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We present a systematic study of vertex corrections in a homogeneous electron gas at metallic densities.
The vertex diagrams are built using a recently proposed positive-definite diagrammatic expansion for the
spectral function. The vertex function not only provides corrections to the well known plasmon and
particle-hole scatterings, but also gives rise to new physical processes such as the generation of two
plasmon excitations or the decay of the one-particle state into a two-particle–one-hole state. By an efficient
Monte Carlo momentum integration we are able to show that the additional scattering channels are
responsible for a reduction of the bandwidth, the appearance of a secondary plasmon satellite below
the Fermi level, and a substantial redistribution of spectral weights. The feasibility of the approach for
first-principles band-structure calculations is also discussed.
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Starting from the introduction of the notion of the
quasiparticle (QP) [1] as an elemental excitation in Fermi
liquids [2] we have almost a complete picture of its on-shell
properties [3,4]. Quantum Monte Carlo (QMC) simu-
lations [5,6], phase diagrams [7–12], structure factors [13],
and effective interparticle interactions [14] contributed to our
knowledge of Fermi liquids and to the development of the
density functionals [15,16].
Despite these achievements we still have a poor knowl-

edge of the energy- and momentum-resolved spectral func-
tion Aðk;ωÞ away from the on-shell manifold, i. e., when
ω≉εk. In angular resolved photoemission this is the regime
where electrons with reduced energy (as compared to the
prediction based on band structure and energy balance) are
observed. Self-consistent (SC) perturbation theory, e.g.,
SC GW [17], accurately predicts total energies [18–20]
and it is fully conserving at the one-particle level. The latter is
a crucial property in the description of transport phenomena
[21]. However, for spectral properties SC schemes do not
show the expected improvement over simpler one-shot
calculations [22–24]. In fact, they suffer from serious draw-
backs: the incoherent background in the spectral function
gains weight at the expense of the QP peak [25], the
bandwidth is largely overestimated [26,27], and the screened

interaction does not obey the f-sum rule [28,29]. It was then
proposed that self-energy (SE) diagrams with vertex correc-
tions may cancel the spurious SC effects [25,30–33]. This
fueled a number of notable attempts to include the vertex
function in a model fashion: using the plasmonmodel for the
screened interaction [34], neglecting the incoherent part of
the electron spectral function [35], and employing the Ward
identities and a model form of the exchange-correlation
kernel [27,36–38], or the cumulant expansions [39–45].
Although thesemethods clarified a number of issues, they do
not provide an exhaustive picture [46]. The major obstacle
for a full-fledged vertex calculation, besides numerical
complexity, is the issue of negative spectral densities, first
noted by Minnhagen [34,50] and only recently solved by us
using a positive-definite diagrammatic expansion [51,52].
Our solution merges many-body perturbation theory and
scattering theory, thus returning a positive-semidefinite
(PSD) spectral function by construction.
With the PSD tool at our disposal, in this Letter we

investigate the influence of vertex corrections on the
spectral function of the homogeneous electron gas (HEG)
and demonstrate that it leads to a number of novel physical
phenomena that cannot be reduced to mere self-consistency
cancellations.
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Let us motivate and discuss the PSD approximation used
in this work. In terms of dressed electronic propagators and
screened interaction W there is a single second order SE

diagram Σ(2) = . Its straightforward inclusion,

however, yields negative spectra in some frequency regions.
This prohibits the usual probability interpretation and, even
worse, it jeopardizes SC calculations since the resulting
Green’s function (GF) has the wrong analytic structure [53].
The key idea of the PSD scheme [51,52] consists in
(1) writing a SE diagram as the sum of its partitions, i.e.,
diagrams with particle and hole propagators, (2) bisecting
each partition into two half diagrams, (3) adding the missing
half diagrams to form a perfect square, and (4) gluing
the half diagrams back. For Σð2Þ the half diagrams, see
Figs. 1(a)–1(c), contain scatterings with up to three particles
and two holes in the final state [51]. The SE partitions stem
from the interference between these scatterings and after the
PSD treatment one obtains partitions up to the fourth order in
W, see Ref. [51] for the full list. Among them there are three
that deserve special attention. Σaa in Fig. 1(d) results from
the interference of scattering (a) with itself. As illustrated in
Fig. 1(g) Σaa involves an electron-hole (e-h) pair (orange
area) or a plasmon in the final state (this is the first order effect
described by theGW SE). The plus and minus vertices in the
SE partitions have the purpose of distinguishing the con-
stituent half diagrams (resulting from the cut of all propa-
gatorswithþ=− and−=þvertices).Σaā inFig. 1(e) is formed
by the interference between the scattering (a), leading to a
two-particle–one-hole (pf1-pf2-qf) final state, and the same
scattering with interchanged particle momenta (indicated
with ā), see Fig. 1(h). Finally,Σcc̄ in Fig. 1(f) is formed by the
interference between the scattering (c), in which a particle
loses its energy by exciting two e-h pairs, two plasmons, or a

mixture of them, and the same scattering with interchanged
particle and hole momenta, see Fig. 1(i). Plasmon generation
is a dominant second order scattering process although it has
a severely limited phase space (dark blue line and light blue
area) due to energy and momentum conservation. Higher
order terms in W (up to fourth order) arise from other
interferences and are needed to ensure the overall positivity
[51]. In general the PSD procedure leads to a manifestly
positive Fermi’s “golden rule” form of the SE, Σ<ðk;ωÞ∼P

n;fΓðnÞðk;ωÞj1þ rsγ
ðnÞ
1 þ r2sγ

ðnÞ
2 þ � � � j2δðωþ ϵk −EðnÞ

f Þ,
where the sum runs over all final states of energy EðnÞ

f with
(nþ 1) particles and n holes (rs being the Wigner-Seitz
radius). The role of high order diagrams is twofold: they
bring new scattering mechanisms into play (hence new
rates ΓðnÞ) and renormalize them through the perturbative

corrections γðnÞi .
We already mentioned that one of the motivations for

including diagrams beyond GW is the excessive broad-
ening of the spectral features when the level of self-
consistency is increased, e.g., Gð0ÞWð0Þ → GWð0Þ → GW.
As a full SC calculation of the PSD SE of Ref. [51] is out of
reach, we partially account for self-consistency by using a
Gð0ÞWð0Þ GF (finite QP broadening and plasmon satellites)
and a RPA screened interaction. Our calculations indicate
that higher-order diagrams (aside from bringing in new
spectral features) counteract the undesired SC effects, thus
suggesting the occurrence of sizable cancellations. We then
explore the possibility of producing the PSD results with
fewer diagrams and bare GFs. In the bare GF the chemical
potential μ is iteratively adjusted by imposing that the
energy of states on the Fermi sphere (where the disconti-
nuity in the momentum distribution nk occurs) is exactly
equal to μ [54]. In Fig. 2(a) we compare the rate

FIG. 1. (a)–(c) The half diagrams emerging from the bisection
of the Σð2Þ partitions (the wiggly lines denote the screened
interaction). (d)–(f) Three partitions of the PSD self-energy
and (g)–(i) their momentum space representation.

FIG. 2. (a) Rate Γðk;ωÞ for k ¼ 1.25kF calculated from the PSD
SE of Ref. [51] with the Gð0ÞWð0Þ GF (red dots) and from the SE
Σ ¼ Σaā þ Σcc̄ þ Σaa with the QP GF (dashed). (b) QP energy

correction Δϵk ¼ ϵk − ϵð0Þk and (c) dispersion of the plasmon satel-
lites for Gð0ÞWð0Þ (dotted) and our vertex approximation (solid).
The corrections to μ (with respect to the mean-field value) are
Δμ ¼ −1.76ϵF and Δμ ¼ −1.81ϵF, respectively.
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Γðk;ωÞ≡ i½ΣRðk;ωÞ − ΣAðk;ωÞ�; ð1Þ

as obtained from the PSD diagrams of Ref. [51] with the
Gð0ÞWð0Þ GF and from the much simpler Σ ¼ Σaā þ Σcc̄ þ
Σaa with the QP GF (in both cases we used a RPAW). The
left flank and the hight of the peak are in perfect agreement.
At energies in the region of plasmon satellites the full PSD
rate decays faster but the trend is similar and the impact of
this discrepancy on the spectral function is only minor.
More calculations at different k (not shown) confirm the
agreement between the two SEs. We therefore infer that the
relevant scattering mechanisms for a positive-conserving,
leading-order vertex correction are those of Figs. 1(g)–1(i).
This reduction of diagrams represents an important advance
in view of the correlated band-structure calculations of
solids. In the following we use the vertex correction of
Figs. 1(d)–1(f) to calculate the QP and plasmon energy
dispersions, spectral function, scattering rate, renormaliza-
tion factor, and momentum distribution.
Results.—The electron density and the dimensionality

completely determine the properties of the HEG; in the 3D
case they fix the Fermi momentum and energy as follows:
kF ¼ðαrsÞ−1 and ϵF ¼ 1=2ðαrsÞ−2 with α¼ ½4=ð9πÞ�1=3. We
consider the case of metallic densities rs ¼ 4.0aB appro-
priate for, e. g., bulk Na metal. Angle-resolved photoemis-
sion experiments have pointed out a substantial narrowing of
the occupied band in sodium [55] (bandwidth smaller by
20% as compared to the noninteracting electron dispersion).
Although the spectral function of the HEG is not directly
comparable with angle-resolved photoemission experiments,
estimating the impact of vertex corrections is crucial to
quantify extrinsic and surface effects [26,27,56,57]. Our
diagrammatic approximation for the vertex provides a band-
width reduction of 27.5% (as compared to the noninteracting
case), see Fig. 2(b) and the Supplemental Material [58] for
the analysis of Na. Figure 2(c) also shows the dispersion of
plasmon satellites (red and blue curves).
In the calculations with vertex corrections (solid) the

high-energy plasmon branch smears out and, unlike in the
Gð0ÞWð0Þ approximation (dotted), there is no real solution
to the Dyson equation. The low energy plasmon is only
slightly affected by the vertex. At small momenta the
Gð0ÞWð0Þ position of the plasmon satellite [which is 50%
off the value of ωPL ¼ 1.881ϵF] is improved to a small
degree. For momenta close to kF the distance from the QP
energy reduces but it remains larger than ωPL. This agrees
with the fact that close to the Fermi energy the plasmon
satellite is shifted downward by the QP-plasmon interaction
[68]. Of note, thevertex is also responsible for the emergence
of a second branch at a lower energy (orange)whose position
is only 12% off 2ωPL. Higher order diagrams are necessary
to describe the higher order plasmon replica and to improve
the position of the low-energy plasmon satellites [58].
Vertex corrections have a sizable impact on the

energy and momentum resolved spectral function

Aðk;ωÞ ¼ i½GR −GA�ðk;ωÞ. In Fig. 3 we display the color
plot of Aðk;ωÞ computed with our method. The dotted lines
denote the solutions of the real part of the Dyson equation

(used to produce the curves in Fig. 2): ωþ Δμ − ϵð0Þk ¼
Re½ΣRðk;ωÞ�. Compared to Gð0ÞWð0Þ [24] the appearance
of the second plasmon satellite below μ, the redistribution
of the spectral weight between the first and second satellite,
and the broadening of plasmonic spectral features above μ
are the most important findings of this work. They confirm
the plasmon-pole model analysis of Ref. [35] that predicted
only hole satellites and much broader particle features.
It is interesting to notice that vertex corrections make the

QP peak sharper. This can be inferred from the explicit SE
expression or from the rate Γ of Eq. (1), which we plot in
Figs. 4(a)–4(c) for three different values of the momentum.
Plasmons do not contribute to the on-shell properties at
energies around μ because they carry finite energy at zero
momentum. Instead, the lifetime of the QPs in the vicinity
of the Fermi sphere is mainly determined by Σaa (GW SE)
involving e-h production or by ΣaāðQP → 3QPÞ. The
latter, shown as a yellow shaded curve in Figs. 4(a)–4(c),
contributes with a negative sign and leads to the observed
reduction of Γ (hence to an enhancement of the QP peak)
[69]. Such a behavior (alternating series in αrs) is typical
of many perturbation theories. Notice that Σaa þ Σaā also
dominates the asymptotic (ω → ∞) behavior. The scatter-
ing with the generation of two plasmons, contained in Σcc̄,
plays a crucial role for the off-shell properties as it gives
rise to new spectral peaks, see the green shaded curve.
In the vicinity of a QP or plasmon (PL) peak the spectral

function acquires the form [73]

FIG. 3. Energy- and momentum-resolved spectral function
with vertex corrections. The solid lines denote the free electron
dispersion. The dots denote the solutions of the real Dyson
equation, see the main text. For some momentum values multiple
solutions (marked with different colors) are obtained.
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Aðk;ωÞ ¼ ZðαÞðkÞ 1=τðαÞk

ðω − ϵðαÞk Þ2 þ 1=ð2τðαÞk Þ2
; ð2Þ

where α¼QP, PL and ϵðQPÞk ¼ ϵk, whereas ϵðPLÞk is the
dispersion of the plasmon satellites. This expression con-
tains two quantities of physical interest that we computed
using our vertex function: the renormalization factor

ZðαÞðkÞ ¼
�
1 −

∂
∂ωReΣRðk;ωÞj

ω¼ϵðαÞk

�
−1
; ð3Þ

and the broadening of the QP or PL excitations

1=τðαÞk ¼ ZðαÞðkÞΓðk; ϵðαÞk Þ.
The renormalization factor is shown in Fig. 4(d). At the

band bottom (k ¼ 0) Gð0ÞWð0Þ gives only one plasmon
satellite ZðPLÞ ¼ 0.382 whereas our vertex approximation
gives two satellites with comparable weight ZðPLÞ ¼ 0.217
and Zð2PLÞ ¼ 0.207. Furthermore, the QP weight is reduced
from ZðQPÞ ¼ 0.578 (in Gð0ÞWð0Þ) to ZðQPÞ ¼ 0.550, indi-
cating that the incoherent part of the spectrum gains weight.
These two effects cannot be seen in the cumulant expansion
scheme using a Gð0ÞWð0Þ self-energy input [40], which
suppresses Z of the higher plasmon satellites according
to the Poissonian distribution [74] and, due to the neglect
of the coupling between particle and hole seas, yields the
same ZðQPÞ as in Gð0ÞWð0Þ [40].
For k ¼ kF the vertex corrections reduce only slightly

the Gð0ÞWð0Þ QP renormalization factor. It is known that
SC GW overestimates (ZðQPÞ ¼ 0.793) the already good
Gð0ÞWð0Þ value ZðQPÞ ¼ 0.638 (our calculation) or ZðQPÞ ¼
0.646 (Hedin [17]). The proposed approximation to the
vertex gives ZðQPÞ ¼ 0.628, which thus remains rather

close to the QMC results 0.64 to 0.69 (at rs ¼ 3.99aB)
[6]. At the Fermi momentum ZðQPÞ can also be deduced
from the discontinuity of the momentum distribution
function nk [75–77]. In Fig. 4(e) we show nk as obtained
by a straightforward integration of the smooth part of the
spectral function nk ¼

R
μ
−∞ðdω=2πÞAðk;ωÞ and by adding

the singular contributions analytically. The Gð0ÞWð0Þ and
vertex results are almost indistinguishable.
We finally analyze in Fig. 4(f) the quasiparticle lifetime,

a measure of electronic correlations [78,79]. In ab initio
calculations for realistic systems this quantity is typically
estimated using theG0W0 approximation [80–82]. However,
there have also been attempts to go beyond this level of
theory by, e.g., including T-matrix diagrams. In Ref. [83] a
reduction of the QP lifetime [an increase of Γ by 50% (70%)
in relation to GW for rs ¼ 2.07ð4.86Þ] has been predicted
and explained by “the multiple scattering”. Our findings
show the opposite trend, i.e., an increase of the QP lifetime
(reduction of Γ by −50% in relation to GW for rs ¼ 4].
Conclusions.— Numerous authors have emphasized that

the inclusion of the vertex function should remedy the
drawbacks of self-consistent calculations [25,27,30,84].
Using our recently proposed diagrammatic analysis we
have been able to confirm these expectations and show that
this is only a part of the whole picture. Additionally, other
second-order processes appear. They can be best described
in the language of scattering theory with the link provided
by the PSD formalism [51,52].
We fully characterized the spectral function of the 3D

HEG in the k-ω plane. The main original features that
we found are a second plasmon satellite for the holes, a
redistribution of the spectral weight between the hole

FIG. 4. (a)–(c) Γðk;ωÞ for three momentum values. The black line is the total contribution from the SE diagrams aā, cc̄, and aa. The
contribution of each diagram is separated according to the intermediate states (e-h states or plasmons) involved, and it is displayed in
different colors. Electron spectral functions are shown in the insets. (d) Renormalization factor of the QP and PL excitations.
(e) Momentum occupation number nk. (f) Broadening of the QP and PL excitations. For panels (d)–(f) we show the results using
Gð0ÞWð0Þ (dotted) and our vertex approximation (solid).
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satellites, a reduction of the plasmon spectral weight for the
particles, and a bandwidth reduction of the main QP band.
So far these effects have only been partially captured
by other, nondiagrammatic methods [58]. Our proposed
approach has a universal character and can be extended to
first-principle calculations of metals. In fact, in going
from continuous to discrete translational symmetry the
functions simply turn into matrix functions [e.g., Σðk;ωÞ →
ΣGG0 ðk;ωÞ], something that does not pose any conceptual
difficulties for Monte Carlo momentum integration [85].
Alkali metals for which a vertex function has been partially
included (typically using a model exchange-correlation
kernel [87,88]) are a logical next step for our method. It is
conceivable that higher order satellites can be accurately
described by the combination of our approach with the
cumulant expansion scheme outlined in Refs. [41,45]. A
related approach based on the equation of motion coupled-
cluster theory has been put forward recently [89].
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