0.0221 (9)           |
| 1123A<br>1123D | 1.0210     | 0.3382                 | -0.1025             | 0.027*               |
| C24            | 0.0676 (2) | 0.3/40                 | -0.2472(2)          | 0.027                |
| C25            | 0.9020(3)  | 0.3420(0)<br>0.4214(6) | -0.4120(3)          | 0.0190(0)            |
| U25<br>U25 A   | 0.9005 (4) | 0.4214(0)<br>0.5057    | 0.4139 (3)          | 0.0203(10)<br>0.022* |
| 1123A<br>1125D | 0.90/4     | 0.3037                 | -0.4333             | 0.032*               |
| пдэd           | 0.9203     | 0.3021                 | -0.4280             | 0.052**              |

| C26  | 1.0851 (4) | 0.4280 (6) | -0.4374 (3) | 0.0312 (11) |
|------|------------|------------|-------------|-------------|
| H26A | 1.0780     | 0.3998     | -0.5058     | 0.037*      |
| H26B | 1.1165     | 0.5493     | -0.4269     | 0.037*      |
| C27  | 1.1732 (4) | 0.3029 (7) | -0.3787 (3) | 0.0268 (11) |
| H27A | 1.2496     | 0.3091     | -0.4006     | 0.032*      |
| H27B | 1.1888     | 0.3408     | -0.3111     | 0.032*      |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | U <sup>23</sup> |
|-----|-------------|-------------|-------------|--------------|-------------|-----------------|
| 03  | 0.0175 (14) | 0.0220 (15) | 0.0440 (18) | -0.0023 (16) | 0.0010 (12) | -0.0018 (17)    |
| O24 | 0.0259 (16) | 0.0213 (17) | 0.0316 (17) | -0.0016 (15) | 0.0119 (13) | -0.0033 (15)    |
| O27 | 0.0307 (18) | 0.037 (2)   | 0.0309 (18) | 0.0040 (16)  | 0.0128 (14) | -0.0078 (15)    |
| N24 | 0.0225 (18) | 0.025 (2)   | 0.0227 (18) | 0.0037 (17)  | 0.0092 (15) | 0.0037 (17)     |
| C1  | 0.018 (2)   | 0.020 (2)   | 0.0136 (19) | -0.0009 (19) | 0.0023 (16) | -0.0057 (17)    |
| C2  | 0.020 (2)   | 0.016 (2)   | 0.023 (2)   | 0.0025 (19)  | 0.0064 (17) | -0.0003 (19)    |
| C3  | 0.0142 (17) | 0.023 (2)   | 0.025 (2)   | 0.001 (2)    | 0.0027 (15) | 0.001 (2)       |
| C4  | 0.018 (2)   | 0.012 (2)   | 0.024 (2)   | -0.0014 (18) | 0.0083 (16) | -0.0031 (18)    |
| C5  | 0.020 (2)   | 0.017 (2)   | 0.019 (2)   | 0.0024 (19)  | 0.0081 (17) | 0.0027 (17)     |
| C6  | 0.024 (2)   | 0.014 (2)   | 0.027 (2)   | 0.0026 (19)  | 0.0114 (17) | 0.0054 (18)     |
| C7  | 0.020 (2)   | 0.015 (2)   | 0.025 (2)   | 0.0020 (19)  | 0.0076 (17) | 0.0019 (18)     |
| C8  | 0.015 (2)   | 0.012 (2)   | 0.018 (2)   | 0.0003 (18)  | 0.0032 (16) | 0.0004 (17)     |
| C9  | 0.0143 (17) | 0.0155 (18) | 0.0154 (18) | 0.000 (2)    | 0.0040 (14) | -0.0013 (19)    |
| C10 | 0.0186 (18) | 0.0147 (18) | 0.0159 (18) | 0.000 (2)    | 0.0047 (15) | 0.0007 (18)     |
| C11 | 0.026 (2)   | 0.012 (2)   | 0.024 (2)   | -0.003(2)    | 0.0116 (18) | -0.0034 (19)    |
| C12 | 0.027 (2)   | 0.018 (2)   | 0.018 (2)   | -0.001 (2)   | 0.0094 (18) | 0.0033 (18)     |
| C13 | 0.0155 (17) | 0.0169 (18) | 0.0135 (17) | -0.001 (2)   | 0.0052 (14) | -0.0002 (18)    |
| C14 | 0.018 (2)   | 0.009 (2)   | 0.018 (2)   | -0.0027 (18) | 0.0027 (16) | 0.0016 (17)     |
| C15 | 0.031 (2)   | 0.014 (2)   | 0.020 (2)   | -0.0002 (19) | 0.0091 (18) | 0.0006 (17)     |
| C16 | 0.024 (2)   | 0.016 (2)   | 0.021 (2)   | 0.0014 (18)  | 0.0076 (18) | 0.0016 (17)     |
| C17 | 0.0156 (18) | 0.019 (2)   | 0.0130 (18) | -0.0013 (18) | 0.0007 (14) | 0.0009 (16)     |
| C18 | 0.0200 (18) | 0.024 (2)   | 0.0191 (19) | -0.003 (2)   | 0.0031 (15) | -0.003 (2)      |
| C19 | 0.0180 (18) | 0.025 (2)   | 0.022 (2)   | 0.003 (2)    | 0.0018 (15) | 0.001 (2)       |
| C20 | 0.023 (2)   | 0.023 (2)   | 0.016 (2)   | -0.0030 (18) | 0.0072 (17) | 0.0012 (16)     |
| C21 | 0.044 (3)   | 0.023 (2)   | 0.031 (3)   | -0.013 (2)   | 0.022 (2)   | -0.007 (2)      |
| C22 | 0.0204 (18) | 0.021 (2)   | 0.0191 (19) | 0.004 (2)    | 0.0053 (15) | 0.0011 (19)     |
| C23 | 0.019 (2)   | 0.026 (2)   | 0.023 (2)   | -0.0045 (19) | 0.0084 (18) | -0.0023 (18)    |
| C24 | 0.0152 (18) | 0.024 (2)   | 0.021 (2)   | -0.001 (2)   | 0.0050 (15) | -0.004 (2)      |
| C25 | 0.022 (2)   | 0.032 (3)   | 0.024 (2)   | 0.008 (2)    | 0.0022 (18) | 0.0090 (19)     |
| C26 | 0.039 (3)   | 0.034 (3)   | 0.025 (2)   | 0.003 (2)    | 0.015 (2)   | 0.004 (2)       |
| C27 | 0.0182 (19) | 0.042 (3)   | 0.021 (2)   | -0.005 (2)   | 0.0055 (16) | -0.004 (2)      |

### Geometric parameters (Å, °)

| O3—C3   | 1.438 (4) | C12—H12B | 0.9900    |
|---------|-----------|----------|-----------|
| O3—H3O  | 0.84 (2)  | C13—C18  | 1.541 (5) |
| O24—C24 | 1.256 (5) | C13—C14  | 1.558 (6) |
| O27—C27 | 1.420 (6) | C13—C17  | 1.559 (5) |

| O27—H27O                                               | 0.86 (4)             | C14—C15                      | 1.520(6)  |
|--------------------------------------------------------|----------------------|------------------------------|-----------|
| N24—C24                                                | 1.328 (6)            | C14—H14                      | 1.0000    |
| N24—C25                                                | 1.460 (5)            | C15—C16                      | 1.561 (5) |
| N24—H24                                                | 0.89 (2)             | C15—H15A                     | 0.9900    |
| C1—C2                                                  | 1.539 (5)            | C15—H15B                     | 0.9900    |
| C1—C10                                                 | 1.546 (6)            | C16—C17                      | 1.558 (6) |
| C1—H1A                                                 | 0.9900               | C16—H16A                     | 0.9900    |
| C1—H1B                                                 | 0.9900               | C16—H16B                     | 0.9900    |
| C2—C3                                                  | 1.516 (6)            | C17—C20                      | 1,539 (5) |
| C2—H2A                                                 | 0.9900               | C17—H17                      | 1 0000    |
| C2—H2B                                                 | 0.9900               | C18—H18A                     | 0.9800    |
| $C_3 - C_4$                                            | 1 528 (6)            | C18—H18B                     | 0.9800    |
| $C_3 H_3$                                              | 1.0000               |                              | 0.9800    |
| $C_{1}$                                                | 1.0000               |                              | 0.9800    |
| $C_{4} = C_{3}$                                        | 0.0000               | C10 H10P                     | 0.9800    |
| C4— $H4R$                                              | 0.9900               | C19—H19B                     | 0.9800    |
| C4—H4B                                                 | 0.9900               | C19—H19C                     | 0.9800    |
| $C_{5}$                                                | 1.537 (6)            | C20—C21                      | 1.540 (6) |
| C5-C10                                                 | 1.546 (6)            | C20—C22                      | 1.547 (5) |
| С5—Н5                                                  | 1.0000               | C20—H20                      | 1.0000    |
| C6—C7                                                  | 1.534 (5)            | C21—H2IA                     | 0.9800    |
| C6—H6A                                                 | 0.9900               | C21—H21B                     | 0.9800    |
| С6—Н6В                                                 | 0.9900               | C21—H21C                     | 0.9800    |
| C7—C8                                                  | 1.526 (5)            | C22—C23                      | 1.541 (5) |
| C7—H7A                                                 | 0.9900               | C22—H22A                     | 0.9900    |
| С7—Н7В                                                 | 0.9900               | C22—H22B                     | 0.9900    |
| C8—C14                                                 | 1.524 (5)            | C23—C24                      | 1.507 (5) |
| C8—C9                                                  | 1.551 (5)            | C23—H23A                     | 0.9900    |
| C8—H8                                                  | 1.0000               | C23—H23B                     | 0.9900    |
| C9—C11                                                 | 1.537 (6)            | C25—C26                      | 1.535 (6) |
| C9—C10                                                 | 1.562 (5)            | C25—H25A                     | 0.9900    |
| С9—Н9                                                  | 1.0000               | C25—H25B                     | 0.9900    |
| C10—C19                                                | 1.544 (5)            | C26—C27                      | 1.508 (6) |
| C11—C12                                                | 1.553 (5)            | C26—H26A                     | 0.9900    |
| C11—H11A                                               | 0.9900               | C26—H26B                     | 0.9900    |
| C11—H11B                                               | 0.9900               | C27—H27A                     | 0.9900    |
| C12—C13                                                | 1.524 (6)            | C27—H27B                     | 0.9900    |
| C12—H12A                                               | 0.9900               |                              |           |
|                                                        | 0.9900               |                              |           |
| C3-03-H30                                              | 109 (4)              | C14—C13—C17                  | 100.2(3)  |
| $C_{27} = 0.27 = H_{27} = H_{27}$                      | 103(4)               | C15 - C14 - C8               | 100.2(3)  |
| $C_{24} = N_{24} = C_{25}$                             | 103(4)<br>123 $4(4)$ | $C_{15}$ $C_{14}$ $C_{13}$   | 104.9(3)  |
| $C_{24} = N_{24} = C_{23}$                             | 123.4(+)<br>117(3)   | $C_{13}$ $C_{14}$ $C_{13}$   | 104.9(3)  |
| $C_{24} = N_{24} = 1124$<br>$C_{25} = N_{24} = H_{24}$ | 117(3)<br>120(3)     | $C_{0} - C_{14} - C_{15}$    | 115.2 (5) |
| $C_{2} = 1 C_{1} = C_{1} C_{1}$                        | 120(3)<br>114.7(2)   | $C_{13} - C_{14} - \Pi_{14}$ | 106.7     |
| $C_2 = C_1 = C_1 U$                                    | 114.7 (3)            | $C_{0}$ $C_{14}$ $H_{14}$    | 100.7     |
| $C_2 - C_1 - \Pi IA$                                   | 108.0                | $C13 - C14 - \Pi14$          | 100./     |
| $C_1 \cup -C_1 \cup -\Pi_1 A$                          | 100.0                | $C_{14} = C_{15} = C_{16}$   | 104.0 (3) |
| $C_{10} C_{1} U_{1} U_{1} U_{1}$                       | 100.0                | C16 C15 H15A                 | 111.0     |
|                                                        | 108.0                | UIO-UIO-HIDA                 | 111.0     |

| H1A—C1—H1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.6     | C14—C15—H15B                 | 111.0                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------|----------------------|
| C3—C2—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.1 (3) | C16—C15—H15B                 | 111.0                |
| C3—C2—H2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.9     | H15A—C15—H15B                | 109.0                |
| C1—C2—H2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.9     | C17—C16—C15                  | 106.7 (3)            |
| C3—C2—H2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.9     | C17—C16—H16A                 | 110.4                |
| C1 - C2 - H2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.9     | C15—C16—H16A                 | 110.4                |
| $H^2A - C^2 - H^2B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 108.3     | C17 - C16 - H16B             | 110.4                |
| 03-03-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 113 2 (3) | $C_{15}$ $C_{16}$ $H_{16B}$  | 110.4                |
| 03 - C3 - C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 107.0(3)  | $H_{16A}$ $C_{16}$ $H_{16B}$ | 108.6                |
| $C_2 - C_3 - C_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 107.0(3)  | $C_{20}$ $C_{17}$ $C_{16}$   | 112.6(3)             |
| $O_2 O_3 O_3 H_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108.7     | $C_{20} C_{17} C_{13}$       | 112.0(3)<br>117.2(3) |
| $C_2 C_3 H_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108.7     | $C_{16} C_{17} C_{13}$       | 117.2(3)             |
| $C_2 = C_3 = H_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108.7     | $C_{10} = C_{17} = C_{13}$   | 104.4(3)             |
| $C_{4} = C_{3} = 115$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 112 1 (2) | $C_{20} = C_{17} = H_{17}$   | 107.4                |
| $C_{5} = C_{4} = C_{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100.0     | $C_{10} = C_{17} = H_{17}$   | 107.4                |
| $C_{3}$ $C_{4}$ $H_{4A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.0     | $C_{13} = C_{17} = H_{17}$   | 107.4                |
| $C_5 = C_4 = H_4 R_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.0     | C12 C18 H18P                 | 109.5                |
| $C_{2}$ $C_{4}$ $H_{4}$ $H_{4$ | 109.0     | U13-U18-H18B                 | 109.5                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.0     | H18A - C18 - H18B            | 109.5                |
| H4A - C4 - H4B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 107.8     | CI3-CI8-HI8C                 | 109.5                |
| C4 - C5 - C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.6 (3) | H18A-C18-H18C                | 109.5                |
| C4—C5—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 113.5 (3) | H18B—C18—H18C                | 109.5                |
| C6—C5—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 112.2 (3) | С10—С19—Н19А                 | 109.5                |
| C4—C5—H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 107.1     | С10—С19—Н19В                 | 109.5                |
| С6—С5—Н5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 107.1     | H19A—C19—H19B                | 109.5                |
| C10—C5—H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 107.1     | С10—С19—Н19С                 | 109.5                |
| C7—C6—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 113.3 (3) | H19A—C19—H19C                | 109.5                |
| С7—С6—Н6А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 108.9     | H19B—C19—H19C                | 109.5                |
| С5—С6—Н6А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 108.9     | C17—C20—C21                  | 112.4 (4)            |
| С7—С6—Н6В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 108.9     | C17—C20—C22                  | 110.6 (3)            |
| С5—С6—Н6В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 108.9     | C21—C20—C22                  | 110.3 (4)            |
| H6A—C6—H6B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.7     | С17—С20—Н20                  | 107.8                |
| C8—C7—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 111.7 (3) | C21—C20—H20                  | 107.8                |
| С8—С7—Н7А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.3     | С22—С20—Н20                  | 107.8                |
| С6—С7—Н7А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.3     | C20—C21—H21A                 | 109.5                |
| С8—С7—Н7В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.3     | C20—C21—H21B                 | 109.5                |
| С6—С7—Н7В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.3     | H21A—C21—H21B                | 109.5                |
| H7A—C7—H7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.9     | C20—C21—H21C                 | 109.5                |
| C14—C8—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 112.2 (3) | H21A—C21—H21C                | 109.5                |
| C14—C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5 (3) | H21B—C21—H21C                | 109.5                |
| C7—C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110.0 (3) | C23—C22—C20                  | 112.8 (3)            |
| C14—C8—H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 108.4     | C23—C22—H22A                 | 109.0                |
| С7—С8—Н8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 108.4     | C20—C22—H22A                 | 109.0                |
| С9—С8—Н8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 108.4     | C23—C22—H22B                 | 109.0                |
| C11—C9—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 112.8 (3) | C20—C22—H22B                 | 109.0                |
| C11—C9—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 112.9 (3) | H22A—C22—H22B                | 107.8                |
| C8—C9—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 111.4 (3) | C24—C23—C22                  | 111.7 (3)            |
| С11—С9—Н9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 106.4     | C24—C23—H23A                 | 109.3                |
| С8—С9—Н9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 106.4     | С22—С23—Н23А                 | 109.3                |

| С10—С9—Н9                        | 106.4                 | C24—C23—H23B                                          | 109.3              |
|----------------------------------|-----------------------|-------------------------------------------------------|--------------------|
| C19—C10—C1                       | 106.6 (3)             | С22—С23—Н23В                                          | 109.3              |
| C19—C10—C5                       | 109.6 (3)             | H23A—C23—H23B                                         | 107.9              |
| C1—C10—C5                        | 107.7 (3)             | O24—C24—N24                                           | 122.3 (4)          |
| C19—C10—C9                       | 111.5 (3)             | O24—C24—C23                                           | 121.1 (4)          |
| C1—C10—C9                        | 111.9 (3)             | N24—C24—C23                                           | 116.6 (4)          |
| C5—C10—C9                        | 109.4 (3)             | N24—C25—C26                                           | 112.6 (4)          |
| C9-C11-C12                       | 113.9 (3)             | N24—C25—H25A                                          | 109.1              |
| C9—C11—H11A                      | 108.8                 | C26—C25—H25A                                          | 109.1              |
| C12—C11—H11A                     | 108.8                 | N24—C25—H25B                                          | 109.1              |
| C9-C11-H11B                      | 108.8                 | C26—C25—H25B                                          | 109.1              |
| C12—C11—H11B                     | 108.8                 | $H_{25A}$ $C_{25}$ $H_{25B}$                          | 107.8              |
| H11A_C11_H11B                    | 107.7                 | $C_{27}$ $C_{26}$ $C_{25}$ $C_{25}$                   | 107.0<br>113 7 (4) |
| $C_{13}$ $C_{12}$ $C_{11}$       | 111 5 (3)             | $C_{27} = C_{20} = C_{23}$                            | 108.8              |
| $C_{13} = C_{12} = C_{11}$       | 100.3                 | $C_{27} = C_{20} = H_{20} A$                          | 108.8              |
| $C_{11} = C_{12} = H_{12A}$      | 109.5                 | $C_{23} = C_{20} = H_{20} R$                          | 108.8              |
| C12 C12 H12R                     | 109.5                 | $C_{27} = C_{20} = H_{20}B$                           | 108.8              |
| С13—С12—П12В                     | 109.5                 | $U_{23}$ $U_{20}$ $U_{20}$ $U_{20}$ $U_{20}$ $U_{20}$ | 108.8              |
|                                  | 109.5                 | $H_{20}A - C_{20} - H_{20}B$                          | 107.7              |
| H12A - C12 - H12B                | 108.0                 | 027 - 027 - 026                                       | 112.9 (3)          |
| C12 - C13 - C18                  | 111.1 (3)             | $O_2/-C_2/-H_2/A$                                     | 109.0              |
| C12 - C13 - C14                  | 106.5 (3)             | $C_{26} = C_{27} = H_{27} A$                          | 109.0              |
| C18—C13—C14                      | 111.9 (3)             | 02/—C2/—H2/B                                          | 109.0              |
| C12—C13—C17                      | 116.5 (3)             | С26—С27—Н27В                                          | 109.0              |
| C18—C13—C17                      | 110.1 (3)             | H27A—C27—H27B                                         | 107.8              |
| $C_{10}$ $C_{1}$ $C_{2}$ $C_{3}$ | 58 8 (4)              | C11 C12 C13 C17                                       | 168 6 (3)          |
| $C_1 C_2 C_3 O_3$                | -1767(3)              | C7 C8 C14 C15                                         | -55.8(5)           |
| $C_1 = C_2 = C_3 = C_4$          | -567(4)               | $C_{1} = C_{1} = C_{1} = C_{1}$                       | -1782(3)           |
| $C_1 = C_2 = C_3 = C_4$          | 170 5 (3)             | $C_{7} = C_{8} = C_{14} = C_{13}$                     | -178.2(3)          |
| $C_{3} = C_{4} = C_{5}$          | 179.5 (S)<br>55.0 (A) | $C_{1} = C_{2} = C_{14} = C_{13}$                     | 170.0(3)           |
| $C_2 = C_3 = C_4 = C_5$          | 55.9(4)               | $C_{9} = C_{0} = C_{14} = C_{15}$                     | 36.7(4)            |
| $C_{3} - C_{4} - C_{5} - C_{10}$ | -1/9.8(3)             | C12 - C13 - C14 - C13                                 | 100.7(3)           |
| $C_{3} - C_{4} - C_{5} - C_{10}$ | -33.0(4)              | $C_{18} - C_{13} - C_{14} - C_{15}$                   | -71.8(4)           |
| $C_4 = C_5 = C_6 = C_7$          | 73.0 (4)<br>52.1 (5)  | C12 - C13 - C14 - C13                                 | 44.8(4)            |
| $C_{10} = C_{5} = C_{6} = C_{7}$ | -52.1(5)              | C12 - C13 - C14 - C8                                  | -63.2(4)           |
| $C_{5} - C_{6} - C_{7} - C_{8}$  | 53.0(5)               | C18 - C13 - C14 - C8                                  | 58.4 (4)           |
| $C_{0} - C_{1} - C_{0} - C_{14}$ | -1/.8(3)              | C1/-C13-C14-C8                                        | 1/5.0 (3)          |
| $C_{0} - C_{1} - C_{0} - C_{0}$  | -55.6 (4)             | C8 - C14 - C15 - C16                                  | -161.2(3)          |
|                                  | -49.3 (4)             | C13—C14—C15—C16                                       | -34.1 (4)          |
| C7—C8—C9—C11                     | -173.0 (4)            | C14—C15—C16—C17                                       | 9.7 (4)            |
| C14—C8—C9—C10                    | -177.4 (3)            | C15—C16—C17—C20                                       | 146.1 (3)          |
| C7—C8—C9—C10                     | 58.9 (4)              | C15—C16—C17—C13                                       | 17.9 (4)           |
| C2-C1-C10-C19                    | -171.7 (3)            | C12—C13—C17—C20                                       | 82.7 (4)           |
| C2-C1-C10-C5                     | -54.1 (4)             | C18—C13—C17—C20                                       | -44.9 (5)          |
| C2-C1-C10-C9                     | 66.2 (4)              | C14—C13—C17—C20                                       | -162.8 (3)         |
| C4—C5—C10—C19                    | 165.9 (3)             | C12—C13—C17—C16                                       | -152.0 (4)         |
| C6—C5—C10—C19                    | -69.2 (4)             | C18—C13—C17—C16                                       | 80.4 (4)           |
| C4—C5—C10—C1                     | 50.3 (4)              | C14—C13—C17—C16                                       | -37.6 (4)          |
|                                  |                       | a a a a                                               |                    |

| C4—C5—C10—C9    | -71.6 (4)  | C13—C17—C20—C21 | -60.1 (5)  |
|-----------------|------------|-----------------|------------|
| C6—C5—C10—C9    | 53.3 (4)   | C16—C17—C20—C22 | 54.9 (5)   |
| C11—C9—C10—C19  | -64.0 (5)  | C13—C17—C20—C22 | 176.0 (3)  |
| C8—C9—C10—C19   | 64.1 (5)   | C17—C20—C22—C23 | -172.3 (3) |
| C11—C9—C10—C1   | 55.3 (4)   | C21—C20—C22—C23 | 62.6 (5)   |
| C8—C9—C10—C1    | -176.6 (3) | C20—C22—C23—C24 | 177.6 (4)  |
| C11—C9—C10—C5   | 174.6 (3)  | C25—N24—C24—O24 | 6.6 (6)    |
| C8—C9—C10—C5    | -57.4 (4)  | C25—N24—C24—C23 | -173.3 (3) |
| C8—C9—C11—C12   | 47.6 (4)   | C22—C23—C24—O24 | -60.4 (5)  |
| C10-C9-C11-C12  | 174.9 (3)  | C22—C23—C24—N24 | 119.5 (4)  |
| C9—C11—C12—C13  | -53.0 (5)  | C24—N24—C25—C26 | -97.7 (5)  |
| C11-C12-C13-C18 | -64.3 (4)  | N24—C25—C26—C27 | 59.3 (5)   |
| C11—C12—C13—C14 | 57.9 (4)   | C25—C26—C27—O27 | 55.1 (5)   |
|                 |            |                 |            |

Hydrogen-bond geometry (Å, °)

| D—H···A                            | D—H      | H···A    | $D \cdots A$ | D—H··· $A$ |
|------------------------------------|----------|----------|--------------|------------|
| 027—H27 <i>O</i> ···O24            | 0.86 (4) | 1.98 (2) | 2.810 (4)    | 164 (5)    |
| O3—H3 <i>O</i> ···O24 <sup>i</sup> | 0.84 (2) | 2.05 (2) | 2.880 (5)    | 171 (5)    |
| $N24$ — $H24$ ···O $3^{i}$         | 0.89 (2) | 2.20 (3) | 3.032 (5)    | 155 (4)    |

Symmetry code: (i) -x+1, y+1/2, -z.