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MAPPINGS OF Lp-INTEGRABLE DISTORTION:

REGULARITY OF THE INVERSE

JANI ONNINEN AND VILLE TENGVALL

Abstract. Let X be an open set in Rn and suppose that f : X→ Rn is
a Sobolev homeomorphism. We study the regularity of f−1 under the
Lp-integrability assumption on the distortion function Kf . First, if X is
the unit ball and p > n−1, then the optimal local modulus of continuity
of f−1 is attained by a radially symmetric mapping. We show that this
is not the case when p 6 n− 1 and n > 3, and answer a question raised
by S. Hencl and P. Koskela. Second, we obtain the optimal integrability
results for |Df−1| in terms of the Lp-integrability assumptions of Kf .

1. introduction

Let X be an open set in Rn, n > 2. A Sobolev homeomorphism f ∈
W 1,1

loc (X,Rn) has finite distortion if there is a measurable function K(x) > 1,
finite a.e., such that

(1.1) |Df(x)|n 6 K(x)Jf (x) , Jf (x) := detDf(x) .

Hereafter |A| is the operator norm of a linear map A. The smallest function
K(x) > 1 for which the distortion inequality (1.1) holds is denoted by Kf .

The target of X under f will be denoted by Y, i.e. f : X onto−−→ Y. The theory
of mappings of finite distortion [2, 10, 11] has arisen from a need to extend
the ideas and applications of the classical theory of quasiconformal homeo-
morphisms (K ∈ L∞(X)) to the degenerate elliptic setting. However, some
bounds on the distortion are needed to obtain a viable theory. There one
finds applications in materials science, particularly nonlinear elasticity. The
mathematical models of nonlinear elasticity have been pioneered by Antman
[1], Ball [3], and Ciarlet [4]. The general law of hyperelasticity tells us that
there exists an energy integral functional with given stored-energy function
characterizing elastic properties of the material. If the reference configu-
ration is the unit ball one of important problems in nonlinear elasticity is
whether or not the radially symmetric minimizers are indeed global minimiz-
ers of the given energy. Here we first study optimal modulus of continuity
for the inverse in the class of homeomorphisms with Lp-integrable distortion.
And, bring into question whether or not such regularity is already obtained
within the class of radially symmetric homeomorphisms.
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2 J. ONNINEN AND V. TENGVALL

1.1. Modulus of continuity of the inverse. If Kf ∈ Lp(X) for some p >

n− 1, then the inverse f−1 : Y onto−−→ X enjoys locally α-logarithmic modulus

of continuity with α = p(n−1)
n ; that is, for B(y◦, R) := {y ∈ Rn : |y − y◦| <

R} ⊂⊂ Y and all points y ∈ B(y◦, R) we have

(1.2) |f−1(y)− f−1(y◦)| logα (R/|y − y◦|) 6 C ,

where C depends only on p, n and the integral of Kp
f . This optimal modulus

of continuity was established by Clop and Herron [5] and earlier in dimension
two by Koskela and Takkinen [13]. Regardless the optimality, it is natural
to examine radially symmetric mappings f : B→ Rn,

(1.3) f(x) =

{
F (|x|) x

|x| , x 6= 0

0, x = 0 ,

where F : [0, 1] → [0,∞) is a strictly increasing continuous function with

F (0) = 0. Indeed, if we take F (t) = exp(−t−
1
β ) in (1.3), then the corre-

sponding radially symmetric homeomorphism shows the exponent α in (1.2)
cannot be replaced by β > α.

Next, we consider the case p = n − 1. On the one hand, the exponent
α in (1.2) approaches (n − 1)2/n as p → n − 1. In the class of radially
symmetric mappings we have such a modulus of continuity.

Proposition 1.1. Let B be the unit ball in Rn. Suppose that f : B → Rn
is a radially symmetric homeomorphism with Kf ∈ Lp(B), for some p > 1.

Then the inverse of f has p(n−1)
n -logarithmic modulus of continuity.

Again the radial mapping (1.3) with F (t) = exp(−t−
1
β ) and β > p(n−1)

n
shows that this result is sharp. On the other hand, if we relax the symmetric
assumption and just require that Kf ∈ Ln−1(X), then the inverse f−1 ∈
W 1,n

loc (Y,Rn), see [6, 9]. It follows from the Sobolev embedding theorem on
spheres [8, 15] that any W 1,n-homeomorphism has locally 1/n-logarithmic
modulus of continuity. Therefore, the inverse f−1 satisfies (1.2) with the
exponent 1/n. These two exponents only coincide in the planar case. In their
recent monograph Hencl and Koskela raised the question [10, Open problem
13.] as what is the optimal exponent in the borderline case, p = n−1. Next
result answers to this question.

Theorem 1.2. Let n > 3 and β > 1/n. Then there exists a Sobolev home-

omorphism f : X onto−−→ Y with Kf ∈ Ln−1(X) such that for some y◦ ∈ Y we
have

(1.4) lim sup
y→y◦

[
|f−1(y)− f−1(y◦)| logβ(1/|y − y◦|)

]
=∞ .
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In summary, let f : X → Rn, n > 2, be a Sobolev homeomorphism with
Kf ∈ Lp(X). Then the inverse f−1 satisfies (1.2) with

α =

{
p(n−1)
n , when p > n− 1

1
n , when p = n− 1 .

Moreover, this exponent is optimal; that is, α in (1.2) cannot be replaced
by any β > α. Furthermore, if p < n − 1 such an α does not exist. Even
more,

Proposition 1.3. Let ϕ : [0, 1]→ R be a strictly increasing continuous func-

tion with ϕ(0) = 0. Then there exists a homeomorphism f : X onto−−→ Y with
Kf ∈ Lp(X) for every 1 6 p < n− 1 and for some y◦ ∈ Y we have

(1.5) lim sup
y→y◦

|f−1(y)− f−1(y◦)|
ϕ(|y − y◦|)

=∞ .

Table 1. Modulus of Continuity of f−1

Kf ∈ Lp α in (1.2)

f(x) = F (|x|) x
|x|

p > n− 1 p(n−1)
n

p(n−1)
n

p = n− 1 1
n

p(n−1)
n

p < n− 1 Does not exist
p(n−1)
n

1.2. Integrability of |Df−1|. As we pointed out earlier the inverse map
f−1 enjoys the W 1,n-regularity provided Kf is Ln−1-integrable [6, 9]. Here
we obtain a Lp-counterpart of this result.

Theorem 1.4. Let X be an open set in Rn. Suppose that f : X onto−−→ Y is a
homeomorphism of finite distortion with Kf ∈ Lp(X) for some p > n − 1.
Then

(1.6)

∫
Y
|Df−1(y)|n logq(e+ |Df−1(y)|) dy 6 C

∫
X
Kp
f (x) dx ,

where q = (n − 1)(p − n + 1) and the finite constant C depends only on n
and p.

The simple example f : B → Rn, f(x1, . . . , xn) = (x1, . . . , xn−1, xn|xn|s),
0 < s < 1/(n−1) shows that for f−1 ∈W 1,n(f(B),Rn) the Ln−1-integrability
of Kf cannot be relaxed. Even in the class of radially symmetric homeo-
morphisms this is not possible.
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Proposition 1.5. There exists a radially symmetric homeomorphism f : B→
Rn such that Kf ∈ Lp(B) for every 1 6 p < n− 1 and∫

f(B)
|Df−1(y)|n dy =∞ .

Next, we compare Theorem 1.4 with the modulus of continuity results for
f−1. It follows from the Sobolev embedding theorem on spheres [8, 15] that
a homeomorphism g : X→ Rn whose differential belongs to the Lorentz class
Ln logq(X) for some q > −1; that is, |Dg|n logq(e+ |Dg|) ∈ L1(X) has locally
(q + 1)/n-logarithmic modulus of continuity. Especially, Theorem 1.4 gives
that the inverse has locally γ-logarithmic modulus of continuity provided
Kf ∈ Lp(X) for some p > n− 1. Here

γ =
p(n− 1)

n
− (n− 2) .

Therefore, Theorem 1.4 gives the optimal modulus of continuity for the
inverse mapping when p = n − 1 or n = 2. Otherwise, however, the op-
timal modulus of continuity of f−1 does not follow from the integrability
estimate (1.6). As we pointed out earlier, the radial mapping (1.3) with

F (t) = exp(−t−
1
β ) reaches this optimal modulus of continuity. We further

note that the mapping in question has Lp-integrable distortion if and only
if |Df−1| belongs to the Lorentz class Ln logp(n−1)−1(X). In spite of this, we
prove that Theorem 1.4 is optimal.

Theorem 1.6. Let n > 2, p > n− 1 and s > (n− 1)(p−n+ 1). Then there

exists open subsets X,Y ⊂ Rn, and a Sobolev homeomorphism f : X onto−−→ Y,
X,Y ⊂ Rn, such that Kf ∈ Lp(X) and∫

Y
|Df−1|n logs(e+ |Df−1|) =∞ .

2. Modulus of continuity of the inverse

2.1. Proof of Theorem 1.2. Fix β > 1/n and choose α so that β > α >
1/n. We consider the cylindrical domain

X := {x = (ω, xn) ∈ Rn−1 × R : |ω| < δ and |xn| < 1},

where 0 < δ < exp
(
− (n−1)!

2 (αn−1 + 1)
)

is fixed, and define

L(r) :=

{
log−α 1/r, if 0 < r < δ

0, if r = 0 .

The mapping we are referring takes the form

f(ω, xn) =

(
x1 L(|ω|), . . . , xn−1 L(|ω|), xn|ω|+

xn
|xn|

∫ |xn|
0

exp
(
− t−1/α

)
dt

)
,
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where ω = (x1, . . . , xn−1). Then, for xn > 0, we have

|f(0, xn)− f(0, 0)| 6 xn exp
(
−x−1/αn

)
.

Therefore, (1.4) follows with y◦ = 0. Indeed, let C > 0 and 0 < ε < 1 be
given. Set

τ := (2C)−1/(α
−1−β−1) and λ := (log ε−2)−α.

Then for 0 < xn < min{ τ, λ },

log
1

ε
<

1

2x
1/α
n

and Cx
1
α
− 1
β

n <
1

2
.

So

exp

(
C

x
1/β
n

− 1

x
1/α
n

)
6 exp

(
− 1

2x
1/α
n

)
< ε .

Thus, for any 0 < xn < min{ τ, λ, 1 }

| f(0, xn)− f(0, 0) | 6 xn exp
(
−x−1/αn

)
< ε exp

(
− C

x
1/β
n

)
.

It remains to show that Kf ∈ Ln−1(X). We have

Df(x) = L(|ω|)


A1,1 A1,2 · · · A1,n−1 0
A2,1 A2,2 · · · A2,n−1 0

...
...

. . .
...

...
An−1,1 An−1,2 · · · An−1,n−1 0
An,1 An,2 · · · An,n−1 An,n

 ,

where

Ai,j =



1 +
αx2i
|ω|2 log−1 1

|ω| , if i = j and 1 6 i, j 6 n− 1

α
xixj
|ω|2 log−1 1

|ω| , if i 6= j and 1 6 i, j 6 n− 1

xnxj
|ω|L(|ω|) , if i = n and 1 6 j 6 n− 1

|ω|+exp(−|xn|−1/α)
L(|ω|) , if i = n and j = n .
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By the definition of δ > 0 we may estimate the Jacobian of f in the set X
as follows

Jf (x) > An,n[L(|ω|)]n
(

1− (n− 1)!
n−1∑
k=1

αk
(max16i6n−1|xi|)2k

|ω|2k
log−k

1

|ω|

)(2.1)

> An,n[L(|ω|)]n
(

1− (n− 1)!(αn−1 + 1) log−1
1

|ω|

)
>

1

2
An,n[L(|ω|)]n =

|ω|+ exp
(
− |xn|−1/α

)
2 logα(n−1)(1/|ω|)

.

Next, we observe that |Ai,j | < 2 for all 1 6 i, j 6 n − 1. Therefore, we
may conclude that

|Df(ω, xn)| 6 2 max{L(|ω|), |xn|} for every (ω, xn) ∈ X,
and if we divide X into two sets

X1 := {x ∈ X : L(|ω|) > |xn|} and X2 := X \ X1,

we get ∫
X
Kn−1
f =

∫
X1

Kn−1
f +

∫
X2

Kn−1
f

.
∫
X1

(
log−nα 1

|ω|

Jf

)n−1
+

∫
X2

(
|xn|n

Jf

)n−1
.

Throughout this paper we use the symbols . to indicate that the inequality
holds with certain positive constant in the right hand side. This constant,
referred to as implied constant, will vary from line to line. Here the implied
constant depends only on n.

Employing the polar coordinates and (2.1), we obtain∫
X
Kn−1
f .

∫ 1

0

∫ e−1

e−τ
− 1
α

1

r logα(n−1)(1/r)
dr dτ

+

∫ 1

0

(
τn

exp(−τ−
1
α )

)n−1 ∫ e−τ
− 1
α

0
rn−2 logα(n−1)

2
(1/r) dr dτ ,

where the implied constant depends only on n. We have to deal with two
different cases:

(1) If α 6= 1
n−1 , we have∫
X
Kn−1
f .

∫ 1

0

1

τ
1
α
−(n−1)

dτ +

∫ 1

0
τn−1 dτ <∞ ,

where the implied constant depends only on n and α. The finiteness
of the first integral on the right is guranteed by the assumption
α > 1/n. Thus Kf ∈ Ln−1(X).
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(2) If α = 1
n−1 , we have∫
X
Kn−1
f . −

∫ 1

0
log τ dτ +

∫ 1

0
τn−1 dτ <∞ ,

where the implied constant depends only on n and α. Thus, also in
this case we have Kf ∈ Ln−1(X).

By (1) and (2) we have Kf ∈ Ln−1(X). �

2.2. Proof of Proposition 1.3. Consider the cylindrical domain

X := {x = (ω, xn) ∈ Rn−1 × R : |ω| < 1 and |xn| < ϕ(1)} ,

and define f : X→ Y by

f(x1, . . . , xn−1, xn) = f(ω, xn) =

(
ω, xn|ω|+

xn
|xn|

∫ |xn|
0

ϕ−1(tα) dt

)
,

where α > 1. Then

Df(x) =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
x1xn
|ω|

x2xn
|ω| · · · xn−1xn

|ω| |ω|+ ϕ−1(|xn|α)

 .

Thus, for every p < n− 1, we have∫
X
Kp
f (x) dx 6

∫
X

1

|ω|p
dx 6 2

∫ ϕ(1)

0
rn−2−p dr <∞ ,

and therefore Kf ∈ Lp(X).
Next, we define g : [0,∞)→ R by

g(t) = |f(0, . . . , 0, t)| .

Then it suffices to show that

lim sup
s→0

g−1(s)

ϕ(s)
=∞ .

We prove this by contradiction. Suppose that there exists constants C > 0
and δ > 0 such that

g−1(s)

ϕ(s)
< C ,

for all 0 < s < δ. Then for all sufficiently small t > 0 we have g−1(ϕ−1(t))
t <

C. Especially

ϕ−1(t) < g(Ct)
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for all small enough t > 0. Therefore, for every 0 < s < min{C−1, C−
α
α−1 }

we have

ϕ−1(s) < g(Cs) =

∫ Cs

0
ϕ−1(tα) dt 6 Csϕ−1([Cs]α)

< ϕ−1([Cs]α) < ϕ−1(s) ,

which leads to a contradiction. �

3. Integrability of Df−1

There is a close connection between the integral of |Df−1|n logδ(e +
|Df−1|) and the inner distortion of the mapping f : X → Y. To see this,
we define the co-differential D]f via the Cramer’s rule D]f ◦Df = Jf (x)I,
where I stands for the identity matrix. The inner distortion of a Sobolev
mapping f ∈W 1,1

loc (X,Rn) is the smallest function KI(x, f) > 1 such that

|D]f(x)|n 6 KI(x, f)Jf (x)n−1.

Lemma 3.1. Let f ∈ W 1,n−1
loc (X,Rn) be a homeomorphism with integrable

inner distortion. Then for δ > 0 we have
(3.1)∫
f(X)
|Df−1|n logδ(e+ |Df−1|) =

∫
X
KI(x, f) logδ

(
e+

[
KI(x, f)

Jf (x)

] 1
n

)
dx .

Proof. By [16, Theorem 1.2] (see also [6]) both the mapping f and its inverse
f−1 have finite distortion. Furthermore, f and f−1 are differentiable almost
everywhere. Therefore, the measure of the set

F ′ = { y ∈ f(X) : Jf−1(y) > 0 and f−1 is differentiable at y }

equals |{y ∈ f(X) : Df−1(y) 6= 0}| and so,

(3.2)

∫
f(X)
|Df−1|n logδ(e+ |Df−1|) =

∫
F ′
|Df−1|n logδ(e+ |Df−1|) .

For every y ∈ F ′, f−1 is differentiable at y and Jf−1(y) > 0. Therefore, f is

differentiable at f−1(y) and

Jf (f−1(y)) =
1

Jf−1(y)
.

At this point we recall a version of the area formula. Let g : Ω → Rn
be a homeomorphims and G ⊂ Ω a measurable set. Suppose that g is
differentiable at every point of G and u is a non-negative Borel-measurable
function in Rn. Then

(3.3)

∫
G
u
(
g(x)

)
|Jg(x)|dx 6

∫
Rn
u(y) dy .

This follows from [7, Theorem 3.1.8] together with the the area formula for
Lipschitz mappings. Now, applying (3.3) for f−1, we have
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∫
F ′
|Df−1|n logδ(e+ |Df−1|)

6
∫
X
|Df−1(f(x))|n logδ(e+ |Df−1(f(x))|)Jf (x) dx .

On the other hand, the change of variable (3.3) for f gives∫
f(X)
|Df−1|n logδ(e+ |Df−1|)

>
∫
X
|Df−1(f(x))|n logδ(e+ |Df−1(f(x))|)Jf (x) dx .

Above estimates guarantee that∫
f(X)
|Df−1|n logδ(e+ |Df−1|)

=

∫
X
|Df−1(f(x))|n logδ(e+ |Df−1(f(x))|)Jf (x) dx .

By [12, Theorem 1.2], the Jacobian determinant of f is strictly positive
almost everywhere. Here we also used the pointwise inequality Kf (x) 6
Kn−1
I (x, f) for f with finite distortion. The familiar Cramer’s rule gives∫

X
|Df−1(f(x))|n logδ(e+ |Df−1(f(x))|)Jf (x) dx

=

∫
X
KI(x, f) logδ

(
e+

[
KI(x, f)

Jf (x)

] 1
n

)
dx .

The desired identity follows. �

Since the inner distortion function KI(·, f) is at least 1, Lemma 3.1 gives
(3.4)∫

f(X)
|Df−1|n logδ(e+ |Df−1|) > n−δ

∫
X
KI(x, f) logδ

(
e+

1

Jf (x)

)
dx .

On the other hand, we have

∫
f(X)
|Df−1|n logδ(e+ |Df−1|) 6 2δ

∫
X
KI(x, f) logδKI(x, f) dx

+ 4δ
∫
X
KI(x, f) logδ

(
e+

1

Jf (x)

)
dx .

(3.5)

3.1. Proof of Theorem 1.4. Denote q = (n− 1)(p− n+ 1). By applying
(3.5) and the pointwise inequality KI(x, f) 6 Kn−1

f (x), we have∫
f(X)
|Df−1|n logq(e+ |Df−1|) .

∫
X
Kp
f +

∫
X
KI logq

(
e+

1

Jf

)
,(3.6)
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where the implied constant depends only on n and p.
On the other hand, Hölder’s inequality and [14, Theorem 1.1] gives us

∫
X
KI logq

(
e+

1

Jf

)
6

(∫
X
K

p
n−1

I

)n−1
p
(∫

X
log(n−1)p

(
e+

1

Jf

)) p−n+1
p

6

(∫
X
Kp
f

)n−1
p
(∫

X
Kp
f

) p−n+1
p

=

∫
X
Kp
f (x) .

(3.7)

The claim follows by combining (3.6) and (3.7). �
Hereafter, the symbol a ≈ b means that b . a . b. In the proof of

Theorem 1.6 we will apply the following technical lemma.

Lemma 3.2. Suppose that a, b, c are given positive numbers such that a > c
and a > bxi for all i = 1, . . . , n− 1, where 0 6 xi < 1, i = 1, . . . , n− 1, are
some given numbers. Define

D =



a 0 0 · · · 0 x1b
0 a 0 · · · 0 x2b
...

...
. . .

...
...

...
...

...
...

. . .
...

...
0 · · · · · · · · · a xn−1b
0 · · · · · · · · · 0 c


,

and suppose that λ21 > λ
2
2 > · · · > λ2n > 0 are the eigenvalues of the symmet-

ric matrix A = DDT . Then |λn| ≈ c, and |λ1| ≈ |λ2| ≈ · · · ≈ |λn−1| ≈ a,
where the implied constants depends only on n.

Proof. By applying Gaussian elimination, we may show that

det(A− λI) = (a2 − λ)n−2
(
λ2 − λ

(
a2 + b2

[ n−1∑
i=1

x2i
]

+ c2
)

+ a2c2
)
.

(3.8)

It follows from (3.8) that at least n− 2 of the eigenvalues λ21, . . . , λ
2
n equals

to a2. Next, fix x̂ = (x1, . . . , xn−1) such that for every i = 1, . . . , n − 1 we
have 0 6 xi < 1 and a > bxi. Then for the polynomial

Px̂(λ) := λ2 − λ
(
a2 + b2

[ n−1∑
i=1

x2i
]

+ c2
)

+ a2c2 ,

we have

0 6 Px̂(c2/(n+ 1)) and Px̂(c2) 6 0 .

Therefore, by applying the continuity of Px̂ we have that the equation
Px̂(λ) = 0 has a solution λ ∈ [c2/(n − 1), c2]. Especially, this implies that
λ2n ≈ c2 where the implied constants depends only on n.
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We know now the size of n − 1 of the eigenvalues. The size of the last
eigenvalue can be solved by applying the fact |λ1 · · ·λn| = det(A) = an−1c,
and thus the claim follows. �

3.2. Proof of Theorem 1.6. First we suppose that p = n − 1. Let s > 0
and 0 < ε < s. We define a smooth function h : (0, 1)→ (0,∞) by

h(t) = t
n
n−1 log

1+ε
n−1 (1/t) ,

and our domain takes the form

X =
{
x ∈ Rn : 0 < xn < c, 0 < xi < 1 for all i = 1, . . . , n− 1

}
,

where the constant c > 0 is so small that the function h is strictly increasing
on the interval (0, c). We define a mapping f : X→ Rn by

f(x) = (x1, . . . , xn−1, h(xn)) .

Then ∫
X
Kn−1
f =

∫ c

0

[
1

h′(xn)

]n−1
dxn .

∫ c

0

dxn

xn log1+ε(1/xn)
<∞ ,

where the implied constant depends only on n, and therefore Kf ∈ Ln−1(X).
On the other hand, for the inverse we have

f−1(y) = (y1, . . . , yn−1, h
−1(yn)) .

We observe that h−1(s) ≈ s
n−1
n log−

1+ε
n (1/s), and thus

1 =
d

ds
h(h−1(s)) . (h−1)′(s) (h−1(s))

1
n−1 log

1+ε
n−1

(
1/h−1(s)

)
≈ (h−1)′(s) s

1
n log

1+ε
n (1/s) ,

where all the implied constants depends only on n. Especially, we get

(h−1)′(s) & s−
1
n log−

1+ε
n (1/s) ,(3.9)

where the implied constant depends only on n. By applying (3.9) and the
assumption 0 < ε < s we have∫

Y
|Df−1|n logs(e+ |Df−1|) =∞ .

This gives the proof in the case p = n− 1.
Next we assume that p > n−1. Let us denote denote β = 1

(n−1)(p−1) . Fix

ε > 0 small enough such that (1 + ε)β− 1 < 0. We define a smooth function
ψ : (0, 1)→ (0,∞) by

ψ(t) = tnβ log(1+ε)β(1/t) ,

and smooth functions g, h : (0,∞)→ R by

g(t) = exp(−1/ψ(t)) and h(t) =

∫ t

0
g(s)ψ(s)n−1 ds .
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Suppose that c1 > 0 is so small that log(1+ε)β−1(1/t) < nβ
2 for all 0 < t < c1.

We may assume that c1 does not depend on ε by assuming ε > 0 to be
sufficiently small. Then we have

g′(t) ≈ g(t)

tψ(t)
,(3.10)

for all 0 < t < c1, where the implied constants depends only on n and p.
We fix a constant 0 < c < e−1 so small that functions ψ, g and h are

strictly increasing and the condition (3.10) holds on the interval (0, c). Then
our domain X takes the form

X =
{
x ∈ Rn : 0 < xn < c, 0 < xi < g(xn)/g′(xn) for i = 1, . . . , n− 1

}
,

and we define a mapping f : X→ Y as

f(x) = (x1g(xn), . . . , xn−1g(xn), h(xn)) .

Then we have

Df(x) =


g(xn) 0 · · · 0 x1 g

′(xn)
0 g(xn) · · · 0 x2 g

′(xn)
...

...
. . .

...
...

0 0 · · · g(xn) xn−1 g
′(xn)

0 0 · · · 0 h′(xn)


Next, at each point x ∈ X we define a symmetric matrix S(x) = Df(x)Df(x)T ,
and denote its eigenvalues as

λ21(x) > λ22(x) > · · · > λ2n(x) > 0 .

By applying Lemma 3.2, we get

|λ1(x)| ≈ · · · ≈ |λn−1(x)| ≈ g(xn), and |λn(x)| ≈ h′(xn) ,

where the implied constants depends only on n. Therefore

|Df(x)| ≈ g(xn), Jf (x) = g(xn)n−1 h′(xn) ,

where the implied constants depends only on n. Especially, for the distor-
tions we have

Kf (x) ≈ g(xn)

h′(xn)
and KI(x, f) ≈

(
g(xn)

h′(xn)

)n−1
,

with implied constants depending only on n. By Fubini’s theorem and (3.10)
we get∫

X
Kp
f (x) dx ≈

∫ c

0

∫ g(xn)/g′(xn)

0
· · ·
∫ g(xn)/g′(xn)

0

(
g(xn)

h′(xn)

)p
dx1 · · · dxn

=

∫ c

0

(
g(xn)

g′(xn)

)n−1( g(xn)

h′(xn)

)p
dxn ≈

∫ c

0

dxn

xn log1+ε(1/xn)
<∞ ,
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where the implied constants depends only on n and p. Thus Kf ∈ Lp(X).
On the other hand, by (3.4) we have∫

Y
|Df−1|n logs(e+ |Df−1|) > n−s

∫
X
KI(x, f) logs

(
e+

1

Jf (x)

)
dx

= n−s
∫ c

0

∫ g(xn)/g′(xn)

0
· · ·
∫ g(xn)/g′(xn)

0
KI(x, f) logs

(
e+

1

Jf (x)

)
dx

& n−s
∫ c

0

∫ g(xn)/g′(xn)

0
· · ·
∫ g(xn)/g′(xn)

0

(
g(xn)

h′(xn)

)n−1( 1

|ψ(xn)|

)s
dx

= n−s
∫ c

0

(
g(xn)

g′(xn)

)n−1( g(xn)

h′(xn)

)n−1( 1

|ψ(xn)|

)s
dx1 · · · dxn

≈ n−s
∫ c

0

dxn
xs1n logs2(1/xn)

,

where s1 = (n−1)(p−1+n(n−1−p))+ns
(n−1)(p−1) and s2 = (1+ε)((n−1)(n−2)+s)

(n−1)(p−1) . Above, the

implied constants depends on n. Therefore, this integral can be finite only
if s1 6 1, which is equivalet with the condition

s 6 (n− 1)(p− n+ 1) ,

and the claim follows. �

4. Radially symmetric homeomorphisms

4.1. Proof of Proposition 1.1. When n = 2 the claim follows from [13].
Next, assume n > 3, and denote α := p(n − 1) − 1 > 1. We follow the

notation in (1.3) and write

f(x) = F (|x|) x
|x|

,

where F is a strictly increasing, continuous funcion such that F (0) = 0.
Then f−1(y) = F−1(|y|) y

|y| . Let us denote H := F−1. It suffices to prove

that

(4.1)

∫
B

Hn(|y|)
|y|n

logα
(

1/
√
|y|
)

dy <∞ .

Indeed, suppose that (4.1) is true, and let 0 < r < 1. Then Hölder’s
inequality implies that

Hn(r) logα+1(1/r) 6 Hn(r)

(∫ 1

r

1

t
dt

)1−α(∫ 1

r

1

t
log(1/t) dt

)α
6 Hn(r)

∫ 1

r

1

t
logα(1/t) dt 6

∫
B

Hn(|y|)
|y|n

logα
(

1/
√
|y|
)

dy <∞ ,

and the claim will follow.
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For verifying (4.1) we define the sets

B1 = { y ∈ B : Hn(|y|) 6 |y|n−
1
2 }, B2 =

{
y ∈ B\B1 :

H(|y|)
|y|

6 H ′(|y|)
}
,

B3 =

{
y ∈ B\B1 :

H(|y|)
|y|

> H ′(|y|)
}
.

We have∫
B1

Hn(|y|)
|y|n

logα
(

1√
|y|

)
dy 6

∫
B

1√
|y|

logα
(

1√
|y|

)
dy . 1 ,

where the implied constant depends only on n. On the other hand, it follows
from [14] that∫

B2

Hn(|y|)
|y|n

logα
(

1√
|y|

)
dy 6

∫
B2

Hn(|y|)
|y|n

logα
(
e+

Hn(|y|)
|y|n

)
dy

=

∫
{F (|x|)/|x|>F ′(|x|) }

|x|F ′(|x|)
F (|x|)

logα
(
e+

|x|n

Fn(|x|)

)
dx

6
∫
B

logα
(
e+

1

Jf (x)

)
dx .

∫
B
K

α
n−1

f (x) dx ,

and∫
B3

Hn(|y|)
|y|n

logα
(

1√
|y|

)
dy 6

∫
B3

Hn(|y|)
|y|n

logα
(
e+

Hn(|y|)
|y|n

)
dy

=

∫
{F (|x|)/|x|<F ′(|x|) }

|x|F ′(|x|)
F (|x|)

logα
(
e+

|x|n

Fn(|x|)

)
dx

.
∫
B
K

1
n−1

f logα
(
e+

Kf

Jf

)
.
∫
B
Kp
f ,

where the implied constant depends on n and p. Above, the last inequality
follows from the Hölder’s inequality and [14]. By combining the estimates
above (4.1) follows. This ends the proof. �

4.2. Proof of Proposition 1.5. For a given i ∈ N and αi > 1, we set
Ii = [2−i, 2−(i−1)) and define a function Pαi : Ii

onto−−→ Ii as

Pαi(s) = (2−(i−1) − 2−i)

(
s− 2−i

2−(i−1) − 2−i

)αi
+ 2−i .

Then

P ′αi(s) = αi

(
s− 2−i

2−(i−1) − 2−i

)αi−1
.

Next, suppose that si ∈ Ii is the unique solution of the equation

P ′αi(s) = 1.
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More precisely, si = 2−i
(
α
− 1
αi−1

i +1
)
. Define a linear function Li+1 : [2−(i+1), si)

onto−−→
[2−(i+1), Pαi(si)) as

Li+1(s) = (s− 2−(i+1))Si + 2−(i+1) ,

where

Si =
Pαi(si)− Pαi+1(2−(i+1))

si − 2−(i+1)
.

Then 1
3 6 Si 6 1, for all i ∈ N.

We define f−1 : B onto−−→ B by

f−1(y) =
y

|y|
ρ−1(|y|) ,

where the function ρ−1 : [0, 1)→ [0, 1) is defined as

ρ−1(s) =

 Pαi(s), if s ∈ [si, 2
−(i−1)) and i is odd

Li+1(s), if s ∈ [2−(i+1), si) and i is odd
0, if s = 0 .

Then

|Df−1(y)| ≈
{
P ′αi(|y|), if |y| ∈ [si, 2

−(i−1)) and i is odd

1, if |y| ∈ [2−(i+1), si) and i is odd ,

where the implied constants depends only on n. Therefore, by using the

change of variables with h = s−2−i
2−(i−1)−2−i , and then applying the binomial

expansion, we get∫
B
|Df−1(y)|n dy &

∑
i odd

∫
Ii

sn−1 P ′αi(s)
n ds ≈

∑
i odd

n−1∑
k=0

αni
2in

∫ 1

0
hn(αi−1)+k dh

=
∑
i odd

n−1∑
k=0

αni
2in (n(αi − 1) + k + 1)

&
∑
i odd

αn−1i

2in
,(4.2)

where the implied constants depends only on n.
Next, we approximate the integral of the distortion Kf . For this, we

notice that f : B→ B can be written as

f(x) =
x

|x|
ρ(|x|) ,

where the function ρ : [0, 1)→ [0, 1) is defined by

ρ(t) =

 P−1αi (t), if t ∈ [Pαi(si), 2
−(i−1)) and i is odd

L−1i+1(t), if t ∈ [2−(i+1), Pαi(si)) and i is odd
0, if s = 0 .

We recall that

Kf (x) = max

{
ρ(|x|)
|x|ρ′(|x|)

,

[
ρ′(|x|)|x|
ρ(|x|)

]n−1}
,
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see [10, Lemma 2.1]. Therefore, for each x ∈ B(0, 2−(i−1))\B(0, Pαi(si)),
i ∈ N odd, we have

Kf (x) = max

{
P−1αi (|x|)

|x|(P−1αi )′(|x|)
,

[
(P−1αi )′(|x|)|x|
P−1αi (|x|)

]n−1}
=

P−1αi (|x|)
|x|(P−1αi )′(|x|)

=
αi
|x|

[
|x| − 2−i + (2−i)

1
αi [ |x| − 2−i ]

αi−1

αi

]
6 αi ,(4.3)

and for each x ∈ B(0, Pαi(si))\B(0, 2−(i+1)), i ∈ N odd, we have

Kf (x) = max

{
L−1i+1(|x|)

|x|(L−1i+1)
′(|x|)

,

[
(L−1i+1)

′(|x|)|x|
L−1i+1(|x|)

]n−1}
6 3n−1 .(4.4)

If we now set αi =

[
2in

i

] 1
n−1

, then (4.2) implies∫
B
|Df−1(y)|n dy &

∑
i odd

1

i
=∞ .(4.5)

Moreover, it follows from (4.3) and (4.4) that for every 0 < p < n − 1 we
have ∫

B
Kp
f (x) dx 6

∑
i odd

∫
B(0,2−i)

(αpi + 3p(n−1) ) dx(4.6)

.
∞∑
i=1

[
2−in

[
2in

i

] p
n−1

+
3p(n−1)

2in

]
<∞ ,

where the implied constant depends only on n. The claim follows from (4.5)
and (4.6). �
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