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A Thermoelastic Instability Problem for Axially
Moving Plates∗

Nikolay Banichuk† Svetlana Ivanova† Juha Jeronen‡

Evgeni Makeev† Pekka Neittaanmäki‡ Tero Tuovinen‡

Abstract

Problems of stability and deformation of a moving web, traveling between
a system of rollers at a constant velocity are considered. The plate is subjected
to a combined thermomechanical loading, including pure mechanical in-plane
tension and also centripetal forces. Thermal strains corresponding to thermal
tension and bending of the plate are accounted for. The problem of out-of-plane
thermomechanical divergence (buckling) is reduced to an eigenvalue problem,
which is studied analytically.
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1 Introduction

The aim of our studies has been to develop mathematical models representing the
behavior of the paper making process, simplifying the problems of moving mate-
rials sufficiently, while still providing an understanding of the phenomena. A key
point is that the productivity of the paper mill is strongly dependent on the effi-
ciency and reliability of the running paper web. In this context it is important to
investigate critical aspects of high speed movement of a web subjected to thermo-
mechanical actions.

Note that in many papers an axially moving web have been modeled as traveling
flexible strings, membranes, beams and plates. Classical articles in this field are, for
example, Archibald & Emslie (1958), Mote (1972), Simpson (1973), Wang et al. (2005),
Parker (1998), Wickert (1992) and Wickert & Mote (1990).
∗This research was supported by the Academy of Finland (grant no. 140221 and grant no. 269351);
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Federation
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Webs interacting with external media are considered in, e.g., Chang & Moretti
(1991), Banichuk et al. (2010b, 2011). As for orthotropic moving materials, many im-
portant results can be found in the books by Marynowski (2008) and Banichuk et al.
(2014). An extensive literature review about mechanics of axially moving continua
can also be found in these books; see also Marynowski & Kapitaniak (2014).

The focus of this article is the deformation and static stability of a simply sup-
ported axially moving elastic rectangular plate with two opposite edges simply sup-
ported and two opposite edges free. The equations of dynamics and equilibrium of
the plate are derived taking into account local acceleration, acting in the out-of-plane
(transverse) direction, and also thermomechanical forces.

We study thermoelastic behavior of the moving plate, focusing on steady-state
stability analysis. To this purpose we formulate an eigenvalue problem and solve
it analytically. As a result, we determine the critical stability parameters and diver-
gence modes.

2 Basic relations of a traveling plate

Let us consider an elastic plate, which occupies the region

Ω = { (x, y, z) : 0 < x < `, −b < y < b, −h/2 < z < h/2 }

of the rectangular coordinate system xyz, and moves axially at a constant transport
velocity V0 in the x-direction. Here `, b, h and V0 are given positive numbers. The
transverse (out-of-plane) displacement is described by the function w = w(x, y, t).
By first setting up the problem in the co-moving coordinate system, and transform-
ing into Euler (laboratory) coordinates, we have the equation for small transverse
vibrations of the moving plate in the following form:

m
d2w

dt2
= LM(w)− LB(w), (1)

where the second material derivative is

d2w

dt2
=

(
∂

∂t
+ V0

∂

∂x

)(
∂w

∂t
+ V0

∂w

∂x

)
=
∂2w

∂t2
+ 2V0

∂2w

∂x∂t
+ V 2

0

∂2w

∂x2
. (2)

Here m is the mass per unit area of the plate. Thus the physical dimension of each
term in (1) is (kg/m2) · m/s2 = (kg m/s2) · 1/m2 = N/m2 = Pa; from a dimensional
analysis viewpoint, the equation represents pressures.

Note that the last form of (2) assumes that the axial velocity V0 is constant. The
right-hand side in (2) contains three terms, representing local acceleration, Coriolis
acceleration, and centripetal acceleration, respectively. The operators LB and LM on
the right-hand side of (1) are, respectively, the bending and membrane operators.

To find the explicit expression for the membrane operator

LM(w) = Tx
∂2w

∂x2
+ 2Txy

∂2w

∂x∂y
+ Ty

∂2w

∂y2
,
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we will use the relations for the total components of in-plane tensions Tx, Txy and
Ty:

Tx = T0x −
Eh

1− ν
εθ, Ty = T0y −

Eh

1− ν
εθ, Txy = T0xy,

where T0x, T0y and T0xy are the mechanical tensions and Ehεθ/(1− ν) is the thermal
part.

Let us introduce the modelling assumptions

T0x(x, y) = T0 = const, T0y(x, y) = T0xy(x, y) = 0.

We can represent the membrane operator LM in the following form:

LM(w) = T0
∂2w

∂x2
− Eh

1− ν
εθ∆w, where ∆ =

∂2

∂x2
+

∂2

∂y2
. (3)

Here and in what follows E is the Young modulus, ν is the Poisson ratio, h is the
thickness of the plate. The thermal strain εθ, corresponding to the thermal tension,
is defined as

εθ =
1

h

h/2ˆ

−h/2

αθ θ dz, (4)

where αθ is the coefficient of linear thermal expansion. The function θ = θ(z) is the
temperature difference

θ(z) = θabsolute(z)− θ0,

where θabsolute and θ0 are given in kelvins. The constant θ0 is a reference temperature,
at which the system is considered to experience no thermal strain. If the plate is at a
uniform temperature of θ0, then θ(z) = 0, and by (4), consequently, εθ = 0.

To determine an explicit expression for the bending operator

LB(w) = −
(
∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2My

∂y2

)
, (5)

we apply the following relations for the total moments Mx, Mxy, and My, and cylin-
drical rigidity D:

Mx = D [κx + νκy − (1 + ν)κθ] ,

My = D [νκx + κy − (1 + ν)κθ] ,

Mxy = (1− ν)Dκxy, D =
Eh3

12(1− ν2)
.

(6)

We will also use the following representations for the curvatures κx, κy and κxy:

κx = −∂
2w

∂x2
, κxy = − ∂2w

∂x∂y
, κy = −∂

2w

∂y2
. (7)
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For thermal bending deformation κθ,

κθ =
12

h3

h/2ˆ

−h/2

αθ θ z dz.

Applying (5)–(7) and performing the necessary transformations and substitutions,
we will have

LB(w) = D
[
∆2w + (1 + ν)∆κθ

]
= D∆ [∆w + (1 + ν)κθ] , (8)

where ∆ is the Laplace operator (Laplacian) and ∆2 is the biharmonic operator,
∆2(. . . ) = ∆(∆(. . . )). Using (1)–(2), (3), and (8), we obtain the equation of small
transverse vibrations of the travelling elastic plate subjected to thermomechanical
loading:

m

(
∂2w

∂t2
+ 2V0

∂2w

∂x∂t
+ V 2

0

∂2w

∂x2

)
− T0

∂2w

∂x2
− Eh

1− ν
εθ∆w

+D∆ [∆w + (1 + ν)κθ] = 0. (9)

In what follows we will consider the steady-state case, where ∂/∂t → 0, and w is a
function of x and y only, w = w(x, y). Equation (9) takes the form

(
mV 2

0 − T0
) ∂2w
∂x2

+D∆2w +
Eh

(1− ν)
εθ∆w + (1 + ν)D∆κθ = 0. (10)

The steady-state equation (10) of transverse plate deformation is a fourth-order par-
tial differential equation. Therefore two boundary conditions at each edge of the
considered rectangular plate are needed.

We consider the case where two opposite edges at x = 0 and x = ` are simply
supported, and the other two opposite edges at y = −b and y = b are free. To formu-
late the boundary conditions, we introduce the unit normal to the plate boundary, n,
and the coordinate s, measured counterclockwise. The symbol α denotes the angle
from the +x axis to the vector n, taken counterclockwise. See Figure 1.

The boundary Γ consists of the following parts. At the right edge Γr, we have
x = `, α = 0; at the left edge Γ`, x = 0, α = π; at the upper edge Γ+, y = b, α = π/2;
and finally at the lower edge Γ−, y = −b, α = 3π/2.

At the simply supported boundaries Γr and Γ`,

w = 0, Mn = Mx cos2 α +My sin2 α +Mxy sin 2α = 0. (11)

Inserting (6)–(7) into (11), we will have

w = 0,
∂2w

∂x2
+ (1 + ν)κθ = 0, x = 0, `. (12)
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Γ`(α = π)

y

x

Γr(α = 0)

x = `

n

s

Γ+(α = π

2
)

Γ
−
(α = 3π

2
)

x = 0

y = −b

y = b

Figure 1: Integration path and definition of the boundaries.

At the free edges of the plate Γ+ and Γ−,

Mn = Mx cos2 α +My sin2 α +Mxy sin 2α = 0, Qn +
∂Mns

∂s
= 0, (13)

where the shear force Qn and moment Mns are expressed as (e.g., Timoshenko &
Woinowsky-Krieger, 1959)

Qn = Qx cosα +Qy sinα =

(
∂Mx

∂x
+
∂Mxy

∂y

)
cosα +

(
∂Mxy

∂x
+
∂My

∂y

)
sinα, (14)

Mns = −Mx −My

2
sin 2α +Mxy cos 2α.

As for the partial derivative ∂/∂s in (13), we note that

∂

∂s
= − ∂

∂x
at Γ+ (y = b) ,

∂

∂s
=

∂

∂x
at Γ− (y = −b) . (15)

As a result of (6)–(7) and (13)–(15), we have the following boundary conditions at
Γ+ and Γ−:

∂2w

∂y2
+ ν

∂2w

∂x2
+ (1 + ν)κθ = 0, y = ±b, (16)

(2− ν)
∂3w

∂x2∂y
+
∂3w

∂y3
= 0, y = ±b. (17)

3 Eigenvalue problem of plate divergence

In this section we study the divergence (static instability) of a travelling isotropic
plate, subjected to homogeneous thermomechanical in-plane tension, κθ = 0.
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The problem is formulated as an eigenvalue problem of the partial differential
equation (

mV 2
0 − T

) ∂2w
∂x2

+
Eh

(1− ν)
εθ∆w +D∆2w = 0 (18)

with the boundary conditions (12), (16) and (17). In order to determine the corre-
sponding eigenfunction w = w(x, y), we apply the representation

w = w(x, y) = f
(y
b

)
sin
(πx
`

)
, (19)

where f (y/b) is an unknown function to be determined. It follows from (19) that the
desired buckling mode (steady-state solution) w satisfies the boundary conditions
(12) (with κθ = 0). The half-sine shape of the solution in the longitudinal direction
is well-known (see, e.g., Banichuk et al. (2014)).

Introducing the dimensionless quantities

η =
y

b
, µ =

`

πb
, (20)

and using the relations (17)–(20) and (16) (with κθ = 0), we obtain the eigenvalue
problem for the unknown function f(η):

µ4d4f

dη4
− µ2 (2− β)

d2f

dη2
+ (1− λ)f = 0, − 1 < η < 1, (21)

µ2d2f

dη2
− νf = 0, η = ±1, (22)

µ2d3f

dη
− (2− ν)

df
dη

= 0, η = ±1, (23)

where we have denoted

λ = λ0 + β, λ0 =
`2

π2D

[
mV 2

0 − T0
]
, (24)

β =
`2

π2D

(
Eh

1− ν
εθ

)
. (25)

The boundary conditions (24)–(25) correspond to the free-of-traction plate edges.
In what follows we will solve the eigenvalue problem (21)–(23). We consider

this problem as a spectral boundary value problem. The problem is invariant with
respect to the symmetry operation η → −η, and, consequently, all its eigenfunctions
can be classified as

f s(η) = f s(−η), f a(η) = −f a(−η), 0 ≤ η ≤ 1.

Here f s and f a are symmetric and antisymmetric (skew-symmetric) with respect to
the x axis (η = 0). A divergence mode symmetric with respect to the x axis can be
represented in the form

w = f s(η) sin
(πx
`

)
. (26)

6



The algebraic characteristic equation

µ4r4 − µ2(2− β)r2 + (1− λ0 − β) = 0,

corresponding to the differential equation (21), has the following roots:

r1,2 = ±k+
µ
, r3,4 = ±k−

µ
,

where

k±(λ0, β) =

√√√√(
1− β

2

)
±

√
λ0 +

(
β

2

)2

. (27)

Consequently, a symmetric solution of the differential equation can be written as

f s(η) = As cosh

(
k+η

µ

)
+Bs cosh

(
k−η

µ

)
, (28)

where As and Bs are arbitrary constants.
At first, we concentrate on the symmetric case and return to the antisymmetric

case later. Using the boundary conditions (22) and (23) and the representations (26)
and (28), we obtain linear algebraic equations for determining the constants As and
Bs :

As
(
k2+ − ν

)
cosh

(
k+
µ

)
+Bs

(
k2− − ν

)
cosh

(
k−
µ

)
= 0, (29)

Ask+
(
k2+ + ν − 2

)
sinh

(
k+
µ

)
+Bsk−

(
k2− + ν − 2

)
sinh

(
k−
µ

)
= 0. (30)

The condition for a non-trivial solution to exist in the form (26), (27)–(28) is that the
determinant of the system (29)–(30) must vanish, since (29)–(30) is a homogeneous
system of linear equations in As and Bs. From linear algebra, it is well known that
a non-trivial solution satisfying (29)–(30) can only exist if the corresponding matrix
is singular. Hence its determinant must be zero. This zero determinant condition
leads to the transcendental equation

k−
(
k2+ − ν

) (
k2− + ν − 2

)
cosh

(
k+
µ

)
sinh

(
k−
µ

)
−

k+
(
k2− − ν

) (
k2+ + ν − 2

)
sinh

(
k+
µ

)
cosh

(
k−
µ

)
= 0, (31)

which determines the value λ0 implicitly.
The left-hand side of (31) (with the help of (27) defining k±(λ0, β)) can be used

in a numerical root finder to find the critical eigenvalue λ0 for any given values of
β (thermal parameter), µ (scaled aspect ratio) and ν (Poisson ratio). At β = 0, the
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Figure 2: Functions Φ and Ψ for β = 1/4, ν = 0.3 and `/2b = 1 (µ = 2/π). Note the
nonlinear horizontal axis, used to show the ends more clearly.

present consideration reduces to the purely mechanical case considered in Banichuk
et al. (2010a).

For analytical considerations, (31) can be transformed into the form

Φ (λ0, β, µ)−Ψ (λ0, β, ν) = 0,

where we have defined the transcendental function

Φ (λ0, β, µ) = tanh

(
k−(λ0, β)

µ

)
coth

(
k+(λ0, β)

µ

)
(32)

and the rational function

Ψ (λ0, β, ν) =
k+ (λ0, β)

(
k2+ (λ0, β) + ν − 2

) (
k2− (λ0, β)− ν

)
k− (λ0, β) (k2− (λ0, β) + ν − 2) (k2+ (λ0, β)− ν)

. (33)

Using the expressions (27), we note that, in order for k± to remain real-valued, we
must have λ0 < 1− β, and, consequently,

λ = λ0 + β < 1.

For an illustration of a typical case, see Figure 2.
To obtain the corresponding buckling mode, we need to determine As and Bs.

At the point where the determinant (31) vanishes, one of equations (29) and (30) is
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Figure 3: Symmetric buckling shape for β = 1/4, ν = 0.3 and `/2b = 1 (µ = 2/π).

redundant. We choose to use (29), obtaining the expression

As = −Bs

(
k2− − ν

)
cosh

(
k−
µ

)
(k2+ − ν) cosh

(
k+
µ

) . (34)

Because f(η) is an eigenfunction, Bs is arbitrary. For purposes of illustration, it is
convenient to choose Bs such that ‖f(η)‖∞ = 1 on −1 ≤ η ≤ 1. To do this, we may
tentatively set Bs = 1, and determine the corresponding As from (34). Then, using
these values for As and Bs, we evaluate f(η) from (28), on the visualization grid
{ηj : j = 1, 2, . . . , N}. Finally, we divide both As and Bs by maxj |f(ηj)|, obtaining
the desired normalization. Figure 3 shows the buckling shape corresponding to the
same parameter values as used in Figure 2.

Let us now consider modes of buckling that are antisymmetric about the x axis:

w = f a (η) sin
(πx
`

)
,

where

f a(η) = Aa sinh

(
k+η

µ

)
+Ba sinh

(
k−η

µ

)
. (35)

The values k+ and k− are given by (27). Using (35) for f a, and the boundary con-
ditions (22)–(23) for the free edges of the plate, we obtain the following system of
linear homogeneous algebraic equations for determining the constants Aa and Ba,
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corresponding to the antisymmetric case:

Aa
(
k2+ − ν

)
sinh

(
k+
µ

)
+Ba

(
k2− − ν

)
sinh

(
k−
µ

)
= 0, (36)

Aak+
(
k2+ + ν − 2

)
cosh

(
k+
µ

)
+Bak−

(
k2− + ν + 2

)
cosh

(
k−
µ

)
= 0. (37)

The condition that the determinant of the system (36)–(37) must vanish can be trans-
formed into a transcendental equation for determining the quantity λ0:

Φ (λ0, β, µ)− 1

Ψ (λ0, β, ν)
= 0.

The functions Φ (λ0, β, µ) and Ψ (λ0, β, ν) are, again, given by (32) and (33).

4 Conclusion

This paper focused on the static stability (divergence) problem of a moving elastic
web, traveling through a system of rollers at a constant velocity. The plate was
subjected to combined thermomechanical loading, including pure mechanical in-
plane tension and also centripetal forces. Thermal strains corresponding to thermal
tension and bending of the plate were accounted for. The problem of out-of-plane
thermomechanical divergence (buckling) was reduced to an eigenvalue problem,
which was solved analytically, leading to a transcendental equation.

The presented results can be used for fundamental analysis of, for example, the
behaviour of a paper web in a cylinder dryer section, where thermal effects may be
significant.
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