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ABSTRACT 

Kumar, Hemanathan

Novel Concepts on the Recovery of By-products from Alkaline Pulping

Jyväskylä: University of Jyväskylä, 2016, 61 p.
Department of Chemistry, University of Jyväskylä, Research Report No. 198
ISSN 0357-346X
ISBN 978-951-39-6853-3

Innovative biorefinery concepts were developed for the separation and 
utilization of organic materials, especially aliphatic carboxylic acids, lignin, and 
extractives, which are formed as by-products during wood-based alkaline 
delignification processes.  

The partial recovery of sodium as NaOH and aliphatic carboxylic acids 
from hardwood soda-AQ black liquor was studied via electrodialysis. The 
lignin was partly (about 59 % of the initial lignin) precipitated from black liquor 
by carbonation (pH to about 8.5) followed by electrodialysis or H2SO4 (pH to 
about 2), with subsequent precipitation of more lignin and the liberation of 
aliphatic acids. The Na2SO4 formed was successfully separated from the 
acidified liquor by precipitation with methanol and treated by electrodialysis to 
recover NaOH and H2SO4 for recycling. The electrodialysis of Na2SO4 was 
effective and almost 90 % of the sodium was recovered. 

Volatile formic and acetic acids were recovered from acidified black liquor 
(pH about 2) by simple distillation and the recovery of the significant low-
molar-mass hydroxy carboxylic acids (glycolic, lactic, and 2-hydroxybutanoic 
acids) by means of their methyl esters for chemical utilization. The residual 
high-molar-mass acids (3,4-dideoxy-pentonic, 3-deoxy-pentonic, xyloiso-
saccharinic, and glucoisosaccharinic acids) present in the form of their lactones 
were then utilized in the production of surfactants with tall oil fatty acids. The 
esterification of the model compound α-glucoisosaccharino-1,4-lactone with 
lauric, oleic, and tall oil fatty acids was studied separately in a microwave 
reactor in the presence of p-toluenesulfonic acid as a catalyst, and the total 
yields varied in the range of 40-62 %. 

The precipitated lignin obtained by carbonation and acidification with 
H2SO4 was separated and characterized with Fourier transform infrared, 
ultraviolet, energy dispersive X-ray fluorescence, and nuclear magnetic 
resonance spectroscopy. In addition, the molar weight distributions of these 
lignin fractions were determined using gel permeation chromatography. The 
lignin obtained by acidification was employed in synthesis of an acid catalyst. 
This lignin-based acid catalyst was made by phenol formaldehyde 
condensation, followed by a sulfonation reaction. The esterification of tall oil 
fatty acids with methanol was studied in a microwave reactor in the presence of 
various catalysts, such as lignin-based acid catalyst, p-toluenesulfonic acid, and 
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Amberlyst 15. Compared to other catalysts, the lignin-based acid catalyst 
showed a good activity, and it also could be easily recycled.  

Keywords: Acidification, Aliphatic carboxylic acids, Black liquor, Carbonation, 
Electrodialysis, Esters, Glucoisosaccharinic acid, Lignin, Tall oil fatty acids. 
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1 INTRODUCTION 

A more sustainable use of natural resources throughout the world is essential. 
Recently, renewable feedstocks are becoming increasingly viable in the 
conversion to green chemicals. The pulp and paper industry is one of the most 
widely established industries and well placed to contribute to sustainable 
development. For example, in chemical pulping, a substantial amount of wood 
fibrous material is dissolved in the cooking liquor (“black liquor”, BL) during 
the delignification process. Along with residual inorganic cooking chemicals, 
BL also contains significant amounts of degraded hemicelluloses (in the form 
of aliphatic carboxylic acids), together with degradation products of lignin and 
a minor fraction of extractives (e.g., “crude tall oil”, CTO). In the pulp mill, 
after the recovery of these extractives, BL is concentrated and burned in the 
recovery furnace to recover cooking chemicals and energy. It should also be 
emphasized that when surplus energy is generated, partial recovery and 
utilization of dissolved organic solids offers a natural platform for integrated 
biorefining [Alén, 2011b; 2015]. 

Aliphatic carboxylic acids have a wide range of applications in chemical 
industries. However, the aliphatic acids present as sodium salts in BL should 
be totally liberated from sodium prior to their recovery and utilization [Alén, 
2011b]. This is traditionally done by acidification (pH to 2−3) with strong 
mineral acids (primarily H2SO4). A key issue is to find the appropriate way to 
handle substantial amounts of Na2SO4 that is formed as a by-product from the 
aforementioned process (including the recovery of sodium). On the other 
hand, electrochemical membrane process techniques (e.g., electrodialysis, ED; 
the reaction Na2SO4 → H2SO4 + NaOH [Raucq et al., 1993; Paleologou et al., 
1997]) offer one interesting possibility of recovering and recycling at least part 
of the H2SO4.  

Further main challenges faced in the recovery and purification of 
hydroxy carboxylic acids are due to their low vapor pressure, properties of 
water solubility, tendency to undergo self-esterification (especially “low-
molar-mass”, LMM hydroxy acids, such as glycolic, lactic, and 2-hydroxy-
butanoic acid), and also the presence of other impurities [Alén, 2015]. Their 



2 
 
laboratory-scale purification could be carried out either through straight-
forward distillation under reduced pressure [Alén and Sjöström, 1980c] or by 
ion-exclusion chromatographic techniques [Alén et al., 1990]. On the other 
hand, the large-scale separation of formic and acetic acids after their liberation 
has been accomplished by azeotropic distillation with the aid of ethylene 
dichloride [Biggs et al., 1961]. 

Esterification is a common chemical reaction in which an ester is derived 
by the reaction of an acid and an alcohol with the simultaneous removal of 
water [Sakamuri, 2003]. Esters are usually less polar than alcohols, and, due to 
the lack of ability of forming intermolecular hydrogen bonds, they do not 
associate with each other [March, 1992]. Thus, esters are also more volatile 
(i.e., have lower boiling points) than carboxylic acids with a similar molar-
mass (MM), and their effective distillation without yield losses is possible. 
This kind of approach has been applied to the purification of lactic acid from 
fermentation broth [Joglekar et al., 2006; Zhao et al., 2009]. Similarly, it can be 
concluded that free LMM hydroxy acids in acidified BL could be easily 
separated and purified by this type of esterification. Further, their individual 
separation by distillation seems possible due to the difference in their relative 
volatility. However, residual free high-molar-mass (HMM) hydroxy acids 
such as 3,4-dideoxy-pentonic acid, 3-deoxy-pentonic acid, xyloisosaccharinic 
acid (XISA), and glucoisosaccharinic acid (GISA), exist as intramolecular cyclic 
esters (i.e., lactones) [Alén and Sjöström, 1980c; Alén, 2011b]. These lactones 
could be suitable for further esterification with long-chain fatty acids (FAs) 
(e.g., with a conventional acid fraction from CTO) to obtain emulsifying agents 
[Sjöström, 1991; Alén, 2015]. 

In addition, it is also necessary to find potential applications of large 
amounts of lignin that is precipitated during the acidification process. In 
addition to extractives (tall oil), lignin is the most important by-product of 
chemical pulping. Lignin can be treated under different conditions to obtain a 
wide range of industrial products [Alén, 2011b; 2015]. For example, a solid 
acid-based catalyst can be prepared from lignin by a chemical process [Liang 
et al., 2013; Zhang et al., 2013] and potentially used to catalyze the 
esterification of tall oil fatty acids (TOFAs) to biodiesel [Keskin et al., 2007]. 
Research of this type can lead to the synthesis of value-added green catalysts 
and biofuels from by-products of pulping.  

Therefore, it can be concluded that in addition to recovering energy by 
burning, various attractive products can be recovered and synthesized from 
BL. Up to now, far too little attention has been paid towards the production of 
valuable materials from industrial by-products of forest waste. This research 
provides new insights in developing socio-economic and environmentally 
sustainable process possibilities towards the recovery and utilization of 
chemicals from low-cost by-products and industrial waste. In addition, the 
research can add value to the Finnish economy by diversifying the product 
range of Finnish pulp mills. 
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2 OBJECTIVES OF THE STUDY 

The purpose of the present work was to develop potential techniques for the 
separation and utilization of the organic and inorganic materials present in 
alkaline BL. In order to achieve this target, the following general objectives 
were set: 

 
To develop new techniques for the recovery of LMM and HMM aliphatic 

carboxylic acids from alkaline BLs.  
 
To recover NaOH with minimal energy consumption by ED either through the 

diluted carbonated black liquor (CBL) or Na2SO4 formed during the acidification of 
CBL with H2SO4. 

 
To analyze the lignin precipitated from differently processed alkaline BLs. 
 
To clarify possibilities to esterify HMM aliphatic carboxylic acid lactones 

(mainly glucoisosaccharinic acid lactone, GISAL) with fatty acids. 
 
To prepare fatty acid methyl esters (FAMEs) using a lignin-based acid catalyst. 
 
The overall objective was to find a more efficient utilization of part of BL 

as an alternative to its burning by means of the manufacturing of various 
value-added products.  
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3 ALKALINE PULPING PROCESSES 

Pulp is the generic product of wood. Predominantly used for the 
manufacturing of paper and paperboards, some pulps are chemically 
processed into various products, such as regenerated fiber and cellulose 
derivatives [Sjöström, 1993; Sixta, 2006]. Pulping refers to processes that 
involve the liberation of fibrous pulp from wood or other lignocellulosic 
feedstock by either chemical, mechanical, or combinatory processes [Rydholm, 
1965; Grace and Malcom, 1989; Biermann, 1993; Sjöström, 1993; Sixta, 2006; 
Alén, 2011b]. Currently, chemical pulping accounts for over 70 % of the total 
global pulp production; the kraft (sulfate) process is the most versatile and 
economical pulping process, which is now the dominant process for chemical 
pulp production [Alén, 2011b; Christopher, 2012]. In chemical pulping, lignin 
is almost completely removed from wood fibers and dissolves in the cooking 
liquor. However, the selectivity of delignification is rather low, as 
simultaneously with lignin removal, a large amount of fibrous feedstock 
material along with extractives are also degraded [Sjöström, 1993; Pakkanen et 
al., 2005; Pakkanen and Alén, 2012; Lehto and Alén, 2013]. In this regard, one 
of the potential approaches is pretreatment of the wood chips under chemical 
(mild acidic or alkaline), biological, or enzymatic processes prior to the 
chemical pulping to recover part of the feedstock hemicelluloses already at 
this stage [Tunc and van Heiningen, 2008; 2011; Yoon et al., 2008; Mendes et 
al., 2009; Li et al., 2010; Lehto and Alén, 2015; Lehto et al., 2015]. 

3.1 Kraft pulping 

Excellent pulp strength, the capability of processing various fibrous materials, 
low energy consumption, short cooking time, and simple and effective 
chemical recovery, are the most significant reasons that make the kraft process 
superior to other pulping processes. However, the kraft process still contains 
numerous weaknesses, such as higher capital cost, low pulp yields (40-55 % of 
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wood), dark unbleached pulp color, high consumption of bleaching chemicals, 
and malodorous and toxic emissions [Kleppe, 1970; Sjöström, 1993; Uprichard 
and Walker, 1993; Alén, 2000b; Christopher, 2012]. In conventional kraft 
pulping, delignification is accomplished using aqueous white liquor (cooking 
liquor) containing the active cooking chemicals, sodium hydroxide and 
sodium sulfide, in addition to some sodium carbonate and sodium salts of 
oxidized sulfur-containing anions. In general, kraft cooking is performed at 
155-175 °C for 1-3 hours, where the hydrogen sulfide ions (HS-) and hydroxide 
ions (HO-) react with lignin polymer and degrade it into smaller and alkali 
soluble fragments. The kraft process can be carried out in a batch or in a 
continuous digester [Grace and Malcom, 1989; Biermann, 1993; Sjöström, 1993; 
Uprichard and Walker, 1993; Chakar and Ragauskas, 2004; Sixta et al., 2006a]. 
After cooking, the pulp is separated from BL and screened before bleaching. 
The resulting BL, containing lignin (85-95 % of lignin originally present in 
wood) along with carbohydrate degraded products and minor amounts of 
extractives, is concentrated to 65-85 % of the solid content by evaporation and 
burned in the recovery furnace to recover cooking chemicals and generate 
energy [Sjöström, 1993; Alén, 2011b]. Currently, the kraft pulp mill has the 
potential to generate both power and heat. The inorganic smelt, mainly 
consisting of sodium carbonate and sodium sulfide, is dissolved in water to 
obtain green liquor. The green liquor reacts with calcium hydroxide (slaked 
lime) in the causticizing process in which sodium carbonate is converted into 
sodium hydroxide, which then can be reused as the cooking liquor [Adams, 
1997; Sixta, 2006; van Heiningen, 2006; Alén, 2011b]. 

3.2 Soda-anthraquinone pulping 

In wood pulping, the conventional soda process has almost completely been 
replaced by the kraft process [Sjöström, 1993]. However, compared to the kraft 
process, the soda process is sulfur free, which facilitates easier recovery of 
cooking chemicals and eliminates the emissions of malodorous sulfur [Finell 
and Nilsson, 2004]. On the other hand, in soda pulping, sodium hydroxide is 
the only active cooking chemical, and the pulping process is slower, resulting 
in lower yield and weaker pulp as carbohydrate reactions are only affected by 
the presence of HO- [Uprichard and Walker, 1993; Sixta, 2006; Alén, 2011b]. 
The alkali-catalyzed polysaccharide peeling reactions in alkali pulping can be 
avoided by reducing or oxidizing the reducing aldehyde end groups of the 
polysaccharide chains. Further, to improve the soda process, anthraquinone 
(AQ) is used as catalyst (0.1-0.5 % on dry wood) to increase the rate of 
delignification and reduce the polysaccharide peeling reactions by the 
oxidation of the reducing end groups of carbohydrate chains to alkali-stable 
aldonic end groups [Uprichard and Walker, 1993; Alén, 2011b]. The soda-AQ 
method is more effective in pulping hardwoods compared to softwoods 
[Kanungo et al., 2009]. Currently, soda-AQ pulping is economically viable for 
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non-wood raw materials, such as reed canary grass, straw, bagasse, and other 
agricultural residues [Ali et al., 2001; Feng and Alén, 2001; Bhardwaj et al., 
2005; Khristova et al., 2006; Jiménez et al., 2009]. Pulps obtained from the soda-
AQ process have strength properties comparable to those of kraft pulps. 
However, soda-AQ pulps are more difficult to bleach and the process requires 
higher sodium hydroxide content for cooking, which therefore, increases the 
causticity in the recovery of the cooking chemical [Uprichard and Walker, 
1993; Bose et al., 2009]. 

3.3 Oxygen-alkali delignification 

Oxygen-alkali delignification is the process in which a substantial amount of 
residual lignin is removed from unbleached pulp prior to bleaching by the use 
of oxygen and alkali [Malinen, 1974; Salmela et al., 2008]. The process seems to 
be important in modern pulp technologies, mainly due to economic, energy, 
and environmental related benefits. The use of oxygen-alkali delignification 
before bleaching in the pulp industry can decrease the use of bleaching 
chemicals, such as chlorine, chlorine dioxide, and hypochlorite [Hsu and 
Hsieh, 1988]. About 5 kg of oxygen can substitute about 3 kg of chlorine 
dioxide; the use of oxygen in delignification will reduce the chemical cost by 
about one-eight than that of using chlorine dioxide [Sixta et al., 2006b]. On the 
other hand, decreasing the use of chlorine and chlorine dioxide can reduce the 
bleach plant effluent chemical oxygen demand (COD) by 50 % and biological 
oxygen demand (BOD) by 25-50 % [Hsu and Hsieh, 1988; McDonough, 1996]. 
Unlike the bleach effluent, the dissolved material present in oxygen-alkali 
delignification process is free from chloride ions and can be burned in a 
recovery furnace instead of being a pollutant [McDonough, 1996].  

However, the major drawback associated with oxygen-alkali 
delignification is that it is less selective than typical chlorine-compound-based 
bleaching. The delignification is limited to about 50 % of residual lignin 
removal, and beyond this it will result in excessive cellulose damage, leading 
to decrease in viscosity and loss of pulp strength [Sjöström, 1993; Sixta et al., 
2006b]. In addition to lignin, the spent liquor from oxygen-alkali 
delignification contains hydroxy carboxylic acids, formic and acetic acids, 
hemicellulose residues, methanol, and carbon dioxide [Salmela et al., 2008]. 
Oxygen-alkali delignification is carried out at an elevated temperature (90-
110 °C) for 30-60 minutes, in mainly medium consistency reactors [Hsu and 
Hsieh, 1988; McDonough, 1996; Sixta et al., 2006b]. Additional small amounts 
of magnesium carbonate can be used to improve the process selectivity. The 
oxygen-alkali delignification is practiced commercially using both single- and 
two-stage technologies [Yang et al., 2003]. Recent interest has been directed 
especially towards two-stage oxygen-alkali pulping systems in order to 
increase selectivity and treatment efficiency [Sixta et al., 2006b]. It should be 
noted that the oxygen-alkali pulping has also been studied as the main sulfur-
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free delignification method for chemical pulps [Kleppe et al., 1972; Samuelson 
and Sjöberg, 1972; Abrahamsson and Samuelson, 1973]. 
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4 POTENTIAL BY-PRODUCTS OF ALKALINE 
BLACK LIQUOR  

4.1 Lignin 

Lignin is the second most abundant biopolymer available on earth, next to 
cellulose and it is typically present in the cell walls of plants [Christopher, 
2012]. Lignin plays a significant role in giving mechanical strength to plants by 
chemically or physically linking with carbohydrates [Iiyama et al., 1994; 
Hendriks and Zeeman, 2009; Alén, 2011a]. In general, softwoods have lignin 
content of 25-35 % of their dry mass, whereas hardwoods have 20-25 % 
[Gellerstedt et al., 2012].  Lignin is an amorphous heteropolymer with complex 
chemical structure, consisting of phenylpropanoid monomers containing both 
aromatic and aliphatic parts. Three types of phenylpropanoid monomers 
(monolignols or lignin precursors in its biosynthesis) have been identified: p-
coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol. These monomers are 
polymerized by enzymatic dehydrogenation, leading to the formation of a 
lignin heteropolymer. The phenylpropane units are linked together by ether 
linkages (e.g., β-O-4 and α-O-4) and carbon-carbon bonds (e.g., β-5 and 5-5’). 
The ether type linkages are dominant, in which the β-O-4 linkage is found to 
be most prominent in the woods (Figure 1) [Sarkanen and Ludwig, 1971; 
Glasser and Sarkanen, 1989; Lisperguer et al., 2009; Alén, 2011a; Christopher, 
2012; Santos et al., 2013; Wen et al., 2013; Tolbert et al., 2014]. 

In alkali pulping, almost 90-95 % of the original lignin in the raw material 
fed to the process is degraded and solubilized in BL. The chemical 
composition of the dissolved lignin present in BL is complex, and it differs 
depending on the feedstock and pulping conditions.  

Successive cooking yields a heterogeneous lignin biopolymer covering a 
wide MM distribution range of compounds. As a result, the dissolved lignin 
fractions have relatively high degrees of polydispersity with the presence of 
LMM monomeric phenols as well as of HMM lignin fragments linked to 
carbohydrate residues [Brodin et al., 2009; Gellerstedt et al., 2012]. 
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FIGURE 1 Schematic structure of lignin, showing various linkages and lignin model 
compounds to model (A) phenol and methoxy functionality, (B) β-O-4 linkages, (C) 5-5’ 
linkages, (D) propyl side chain, and (E) benzylic groups [Dutta et al., 2014]. 

4.1.1 Reactions in alkaline pulping 

The chemical reactions occurring during kraft and soda cooking are 
complicated and not totally understood. The hydroxide and hydrosulfide 
anions are the main active chemical agents present in the kraft cooking liquor. 
In general, it is well known that the hydrogen sulfide ions play a significant 
role in delignification by reacting with lignin, whereas the reactions in 
carbohydrates are only affected by alkalinity [Sixta, 2006; Alén, 2011b]. 

 The main objective of pulping is the selective removal of lignin without 
extensive degradation of the carbohydrates. During this operation, the 
macromolecule structure of lignin is degraded and solubilized to a major 
extent (i.e., cleavage of the inter-lignin linkages and dissolution of the 
fragments in the pulping liquor) [Sixta, 2006; Alén, 2011b]. In conventional 
kraft pulping, the dissolution of lignin occurs in three distinct kinetic phases 
as follows: 1) initial or extraction phase, 2) bulk delignification phase, and 3) 
residual delignification stage. The selectivity of delignification is rather low in 
the initial phase, resulting in the removal of lignin up to 15-25 %, but the loss 
of hemicelluloses is high (up to 40 %) under these conditions. In the bulk 
delignification phase, delignification is accelerated as the cooking temperature 
increases, above 140 °C. The rate of delignification remains high during this 
phase until about 90 % of the initial lignin is dissolved. The rate of 
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delignification proceeds slowly, whereas the loss of carbohydrates is 
significantly increased in the final delignification phase (residual 
delignification) [Alén, 2011b]. 

The reactivity of different lignin fragments towards cooking chemicals 
and cooking conditions is greatly dependent on the chemical structure of these 
fractions. Besides, the essential aspect in the delignification is the different 
behavior and stability of the linkages between the phenylpropane units in 
lignin [Sixta, 2006; Alén, 2011b]. Depolymerization of lignin occurs usually 
due to the cleavage of the different ether linkages and demethylation. 

The principal types of linkages (50–70 %) present in both softwood and 
hardwood lignin are α- and β-aryl ether linkages (α-O-4 and β-O-4, 
respectively). These ether linkages in free phenolic structures are easily 
cleaved, and this increases the hydrophilicity of the lignin due to liberation of 
phenolic hydroxy groups. Thus, it enhances the dissolution of these 
depolymerized fragments into the cooking liquor as sodium phenolates 
[Sjöström, 1993]. Furthermore, some condensation reactions of lignin 
fragments are taking place [Alén, 2011b]. 

4.1.2 Recovery and utilization 

Currently, the predominant source of wood lignin is in BLs from kraft 
pulping. Approximately half of the total organics present in BLs is lignin, with 
the residual being various carbohydrate degradation products and extractives 
[Gellerstedt et al., 2012]. In general, separation of lignin from BL has been 
carried out by precipitation. This can be done by reducing the pH of BL from 
about 13 to less than 10 [Huang and Ramaswamy, 2013; Alén, 2015]. 
Precipitation is done by carbonation (passing CO2 under reduced pressure) or 
with possible addition of strong mineral acids [Merewether, 1962; Nikitin, 
1963; Basu, 1971; Alén, et al., 1979; 1985c; Kim et al., 1987; Uloth and Wearing, 
1989a; 1989b; Christopher, 2012]. This type of precipitation is most common 
and has a long history of application in various spent cooking liquors. 
Recently, the most effective industrial-scale process for a partial recovery of 
lignin by carbonation is known as the “LignoBoost process” [Wallmo, 2008; 
Tomani, 2010]. The new process enables the fast and effective recovery of high 
quality lignin from kraft BL [Bajpai, 2013; Alén, 2015]. Additionally, lignin 
particles can also be recovered by ultrafiltration, while the selection of 
membrane material needs to be considered to avoid problems with fouling 
and plugging [Alén, 2015]. 

Lignin is a renewable material and potential source for biorefineries. In 
principle, lignin can be treated under various conditions from thermochemical 
to chemical processes to obtain a wide range of products, such as solid and 
liquid fuels, carbon fiber, polymer modifiers, adhesives and resins, aromatic 
chemicals, and many other straightforward applications, for example, binders, 
emulsifiers, surface or dispersing agents, and sequestrants [Alén, 2015]. 
However, the most obvious use of the bulk production of the lignin is as a 
biofuel in the form of power, pellets, or mixed with other fuels. In such cases, 
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lignin can be used as fuel or syngas by gasification within the pulp mill or 
selling it to external customers interested in biofuel alternatives to fossil fuel 
[Olivares et al., 1988; Goldstein, 1981; Glasser and Sarkanen, 1989; Sarkar and 
Adhikari, 2000; Kadla et al., 2002; Sridhar et al., 2005; Brodin et al., 2009; 
Bajpai, 2013; Huang and Ramaswamy, 2013; Alén, 2015]. Moreover, it should 
be pointed out that kraft lignin contains some chemically bound sulfur; thus, 
the combustion plants need to be equipped with a flue gas treatment system 
for the sulfur emissions [Alén, 2015].    

4.2 Aliphatic carboxylic acids 

Besides lignin, large amounts of aliphatic carboxylic acids also exist in the 
alkaline BLs [Alén, 2011b; 2015]. These acids are present in the form of sodium 
carboxylates and generally formed as a result of degradation reactions of the 
carbohydrates (hemicelluloses and cellulose) [Sjöström, 1993; Alén, 2000a]. 
The acids in BL can be divided into volatile and non-volatile hydroxy 
carboxylic acids. Acetic and formic acid belongs to volatile acids, and non-
volatile acids comprise several hydroxy monocarboxylic and hydroxy 
dicarboxylic acids together with minor amounts of di- and tricarboxylic acids. 
The non-volatile hydroxy monocarboxylic acids can also be divided into LMM 
hydroxy acids with 2-4 carbon atoms (glycolic, lactic, and 2-hydroxybutanoic 
acids) and HMM hydroxy acids with 5 and 6 carbon atoms (3,4-dideoxy-
pentonic acid, 3-deoxy-pentonic acid, XISA and GISA). In general, almost 100 
hydroxy carboxylic acids have been identified from BLs [Niemelä, 1990; 
Niemelä and Alén, 1999; Alén, 2011b]. Of the numerous aliphatic carboxylic 
acids, the most dominant ones are formic acid, acetic acid, glycolic acid, lactic 
acid, 2-hydroxybutanoic acid, 3,4-dideoxy-pentonic acid, XISA, and GISA 
[Alén et al., 1985b; Alén, 2015]. 

4.2.1 Polysaccharide reactions in alkaline pulping 

In the conventional alkaline pulping process, the most important degradation 
reactions of feedstock polysaccharides (cellulose and hemicelluloses) are 
peeling and alkaline hydrolysis [Fengel and Wegener, 1989; Sjöström, 1993; 
Alén, 2000b]. The peeling reaction (primary peeling) of polysaccharides is a 
stepwise alkaline depolymerization of polymer beginning at the reducing end 
group (hemiacetal group) by eliminating monosaccharide units one by one 
with a simultaneous formation of various carboxylic acids (about 1.5 
equivalents of acids are formed from one monosaccharide unit). However, 
most carbohydrate loss occurs (i.e., the most effective formation of acids) 
during the heating up period up to about 170 °C in the conventional kraft 
pulping. The peeling reaction intensively occurs already at 100 °C. Due to the 
high crystalline nature and high degree of the polymerization, cellulose 
undergoes fewer losses than those of hemicelluloses. The peeling starts with 
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the isomerization of the reducing end group to a ketose intermediate in the 
polysaccharide chain followed by the β-alkoxy elimination reaction, leading to 
a soluble monosaccharide unit and a new reducing end group. Finally, the 
eliminated end group is tautomerized to a carbonyl compound (2,3-diulose 
structure) from which either α- and β-GISA (from cellulose and gluco-
mannans) [Alén and Sjöström, 1985; 1991] or XISA (from xylan) is formed via 
benzylic acid rearrangement (Figure 2). In addition, several other possible 
routes exist mainly resulting in the formation of 2-hydroxybutanoic acid (from 
xylan), 3,4-dideoxy-pentonic acid (from cellulose and glucomannans), lactic 
acid, and 3-deoxy-pentonic acid [Sjöström, 1993; Alén, 2011b]. 

A whole polysaccharide chain may be degraded by peeling reaction, 
until the dominant stopping reaction takes place, thus terminating the 
degradation. In cellulose, almost 50-65 glucose units are expected to be 
cleaved on an average before the competing stopping reaction occurs 
[Biermann, 1993; Alén, 2011b]. The stopping reaction is initiated by the β-
hydroxy elimination (i.e., cleavage of the hydroxy group from the 
monosaccharide end unit) from reducing end of the polysaccharide without 
proceeding isomerization. The resulting dicarbonyl intermediate (1,2-diulose 
structure) attached to the polysaccharide chain is converted to the meta-
saccharinic acid end unit through benzilic acid rearrangement. Other possible 
different end groups are also formed. Thus, the formation of the alkali-stable 
carboxylic acid group (present as carboxylate) in the end units of the 
polysaccharide chain prevents all peeling reactions based on the isomerization 
of the reducing end group [Sjöström, 1993; Alén, 2011b]. 
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FIGURE 2 Peeling and stopping reactions of polysaccharides [Sjöström, 1977]. R = 
polysaccharide chain and R’ = CH2OH (cellulose and glucomannans) or H (xylan). 
Cellulose and glucomannans (R’ = CH2OH): (1) 3-deoxy-hexonic acid end groups 
(metasaccharinic acid), (2) 2-C-methylglyceric acid end groups, (3) 3-deoxy-2-C-
hydroxymethylpentonic acid (glucoisosaccharinic acid), (4) 2-hydroxypropanoic acid 
(lactic acid), and (5) 3,4-dideoxy-pentonic acid (2,5-dihydroxypentanoic acid). Xylan (R’ = 
H): (3) refers to 3-deoxy-2-C-hydroxymethyltetronic acid (xyloisosaccharinic acid), (4) 2-
hydroxypropanoic acid (lactic acid), and (5) 2-hydroxybutanoic acid. 
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In addition to peeling reactions, alkaline hydrolysis at elevated 
temperatures (160-170 °C) becomes important; it is initiated by the random 
cleavage of the glycosidic bonds present in the polysaccharides, resulting in 
the formation of new reducing groups [Alén, 2000b; 2011a]. Therefore, the 
polysaccharide chain can be susceptible to further degradation reactions 
(secondary peeling) leading to the formation of carboxylic acids. 

4.2.2 Recovery and utilization 

Since large amounts of aliphatic carboxylic acids are formed annually in the 
pulping industry, at least a partial recovery of these acids from BL has been an 
interesting alternative instead of using them as a fuel [Alén and Sjöström, 
1985; Alén et al., 1986; 2011a]. The basic idea behind this approach is that these 
carboxylic acids have relatively low heating value in comparison to that of 
lignin, and their withdrawal from BL reduces its heat content less than 
expected [van Heiningen, 2006; Alén, 2011b]. 

Aliphatic carboxylic acids represent a potentially interesting group of 
compounds, since it can be used as single components, or as more or less 
purified mixtures in many applications. Of this group, formic, acetic, lactic, 
and glycolic acids are commercially important chemicals and are now being 
produced by alternative methods [Alén and Sjöström, 1980a; 1985; Alén, 
2000b; Datta and Henry, 2006; Viikari and Alén, 2011]. So far, the utilization of 
the uncommon hydroxy acids, such as 2-hydroxybutanoic acid, 3,4-dideoxy-
pentonic acid, XISA, and GISA has been studied only to some extent. Hydroxy 
acids can be converted into corresponding derivatives (Figure 3), such as 
polycarboxylic acids by oxidation, polyalcohol by reduction, production of 
emulsifying agents by esterification, or unsaturated reactive intermediate 
through dehydration (e.g., synthesis of acrylic-type resins made from hydroxy 
acid intermediate shown in Figure 4). These reaction products can be used as 
sequestering agents, tensides, and emulsifying agents, additives in plastics, 
surface treatment agents, and potential raw materials for the synthesis of 
chemicals [Sjöström, 1991; Alén, 2015]. 

The recovery of aliphatic acids presents several separation problems and 
has, so far, only been carried out on a laboratory scale [Alén and Sjöström, 
1980b; Alén, 2011b]. The main obstacle is the lack of simple methods for 
separation of carboxylic acids from lignin and other components, along with 
the recovery of inorganic cooking chemicals. To overcome the separation 
problem, process streams containing less lignin than is present in BL has been 
recommended for use; for example, withdrawal of the pulping liquor from the 
digester at the early stages of the cook because the most extensive degradation 
of carbohydrates takes place during the heating-up period [Alén, et al., 1986]. 
In addition, the alternative approach is the pretreatment of the wood chips 
with NaOH alone prior to delignification [Alén et al., 1984b]. However, only a 
minor portion of aliphatic acids can be utilized as their sodium salts. 
Consequently, the aliphatic acids are liberated from sodium by acidification 
with carbon dioxide or by strong mineral acid (H2SO4) and simultaneous 
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precipitation of the lignin. After recovery of volatile acids by evaporation, a 
crude fraction composed mainly of free hydroxy carboxylic acids is obtained 
[Alén and Sjöström, 1980b; Alén et al., 1986; Alén, 2011b]. On the other hand, 
the purification of hydroxy carboxylic acids is rather problematic [Sixta and 
Schild, 2009], and yet to be solved satisfactorily [Alén, 2000b]. The recovery 
and utilization of hydroxy acids from BL can be accomplished, only if feasible 
methods of separation exist and the products can be marketed [Sjöström, 1991; 
Alén, 2015].  
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4.3 Extractives 

The crude sulfate turpentine (volatile fraction) and the crude tall oil soap 
(CTOS) (non-volatile fraction) are the other two main by-products of softwood 
kraft pulping [Back and Allen, 2000]. The turpentine is distilled and collected 
from the digester relief after it condenses during the kraft pulping process 
[Alén, 2011b]. TOS is composed of sodium salts of resin acids and FAs, 
together with some non-saponfiable substances. The amount of these by-
products varies significantly depending on the wood raw material used for 
pulping, the method and time of sorting wood logs and chips and finally, the 
growth conditions of the trees [Alén, 2015]. 

4.3.1 Behavior of extractives during pulping 

The volatile turpentine components are chemically stable during kraft pulping 
whereas, the FA esters of the native wood are hydrolyzed completely. During 
pulping under alkaline conditions, the unsaturated FAs and resin acids are 
partly isomerized [Alén, 2011b]. Several new FA and resin components are 
formed via isomerization. For example, the dienoic and trienoic acids are 
isomerized to acids with conjugated double bonds having a cis-trans 
configuration. These products are mainly formed from linolenic and pinolenic 
acids [Holmbom and Ekman, 1978]. Similarly, resin acids also undergo double 
bond isomerization. The most common resin acid, levopimaric acid, is 
partially isomerized to abietic acid and other common resin acids are basically 
stable during kraft pulping [Holmbom and Ekman, 1978; Alén, 2011b]. In 
general, extractives are mostly removed during very early stage of the pulping 
[Alén, 2011b]. 

4.3.2 Recovery and utilization 

The crude turpentine is purified by distillation process to remove impurities, 
such as methyl mercarptan, dimethyl sulfide, and other higher compounds. 
The average yield of crude turpentine is ranging from 5-10 kg/ton of pulp 
(pine species) [Alén, 2011b]. The major fractions are a monoterpene fraction, 
consisting mainly of α-pinene (50-80 % of all compounds), β-pinene, and Δ3-
carene and pine oil fraction, consisting mainly of hydroxylated monoterpenes. 
Traditionally, turpentine (monoterpene) is used in manufacturing paint 
thinner, varnishes, and lacquers, or as rubber solvents and reclaiming agent 
[Alén, 2011b]. Today, it is widely used for manufacturing aroma chemicals, 
which can be used as flavoring agents in food and as fragrance chemicals in 
perfumes and cosmetics [Holmbom, 2011]. Pine oil is used when solvents with 
good emulsifying and dispersing properties and the flotation of minerals are 
needed [Alén, 2011b; 2015]. 

TOS is recovered during BL evaporation process as skimming, and the 
organic fractions (fatty and resin acids) are liberated by adding sulfuric acid to 
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yield CTO (the average yield is in the range of 30-50 kg/ton of pulp) [Lappi 
and Alén, 2012; Alén, 2015]. In this study, the CTO is then purified and 
fractionated by vacuum distillation to obtain various fractions, the main 
fractions, together with their mass proportions and main application are as 
follows: light oil (10-15 %; industrial oils, combustion and rust protection), FAs 
(20-40 %; surfactants, soaps, foam inhibition, printing inks, lubricants and 
greases, industrial oils, and flotation agents), resin acids (rosin, 25-35 %; 
printing inks, emulsifiers, soaps, alkyd resins, adhesives, coatings, paint and 
lacquer vehicles, and soaps), and pitch residue (20-30 %; combustion, rust 
protection, printing ink pitch, asphalt additive, and oil-well drilling muds) 
[Alén, 2011b; Holmbom, 2011]. Globally, 1.6 million metric tons of CTO are 
produced annually, and about two thirds of the FA supply to the chemical 
industry is derived from CTO. In recent years, there has been an increasing 
interest in using CTO for petrochemical applications, especially in Northern 
European countries, like in Finland, where CTO production reaches 100 000 
metric tons annually. The companies in Finland, such as UPM (UPM 
BioVerno®) and Neste Oil (NExBTL®), have started producing biofuels 
(renewable diesel) from CTO by hydrogenation [Anthonykutty et al., 2015]. 
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5 SEPARATION TECHNOLOGIES OF ORGANICS 
IN BLACK LIQUOR 

5.1 General aspects 

In general, BL is the most significant by-product of chemical pulping [Cardoso 
et al., 2009].  After recovery of the extractives-based compounds, the residual 
BL primarily contains organic material mainly composed of degraded 
products of lignin, carbohydrates, and minor fraction of extractives along with 
inorganic substances that are burned in the recovery furnace to recover energy 
and cooking chemicals [Adams, 1997; Louhelainen and Alén, 2009; Alén, 
2015]. Currently, there is no feasible process available to recover and employ 
organic solids in BL for non-fuel applications. However, the major obstacle in 
the recovery of organic material from BL depends on numerous factors, such 
as the lack of a techno-economic separation process, potential industrial 
applications, and market [Alén et al., 1986; Chambost et al., 2009].  

At present, turpentine and tall oil are the most significant commercial by 
products obtained from BL [Alén and Sjöström, 1980b]. On the other hand, the 
partial recovery of lignin and aliphatic carboxylic acids appears to be 
attractive in the future [Alén, 2015]. Modern kraft mills have surplus energy 
generated from burning BL [Wallberg et al., 2003; Wallberg and Jönsson, 
2006]. In practice, if about 15 % of the dissolved organic material is withdrawn 
from kraft mills producing 500 000 tons of unbleached pulp annually, the 
amount of lignin, aliphatic carboxylic acids, and extractives would be about 
25 000-34 000, 30 000-40 000, and 12 000 tons, respectively. Consequently, 20-
27 % of the heating content may decrease in BL due this partial recovery of 
organics [Alén, 2011b]. Several commercial techniques are available for the 
recovery and the purification of the lignin from kraft BL [Lin, 1992; Hellstén et 
al., 2013b]. However, separation and purification of hydroxy acids from lignin 
and other impurities of kraft BL is challenging [Alén and Sjöström, 1980b; 
Hellstén et al., 2013a]. Various techniques have been suggested concerning the 
separation of hydroxy acids after the removal of lignin and inorganics from BL 
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[Alén and Sjöström, 1980c; Niemi et al., 2011; Hellstén et al., 2013a]. On the 
other hand, apart from a mill-scale process developed for recovery of volatile 
acids [Biggs et al., 1961; Weaver and Biggs, 1961], no industrial process exists 
for the separation of other hydroxy acids from BL [Alén and Sjöström, 1980b].  

5.2 Membrane technologies 

Membrane filtration technology is one of the most significant industrial 
processes in the pulp and paper industry [Olsen, 1980]. In recent years, there 
has been an increasing interest in membrane applications in industries due to 
its advantages, such as low energy and chemical requirements. Separation is 
simply controlled by membrane pore size, process streams, and operating 
parameters, and process streams can be treated directly without any further 
pretreatments [Jönsson and Wimmerstedt, 1985; Jönsson and Wallberg, 2009; 
Jönsson, 2013]. Typically, microfiltration (MF) (0.1-10 µm), ultrafiltration (UF) 
(1-20 nm), and nanofiltration (NF) (<2 nm) are three membrane filtration 
techniques widely implemented in the industry to separate molecules with 
different MMs. However, UF and NF are most commonly used in pulp 
industries [Huang and Ramaswamy, 2013; Jönsson, 2013]. Moreover, given the 
growing demand to protect and improve the environment, the exploitation 
level of the process of recovery and purification of valuable products are the 
two main reasons for the application of membrane processes in pulp 
industries [Kallioinen et al., 2013]. In the kraft pulp industry, the membrane 
processes are mainly applied to fractionation and purification of lignin from 
BL and purification of bleach effluent [Olsen, 1980; Al Manasrah et al., 2012]. 
Membrane technology allows the separation of specific MM lignin from BL for 
the synthesis of several high-value-added products [Toledano et al., 2010].  

5.2.1 Ultrafiltration 

UF is a pressure driven membrane process used to retain the macromolecules 
in the range of 1-20 nm [Cheryan, 1998; Bhattacharya and Misra, 2004]. A UF 
membrane is asymmetrically microporous and is usually made up of ceramics, 
polysulfone, polypropylene, nylon, polytetrafluoroethylene (PTFE), and poly-
vinyl chloride (PVC) or acrylic copolymer material [Toledano et al., 2010]. UF 
is used to obtain specific molecules with different MM cut-offs in the range of 
1-1000 kDa, with a driving force ranging from 1-10 bar [Jönsson, 2013]. In pulp 
industries, UF has so far been employed mainly for the separation of lignin 
from LMM compounds and fractionation of HMM lignin [Hill and Fricke, 
1984; Wallberg et al., 2003; 2005; Bhattacharjee and Bhattacharya, 2006; 
Wallberg and Jönsson, 2006]. Most full-scale UF processes are used for the 
isolation of lignosulfonates from spent sulfite liquor [Jönsson, 2013]. In recent 
decades, interest has been shifted towards UF of kraft BL [Wallberg et al., 
2003]. UF has been widely studied to concentrate kraft BL [Holmqvist et al., 
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2005; Bhattacharjee and Bhattacharya, 1992; 2006]. In general, lignin obtained 
from the UF of kraft BL has been utilized as external biofuel. However, an 
advanced method based on the UF of kraft BL was developed to produce 
HMM lignin for manufacturing plywoods. More recently, UF has been further 
developed to yield high quality lignin, free from inorganic impurities and 
carbohydrates to make vanillin, carbon fibers, adhesives, and phenol-based 
polymers [Žabková et al., 2007; Brodin et al., 2009; Silva et al., 2009; Jönsson, 
2013]. In addition, several studies on UF have been conducted to recover 
lignin from kraft BL [Kirkman et al., 1986; Rojas et al., 2006; Arkell et al., 2014]. 
However, data on the separation of hydroxy acids from BL are still very 
limited [Mänttäri et al., 2015]. 

5.2.2 Nanofiltration 

NF is a comparatively new, pressure-driven membrane process to separate 
molecules from liquids [Cheryan, 1998; Mänttäri et al., 2013]. An NF 
membrane is thin, charged film with a pore size less than 2 nm, usually made 
up of cellulosic acetate and aromatic polyamide [Toledano et al., 2010]. NF is 
used to separate the molecules with different MM cut-offs in the range of 0.2-1 
kDa, with a driving force ranging from 10-30 bar. Essentially, NF can be 
utilized to separate small organic molecules from water into retentate or from 
bigger organic solutes into permeate [Mänttäri et al., 2013]. NF can also be 
utilized to separate dissociated forms of a compound from the undissociated 
form [Cheryan, 1998]. In principle, NF is sufficient on its own for the recovery 
of lignin from kraft BL, but normally UF is used as pretreatment before NF 
[De and Bhattacharya, 1996; Dafinov et al., 2005; Jönsson et al., 2008; Arkell et 
al., 2014]. Hybrid UF/NF of BL is a suitable method to get pure lignin free 
from hemicelluloses and provides higher flux during NF [Jönsson et al., 2008]. 
However, NF of BL without pretreatment by UF seems to be a cost-efficient 
alternative to recover lignin compared to that of hybrid UF/NF [Arkell et al., 
2014]. Currently, there has been an increasing interest in the recovery of 
hydroxy acids from BL. NF has been studied to purify the BL from lignin, 
followed by acidification and crystallization to recover the hydroxy acids 
[Niemi et al., 2011]. More recently, NF has been employed to purify residual 
liquor after lignin precipitation and cooling crystallization.  The NF permeate 
solution achieved 80 % organic acid purity of the total dissolved solids 
[Mänttäri et al., 2015]. 

5.3 Acidification methods  

During alkaline pulping, lignin is partly dissolved in the alkaline solution. The 
dissolved lignin usually interacts with sodium ions in the liquor and 
consequently behaves as a polyelectrolyte [Helander et al., 2013]. Precipitation 
by acidification using carbon dioxide or mineral acid can be applied to extract 
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lignin from alkali BL [Alén et al., 1979; Uloth and Wearing, 1989a; 1989b]. By 
lowering the pH of the BL, lignin is precipitated due to protonation of its 
ionized phenolic hydroxy groups. The protonation mainly depends on the 
pKa value of the lignin molecules and precipitates according to those 
conditions [Zhu and Theliander, 2015]. Kraft lignin is a complex molecule 
consisting of many functional structures with different pKa values. For 
example, the phenolic hydroxy groups and carboxylic groups present in 
softwood kraft lignin have a pKa value of around 10 and 4.4, respectively 
[Helander et al., 2013]. On the other hand, the pKa value of lignin can also be 
influenced by temperature, ionic strength, and type of solvent [Norgren and 
Lindström, 2000; Ragnar et al., 2000]. In general, the rate of lignin precipitation 
mainly depends on the concentration and pH of the BL [Lin, 1992]. 

5.3.1 Carbonation 

Precipitation of lignin from BL by carbonation has been studied for a long time 
[Alén et al., 1979; 1985c] and recently various industrial processes has been 
developed [Tomani, 2010; Kouisni et al., 2012; Stoklosa et al., 2013; Velez and 
Thies, 2013]. In carbonation, BL with a solids content of 25-50 % is acidified to 
a pH of about 8.5 with carbon dioxide under reduced pressure [Sjöström, 1993; 
Alén, 2011b; Gellerstedt et al., 2012].  The process conditions are varied for 
different wood species. Basically, almost 75-80 % of the lignin can be 
precipitated from BL by a suitable carbonation process. The liquor is usually 
heated (60-80 °C) to improve the filterability of the gelatinous lignin 
precipitate. The carbonation of BL prior to acid acidification seems to be 
economically attractive. As carbonation, can be efficiently carried out as a two-
stage process in which flue (stack) gas can be partly used in the first stage, 
followed by the use of pure carbon dioxide, whereas the precipitation yield is 
increased significantly in the presence of pure carbon dioxide [Alén, et al., 
1979; Sjöström, 1993; Alén, 2011b]. On the other, hand carbonation cannot be 
used to liberate the carboxylic acid groups of lignin, as it is not possible to 
reach pH below 8.5 [Sjöström, 1993; Gilarranz et al., 1998; Alén, 2011b]. 

5.3.2 Use of mineral acids 

Acidification with mineral acids, such as sulfuric acid, can be applied directly 
[Sun and Tomkinson, 2001; Ibrahim et al., 2004; García et al., 2009] or in 
combination with carbonation to precipitate lignin from BL [Gilarranz et al., 
1998; Kouisni et al., 2012]. The lignin fraction can be precipitated more or less 
completely by acidification of BL (pH to about 2). In general, acidification of 
BL to a pH of about 2 liberates carboxylic groups in addition to phenolic 
hydroxy groups, in kraft lignin, resulting in precipitation of more lignin. 
Almost 90 % of the initial lignin can be precipitated at pH 2, simultaneously 
liberating aliphatic carboxylic acids completely [Alén et al., 1984b; Alén, 
2011b]. In contrast, the highly water soluble lignin monomers (about 10 % of 
the total kraft lignin) cannot be precipitated, and there is also the difficulty of 
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finding a suitable way of handling a huge amount of sodium sulfate formed as 
a by-product from the acidification of BL at low pH [Sjöström, 1993; Alén, 
2011b].  

5.3.3 Electrodialysis 

ED is a unit operation where ions are transported through an ion-selective 
membrane with an electrical driving force [Yang and Lu, 2013]. The cation 
selective membrane (CSM), anion selective membrane (ASM), and bipolar 
membrane (BPM) are the three types of membranes that can be applied in ED 
separately or in combination.  Both CSM and ASM hinder the passage of co-
ions (anion and cation, respectively), and the special BPM is the combination 
of both the CSM and ASM. This membrane has a distinct function compared 
to those of mono-polar membranes, where they can dissociate solvents; for 
example, water (H2O) is split into H+ and HO- [Huang et al., 2007].              

At first, ED was applied to remove ions in the desalination process of sea-
water and brackish water [Boniardi et al., 1997; Tado et al., 2016]. The last two 
decades have seen a growing trend towards the application of ED in the 
separation and purification of organic acids from their fermentation broths 
[Huang and Ramaswamy, 2013]. ED is most commonly used to separate 
organic acids, such as acetic [Jones et al., 2015]; butyric [Lopez and Hestekin, 
2013]; citric [Novalic et al., 1996; Pinacci and Radaelli, 2002; Tongwen and 
Weihua, 2002]; formic [Luo et al., 2002]; gluconic, itaconic, and lactic [Boyaval 
et al., 1987; Kim and Moon, 2001]; malic [Sridhar, 1988]; propionic [Boyaval et 
al., 1993]; and tartaric acids [Andres et al., 1997].  

In the pulp industry, ED has been identified as potentially being able to 
recover pulping chemicals from acid sulfite and alkaline BL [Radhamonan and 
Basu, 1980; Mishra and Bhattacharya, 1984; 1987; Arulanantham and 
Shanthini, 1997; Patil et al., 2016; Haddad et al., 2016]. The past fifty years have 
seen an increasing number of studies regarding the removal of organic 
material from BL by ED. In addition to liberation of carboxylic acids from 
sodium, importance has also been given towards the removal of lignin, which 
precipitates due to a decline in the pH of the liquor [Prabhu and Basu, 1980]. 
However, despite its potential applications, ED poses some major drawbacks, 
including low current efficiency as well as fouling of membranes [Mishra and 
Bhattacharya, 1987; Yang and Lu, 2013; Xie et al., 2016].  

5.4 Purification methods of crude fractions 

Lignin usually needs to be purified before application. The purification 
technique may be based on the contamination of lignin and its application. In 
general, acidified lignin from kraft BL retains a substantial amount of mother 
liquor impurities, such as degraded carbohydrates and inorganic salts [Lin, 
1992; Gilarranz et al., 1998]. There are several industrial processes to purify 
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lignin. The purification of lignin can be carried out by repeated washing with 
water or an acidic aqueous solution (pH 2) until the ash content of the lignin is 
reduced (<2 %) [Silva et al., 2009; Zhu and Theliander, 2015]. On the other 
hand, dialysis, UF or ion exchange techniques are carried out for small-scale 
process of lignin purification [Gilarranz et al., 1998]. The hydroxy acids 
obtained from kraft BL seem to have potential applications, such as 
production of biodegradable films and plastics, tissue engineering, and 
cosmetics. However, high purity of hydroxy acids is required for such 
application, since impurities may cause some serious adverse effects in the 
synthesis of valuable products from these acids. The purification of the 
hydroxy acids obtained from BL is very challenging, especially in the 
purification of acids from inorganic salts and LMM lignin [Hellstén et al., 
2013b]. 

5.4.1 Ion-exclusion chromatography 

Ion-exclusion chromatography is a technique widely used for separating 
relatively small organic and inorganic acids especially those of a hydrophilic 
nature [Tanaka and Fritz, 1986; Glód, 1997; Weiss, 2004]. The technique 
basically involves the use of strong cation or anion exchange resins for the 
separation of ionic solutes from weakly ionized or neutral solutes. In general, 
aliphatic carboxylic acids are usually separated on a column filled with 
strongly acidic sulfonated polystyrene cation exchange resins (normally used 
in H+ form) cross linked with divinylbenzene [Alén et al., 1990; Fritz, 1991; 
Tanaka et al., 2002; Haddad and Jackson, 2003; Helaleh et al., 2003]. Since, due 
to the Donnan effect, the ionic material is rejected by resin and passes through 
quickly, but the neutral substances are impeded and pass through more 
slowly [Alén et al., 1990; Fritz and Gjerde, 2009]. Recently, there has been 
renewed interest in the separation of aliphatic carboxylic acids using ion-
exclusion chromatography [Tanaka and Fritz, 1986; Ohta et al., 1996; Tanaka et 
al., 2002; Helaleh et al., 2003]. Industrial ion-exclusion chromatography 
processes have been extensively employed in sugar industries [Springfield 
and Hester, 1999] and small-scale pilot-plant experiments in the separation of 
sulfite spent liquors from pulp industries [Alén, 2015]. The ion-exclusion chro-
matography has also been applied in the purification of aliphatic carboxylic 
acids from other constituents in the alkaline pulping liquors [Alén et al., 1990; 
Alén, 2015]. Consequently, to apply ion-exclusion chromatography, the 
hydroxy acids present in the BL must be liberated by using strong mineral 
acids [Alén et al., 1990; Stoklosa and Hodge, 2014]. On the other hand, ion-
exclusion chromatography seems to be promising, as both volatile and 
hydroxy acids have been almost completely purified from the inorganic 
fraction, although further studies are required to develop the process [Alén et 
al., 1990]. 
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5.4.2 Vacuum distillation  

Vacuum distillation or distillation at reduced pressure is a technique 
extensively used for compounds that have high boiling points (>200 °C). 
Typically, vacuum distillation utilizes reduced pressure to distill a high 
boiling point liquid at low temperatures. Vacuum distillation is employed for 
heat sensitive liquids or compounds that degrade at their boiling point [Pavia 
et al., 2005; Ledgard, 2006]. The vacuum distillation has been most widely 
used in petroleum refineries [Favennec and Baker, 2001; Speight, 2010], 
cosmetics [Jouhar and Poucher, 2012], and food industries [Pennarun et al., 
2001]. Vacuum distillation is most commonly used to distill volatile carboxylic 
acids [Pigman, 1957]. The carboxylic acids present in BL after their liberation 
from sodium salts can be purified completely by vacuum distillation [Alén, 
2015]. 

Full-scale purification of hydroxy carboxylic acids along with their 
individual fractionation could be accomplished by vacuum distillation under 
reduced pressure (0.067-0.173 kPa) [Alén and Sjöström, 1981]. The initial 
fraction obtained at 0.053 kPa (<110 °C) consists of glycolic, lactic, and 2-
hydroxybutanoic acids. In another main fraction (110-175 °C, 0.040 kPa), the 
distillate consists mainly of XISA, about 73 %, and small amounts of other 
acids. Following the increase in temperature to 210 °C, distillate consists of 
approximately 50 % GISA and residual comprising mainly XISA and 3-deoxy-
pentonic acids. However, the individual separation of the LMM acids with 
close boiling points can be separated with an effective fractionating technique 
[Alén and Sjöström, 1981]. On the other hand, far too little attention has been 
paid to the recovery of carboxylic acids by distillation, and further studies are 
required to optimize the process [Alén and Sjöström, 1980b; 1980c; 1981]. 

5.4.3 Esterification and distillation 

The Fischer esterification process can be best described as the reaction of 
carboxylic acid with alcohol in the presence of an acid catalyst to obtain their 
corresponding carboxylic esters with simultaneous removal of water [Dewan 
and Singh, 2003; Houston et al., 2004].  The esters of carboxylic acids have high 
boiling points, but lower than their corresponding acids, and they can be 
easily distilled without any decomposition [Emanuel, 1965]. Currently, the 
esterification reaction has been well established because of its extensive 
applications in the chemical and pharmaceutical industries [Yang et al., 2008]. 
The esterification technique is the most effective purification technique in the 
recovery of lactic acid from fermentation broth [Sun et al., 2006; Kumar and 
Mahajani, 2007; Zhao et al., 2009]. Esterification can also be the simplest route 
to recover selected carboxylic acids from BL. In this case, the acidified and 
concentrated BL can be simply esterified with alcohol in the presence of a 
catalyst to the corresponding esters [Weaver and Biggs, 1961; Alén, 2015], 
which can be further distilled to obtain individual fractions of carboxylic acids 
based on their relative volatilities [Alén, 1981]. However, the direct 
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esterification of carboxylic acids is limited to LMM acids, since the HMM acids 
exist in the form of their lactones. On the other hand, the HMM carboxylic 
acids, especially GISA, can be esterified with long chain FAs present in CTO to 
obtain surfactants [Sjöström, 1991]. Up to now, very little attention has been 
paid towards the esterification of carboxylic acids present in BL [Alén, 2015]. 
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6 EXPERIMENTAL 

6.1 Black liquor samples 

Conventional laboratory scale soda-AQ cooking was conducted in an 18-L 
rotating stainless steel cooking digester. The birch (Betula pendula) chips used 
for pulping were laboratory-screened according to standard SCAN-CM 40:1 
[2001], and those with a thickness of over 7 mm and below 13 mm were 
accepted. Irregular sized chips, shives, knots, and bark were eliminated. Data 
on cooking condition are presented in Table 1. BL was then separated from the 
pulp/liquor mixture by pressing it into a nylon-woven fabric bag and was 
stored at -18 °C prior to further analyses and experiments [I-V]. 

TABLE 1 Soda-AQ cooking data  

Parameter Birch 
Alkali [% on o.d. feedstock] 20 
AQ [% on o.d. feedstock] 0.1 
Liquor-to-wood ratio [L/kg] 4.5 
Maximum cooking temperature [°C] 162 
Heating-up ratio [°C/min]* 2.4 
H-factor total 650 

               * From room temperature to the maximum cooking temperature. 
 
CBL was prepared by treating the initial BL with carbon dioxide (pH to 

about 8.5) in a 0.8 L pressurized stainless steel reactor at 80 °C (pressure about 
1.5 bar) for 40 min (Figure 5). The precipitates were separated from the liquid 
phase by centrifugation at 3000 rpm for 30 min. At this point, the supernatant 
(CBL) was carefully decanted, pipetted out, and stored at -18 °C prior to 
further analysis and experiments. 
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FIGURE 5 Schematic representation of recovering NaOH and sodium-free aliphatic 
carboxylic acids from CBL when carboxylic acids are first liberated by H2SO4 and the 
Na2SO4 formed is then separated by precipitation and electrodialyzed [I]. 

6.2 Recovery of aliphatic carboxylic acids and sodium 

6.2.1 Acidification with mineral acids 

In order to liberate aliphatic carboxylic acids from sodium and to precipitate 
more lignin, the CBL was acidified with 2 M H2SO4 to a pH of about 2. After 
acidification, the free volatile acids were evaporated followed by precipitation 
of Na2SO4 with methanol (1:1 v/v). Further, precipitated Na2SO4 was treated 
by ED to recover NaOH and H2SO4 (Figure 5). 

6.2.2 Electrodialysis 

Four different ED experiments were carried out by the ED equipment shown 
in Figure 6. In the first and second set of experiments, CBL (1:5 diluted with 
water) was directly ED to recover NaOH and free hydroxy acids with a total 
volume of 1 L and 5 L, respectively. In the third and fourth set of experiments, 
the precipitated Na2SO4 from CBL and commercial model compound (MC) 
Na2SO4 (reference material) were ED separately to recover NaOH and H2SO4. 
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All the experiments were carried out for 5 h, at a constant rate of 20 V and a 
constant flow rate of 10 L/h [I]. The membrane configuration used for the 
treatment of CBL is given in Figure 7. 
 

 

FIGURE 6 Electrodialysis equipment with membrane stack. 

 

 

FIGURE 7 Schematic representation of the ED system used for the treatment of CBL (1:5) 
[I]. 
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6.3 Conversion of valuable products from black liquor 

6.3.1 Low-molar-mass carboxylic acid esters 

After precipitation of the sodium sulfate, the liquid phase consisting of crude 
hydroxy acids was esterified directly in a 1 L round bottom flask fitted with a 
dean stark condenser. The reaction was carried out at 70 °C in the presence of 
an acid catalyst Amberlyst 15 (0.2 wt %), and the content was refluxed for 4 h, 
8 h, 12 h, and 16 h (Figure 8). In each case, the crude reaction product was 
collected for further analyses [II]. Then, the LMM esters were recovered by 
dissolution of the reaction mixture into toluene (unreacted residual phase 
mostly consisting of HMM acids were separated by decanting). 
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FIGURE 8 Esterification of low-molar-mass hydroxy acids with methanol. Acids: glycolic 
(R = H), lactic (R = CH3), and 2-hydroxybutanoic (R = CH2CH3). 

6.3.2 High-molar-mass carboxylic acids 

α-Glucoisosaccharinic acid lactone (3-deoxy-2-C-hydroxymethyl-D-erythro-
pentono-1,4-lactone, α-GISAL) was prepared from lactose [Whistler and 
BeMiller, 1963]. FA esters of α-GISAL were directly prepared using a 
microwave-assisted batch reactor (10 mL) in the presence of p-toluenesulfonic 
acid (pTSA) catalyst (Figure 9). Almost 1:3 moles of lauric acid with α-GISAL 
(added in four portions at an interval of 20 min) were esterified with a pTSA 
catalyst (0.03 mmol) at 100 °C under magnetic stirring for 6 h. Similarly, oleic 
acid and TOFAs were separately esterified at 70 °C for 24 h. In each case, the 
crude reaction product was collected for further analyses. 
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FIGURE 9 Principal products of the catalytical esterification of α-GISAL with a fatty acid. 
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Similarly, the residual phase after separating the LMM esters, mostly 
consisting of HMM acids, was directly esterified with TOFAs (molar ratio 1:2) 
in the presence of pTSA catalyst (0.03 mmol) at 100 °C in an oil bath under 
magnetic stirring for 4 hours (inert condition). The unreacted carboxylic acids 
were analyzed from the reaction mixture for calculating the overall conversion 
yield. 

6.3.3 Esterification of tall oil fatty acids — Lignin-based catalyst 

The freeze dried acidified lignin was dissolved in distilled water. The phenol 
formaldehyde condensation reaction was carried out by adding formaldehyde 
and hydrochloric acid and stirring the chemicals for 5 h at 90 °C. The reaction 
mixture was filtered out and dried at 105 °C for 4 h. The final sulfonation 
reaction was carried out by adding 10 mL of concentrated H2SO4 to the dried 
reaction mixture, and the suspension was stirred at 150 °C for 2 h. The final 
product (lignin catalyst) was completely washed and dried. 

The activity of lignin-based acid catalyst was tested by simple microwave 
esterification of TOFAs with methanol. About 1 mole of TOFA with 3 moles of 
methanol was esterified with 5 wt% of lignin catalyst at 100 °C for 10 min to 60 
min in a microwave reactor. Similarly, the esterification reaction was carried 
out using an Amberlyst 15 acid catalyst for comparison. The final FAME 
product was washed and collected for further analysis.  

6.4 Chemical analysis  

6.4.1 Carboxylic acids 

Volatile acids were determined as their benzyl esters by gas chro-
matography/flame ionization detection (GC/FID) [Alén et al., 1985a]. Before 
GC, acids were liberated from their sodium salts with a strongly acidic cation 
exchange resin, and crotonic acid was used as an internal standard (IS).  

Hydroxy mono- and polycarboxylic acids were determined as their 
per(trimethylsilyl)ated (TMS) derivatives by GC/FID [Alén et al., 1984a] and 
they were identified by using GC/MSD (mass selective detection). An 
aqueous solution of xylitol was used as an IS.  For the quantitative 
calculations, the mass-based response factors between xylitol and the peaks 
derived from the acids studied were based on the data given in the literature 
[Alén et al., 1984a].  

6.4.2 Sodium 

The concentration of sodium was determined with an inductively coupled 
plasma optical emission spectrometer (ICP/OES), PerkinElmer Optima 4300 
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DV. The results were studied with WinLab32 (version 3.4.0.9253, PerkinElmer) 
software. 

6.4.3 Lignin  

The amount of dissolved lignin in various liquors was determined by a 
UV/Vis (ultraviolet/visible) spectrophotometer (280 nm in 0.1 M NaOH) 
using an absorptivity value of 20.9 L/(gcm) according to [Alén and Hartus, 
1988]. Similarly, a comparative study of lignin dissolved in various liquors 
was measured in the absorbance range of 205 nm to 300 nm. 

The lignin obtained from acidification of BL with carbon dioxide, and 
acidification of the CBL with H2SO4 or direct acidification of BL with H2SO4, 
was analyzed using Fourier transform infrared (FTIR) spectrometry. The 
spectra were taken as an average of 32 scans in the wavenumber between 400 
cm-1 and 4,000 cm-1 and with a resolution of 4 cm-1. 

The molar weight distribution (MWD) of the lignins was determined by 
gel permeation chromatography (GPC) using a high performance liquid 
chromatography (HPLC) system equipped with a column (460 mm × 10 mm 
I.D.) filled with Superdex 75 gel (Pharmacia) [Pakkanen and Alén, 2012]. The 
flow-rate of the eluent was 0.3 mL/min at room temperature. Detection was 
conducted by a Waters 996 photodiode array detector (PDA) within a 
wavelength range of 240–400 nm, and 280 nm was used for the determination 
of MMs. Calibration of the GPC system was accomplished with a commercial 
set of protein standards and several lignin-like monomer/oligomer model 
substances. 

Qualitative 13C nuclear magnetic resonance (NMR) spectroscopy was 
carried out in deuterated dimethyl sulfoxide (DMSO-d6) at a sample 
concentration of 100 mg/0.6 mL using a 30° pulse angle with a recycle delay 
time of 2 s. The acquisition time of 1.82 s and an observed pulse of 6.5 μs were 
used for 75 MHz spectrometer (acidified lignins), and for 101 MHz 
spectrometer (carbonated lignin) they were 1.48 s and 6.0 μs, respectively. The 
spectra were analyzed with Topspin and the peaks were assigned the chemical 
shift w. r. to 39.51 (for (CD3)2SO) [Gottlieb et al., 1997] and all the analyses 
includes a decoupling mode to reduce the Nuclear Overhauser Enhancement 
(NOE). 

The molar amount of -SO3H per gram of lignin-based catalyst (indicated 
as M-SO3H) was determined by acid-based titration that was modified from 
the literature [Zhang et al., 2013]. In this determination, the aqueous 2 M 
sodium chloride solution (20 mL) and the lignin catalyst (0.1 g) were mixed in 
an Erlenmeyer flask, and the mixture was sonicated for 1 h and filtered. The 
solution was then titrated with the standardized 0.1 M sodium hydroxide 
solution using phenolphthalein as an indicator. The total molar amount of acid 
groups -SO3H, -CO2H, and -OH (i.e., the sum of M-SO3H, M-CO2H, and M-
OH) was determined by acid-based titration described in the literature [Lee, 
2013]. In this determination, about 0.1 g of lignin catalyst was added to 40 mL 
0.1 M NaOH, and the solution was then shaken for 4 h and filtered. The 
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solution was back titrated with the standard 0.1 M HCl solution using a pH 
meter; thus, the amount of the NaOH consumed corresponded to the total 
amount of acid groups. In the third determination, about 0.1 g of lignin 
catalyst was added to 25 mL of 0.08 M NaHCO3 solution, which was sonicated 
for 2 h and filtered. The solution was then titrated with 0.1 M HCl to pH 3.9, 
resulting in the total molar amount of acid groups -SO3H and -CO2H (i.e., the 
sum of M-SO3H and M-CO2H), which was obtained from the NaHCO3 
consumed. Finally, M-OH was obtained by subtracting ∑M-SO3H+M-CO2H 
from ∑M-SO3H+M-CO2H+M-OH. 

6.4.4 Tall oil fatty acids 

The TOFAs were diluted in acetone and derivatized with a mixture of N,O-
bis(trimethylsilyl)trifluoroacetamide (BSTFA) and trimethylchlorosilane 
(TMCS) (99:1, respectively). The quantitative analysis was performed by 
GC/FID. The relative mass-based response factors in relation to that of the ISs, 
heneicosanoic acid and betulinol, and those of compounds were equal to 1. 

6.4.5 Esters 

The methyl esters of LMM carboxylic acids present in BL were analyzed by 
GC/FID. The relative mass-based response factors used between the GC peak 
areas derived from IS, 1-heptanol, and those of compounds were equal to 1. 
The formation of esters was also separately followed by thin-layer chro-
matography (TLC) and an FTIR spectrometer.  
The FA esters of α-GISAL were determined by GC/FID. The compounds 
were diluted in toluene and derivatized with a mixture of BSTFA and 
TMCS (99:1, respectively). The relative mass-based response factors in 
relation to that of the IS (1.0) were determined by the separately-purified 
esters of mono- and dilaurate α-GISAL, and they were 3.5 and 3.7, 
respectively. These values were also used for the quantitative 
determination of other FA mono- and diesters. The formation of esters was 
also followed by TLC.  The high resolution mass spectrometric (HRMS) data 
were obtained in the positive mode using a mass spectrometer. The accurate 
sample masses were measured in relation to IS [for monolaurate aspartame, 
for dilaurate and dioleate erythromycin, and for monooleate 2-(4-
hydroxyphenylazo)benzoic acid]. The 1H NMR spectra were recorded in 
CDCl3. The chemical shifts were reported in ppm relative to the residual 
CHCl3 (δ 7.26) 

The quantitative analysis of FA methyl esters (FAMEs) was also 
determined by GC/FID. The FAMEs were dissolved in hexane, and methyl 
heptadeconate was used as an IS. 
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7 RESULTS AND DISCUSSION 

7.1 Lignin 

7.1.1 Precipitation 

Lignin was initially precipitated from BL by acidification with carbon dioxide 
(pH to about 8.5), and about 59 % of lignin was removed. Further decrease in 
pH (to about 2) either by the acidification of CBL with 2 M H2SO4 [I; II; IV; V] 
or by ED of diluted CBL (1:5) resulted in a lignin removal of 76 % and 66 %, 
respectively (Table 2). 

TABLE 2 Concentration of lignin in various BL samples (g/L)* [I] 

Liquor sample pH Lignin 
BL 13.5 82.1 
CBL 8.5 34.0 
CBL (1:5) 8.2 6.2 
Acidified CBL 2.0 8.3 
Electrodialyzed CBL (1:5) 2.3 2.1 

*BL refers to black liquor and CBL refers to carbonated black liquor. 
 
Lignin was obtained from acidification of BL with carbon dioxide, 

acidification of the CBL with H2SO4, or direct acidification of BL with H2SO4. 
The UV absorption spectra of the three lignin samples are shown in Figure 10. 
It has been well-known that the aromatic compounds and other chromophoric 
structural elements present in the lignin fractions absorb intensely in the UV 
range of the spectrum [Alén and Hartus, 1988]. The spectra show the 
maximum absorbance at 220 nm. The absorptivity increased in the following 
order: carbonated lignin > directly acidified lignin > acidified lignin. A lower 
absorptivity for acidified lignin could be due to the presence of co-
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precipitation of non-lignin material, such as carbohydrate degradation 
products, ash, and salts at pH 2 [Sun and Tomkinson, 2001; IV]. 

 

 

FIGURE 10 UV spectra of lignins precipitated from birch soda-AQ black liquor [IV]. 

The normalized MWDs of lignin precipitated from carbonation and 
acidifications of BL are shown in Figure 11. In general, the MW of the lignin 
precipitated from carbonation was noticeably higher than that of lignin 
precipitated through acidification. Table 3 gives the weight-average (Mw) and 
number-average (Mn) MM and polydispersity (Mw/Mn) of the lignin fractions. 
The results also indicate that the Mw of carbonated lignin was higher than that 
of the acidified lignin samples. The C-C bonds of lignin are the most important 
feature when considering their MW, as these bonds are not cleaved during the 
wood pulping due to their higher stability [Sun and Tomkinson, 2001; Tejado 
et al., 2007]. The lignin samples showed no significant difference in their Mn, 
whereas the polydispersity and Mw were observed to be higher for the 
carbonated lignin as compared to that of acidified lignins; moreover, there 
were no significant variations observed between the lignin precipitated from 
carbonation and directly via acidification [IV]. 
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FIGURE 11 Normalized MWDs of lignin precipitated birch soda-AQ black liquor [IV]. 

TABLE 3 Weight-average (Mw) and number-average (Mn) molar masses, and poly-
dispersity (Mw/Mn) of lignins precipitated from birch soda-AQ black liquor [IV]  

Lignin sample Mw Mn Mw/Mn 
Carbonated  
Acidified  
Directly acidified  

4728 
3373 
4253 

781 
862 
801 

6.0 
3.9 
5.3 

 
It was apparent from the 13C-NMR spectra shown in Figure 12 that there 

was no significant difference in the structure of the lignin precipitated by 
carbonation and acidification, due to the presence of similar structural 
constituents in these lignins. The weak peaks in the chemical shift ranging 
from 170 ppm to 130 ppm corresponded to the aromatic carbons attached to 
oxygen atoms (=C-O-); strong peaks from 130 ppm to 100 ppm corresponded 
to the secondary aromatic protons (=CH-C); weak peaks from 130 ppm to 100 
ppm corresponded to the tertiary aromatic protons (=C-C); strong peaks in the 
range 80 ppm to 50 ppm corresponded to the (OCH3) carbons and aliphatic 
carbons attached to oxygen atoms; and the peaks in the range 40 ppm to 0 
ppm corresponded to the aliphatic carbons [Stoklosa et al., 2013].  
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FIGURE 12 13C-NMR spectra of lignins precipitated from birch soda-AQ black liquor 
[IV]. 

7.1.2 Lignin catalyst 

The lignin catalyst was successfully prepared. The total density of acid groups 
for lignin catalyst and recycled lignin catalyst was observed to be about 3.1 
mmol/g and 2.7 mmol/g, respectively.  In the FTIR spectrum, the vibration 
bands at 1030 cm-1 (SO3 stretching) and 1149 cm-1 (S-O-S is stretching in SO3H) 
indicated the presence of -SO3H groups [Zhang et al., 2013]. The vibration 
bands existed at 1557 cm-1 and 1698 cm-1, which could be due to -OH in the 
plane deformation and C=O stretching of -COOH groups, respectively [Liang 
et al., 2013]. The elemental analysis of lignin catalyst and recycled lignin 
catalyst is shown in Table 4 [V]. 

TABLE 4 Density of acid groups in the catalysts (mmol/g) [V] 

Samples –SO3H –COOH  –OH  
Lignin catalyst 1.4±0.2 0.9±0.2 0.8±0.1 
Recycled lignin catalyst 1.2±0.2 0.7±0.2 0.7±0.1 
Amberlyst 15 4.2±0.1 - - 
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7.2 Recovery of sodium by electrodialysis 

7.2.1 Carbonated black liquor (1:5) 

Sodium hydroxide could be easily recovered from CBL (1:5) using ED. During 
the first 3 h, the rate of sodium recovery was rather high (0.065 mol Na/h), 
and almost 80 % sodium was recovered with an energy consumption and a 
current efficiency of 0.4 kWh/mol Na and 45 %, respectively. After the 
treatment time of 5 h, almost 90 % of sodium was recovered, with an average 
recovery rate of sodium and energy consumption of 0.044 mol Na/h and 1.76 
kWh/mol Na, respectively. The increase in the energy consumption during 
the final stage of the experiment was mainly due to a deposition of lignin on 
the anionic side of the BPM, thus hindering the passage of ions. This was 
mainly due to decrease in the sodium concentration of the diluate, causing 
gradual liberation of sodium from hydroxy and carboxylic acid groups of the 
lignin [I]. 

The recovery of sodium hydroxide was improved for the ED experiment 
conducted with the diluate solution containing 5 L of CBL (1:5) (Figure 13). 
The energy consumption was 0.2 kWh/mol with a relative high recovery rate 
of sodium (35 %), 0.138 mol Na/h during the first 3 h, reaching a maximum of 
around 70 % after 10 h.  

 

 

FIGURE 13 Sodium (present in NaOH) in concentrates from ED experiment with 
*CBL(1:5) 1 L diluate and ** CBL(1:5) with 5 L diluate [I]. 

The current efficiency was observed to gradually decrease for the first 5 h 
and was found to be 54 % and reduced to 39 % after 10 h. Similarly, the energy 
consumption was constant in the beginning and started to increase as the 
sodium concentrate of the diluate declined. The decrease in the recovery was 
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mostly due to inadequate membrane area for the sample containing 5 L of the 
diluate sample, as deposition of more lignin on the anionic side of the 
membrane occurred [I]. 

7.2.2 Sodium sulfate 

The behavior of the both MC Na2SO4 and the precipitated Na2SO4 (contained 
some BL impurities) was observed to be almost similar during the ED 
experiments (Figure 14). In both cases, almost 90 % of sodium was recovered 
with an average sodium recovery rate of 0.110 mol Na/h and 0.104 mol Na/h, 
respectively. The recovery of sodium was increased in the final stage of the 
experiment, which was mainly due to liberation of Na+ and SO42- from the 
NaHSO4 (formed in the initial phase). The overall energy consumption in the 
ED experiments was observed to be 0.38 kWh/mol Na and 0.43 KWh/mol Na 
for MC and precipitated Na2SO4 CBL, respectively. Furthermore, during these 
experiments, energy consumption started to increase during the final stage 
mainly due to an increasing flux of H+ through the CSM as the concertation of 
SO42- started to decrease in the diluate solution [I]. 

 

 

FIGURE 14 Energy consumption in the recovery of sodium from Na2SO4 preparations [I]. 

7.3 Carboxylic acids 

The acidification of BL by H2SO4 and CBL by H2SO4 or ED (pH to about 2) 
process led to liberation of aliphatic carboxylic acids from their sodium salts. 
There was no significant decrease in the individual acid component. The 
composition of aliphatic carboxylic acids in various BLs is shown in Table 5. 
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The differences in their final concentrations were due to difference in liquor 
volume. It has been observed that some decrease in liquor volume during 
carbonation [Alén et al., 1979] and increase in the liquor volume during 
acidification with H2SO4 may take place [I; II; IV].  

TABLE 5  The aliphatic carboxylic acids in various black liquor samples (g/L) [I; IV] 

Acid component BL CBL Acidified            
CBL  

     ED  
 CBL(1:5) 

Acidified  
     BL 

Formic 6.2 6.0 4.8 1.0 3.6 
Acetic 17.3 15.6 13.0 2.7 12.0 
Glycolic 2.0 1.9 1.3 0.3 1.3 
Lactic  2.3 2.1 1.6 0.4 1.5 
2-Hydroxybutanoic  3.2 3.0 2.4 0.5 2.1 
3,4-Dideoxy-pentonic 1.3 1.2 0.7 0.2 0.5 
3-Deoxy-pentonic 1.5 1.4 1.0 0.2 0.8 
Xyloisosaccharinic  3.0 3.3 2.7 0.4 2.0 
Glucoisosaccharinic  2.9 3.1 2.4 0.4 1.7 
Miscellaneous 4.1 4.4 2.7 0.8 1.8 
 
Total 

 
43.8 

 
42.2 

 
32.6 

 
6.9 

 
27.3 

7.4 Tall oil fatty acids 

The fraction of TOFAs contained 92.4 % fatty and 3.2 % resin acids 
(Table 6). These composition data were slightly different from those 
(97.0 % and 1.7 %, respectively) reported by the manufacturer. This was 
probably partly due to the “inaccuracies in compound quantification” 
(i.e., no specific relative response factors between the GC peak areas 
derived from the IS and the individual compounds were used), and the 
amount of “unidentified compounds” (about 4 %). The main FA 
components analyzed were linoleic (C18:2), oleic (C18:1), and linolenic 
(C18:3) acids, which, respectively, comprised about 50 %, 25 %, and 9 % of 
the total FAs [III]. 
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TABLE 6 Weight percentages of fatty acids in the TOFAs [III] 

Compound  Content 

Fatty acids  92.4 
Stearic acid C18:0 3.5 
Oleic acid C18:1 25.0 

        Linoleic acid C18:2 45.4 
C18:2 (conjugated)  1.0 
C18:2 (conjugated)  1.6 
C18:2 (conjugated)  2.2 
Linolenic acid C18:3 8.5 
C18:3 (conjugated)  1.0 
10-Nonadecenoic acid C19:1 1.2 
Eicosatrienoic acid C20:3 1.0 
Others*  2.0 

Resin acids  3.2 
Pimaric acid  1.1 
8,15-Isopimaridien-18-oic acid  2.1 

Miscellaneous  4.4 
*Fatty acids which are present in lower concentrations. 

7.5 Ester derivatives 

7.5.1 Esters of fatty acids with glucoisosaccharinic acid (lactone) 

FA esters of α-GISAL could be successfully prepared. The catalytic micro-
wave-assisted esterification yield of α-GISAL with lauric acid (i.e., saturated 
FA) was observed to be about 62 % in specific conditions. On the other hand, 
corresponding yields of oleic acid and TOFA esters were about 60 % and 40 %, 
respectively, even with a prolonged reaction time. The microwave-assisted 
reactions were separately optimized, and the highest yields for unsaturated 
and saturated FAs were obtained at 70 °C and 100 °C. Furthermore, it should 
be pointed out that at a temperature above 70 °C, the unsaturated FAs were 
self-polymerized and resulted in lower ester yield. 

The esterification of FAs with α-GISAL results in the formation of 
monoester and diester products. The HRMS (ESI+) data mass to charge ratio 
(m/z) calculated for [C18H32O6Na]+ was 367.2091 (found as 367.2094), which 
corresponded to monolaurate, and m/z calculated for [C30H54O7Na]+ was 
549.3762 (found as 549.3778), representing dilaurate. Similarly, the m/z data 
on mono- and dioleate were, respectively, the following: 449.2874 (calculated 
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for [C24H42O6Na]+) and 449.2853 (found) and 713.5327 (calculated for 
[C42H74O7Na]+) and 713.5313 (found).                                                                                                                                     

 The formation of esters was followed by 1H NMR. The esterification had 
a significant impact on the chemical shifts of H4 proton due to the deshielding 
effect caused by the ester functional groups; thus, it was used as a 
characteristic peak to identify the corresponding monoesterification products. 
Without any difficulty, a multiplet observed at 4.88 ppm for H4 proton 
suggested a diester product (Figure 15a). Esterification of a hydroxymethyl 
group attached either to C4 or C2 caused the respective downfield and upfield 
chemical shifts as shown in Figures 15b and 15c. The electron withdrawing 
nature of the ester functional group at C4 could be accounted for the 
downfield chemical shift observed in Figure 15b. On the other hand, the 
esterification at C2 group had the long-range deactivation effect on H4 proton, 
thus resulting in the upfield chemical shift as shown in Figure 15c [III]. 

 

 

FIGURE 15 Partial 1H NMR spectra of lauric acid diester (a) and monoester (b and c) with 
α-GISAL [III]. 

7.5.2 Esters of LMM carboxylic acids from black liquor 

The methyl esters of lactic, glycolic, and 2-hydroxybutanoic acids (LMM) 
present in BL were synthesized.  It was observed that the almost 50 % yields of 
these LMM methyl esters could be produced by refluxing the mixture of free 
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hydroxy acids with methanol for approximately 8 h. After this point, the rate 
of reaction gradually decreased, and higher yield levels of approximately 70 % 
were obtained after 16 h (Figure 16). 

 

 

FIGURE 16 Esterification yields for glycolic, lactic, and 2-hydroxybutanoic acids in CBL 
with methanol at 70 °C [II]. 

Esterification reactions were followed by FTIR and TLC. The FTIR 
spectra methyl esters were compared with a mixture of hydroxy acids (as their 
sodium salts). The spectrum of hydroxy acids had two adsorption bands: 
characteristics of antisymmetric (at 1650–1550 cm-1) and symmetric (1440–1360 
cm-1) CO2 stretch vibrations [Günzler and Gremlich, 2002; Larkin, 2011]. The 
main adsorption bands in the spectrum of esters were due to a strong C=O 
stretch vibration at 1750–1700 cm-1 and to a C-O stretch vibration at 1300–1100 
cm-1 (Figure 17) [II]. 
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FIGURE 17 FTIR spectra of carboxylic acids and carboxylic esters in black liquor before 
and after esterification [II]. 

7.5.3 Esters of HMM carboxylic acids from black liquor 

The TOFA esters of HMM acids were synthesized. A conversion yield of about 
70 % (based on GC data) HMM acids was achieved. The corresponding 
conversion yield of major HMM acids, such as, 3-deoxy-pentonic acid, XISA, 
and GISA were, respectively, about 70, 68, and 60.5 % for 4 h at 100 °C. The 
increase in reaction temperature or prolonged reaction time led to the 
degradation of the compounds. 

7.5.4 Fatty acid methyl esters of tall oil fatty acids 

The lignin-based acid catalyst seemed to be suitable for the synthesis of 
methyl esters of TOFA. This lignin-based catalyst was compared with 
different catalysts for the microwave-assisted esterification of TOFA. The 
reactions showed good yield for catalytic reactions compared to that of non-
catalytic reactions. The reactions gave a higher FAME yield for lignin catalyst 
(88 %) compared to that of Amberlyst 15 (80 %) for 1 h (Figure 18). On the 
other hand, the maximum FAME yield of 93 % was achieved for pTSA and the 
lowest yield of 20 % for the non-catalytic reaction. Likewise, the reaction 
showed no significant decrease in the reusability of lignin catalyst. It should be 
pointed out that in using lignin catalyst; the maximum FAME yield of 67 % 
was achieved for a short reaction time of 10 min. However, the esterification 
yields also depended on the composition of the TOFAs. The monounsaturated 
and diunsaturated FAs showed a higher rate of conversion in the catalytic 
esterification in comparison with other unsaturated FAs (Figure 19) [V]. 
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FIGURE 18 Esterification yields of fatty acids with methanol at various reaction times at 
100 °C and with heterogeneous catalysts [V]. 

 

 

FIGURE 19 Esterification yields of oleic, linoleic, and linolenic acids with methanol at 
various reaction times and at 100 °C with heterogeneous catalysts [V]. 
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7.6 Total recovery of organics from soda-AQ black liquor 

Almost 90 % of the lignin was removed from BL by carbonation followed by 
acidification with H2SO4. After separation of Na2SO4 from the acidified liquor, 
approximately 70 % of volatile acids could be recovered by evaporation. The 
LMM acids (about 70 %) from the crude hydroxy fractions could then be 
directly esterified with methanol. The LMM esters were separated by direct 
distillation or by liquid-liquid extraction. The HMM acids (about 60 %) were 
recovered by direct esterification with TOFAs for the synthesis of non-ionic 
surfactants. The residual phase mostly contained 20-25 % of aliphatic acids 
and 5–10 % of the initial lignin. Figure 20 illustrates the typical material 
balances of organics in the recovery process of valuable chemicals from soda-
AQ BL. 
 

 
FIGURE 20 Typical material balance of soda-AQ black liquor organics for the synthesis of 
low-molar-mass (LMM) and high-molar-mass (HMM) esters. 
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8 CONCLUDING REMARKS 

8.1 Main findings 

The findings of this study suggested that it is possible to develop potential 
techniques to separate and utilize organic and inorganic materials present in 
alkaline BL. The results indicated that the effective separation of lignin from 
BL is possible by carbonation, followed by acidification with H2SO4 or by 
direct acidification with H2SO4. ED offered an attractive technique to recover 
NaOH from Na2SO4, with the simultaneous formation of H2SO4 for recycling. 
After precipitation of most lignin by acidification, almost two thirds of the 
volatile acetic and formic acids could be easily recovered by straightforward 
evaporation. In addition, the recovery of the LMM hydroxy acids (about 70 %) 
was also possible by direct catalytic esterification with methanol, followed by 
evaporation. The most obvious finding of this study was that the esterification 
of α-GISAL with FAs leads to the formation of two different forms of 
monoesters and diesters. Similarly, the residual HMM hydroxy acids from BL 
can be esterified with TOFAs for the synthesis of non-ionic surfactants, 
thereby potentially utilizing both side-stream by-products. 

The three fractions of lignin from birch soda-AQ were characterized to 
promote the utilization of hardwood alkali lignins. The fractions originated 
from carbonation (pH to about 8.5) or acidification (pH to about 2) with H2SO4 
after carbonation or directly, showed only a small difference between them; 
thus, their similar chemical utilization seemed possible. Furthermore, the 
lignin-based heterogeneous catalyst containing -SO3H, -CO2H, and –OH 
functional groups was produced from acid-precipitated alkali lignin by phenol 
formaldehyde condensation and sulfonation reaction. This lignin catalyst 
exhibited a high conversion rate in the acid-catalyzed esterification of TOFAs 
with methanol in microwave-assisted reaction. Compared to other commercial 
catalysts (Amberlyst 15 and pTSA), the lignin-based catalyst showed good 
activity, and it could be easily recycled. 
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8.2 Suggestion for the future research 

The main aim of this study was to explore new technologies towards the 
recovery and utilization of the valuable by-products from alkaline pulping. 
This study offered attractive possibilities to manufacture various chemicals 
(LMM hydroxy acid esters, volatile acids, non-ionic surfactants and lignin-
based acid catalyst) and biofuels (biodiesel) from alkaline pulping in addition 
to traditional chemical pulping. 

The separation technologies developed in this study can be further 
modified and employed in other suitable industrial applications. Although 
significant research in this field has been conducted on a laboratory scale, in 
forthcoming studies, special attention must be given towards the scale up of 
this recovery process. Moreover, these methods need to be simplified and 
detailed cost analysis studies must be carried out that deal with each unit 
operation of the process. This appears challenging but will ultimately 
determine the most optimal recovery processes.  
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