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Abstract
The lattice thermal conductivity is usually an intrinsic property in the study of ther-
moelectricity. In particular, relatively low lattice thermal conductivity is usually a de-
sired feature when higher thermoelectric efficiency is pursued. The mechanisms which
lower the lattice thermal conductivity are not known in sufficient detail and deeper
understanding about the phenomena is needed and if such understanding is achieved
it can be used to design more efficient thermoelectric materials. In this thesis, the
lattice thermal conductivity and other thermal properties of several silicon clathrates,
which are known to be promising candidates for the thermoelectric applications, are
studied by theoretical and computational techniques. The studied clathrates were the
silicon clathrate frameworks I, II, IV, V, VII, VIII (Si23), H and the semiconducting
(Zintl) clathrates [Si19P4]Cl4 and Na4[Al4Si19]. The relevance of seemingly unrelated
phenomena such as the negative thermal expansion on the lattice thermal conductivity
was studied.

The harmonic phonon dispersion relations of the studied structures were investigated.
In particular, the number of the so-called phonon band gaps was found to be two in
the case of the silicon clathrate framework V differing in this respect from the other
structures studied. In general, it was found that all the other clathrates, except VII
and Na4[Al4Si19], have rather similar phonon dispersion relations. Also, an anomalous
negative thermal expansion temperature range was found for the silicon clathrate
framework VII, which appears to be mostly due to stronger third-order interatomic
force constants.

At 300 K, the lattice thermal conductivity of the clathrate Na4[Al4Si19] was found to
be about ten times smaller than obtained for the clathrate [Si19P4]Cl4 which possess
the same space group symmetry than the former. It appears that the main reason
for the preceding is in the second-order interatomic force constants of the clathrate
Na4[Al4Si19], which change the phonon spectrum such that the phonon group velocities
are lower and the anharmonicity of the lattice increases, which in turn leads to the
reduction in the relaxation times of acoustic phonons. The results indicate, that the
effect of harmonic quantities can be rather large on the anharmonicity of two similar
crystals and may lead to one-order lower lattice thermal conductivities, even when
there are no such large differences in the third-order interatomic force constants.

Expressions to calculate different elastic and thermal properties of crystal were derived
by using the technique of many-body Green’s functions and many-body perturbation
theory. The expressions derived extend the existing results and allow a systematic
study of elastic and thermal properties of crystals. For instance, the results obtained
can be used to calculate the kth-order elastic constants such that the so-called phonon
contribution is taken into account, a contribution which is usually neglected in the
computational studies applied to real materials at the present.
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1 Introduction

Thermoelectric materials can be used to produce electricity from temperature differ-
ences. Since waste heat is available in several circumstances, such as in the production
of electricity by steam turbines, there are numerous applications of thermoelectric
materials, where the energy efficiency of the system can be improved. An obstacle
in the more extensive use of the thermoelectric materials is, for instance, the lack
of materials with sufficiently high thermoelectric efficiency. In some cases, toxic ele-
ments such as lead included in the thermoelectric material [1] can be a problem when
more extensive practical applications are considered. One class of crystalline solids,
which can have rather high thermoelectric efficiency, are the so-called semiconducting
clathrates [1–7], also known as Zintl clathrates. The semiconducting clathrates are
usually known as host-guest compounds in which the framework of silicon atoms, for
example, is partially filled with some guest atoms. Some practically guest free exam-
ples of such structures are also known [8, 9]. In this work, the properties related to
thermoelectricity, in particular the lattice thermal conductivity of silicon clathrates,
were studied by computational means.

One challenge in the development of more efficient thermoelectric materials is that
the mechanisms to increase the thermoelectric efficiency are not known in sufficient
detail. One measure of the thermoelectric efficiency is the thermoelectric figure of
merit defined as [10,11]

ZT = σS2T

κl + κel

, (1.1)

where T is the absolute temperature, σ is the electrical conductivity, S the Seebeck
coefficient, κl is the lattice thermal conductivity and κel is the electric contribution
on the thermal conductivity. In particular, the Seebeck coefficient can be defined as
S = −∆V/∆T , where ∆V is the electric potential energy difference per unit charge
(voltage) measured between the ends of a thermoelectric material and ∆T is the
temperature difference between the ends. To increase ZT and thus the thermoelectric
efficiency, one has to maximize σS2T and minimize κl + κel. This can be a rather
difficult task, since these terms are not independent, that is, a change in some term
may lead to an unexpected change in some other term. In this work, the mechanisms
which minimize the lattice thermal conductivity were studied. Deeper understanding
about these mechanisms may in part give clues on how to develop more efficient
thermoelectric materials.

The description of thermoelectric phenomenon is a challenge since in calculating the
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2 Introduction

thermoelectric efficiency one has to solve the quantum mechanical many-body problem
with an appropriate method. The many-body problem itself includes several branches
of research of its own [12–14]. Furthermore, in order to calculate the lattice ther-
mal conductivity values for instance, one has to calculate several non-trivial lattice
dynamical quantities, such as the interatomic force constants (IFCs), usually up to
third-order. The foundations of the dynamical theory of the crystal lattices applied
in modern calculations have been known for over half a century [15]. The ab initio
computational methods, on the other hand, have been developed in past decades to
a point, that it is possible to calculate the second-order IFCs in a systematic manner
for arbitrary crystal structures by applying the density functional theory (DFT) and
density functional perturbation theory (DFPT) [16, 17]. The preceding can be estab-
lished, for instance, by using an open source program package Quantum Espresso
(QE) [18], as it is done in the present work. Also, a third and higher-order IFCs have
been calculated for some special cases by using DFPT [19]. A systematic calculation of
the third-order IFCs for arbitrary crystal structures at the present can be established
by using the finite displacement method implemented, for example, in an open source
program package ShengBTE [20–22].

There are several theoretical and computational difficulties in the calculation of the
lattice thermal conductivity. The measurement of the lattice thermal conductivity is
performed when the system is not in an equilibrium, which makes the description
rather complicated. For instance, at the present, there is no rigorous way to define the
temperature when a system considered is not in an equilibrium [23]. Usually, as in the
present work, methods used assume the system to be in a steady state in which one
assumes a local equilibrium to exist [24,25]. For instance, the linear response method
applied on the thermal conductivity is expected to be valid only if the preceding as-
sumption is made [24]. In this work, the description of lattice thermal conductivity
was established by using the iterative solution of the linearized Boltzmann transport
equation (BTE) implemented in ShengBTE. Theoretical and computational issues re-
lated to the present method were also investigated. In order to apply the linearized
BTE to the calculation of lattice thermal conductivity, several lattice dynamical quan-
tities are usually needed. The necessary lattice dynamical quantities can be obtained
with the methods mentioned in the previous paragraph.

Seemingly unrelated properties may have some significance on the lattice thermal
conductivity and discussions on these different properties are usually conducted sep-
arately. For instance, the negative thermal expansion (NTE) [26, 27] and thermal
expansion in general, have a connection to the lattice thermal conductivity and there
are some experimental evidence for this statement [28, 29] (measurements made for
polycrystalline samples). The connection of the lattice thermal conductivity and the
coefficient of thermal expansion (CTE) is also mathematical in the sense that the same
quantities can be used to calculate them. This becomes evident when the quasihar-
monic approximation (QHA) is used to calculate the CTE [30] and the lattice thermal
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conductivity is approximated at higher temperatures with an expression derived from
the linearized BTE [25]. A material is called a NTE material when the CTE has neg-
ative values within a particular temperature range. That is, a NTE material contracts
when it is heated, which is an opposite what is perhaps usually expected to happen.
Usually, the effect of CTE is neglected in the ab initio lattice thermal conductivity
calculations for realistic materials, but there is at least one exception, namely the
calculations conducted in Ref. [31]. The effect of thermal expansion on the electronic
structure may also have a rather significant effect on the electrical conductivity and
eventually on the thermoelectric properties of crystals.

The CTE is partly an anharmonic effect and it is usually studied by using the QHA [26,
30, 32–39]. When the anharmonic effects are sufficiently strong, the QHA may not
describe CTE and related quantities appropriately and more accurate methods are
needed. One approach to obtain the elastic and thermal properties is the many-body
perturbation theory [40–42]. In Article IV, a systematic listing of the lowest-order
terms was established such that the resulting formulas can be used to calculate various
elastic and thermodynamical properties beyond the QHA, including the CTE. The
resulting equations were also represented in diagrams.

This thesis is organized as follows. Some central entities in the description of the
lattice thermal conductivity and thermal properties of the crystals are the phonons.
Thus, the dynamical theory of crystal lattices, from which the concept of phonon
arises, is presented in some detail in Sec. 2.2. The lattice thermal conductivity is
discussed in Sec. 2.3 and the many-body perturbation theory, used to derive the results
of Article IV, is considered in Sec. 2.4. The computational aspects of the quantum
many-body problem are considered in Sec. 2.5 and some principles of the methods
used to calculate the IFCs are described. The studied silicon clathrate structures are
described in the beginning of Chapter 2 and the results of this thesis are summarized
in Chapter 3.
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2 Theory and computational
methods

2.1 Semiconducting clathrates

The structural characteristics of the semiconducting clathrates have been considered,
for example, in Refs. [4–6, 43]. Schematic figures of the silicon clathrate frameworks
are shown in Fig. 2.1. The silicon clathrate frameworks are allotropes of silicon. That
is, all structures consist of only Si atoms as in the case of the silicon diamond structure
(d-Si), but the arrangement of the atoms is different. The mathematical description
of the positions of atoms within a crystal structure is considered in Sec. 2.2. In this
work, seven different silicon clathrate frameworks (I, II, IV, V, VII, VIII, H, see for
instance Ref. [5]) and two different Zintl clathrates ([Si19P4]Cl4, Na4[Al4Si19]), were
studied. As an example, the crystallographic body-centered cubic unit cell of the
clathrates [Si19P4]Cl4 and Na4[Al4Si19] is depicted in Fig. 2.2. The silicon clatharate
framework VIII (or Si23, shown also in Fig. 2.1) can be obtained by replacing the
framework heteroatoms (also called framework guest atoms) Al/P with silicon atoms
and by removing the Na/Cl guest atoms from the structure. In general, the number of
possible combinations of guest atoms and clathrate frameworks is rather large, which
makes possible to pursue the properties desired by changing the constituent elements.
Also C, Ge or Sn could be used in the place of Si, which gives further possibilities to
modify the properties in a direction desired. However, to the author’s knowledge, only
Si, Ge and Sn clathrates are experimentally known. The problem is that it is relatively
difficult to say to which direction the different properties of the material change when
something in the structure is changed. One approach is to try different combinations
and experimentally measure what happens. An alternative approach, for example, is
to use theoretical and computational methods in order to gather information about
the structures and perhaps gain some further understanding about the mechanisms,
which lead to certain properties. If a sufficient regularity with respect to some property
is found, perhaps some deductions can be made to facilitate the search of more efficient
thermoelectric materials, for instance. The latter approach was used in the present
work.
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6 Theory and computational methods

I (Pm-3n) II (Fd-3m)

IV (P6/mmm) V (P63/mmc)

VII (Im-3m) VIII (I-43m) H (P6/mmm)

Figure 2.1: Schematic figures of the silicon clathrate frameworks. The vertices of the polyhedral
cages present silicon atoms and crystallographic unit cell edges are drawn in black. Structural de-
tails and atomic positions of these structures can be found from Ref. [5] (optimized with different
computational methods than used here). Copyright c⃝ 2014, American Physical Society.

2.2 Lattice dynamics

The description of lattice thermal conductivity and other quantities considered in
this work can be made by using the theory of lattice dynamics [15, 42, 45, 46]. A
crystal lattice can be considered a periodic array of atoms comprising the crystal.
The rest positions of the atoms in a crystal lattice can be described by the vector
x (lκ) ≡ x (l) + x (κ) , κ = 1, 2, . . . , n, where x (κ) is the position vector of atom κ
within the unit cell and x (l) is the lattice translational vector given by

x
(
l(1), l(2), l(3)

)
≡ x (l) = l(1)a1 + l(2)a2 + l(3)a3, l(i) ∈ Z. (2.1)
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Si

Al / P Na / Cl

Figure 2.2: The crystallographic body-centered cubic unit cell of the semiconducting clathrates
[Si19P4]Cl4 and Na4[Al4Si19]. The figure was prepared using the VESTA visualization program [44].
Copyright c⃝ 2016, American Physical Society.

In Eq. (2.1), the vectors ai are the primitive lattice translational vectors of the lattice.
The rest positions, are also equilibrium positions if [15]: net forces for each atom
vanish and in this configuration the stresses vanish. The atoms are expected to vibrate
around the rest positions and these displacements are denoted as u (lκ) such that the
instantaneous positions of the atoms can be written as x (lκ) + u (lκ).

The lattice dynamical Hamiltonian H of the system is assumed to be a sum of kinetic
Tn and potential energy terms Φ, that is H = Tn + Φ. The kinetic energy is assumed
to be

Tn = 1
2
∑
l,κ,α

p2
α (lκ)
Mκ

, (2.2)

where pα (lκ) is the αth Cartesian component of the momentum of the atom, Mκ

the atomic mass of atom κ and the potential energy is assumed to be a function of
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instantaneous positions of the atoms

Φ = Φ [x (l1κ1) + u (l1κ1) , . . . ,x (lnκn) + u (lnκn)] . (2.3)

The potential energy is expanded to a Taylor series in the displacements

Φ =
∑
n=0

1
n!

∑
l1,κ1,α1

· · ·
∑

ln,κn,αn

Φα1···αn (l1κ1; . . . ; lnκn)uα1 (l1κ1) . . . uαn (lnκn) , (2.4)

where the so-called nth-order interatomic force constants (IFCs) are defined as

Φα1···αn (l1κ1; . . . ; lnκn) ≡ ∂nΦ
∂x′

α1 (l1κ1) · · · ∂x′
αn

(lnκn)

∣∣∣∣∣
{x′(liκi)=x(liκi)}

. (2.5)

In the lattice dynamical context, the static potential energy contribution of the lattice
in the expansion with n = 0 can usually be neglected and if the rest positions are
equilibrium positions, the potential term with n = 1 vanishes. Since the lattice is
assumed to be infinite, the quantities such as the potential energy of the lattice is
infinite as well. To obtain finite and normalized values of physical quantities, the
Born-von Karman boundary conditions are imposed [15]. Instead of an infinite crystal,
macro crystals of finite size are considered and are assumed to be larger than the
primitive unit cell of the lattice. It is assumed that, each macro crystal is composed
of L3 = N primitive unit cells, L being arbitrary positive integer. The boundary
conditions can be written as

u (lκ) = u (L+ lκ) , x (lκ) = x (L+ lκ) , (2.6)

which means that the displacements u (lκ) have equal values at the same site lκ of
every macro crystal. When the macro crystal is sufficiently large, the surface effects
become relatively small as the number of surface atoms decreases rather rapidly with
respect to the total number of atoms within the macro crystal. However, due to the
periodic boundary conditions, the surface effects are absent. The convergence as a
function of the macro crystal size can be tested by numerical calculations.

The next step could be the substitution of the Hamiltonian to the Hamiltonian equa-
tions of motion, but by doing so one obtains a coupled set of differential equations.
There is an alternative approach in which the Hamiltonian is written as H = H0 +Ha,
with

H0 = 1
2
∑
l,κ,α

p2
α (lκ)
Mκ

+ 1
2!
∑
l,κ,α

∑
l′,κ′,β

Φαβ (lκ; l′κ′)uα (lκ)uβ (l′κ′) , (2.7)

Ha =
∑

n ̸=0,2

1
n!

∑
l1,κ1,α1

· · ·
∑

ln,κn,αn

Φα1···αn (l1κ1; . . . ; lnκn)uα1 (l1κ1) . . . uαn (lnκn) , (2.8)

Sometimes, H0 and Ha are called the harmonic and anharmonic Hamiltonian, respec-
tively. It turns out that by finding a set of suitable canonical transformations, one
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can obtain the diagonal for the harmonic Hamiltonian H0 and one obtains a set of
decoupled equations of motion for 3n different modes of vibration.

For instance, the harmonic potential energy can be written as

Φ2 = 1
2
∑
l,κ,α

∑
l′,κ′,β

Dαβ (lκ; l′κ′)wα (lκ)wβ (l′κ′) , (2.9)

where the mass reduced second-order IFCs and the mass reduced displacements are
of the following form

Dαβ (lκ; l′κ′) = Φαβ (lκ; l′κ′)√
MκMκ′

, wα (lκ) =
√
Mκuα (lκ) . (2.10)

One may obtain the diagonal form for the potential energy with the following trans-
formations [15] (the justification of these steps is given below)

wα (lκ) = 1
N

N∑
q
wα (κ|q) eiq·x(l), (2.11)

wα (κ|q) =
∑

j

eα (κ|qj)Qqj, (2.12)

and thus
wα (lκ) = 1

N

∑
qj

eα (κ|qj) eiq·x(l)Qqj. (2.13)

In Eqs. (2.11)-(2.13), q is the wave vector times 2π, j = 1, 2, . . . , 3n is the mode
index, e (κ|qj) is the phonon eigenvector and Qqj the (complex) normal coordinate.
As in Refs. [42,46], the following notation wα (κ|q) = wα (κ; q) is used. Further trans-
formation to real normal coordinates is needed to obtain the real displacements (or
waves) of the lattice [15, 46] from the displacements given by Eq. (2.13), but this is
not established in the present work. In Eq. (2.11), the displacements were written as a
Fourier series (due to the lattice periodicity) and in Eq. (2.12) further transformation
was made in terms of the coordinates {Qqj} and phonon eigenvectors {e (κ|qj′)} to
diagonalize the dynamical matrix defined by Eq. (2.22).

At this point, it is noted that the periodic boundary conditions restrict the possible
values of the wave vector q. The admissible values can be obtained as follows. Let

x (mL) ≡ m1La1 +m2La2 +m3La3, m1,m2,m3 ∈ Z, (2.14)

Now, from the periodic boundary conditions it follows that

wα (l +mL, κ) = 1
N

∑
qj

eα (κ|qj) ei[q·x(l)]ei[q·x(mL)]Qqj = wα (lκ) , (2.15)
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which implies that
ei[q·x(mL)] = 1. (2.16)

These conditions are valid if the dot product between the wave vector and the trans-
lational vectors is 2πn, n ∈ Z. The wave vectors which satisfy the aforementioned
condition belong to a reciprocal lattice. The reciprocal lattice translational vector can
be defined in terms of the primitive reciprocal lattice translational vectors bj, namely

G (h) ≡ G
(
h1b1, h2b2, h3b3

)
= h1b1 + h2b2 + h3b3, h1, h2, h3 ∈ Z, (2.17)

with

b1 = 2π a2 × a3

|a1 · a2 × a3|
, b2 = 2π a3 × a1

|a1 · a2 × a3|
, b3 = 2π a1 × a2

|a1 · a2 × a3|
. (2.18)

One can show that ai · bj = 2πδij, which means that

x (l) · G (h) = 2π (l1h1 + l2h2 + l3h3) . (2.19)

All distinct solutions for the displacements can be obtained if the wave vector values
are restricted to the values given, for example, by

q (h1, h2, h3) ≡ q (h) ≡ q = h1

L
b1 + h2

L
b2 + h3

L
b3, 0 ≤ hj < L− 1. (2.20)

Thus, there is L3 = N different values for the integers h1, h2, h3. In all cases considered
in the present work, the wave vector mesh generated by Eq. (2.20) was used. In the
actual calculations, QE and ShengBTE impose symmetry on the q meshes and there
is no need to consider all the wave vectors included in Eq. (2.20) separately. Instead,
one of the symmetry equivalent wave vectors is explicitly taken into account, while
the effect of the others is included in the weighting function W (q), which means that
one replaces 1/N → W (q) whenever there is a summation over q.

Now the harmonic Hamiltonian H0 is diagonalized. One may write after the substi-
tution of Eq. 2.13 to Eq. 2.9

Φ2 = 1
2N2

∑
l,κ,α

∑
l′,κ′,β

∑
qj

∑
q′j′

eα (κ|qj) eiq·x(l)

×Dαβ (lκ; l′κ′) eβ (κ′|q′j′) eiq′·x(l′)QqjQq′j′

= 1
2N

∑
q,j,j′

Q∗
qjQqj′

∑
κ,α

∑
κ′,β

e∗
α (κ|qj)Dαβ (κκ′|q) eβ (κ′|qj′) , (2.21)

where the dynamical matrix is of the form

Dαβ (κκ′|q) ≡
∑

l

Dαβ (lκ; 0κ′) e−iq·x(l). (2.22)
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The dynamical matrix is Hermitian and the eigenvalue equation for this matrix can
be written as

ω2
j (q) eα (κ|qj) =

∑
κ′,β

Dαβ (κκ′|q) eβ (κ′|qj) . (2.23)

In Eq. (2.23), ωj (q) is the phonon eigenvalue (or phonon frequency) and e (κ|qj′) is
the phonon eigenvector. Since the dynamical matrix is Hermitian, the eigenvectors
can be chosen to satisfy ∑

κ,α

eα (κ|qj′) e∗
α (κ|qj) = δjj′ , (2.24)

∑
j

eα (κ|qj) e∗
β (κ′|qj) = δαβδκκ′ . (2.25)

If assumed that the displacements wα (lκ) are real, it can be shown that e∗ (κ|qj) =
e (κ| − qj), ωj (−q) = ωj (q) and Q∗

qj = Q−qj. By using the results obtained so far,
Eq. (2.21) can be written as

Φ2 = 1
2N

N∑
q=1

3n∑
j=1

Q∗
qjQqjω

2
j (q) . (2.26)

One may write in a similar way for the kinetic energy by noting that p2
α (lκ) /Mκ =

ẇ2
α (lκ) and after the calculation the harmonic Hamiltonian can be written as

H0 = 1
2N

N∑
q=1

3n∑
j=1

[
Q∗

qjQqjω
2
j (q) + Q̇∗

qjQ̇qj

]
. (2.27)

There are only diagonal terms in the harmonic Hamiltonian given by Eq. (2.27) and
one may obtain the decoupled equations of motion when the Hamiltonian equations
of motion are written for H0. Further development in the lattice dynamical problem is
established within the formalism of quantum mechanics in Sec. 2.2.1, which eventually
allows the calculation of the quantities studied in the present work.

The actual calculation of the second-order IFCs and thus phonon eigenvalues and
eigenvectors can be established by using the DFPT [17,18]. The preceding calculation
is justified by the so-called harmonic approximation (a special case of an adiabatic
approximation, see Sec. 2.5.1) [15]. In practice, the crystal structures are first op-
timized by the DFT together with the plane-wave basis and pseudopotentials from
which the ground state electron density is obtained. Further, the second-order IFCs
are obtained by applying the Hellmann-Feynman theorem [17, 47] (electron density
et cetera needed). The used plane-wave basis sets, pseudopotentials and exchange-
correlation energy approximations are listed in Articles I-III and the DFT method
used is summarized in Sec. 2.5.2.

The calculation of the third-order IFCs can be conducted by applying the adiabatic
approximation [15, 48]. In some special cases, the third-order IFCs have been calcu-
lated by using DFPT [19], but at the present, no open source code is available. Instead,
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the third-order IFCs were calculated by using the finite-difference method, where the
IFCs are obtained from the numerical derivatives of single point energies. Since the QE
can calculate the force by applying the Hellmann-Feynman theorem [47,49], the finite
differences are needed to calculate only the second-order numerical derivatives. This
method is implemented in the ShengBTE program package [21, 22]. The adiabatic
approximation justifies the preceding procedure provided the adiabatic approxima-
tion is valid for the description of the material considered. In particular, it is usually
expected that the adiabatic approximation is valid for insulating and semiconduct-
ing crystals [42]. A more detailed description of the theoretical and computational
techniques used to calculate the IFCs is given in Sec. 2.5.

2.2.1 Second quantization and phonons

The phonons can be considered as the collective excitations of a crystal lattice or
in other words, the collective movement of the atoms comprising a crystal lattice.
These excitations have similar properties as particles, for instance, phonons can have
rather well defined energy. In this section, the second quantization [50] and occupation
number representation is discussed in conjunction with phonons.

The occupation number representation is usually a rather convenient way to describe
many-body systems in quantum mechanics and it turns out to be a quite useful
technique in the lattice dynamical applications. Some principles of the method are
summarized below. The many-body systems in quantum mechanics can be described
by the spaces which are tensor products of the Hilbert spaces of one particle [51,52].
If one considers a system of m identical particles, then the space which can be used
to describe this system may be written as

H⊗m = H ⊗ · · · ⊗ H︸ ︷︷ ︸
×m

, (2.28)

where H is the single particle Hilbert space. If the number of particles is variable, then
the space which describes the system is the so-called Fock space, which is a direct sum
of tensor product spaces, namely [53]

F (H) = ⊕∞
m=0H⊗m = C ⊕ H ⊕ (H ⊗ H) ⊕ · · · . (2.29)

The m particle states are described by the vectors |ψ⟩ ∈ H⊗m and any such state can
be written as

|ψ⟩ =
∑
i1

· · ·
∑
im

vi1···im |e(1)
i1 ⟩ ⊗ · · · ⊗ |e(m)

im
⟩ , (2.30)

where the basis is assumed to be discrete, the subscripts {ij} refer to basis states and
the superscripts are particle labels. If the particles are identical, the latter may be
omitted. Further, in Eq. (2.30), vi1···im is the probability amplitude that there is one
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particle in the state i1, one particle in the state i2,. . . and one particle in the state
im. It is quite generally accepted that there are two classes of elementary particles in
nature, namely, fermions and bosons. It turns out that the phonons are bosons and it
seems that for bosons there are only symmetric states in nature. A system of identical
bosons are thus described by symmetric spaces H⊗m

+ and F+ (H). For instance, let
|ψ⟩ ∈ H⊗m

+ , then

|ψ⟩ =
∑

i1,...,im

vi1···imŜ+ |e(1)
i1 ⟩ ⊗ · · · ⊗ |e(m)

im
⟩ =

∑
i1,...,im

vi1···imŜ+ |ei1ei2 · · · eim⟩ , (2.31)

where the particle labels haven been neglected and the symmetrization operator is
defined as

Ŝ+ ≡ 1√
n!
∑
σn

P̂σn , (2.32)

where the summation is over all n! permutations. There is some evidence that in the
case of bosons, the system can be in the state in which several particles can be in
the same state, that is, one could write for instance vi1i1i3···im . Therefore, in the case
of bosons, one may say that vi1i2···im is the probability amplitude that there is ni1

particles in the state i1, ni2 particles in the state i2, . . . and nim particles in the state
im. Some of the

{
nij

}
may be zero or in an extreme case there could be nij

= m

and hence the other {nik
} vanish. In the occupation number representation, the cre-

ation(annihilation) operators can be defined such that they create(annihilate) particles
in the states, thus, these operators are maps (functions) within the Fock space and al-
low the description of various interaction processes. Indeed, the description of various
interaction processes in terms of the creation and annihilation operators can be made
in an arbitrary case since it can be shown [51] that any bosonic or fermionic operator
can be written in terms of the creation and annihilation operators (including Hamil-
tonian). The symmetry(anti-symmetry) information of the states is included in the
commutation(anti-commutation) relations of such operators. For example, the simple
harmonic oscillator can be described with the mathematical construction discussed
above. In this case the system may be described by the vectors belonging to sym-
metric Fock space (energy eigenbasis) [51]. The creation(annihilation) operator maps
a ket |n⟩ which belongs to an eigenvalue n to a ket which belongs to an eigenvalue
n+1(n−1). The same formalism can be used in the lattice dynamical problem, which
is discussed below.

In the quantum mechanical treatment, the displacement u (lκ) and corresponding
momentum p (lκ) are considered to be operators satisfying the following commutation
relations (canonical quantization)

[ûα (lκ) , ûβ (l′κ′)]− = [p̂α (lκ) , p̂β (l′κ′)]− = 0, [ûα (lκ) , p̂β (l′κ′)]− = i~δll′δκκ′δαβ.
(2.33)

The operators are denoted by the symbols with a hat placed on them. The displace-
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ment given by Eq. (2.13) and the corresponding momentum may be written as

ûα (lκ) = 1√
MκN

∑
qj

eα (κ|qj) eiq·x(l)Q̂qj, (2.34)

p̂α (lκ) =
√
Mκ

N

∑
qj

eα (κ|qj) eiq·x(l) d

dt
Q̂qj. (2.35)

The next step is similar to that taken in the simple harmonic oscillator case [51], that
is, one defines Q̂qj and its time derivative as follows

Q̂qj ≡
[

~
2ωj (q)

]1/2 (
âqj + â†

−qj

)
, (2.36)

d

dt
Q̂qj ≡ −i

[
~ωj (q)

2

]1/2 (
âqj − â†

−qj

)
. (2.37)

and writes Eqs. (2.34) and (2.35) as

ûα (lκ) =
(

~
2N2Mκ

)1/2∑
q,j

ω
−1/2
j (q) eiq·x(l)eα (κ|qj)

(
âqj + â†

−qj

)
, (2.38)

p̂α (lκ) = −i
(
~Mκ

2N2

)1/2∑
q,j

ω
1/2
j (q) eiq·x(l)eα (κ|qj)

(
âqj − â†

−qj

)
, (2.39)

where â†
qj and âqj are the creation and annihilation operators for the phonon state

qj, respectively. The commutation relations for â†
qj, âqj follow from the commutation

relations given by Eq. (2.33), namely[
â†

qj, â
†
q′j′

]
−

= [âqj, âq′j′ ]− = 0,
[
âqj, â

†
q′j′

]
−

= δjj′∆ (q − q′) . (2.40)

Here
∆ (q − q′) = 1

N

∑
l

ei(q−q′)·x(l), (2.41)

which is unity if q − q′ is a translation vector of the reciprocal lattice (including zero)
and otherwise zero. By denoting

Âqj = âqj + â†
−qj, B̂qj = âqj − â†

−qj, λ → qj, −λ → −qj, (2.42)

and by using Eqs. (2.38) and (2.39) in the Hamiltonian Ĥ = Ĥ0 + Ĥa, one may write

Ĥ0 =
∑

λ

~ωλ

(1
2

+ â†
λâλ

)
= 1

4
∑

λ

~ωλ

(
Â†

λÂλ + B̂†
λB̂λ

)
, (2.43)

Ĥa =
∑

λ

V (λ) Âλ +
∑
n=3

∑
λ1

· · ·
∑
λn

V (λ1; . . . ;λn) Âλ1 · · · Âλn , (2.44)
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where

V (q1j1; . . . ; qnjn) = 1
n!Nn

(
~
2

)n/2 ∆ (q1 + · · · + qn)
[ωj1 (q1) · · ·ωjn (qn)]1/2

×
∑

κ1,α1

∑
l2,κ2,α2

· · ·
∑

ln,κn,αn

Φα1···αn (0κ1; l2κ2; . . . ; l′nκ′
n)

×eα1 (κ1|q1j1)
M

1/2
κ1

· · · eαn (κn|qnjn)
M

1/2
κn

ei[q2·x(l2)+···+qn·x(ln)].

(2.45)

From now on, the notations λ and qj are used interchangeably. Furthermore, the
following notations are used ωj (q) = ω (λ) = ωλ. As mentioned earlier in this section,
any operator can be written in terms of creation and annihilation operators and indeed
this can be confirmed in the present case when Eqs. (2.43) and (2.44) are inspected.
Usually, the eigenstates of the Hamiltonian Ĥ0 are considered to be stationary states
of the system and Ĥa is treated as a perturbation. The preceding procedure is expected
to produce reasonable results when the anharmonic Hamiltonian Ĥa is relatively small
in comparison to Ĥ0.

When similar steps are made as in the simple harmonic oscillator case [51], it can be
shown that the eigenstates of the Hamiltonian Ĥ0 can be written as N∏

q

3n∏
j

(nqj!)−1/2
(
â†

qj

)nqj

 |0⟩ = |nq1j1 · · ·nqN j3n⟩ , (2.46)

where |0⟩ is the vacuum state and |nq1j1 · · ·nqN j3n⟩ is the state with nq1j1 phonons in
the phonon state q1j1 et cetera. A space in which |nq1j1 · · ·nqN j3n⟩ belongs is different
from those referred so far and it belongs to a tensor product space in which the
individual spaces in the tensor product are symmetrized Fock spaces and the Fock
space which describes the system is the direct sum of these tensor product spaces. As
in the simple harmonic oscillator case, the following relations hold for the creation
and annihilation operators

â†
qj |nq1j1 · · ·nqN j3n⟩ = (nqj + 1)1/2 |nq1j1 · · ·nqj + 1 · · ·nqN j3n⟩ ,
âqj |nq1j1 · · ·nqN j3n⟩ = (nqj)1/2 |nq1j1 · · ·nqj − 1 · · ·nqN j3n⟩ . (2.47)

Thus, â†
qj and âqj are one-body operators which act only on vectors of one subspace

in the tensor product leaving the others unchanged (identity operator for other spaces
in the tensor product). Now, one may say that when â†

qj acts on the eigenket of the
harmonic Hamiltonian belonging to the eigenvalue nqj, another eigenket is obtained
which belong to the eigenvalue nqj + 1. By using the relations given in Eq. (2.47), one
may write

Ĥ0 |nq1j1 · · ·nqN j3n⟩ =
N∑
q

3n∑
j

~ωj (q)
(1

2
+ nqj

)
|nq1j1 · · ·nqN j3n⟩ , (2.48)
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where ~ωj (q) /2 is the vacuum energy. Thus, â†
qj increases the energy of the state

qj by an amount ~ωj (q) and it is said that one phonon is added on the state qj.
One cannot annihilate a phonon from the vacuum, therefore âqj |0⟩ = 0. Further,
kets belonging to different phonon numbers are orthonormal, which can be stated
mathematically as

⟨nqN j3n · · ·nq1j1 |mq1j1 · · ·mqN j3n⟩ = δnq1j1mq1j1
· · · δnqN j3N mqN j3N

. (2.49)

The properties of the creation and annihilation operators given by Eqs. (2.40) and
(2.47) are essential when the expressions for quantities such as the lifetimes of phonons
are derived.

The definition of an operator Ô in the Heisenberg picture is

ÔH (t) ≡ eiĤt/~Ôe−iĤt/~. (2.50)

Within the harmonic approximation, the creation â†
qj,H (t) and annihilation âqj,H (t)

operators in the Heisenberg picture have the equations of motion

i~
d

dt
âqj,H (t) =

[
âqj,H (t) , Ĥ0

]
−
, i~

d

dt
â†

qj,H (t) =
[
â†

qj,H (t) , Ĥ0
]

−
, (2.51)

when the Hamiltonian Ĥ0 has no explicit time dependence. In the present case, oper-
ators in the interaction picture are equivalent since the Hamiltonian Ĥ0 is used. By
using the commutation rules given by Eq. (2.40), one may write

i~
d

dt
âqj,H (t) = ~ωj (q) âqj,H (t) , i~

d

dt
â†

qj,H (t) = −~ωj (q) â†
qj,H (t) , (2.52)

which are separable equations with the following solutions (here, the operators can
be treated as numbers for each t)

âqj,H (t) = âqje
−iωj(q)t, â†

qj,H (t) = â†
qje

iωj(q)t. (2.53)

The integration was made over the interval [0, t] and thus

âqj,H (0) = âqj, â†
qj,H (0) = â†

qj. (2.54)

2.2.2 Expansion of potential energy with respect to macro-
scopical variables

In order to calculate different physical quantities of a crystal such as the elastic prop-
erties, the following expansion of the Hamiltonian is made (see Refs. [15, 54] and
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Article IV).

Ĥp =
∑
m=1

∑
n1=0

· · ·
∑

nm=0

∑
α

(1,1)
1

· · ·
∑

α
(m,hm)
nm

∑
k1=0

∑
λ̄k1

· · ·
∑

km=0

∑
λ̄km

×gα
(1,1)
1 ···α(m,hm)

nm

λ̄km
f

α
(1,1)
1 ···α(1,h1)

1
· · · f

α
(1,1)
n1 ···α(1,h1)

n1
· · ·

×f
α

(2,1)
1 ···α(2,h2)

1
· · · f

α
(2,1)
n2 ···α(2,h2)

n2
· · · f

α
(m,1)
1 ···α(m,hm)

1

× · · · f
α

(m,1)
nm ···α(m,hm)

nm
Âλ1 · · · Âλk1

· · · Âλ1m
· · · Âλkm

, (2.55)

where the notation given by Eq. (2.60) is used and{
f

α
(m,1)
nm ···α(m,hm)

nm

}
, (2.56)

is the set of mth macroscopic parameters with hm indices. In expanding Ĥp, it is first
assumed that the Hamiltonian is a function of the macroscopic parameters and then a
power expansion in these parameters is written. Then it is assumed that the coefficients
g (indices neglected) of the preceding expansion are functions of the displacements
û (lκ) [and thus functions of the operators Âλ, see Eq. (2.42)] and the second expan-
sion is made in the displacements. Examples of such macroscopic parameters are the
infinitesimal strain parameters (considered in Article IV) and electric field compo-
nents. For instance, the expansion in terms of the infinitesimal strain parameters can
be written as

Ĥs =
∑
m=1

1
m!

∑
µ̄m

∑
ν̄m

∑
n=0

∑
λ̄n

Vµ̄mν̄m

(
λ̄n

)
ūµmνmÂλ1 · · · Âλn . (2.57)

where

Vµ1ν1···µmνm (λ1;λ2; · · · ;λn) = 1
n!

∑
κ1,α1

∑
l2κ2,α2

· · ·
∑

lnκn,αn

∑
l′1κ′

1

∑
l′2κ′

2

· · ·
∑

l′mκ′
m

×∆ (q1 + q2 + · · · + qn)
×Φα1···αnµ1···µm (0κ1; l2κ2; · · · ; lnκn; l′1κ′

1; · · · ; l′mκ′
m)

×Tα1 (λ1|0κ1)Tα2 (λ2|l2κ2) · · ·Tαn (λn|lnκn)
×xν1 (l′1κ′

1) xν2 (l′2κ′
2) · · · xνm (l′mκ′

m) , (2.58)

and

Tα (λ|lκ) =
(

~
2Mκ

)1/2

ω
−1/2
λ eiq·x(l)eα (κ|λ) . (2.59)



18 Theory and computational methods

In Eq. (2.57), the following notations are used∑
µ̄m

≡
∑
µ1

· · ·
∑
µm

,
∑
ν̄m

≡
∑
ν1

· · ·
∑
νm

,

µ̄m ≡ µ1 · · ·µm, ν̄m ≡ ν1 · · · νm,

ūµmνm ≡ uµ1ν1 · · ·uµmνm ,

λ̄n ≡ λ1;λ2; · · · ;λn,
∑
λ̄n

≡
∑
λ1

· · ·
∑
λn

,

Vµ̄mν̄m

(
λ̄n

)
≡ Vµ1ν1···µmνm (λ1;λ2; · · · ;λn) . (2.60)

The total lattice Hamiltonian is now assumed to be of the following form

Ĥd = Ĥ0 + Ĥa + Ĥs = Ĥ0 + Ĥint, (2.61)

where Ĥ0 and Ĥa are given by Eqs. 2.43 and 2.44, respectively. The Hamiltonian Ĥd

is used to derive the results of Article IV and the many-body perturbation theory
used to derive these results is summarized in Sec. 2.4.

2.2.3 Physical interpretation of phonon eigenvectors

In this section, a physical interpretation of the phonon eigenvectors and the phase
factors (like eiq·x(l)), is given. The interpretation is represented in Article IV and
to the author’s knowledge, no such similar interpretation in the lattice dynamical
context has been given in the literature before. However, in the relativistic quantum
field theory, a similar interpretation is given to unit spinors of spin-1/2 fields in the
expansion of quantum field operators, which are in turn analogous to the polarization
vectors of spin-1 fields [55].

Let {|l, κ, α⟩} form a complete set (a basis) such that∑
l,κ,α

|l, κ, α⟩ ⟨α, κ, l| = 1̂. (2.62)

Then, one may write for the harmonic potential energy

Φ̂2 = 1
2
∑
l,κ,α

∑
l′,κ′,β

Φαβ,2 (lκ; l′κ′) |l, κ, α⟩ ⟨β, κ′, l′| , (2.63)

where
Φαβ,2 (lκ; l′κ′) ≡ ⟨α, κ, l|Φ̂2|l′, κ′, β⟩ . (2.64)

By comparing Eqs. 2.63, 2.64 and 2.9, one may identify

Φαβ,2 (lκ; l′κ′) = Dαβ (lκ; l′κ′) , (2.65)
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and
|l, κ, α⟩ ⟨β, κ′, l′| = ŵα (lκ) ŵβ (l′κ′) . (2.66)

Further, one may write Eq. 2.63 as

Φ̂2 = 1
2
∑
l,κ,α

∑
l′,κ′,β

Φαβ,2 (lκ; l′κ′) |l, κ, α⟩ ⟨β, κ′, l′|

= 1
2N2

∑
l,κ,α

∑
l′,κ′,β

∑
q,j

∑
q′,j′

⟨j,q|l, κ, α⟩Dαβ (lκ; l′κ′) ⟨β, κ′, l′|q′, j′⟩

× |q, j⟩ ⟨j′,q′| . (2.67)

Here, the notation is inexact for the quantities ⟨q, j|l, κ, α⟩. The kets |l, κ, α⟩ and |j,q⟩
should belong to a space with equal dimensions and this is indeed the case when l
and q is considered. The mode index has the values j = 1, 2, . . . , 3n, and thus, to be
more precise, one has to use a common index for the indices κ, α, which (as a pair)
have 3n different values. For the sake of notational consistency with the eigenvectors
e (κ|qj) and dynamical matrix, the indices are written separately.

Now, a comparison of Eqs. 2.21 and 2.67 shows that one may identify

⟨q, j|l, κ, α⟩ = eα (κ|qj) eiq·x(l), (2.68)

and
|q, j⟩ ⟨j′,q′| = Q̂qjQ̂q′j′ . (2.69)

By using quantum mechanical interpretation [51], the quantities, ⟨q, j|l, κ, α⟩ in Eq.
2.68 can be considered as the probability amplitudes of {j′} having the value j (for
each q) when {l′, κ′, α′} certainly have the values l, κ, α. In a similar way, one may
consider

|⟨j,q|l, κ, α⟩|2 = |⟨j,q|κ, α⟩|2 = |eα (κ|qj)|2 , (2.70)

as the probability of {j′} having the value j (for each q) when {κ′, α′} certainly have
the values κ, α or the probability of {κ′, α′} having the values κ, α when {j′} certainly
have the value j (for each q). The probability is not affected by the phase factor
eiq·x(l) and thus, it is not affected by the cell index l (only phase difference matters).
By using the present notation, the conditions for eigenvectors given by Eqs. 2.24 and
2.25 show that these probabilities are normalized (cell index l neglected)∑

κ

|⟨j,q|κ⟩|2 =
∑

j

|⟨j,q|κ, α⟩|2 = 1, (2.71)

where |⟨j,q|κ⟩|2 = |e (κ|qj)|2. In other words, one may interpret |e (κ|qj)|2 as the
probability that the atom κ vibrates in the phonon mode qj. The interpretation
given here is used in the analysis of the numerical results.
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2.3 Description of lattice thermal conductivity

The lattice thermal conductivity καβ can be defined through the phenomenological
Fourier relation

Jα = −
∑

β

καβ
∂T

∂xβ

, (2.72)

where Jα is the αth Cartesian component of the heat flux. The description of the lattice
thermal conductivity by theoretical means is a rather challenging task since the crystal
lattice is not in thermal equilibrium. Usually, it is assumed that the temperature
behave rather smoothly as a function of position and thus one may assume that
there is a local equilibrium in different parts of the crystal lattice. This simplifies the
treatment. In the approach used in the present work, the following form for the heat
flux is assumed

J = 1
V

∑
q,j

~ωj (q) v (qj)nqj. (2.73)

where V is the volume of the unit cell, nqj is the non-equilibrium phonon distribution
function and v (qj) is the phonon group velocity for the state labeled by qj. However,
it has been shown that the J given by Eq. (2.73) is a special case of more general heat
flux [56]. All the other terms included in J, except nqj, are known from the harmonic
approximation. In the BTE approach [25,57,58], nqj is approximated by

nλ ≈ n̄λ (~ωλ + Fλ · ∇T ) = 1
e(~ωλ+Fλ·∇T )β − 1

≈ n̄λ + ∂n̄λ

∂~ω′
λ

∣∣∣∣∣
ω′

λ
=ωλ

Fλ · ∇T. (2.74)

In Eq. (2.74), n̄λ is the so-called Bose-Einstein distribution function [see Eq. (2.88) of
Sec. 2.4.1]. When this approximate expression is used in Eq. (2.73), one can identify
the lattice thermal conductivity to be

καβ = ~
kBTV

∑
λ

ωλvα (λ) n̄λ (n̄λ + 1)Fβ,λ. (2.75)

The unknown quantity Fλ can be solved iteratively by using the linearized BTE
[22,58–60] for the approximate distribution function nλ. A summarized derivation for
the iterative solution of Fλ was shown in Article II and the result can be written as

Fα,λ = 1
Xλ

∑
λ′

∑
λ′′

[
Γλ′′

λλ′ (Fα,λ′′ − Fα,λ′) + Γλ′λ′′

λ (Fα,λ′ + Fα,λ′′)
]

+~ωλvα (λ)
TXλ

n̄λ (n̄λ + 1) , (2.76)

where
Xλ ≡

∑
λ′

∑
λ′′

(
Γλ′′

λλ′ + Γλ′λ′′

λ

)
+
∑
λ′

Γλ′

λ , (2.77)
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In Eqs. (2.76) and (2.77), Γλ′λ′′
λ is the scattering rate for a process in which a phonon

labeled by λ vanishes and two phonons λ′, λ′′ are created, while Γλ′′
λλ′ is the scattering

rate for an opposite process. Moreover, Γλ′
λ is the scattering rate for a process in

which a phonon labeled by λ vanishes and a phonon λ′ is created. For example, Γλ′
λ

could be a scattering rate related to two phonon processes caused by the isotopic
scattering [22, 61]. These scattering rates can be obtained from the so-called Golden
rule or from the imaginary part of the phonon self-energy [62] (Sec. 2.4.2). The so-
called generalized RTs are related to the Fα,λs through the relation [60]

τα (λ) = TFα,λ

~ωλvα (λ)
, (2.78)

and with these results, Eq. (2.75) can be written as

καβ = 1
V

∑
λ

vα (λ) vβ (λ) cv (λ) τβ (λ) , (2.79)

where the harmonic heat capacity at constant volume (strain) is of the form

cv (λ) = kBβ
2~2ω2

λn̄λ (n̄λ + 1) . (2.80)

All the other quantities in Eq. (2.79), except τβ (λ), can be obtained within the har-
monic approximation. That is, in order to calculate the scattering rates Γλ′λ′′

λ and Γλ′′
λλ′ ,

the third-order IFCs are needed. The computational details and convergence of the
lattice thermal conductivity with respect to q mesh size was discussed in Articles II
and III.

It is usually expected that the scattering rates Γλ′λ′′
λ ,Γλ′′

λλ′ are rather small at relatively
low temperatures (such as temperatures below 50 K). Therefore, at low temperatures,
other scattering mechanisms are usually the ones which mainly lower the lattice ther-
mal conductivity. In ShengBTE, the isotopic scattering included is a rather rough
approximation. Thus, the accuracy for the isotopic scattering rates is probably not
comparable to the accuracy obtained for the scattering rates Γλ′λ′′

λ ,Γλ′′
λλ′ . Indeed, this

was verified in Article II (see also Sec. 3.3), where the experimental and computational
results for d-Si were compared at low temperatures.

Before the iterative solution of the Boltzmann equation was established, various RT
models were developed to describe the phonon scattering. To get the overall picture
behind the relaxation time approximations, let

F 0
α,λ ≡ ~ωλvα (λ)

TXλ

n̄λ (n̄λ + 1) . (2.81)

and
F

(nd)
α,λ ≡ 1

Xλ

∑
λ′

∑
λ′′

[
Γλ′′

λλ′ (Fα,λ′′ − Fα,λ′) + Γλ′λ′′

λ (Fα,λ′ + Fα,λ′′)
]
. (2.82)
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Now, Eq. (2.76) can be written as Fα,λ = F
(nd)
α,λ + F 0

α,λ. If one assumes that Fα,λ′ =
Fα,λ′′ = 0 for each λ′, λ′′ ̸= λ, then Fα,λ = F 0

α,λ. The corresponding RT may be written
as [Eq. (2.78)]

τ 0
α (λ) ≡

TF 0
α,λ

~ωλvα (λ)
, (2.83)

which is called single mode relaxation time (SMRT) and if one uses this approxima-
tion to solve the RT, the approximation made is called single mode relaxation time
approximation. The quantity Fα,λ is a measure of the deviation of phonon energy
from the harmonic value. In SMRT the deviations Fα,λ′ = Fα,λ′′ = 0 and thus all the
other states are assumed to be in equilibrium except λ, from which the name SMRT
originates. In SMRT, the RTs of the states are assumed to be independent. In general,
as Eq. (2.76) shows, the preceding is not valid and the deviations of states from the
equilibrium change the RTs of the other states. In times when the iterative solution
of the BTE was not available, various approximations were developed to go beyond
SMRT approximation, that is, approximations for F (nd)

α,λ were developed. In Ref. [57],
different approximations are discussed including the Klemens’ [63], Callaway’s [64]
and Srivastava’s [65–67] model.

2.4 Many-body perturbation theory applied on lat-
tice dynamics

The method of many-body Green’s functions and many-body perturbation theory
are rather convenient methods in solving problems on various systems. In addition
to condensed matter problems [13, 14, 40, 62, 68–74], the method is applied in the
relativistic quantum field theory [55, 75–77]. There are several seemingly different
many-body Green’s function formalisms such as the zero temperature, real and imag-
inary time (temperature) Green’s functions. These different techniques are treated
together within the contour formalism discussed for instance in Refs. [14, 74]. The
Green’s functions can be used to calculate several different quantities of interest in
many-body systems such as the ensemble average of an arbitrary operator or the
ground and excited states of a system [12,13]. The Green’s functions are named after
the British mathematical physicist George Green.

In the present work, mostly the imaginary time Green’s functions were considered
and in Article IV, the method of many-body Green’s functions is used to derive the
thermodynamical and elastic properties of crystals. In this section, the method is
summarized and few example derivations of the results given in Article IV are shown.
As already mentioned, the imaginary time Green’s functions are related to the real
time Green’s functions. Sometimes the calculations are made by using the imaginary
time Green’s functions and the other Green’s functions can be obtained by changing
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time (or frequency) variables in an appropriate way. In Sec. 2.4.2 the determination
of the retarded real time Green’s function is performed by using the imaginary time
Green’s function formalism in order to obtain the lifetime of a phonon state.

2.4.1 Harmonic ensemble averages

In this section, few results for harmonic ensemble averages are given. These results
are used in the actual calculations represented in Articles I-IV. The results of this
section can be found for example from Refs. [15, 46, 78, 79]. An ensemble average of
an operator Ô in canonical ensemble, can be written as⟨

Ô
⟩

= Z−1∑
n

⟨n|e−βĤÔ|n⟩ , (2.84)

where
Z =

∑
n

⟨n|e−βĤ |n⟩ = Tr
[
e−βĤ

]
, (2.85)

and |n⟩ is an eigenstate of the Hamiltonian Ĥ. The harmonic ensemble average is
denoted as ⟨

Ô
⟩

0
= Z−1

0
∑

n

⟨n|e−βĤ0Ô|n⟩ , (2.86)

where the eigenstates and the summations over n can be written as (Sec. 2.2.1)

|n⟩ ≡ |nq1j1 · · ·nqN j3n⟩ ,
∑

n

≡
∞∑

nq1j1 =0
· · ·

∞∑
nqN j3n

=0
. (2.87)

For example, by using the results of Sec. 2.2.1, an ensemble average of n̂qj = â†
qj âqj

can be written as
⟨n̂qj⟩0 = 1

eβ~ωj(q) − 1
≡ n̄qj, (2.88)

which is the Bose-Einstein distribution function. By using Eqs. (2.43) and (2.88), one
can write ⟨

Ĥ0
⟩

0
=
∑
q,j

~ωj (q)
(
n̄qj + 1

2

)
. (2.89)

In a similar way, by using Eqs. (2.38), (2.39) and the result⟨
âqj â

†
qj

⟩
0

= n̄qj + 1, (2.90)

one may write for the displacement-displacement and momentum-momentum ensem-
ble averages

⟨ûα (lκ) ûβ (l′κ′)⟩0 = ~
2N (MκMκ′)1/2

∑
q,j

eα (κ|qj) e∗
β (κ′|qj)ω−1

j (q)

× eiq·[x(l)−x(l′)] (2n̄qj + 1) , (2.91)
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⟨p̂α (lκ) p̂β,H (l′κ′)⟩0 = ~ (MκMκ′)1/2

2N
∑
q,j

eα (κ|qj) e∗
β (κ′|qj)ωj (q)

× eiq·[x(l)−x(l′)] (2n̄qj + 1) . (2.92)

For a physical interpretation, a special case of Eq. (2.91) is ⟨û2
α (lκ)⟩0, which is the

mean square displacement of the atom lκ from the equilibrium position x (lκ) in the
direction α. The harmonic Helmholtz free energy can be expressed as

F0 = −β−1 lnZ0 = −β−1 ln

 N∏
q

3n∏
j

e− 1
2 β~ωj(q)

1 − e−β~ωj(q)


= β−1∑

q,j

[1
2
β~ωj (q) + ln

(
1 − e−β~ωj(q)

)]
. (2.93)

The definition of isothermal and adiabatic elastic constants can be made by expanding
the Helmholtz free energy and internal energy to Taylor series in strains ηij and
temperature, that is [45,78,80]

F = Fη0 + ∂F

∂T ′T +
3∑

µ,ν=1

∂F

∂η′
µν

ηµν +
3∑

µ,ν=1

∂2F

∂η′
µν∂T

′ηµνT

+1
2

3∑
µ1,ν1,µ2,ν2,l=1

∂2F

∂η′
µ1ν1∂η

′
µ2ν2

ηµ1ν1ηµ2ν2 + · · · ,

U = Uη0 + ∂U

∂T ′T +
3∑

µ,ν=1

∂U

∂η′
µν

ηµν +
3∑

µ,ν=1

∂2U

∂η′
µν∂T

′ηµνT

+1
2

3∑
µ1,ν1,µ2,ν2,l=1

∂2U

∂η′
µ1ν1∂η

′
µ2ν2

ηµ1ν1ηµ2ν2 + · · · , (2.94)

where the finite strain parameters may be written in terms of the infinitesimal strain
parameters as

ηµν = 1
2

(
uµν + uνµ +

∑
ϵ

uϵµuϵν

)
. (2.95)

The coefficients in Eq. 2.94 are

∂F

∂T
= −S, ∂F

∂ηµν

= σT
µν ,

∂U

∂T
= Cη,

∂U

∂ηµν

= σA
µν , (2.96)

where S is the entropy, Cη the heat capacity at constant strain (volume), σT
µν the

isothermal stress and σA
µν the adiabatic stress. Moreover, the kth-order adiabatic and

isothermal elastic constants may be written as

∂kF

∂ηµ1ν1 · · · ∂ηµkνk

= cT
µ1ν1···µkνk

,
∂kU

∂ηµ1ν1 · · · ∂ηµkνk

= cA
µ1ν1···µkνk

. (2.97)
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Now, the free energy F0 can be used to derive other thermodynamical and elastic
properties (within QHA) as it is done in Article IV, for example

S0 = β

T

∂F0

∂β
=
∑

λ

~ωλ

T

(
n̄λ + 1

2

)
− kB

∑
λ

ln
(
[n̄λ (n̄λ + 1)]−1/2

)
,

U0 =
∑

λ

~ωλ

(
n̄λ + 1

2

)
=
∑

λ

U0 (λ) ,

Cη,0 = ∂U0

∂T
= kB

∑
λ

[~ωλβ]2 n̄λ (n̄λ + 1) =
∑

λ

cη (λ) ,

∂2F0

∂ηµν∂ηµ′ν′
= cT

µνµ′ν′,0 = −
∑

λ

[U0 (λ) γµνµ′ν′ (λ) − Tcη (λ) γµν (λ) γµ′ν′ (λ)] ,

γµ1ν1···µnνn (λ) = − 1
ωλ

∂nωλ

∂ηµ1ν1∂ηµ2ν2 · · · ∂ηµnνn

, (2.98)

where S0 is the harmonic entropy, U0 is the harmonic internal energy, Cη,0 is the har-
monic heat capacity at constant strain, cT

µνµ′ν′,0 is the second-order isothermal elastic
constant (within QHA) and γµ1ν1···µnνn (λ) is the so-called generalized Grüneisen pa-
rameter. In the expression of cT

µνµ′ν′,0 given by Eq. (2.98), the static lattice contribution
is neglected. The CTE within the QHA can be written as [78] (subscript 0 neglected)

∂ηµ1ν1

∂T
= αµ1ν1 =

3∑
µ2,ν2=1

sT
µ1ν1µ2ν2

∑
λ

cv (λ) γµ2ν2 (λ) . (2.99)

Here, sT
µ1ν1µ2ν2 is the tensor inverse of the tensor cT

µ1ν1µ2ν2 , namely

3∑
µ2,ν2=1

cT
µ1ν1µ2ν2s

T
µ2ν2µ3ν3 = δµ1µ3δν1ν3 . (2.100)

The inversion of sT
µ1ν1µ2ν2 and cT

µ1ν1µ2ν2 is discussed, for example, in Ref. [79]. In the
case of cubic crystal structures, for example, one may write

sT
1111 = cT

1111 + cT
1122

(cT
1111 − cT

1122) (cT
1111 + 2cT

1122)
,

sT
1122 = − cT

1122
(cT

1111 − cT
1122) (cT

1111 + 2cT
1122)

,

sT
2323 = 1/cT

2323. (2.101)

A special case of Eq. (2.99) was used in the numerical calculations conducted in Ar-
ticle I for cubic structures, where only the static lattice contribution to bulk modulus
BT was taken into account, namely

αV = 1
BTV

∑
λ

cv (λ) γ (λ) , (2.102)
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In Eq. (2.102), αV is the volumetric CTE and BT is the isothermal bulk modulus
defined in the case of cubic crystals as [78,79]

1
BT

≡ 3
(
sT

1111 + 2sT
1122

)
= 3
cT

1111 + 2cT
1122

. (2.103)

Further, γ (λ) is the volumetric Grüneisen parameter [81]

γ (λ) ≡ − V

ωλ

∂ωλ

∂V
. (2.104)

Since only the static lattice contribution to BT was included, the temperature depen-
dence of BT was neglected in Article I. In Article IV, expressions, for instance, for
the CTE was derived by applying many-body perturbation theory. The CTE have a
connection to lattice thermal conductivity and this is discussed in Article III (see also
Sec. 3.2).

2.4.2 Green’s functions and phonon self-energy

The evaluation of the perturbation expansion which is used to derive the results of
Article IV (considered in Sec. 2.4.3) can be made by using some results from the
theory of the many-body Green’s functions [12–14,54,62,68–70,72–74], namely

G0 (λτ |λ′τ ′) ≡
⟨
T
{
Âλ,I (τ) Âλ′,I (τ ′)

}⟩
0

= G0 (λτ |λ′0)

= θ (τ)
⟨
Âλ,I (τ) Âλ′,I (0)

⟩
0

+ θ (−τ)
⟨
Âλ′,I (0) Âλ,I (τ)

⟩
0

= δλ(−λ′)θ (τ)
[
e~ωλτ n̄λ + e−~ωλτ (n̄λ + 1)

]
+δλ(−λ′)θ (−τ)

[
e−~ωλτ n̄λ + e~ωλτ (n̄λ + 1)

]
,

G0 (λτ |λ′τ) = δλ(−λ′) (2n̄λ + 1) , δλ(−λ′) = δjj′∆ (q + q′) ,

G0 (λτ |λ0) ≡ G0 (λτ) =
∞∑

n=−∞
G0 (λ|ωn) eiωnτ ,

G0 (λ|ωn) = 2ωλ

β~ [ω2
λ + ω2

n]
, ωn = 2πn

β~
,

G0 (λ|ωn) = 1
β

∫ β

0
G0 (λτ |λ′0) e−iωnτ . (2.105)

In Eq. (2.105), θ (τ) is the Heaviside step function, the time ordering T {· · · } is defined
by the second row and the operators are in the interaction picture

Âλ,I (τ) = eτĤ0Âλe
−τĤ0 . (2.106)
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The method of many-body Green’s functions can be used to derive expressions for
the lifetimes of phonons, as it is done in Ref. [62]. This can be done by evaluation of
the Fourier transform of the interacting one-body Green’s function

G (λτ |λ′) ≡
⟨
T
{
Âλ (τ) Âλ′ (0)

}⟩
=

∞∑
k=0

(−1)k

k!

⟨
T
{[

k∏∫ β

0
dτkĤa (τk)

]
Âλ,I (τ) Âλ′,I (0)

}⟩
0,c

.

(2.107)

where the subscript c indicates that only the so-called connected terms in the ex-
pansion are taken into account. A derivation of such perturbation expansion can be
found, for example, from Refs. [13, 14]. A similar expansion was also used to derive
the results of Article IV. A derivation of the aforementioned expansion is given in Sec.
2.4.3. The ensemble averages in the perturbation expansion given by Eq. (2.107) can
be simplified by using Wick’s Theorem of the following form [54,74,82]

⟨
T
{
Âλ1 · · · Âλ2n

}⟩
0,c

=
2n∑

k=2

⟨
T
{
Âλ1Âλk

}⟩
0

⟨
T


2n∏

l ̸=1,k

Âλl


⟩

0,c

. (2.108)

For instance, one may write for the ensemble average of four operators⟨
T
{
Âλ1 · · · Âλ4

}⟩
0,c

=
⟨
T
{
Âλ1Âλ2

}⟩
0

⟨
T
{
Âλ3Âλ4

}⟩
0

+
⟨
T
{
Âλ1Âλ3

}⟩
0

⟨
T
{
Âλ2Âλ4

}⟩
0

+
⟨
T
{
Âλ1Âλ4

}⟩
0

⟨
T
{
Âλ2Âλ3

}⟩
0
. (2.109)

Further, one may use the following symmetry properties of the coefficients [the nota-
tion from Eq. (2.60) is used]

V (λ1;λ2; . . . ;λn) = V (λ2;λ1; . . . ;λn) = · · · ,
Vµ̄mν̄m (λ1;λ2; . . . ;λn) = Vµ̄mν̄m (λ2;λ1; . . . ;λn) = · · · , (2.110)

to identify identical terms in the expansion. In some cases, the preceding symmetry
relations may lead to a rather significant reduction of computational requirements. In
Ref. [62], the following terms in the expansion of G (λτ |λ′) were included

G (λτ |λ′) ≈ −
∫ β

0
dτ1

⟨
T
{
Ĥ4 (τ1) Âλ,I (τ) Âλ′,I (0)

}⟩
0,c

+1
2

∫ β

0
dτ1

∫ β

0
dτ2

⟨
T
{
Ĥ3 (τ1) Ĥ3 (τ2) Âλ,I (τ) Âλ′,I (0)

}⟩
0,c
,

(2.111)

where Ĥ3 and Ĥ4 are the third and fourth-order Hamiltonian terms given in Eq.
(2.44), respectively. After the substitution of the Hamiltonians and applying Wick’s
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Theorem given by Eq. (2.108), the Fourier transform of Eq. (2.111) can be written as
(here λ → q1j1, λ

′ → q2j2)

G (q1j1; q2j2|ωn) = −12β
∑

q3,j3

V (q1j1; q2j2; q3j3; −q3j3) (2n̄q3j3 + 1)

×G0 (q1j1|ωn)G0 (q2j2|ωn)
+18β2 ∑

q′
1,j′

1

∑
q′

2,j′
2

V (q1j1; q2j2; q′
1j

′
1)V (−q′

1j
′
1; q′

2j
′
2; −q′

2j
′
2)

×G0 (q1j1|ωn)G0 (q2j2|ωn)
(
2n̄q′

2j′
2

+ 1
)
G0 (q′

1j
′
1|ωn′ = 0)

+18β2 ∑
q′

1,j′
1

∑
q′

2,j′
2

V (q1j1; q′
1j

′
1; q′

2j
′
2)

×V (q2j2; −q′
1j

′
1; −q′

2j
′
2)G0 (q1j1|ωn)G0 (q2j2|ωn)

×
∞∑

n′,n′′=−∞
G0 (q′

1j
′
1|ωn′)G0 (q′

2j
′
2|ωn′′) δ−n+n′+n′′ . (2.112)

In obtaining Eq. (2.112), the following result was used∫ β

0
dτeiωnτ = βδn0. (2.113)

The aim is to write the expression for G (q1j1j2|ωn) in such a way that one can sum
certain terms up to infinite order and beyond the approximation given by Eq. (2.111).
In particular, it can be shown that G (q1j1; q2j2|ωn) may be written as [62]

G (q1j1j2|ωn) = δj1j2G0 (q1j1|ωn) +G0 (q1j1|ωn)
∑
j′

1

Σ (q1j1j
′
1|ωn)G (q1j

′
1j2|ωn) ,

(2.114)
where G (q1j1j2|ωn) ≡ G (q1j1; q1j2|ωn) and the proper phonon self-energy is defined
as

Σ (q1j1j
′
1|ωn) ≡ −12β

∑
q3,j3

V (−q1j1; q1j
′
1; q3j3; −q3j3) (2n̄q3j3 + 1)

+18β2 ∑
q′′

1 ,j′′
1

∑
q′

2,j′
2

V (−q1j1; q′′
1j

′′
1 ; q′

2j
′
2)V (q1j

′
1; −q′′

1j
′′
1 ; −q′

2j
′
2)

×
∞∑

n′,n′′=−∞
G0 (q′′

1j
′′
1 |ωn′)G0 (q′

2j
′
2|ωn′′) δ−n+n′+n′′ . (2.115)

It should be noted that Eq. (2.114) goes beyond the approximation given by Eq.
(2.111), that is, Eq. (2.111) is included in Eq. (2.114) and iteration produces higher-
order terms. For example, one may iterate Eq. (2.114) and write

G (q1j1j2|ωn) = δj1j2G0 (q1j1|ωn) +G0 (q1j1|ωn) Σ (q1j1j2|ωn)G0 (q1j2|ωn)
+G0 (q1j1|ωn)

∑
j′

1

Σ (q1j1j
′
1|ωn)G0 (q1j

′
1|ωn)

×Σ (q1j
′
1j2|ωn)G0 (q1j2|ωn) + · · · . (2.116)
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If one considers only the diagonal terms in the phonon self-energy, that is Σ (q1j1j
′
1) →

Σ (qjj) ≡ Σ (qj), then Eq. (2.114) may be written as

G (qjj′|ωn) ≈ δjj′G0 (qj|ωn)
∞∑

n=0
[G0 (qj|ωn) Σ (qj|ωn)]n

= δjj′G0 (qj|ωn)
1 −G0 (qj|ωn) Σ (qj|ωn)

= 2ωj (q)
β~

δjj′

ω2
j (q) + ω2

n − 2ωj(q)
β~ Σ (qj|ωn)

, (2.117)

where the infinite series is convergent for

|G0 (qj|ωn) Σ (qj|ωn)| < 1. (2.118)

The non-diagonal terms in the phonon self-energy (j1 ̸= j′
1), which were neglected

in Eq. (2.117), are sometimes called polarization mixing terms. The result for the
summation in Eq. (2.115) is given in Appendix A by Eq. (A.31), thus

Σ (qjj′|ωn) = −12β
∑

q1,j1

V (−qj; qj′; q1j1; −q1j1) (2n̄q1j1 + 1)

+18β
~
∑

q′′
1 ,j′′

1

∑
q′

2,j′
2

V (−qj; q1j1; q2j2)V (qj′; −q1j1; −q2j2)

×
[

n̄q2j2 + n̄q1j1 + 1
ωj1 (q1) + ωj2 (q2) + iωn

− n̄q1j1 + n̄q2j2 + 1
−ωj1 (q1) − ωj2 (q2) + iωn

+ n̄q1j1 − n̄q2j2

−ωj1 (q1) + ωj2 (q2) + iωn

− n̄q1j1 − n̄q2j2

ωj1 (q1) − ωj2 (q2) + iωn

]
.

(2.119)

The retarded self-energy provides the phonon lifetime and energy shift and can be
obtained by replacing iωn → ω+ iϵ, ω, ϵ ∈ R and by taking the limit ϵ → 0. Then, by
using

lim
ϵ+→0

1
ω − x± iϵ

= 1
(ω − x)P

∓ iπδ (ω − x) , 1
(ω − x)P

= lim
ϵ+→0

ω − x

(ω − x)2 + ϵ2
,

(2.120)
one may, in order to divide the self-energy into real and imaginary parts, write Eq.
(2.119) as (j = j′)

− 1
β~

lim
ϵ+→0

Σ (λ|ωλ ± iϵ) = ∆ (λ|ω) ∓ iΓ (λ|ω) , (2.121)



30 Theory and computational methods

where

∆ (λ|ω) ≡ 12
~
∑
λ′
V (λ; −λ;λ′; −λ′) (2n̄λ′ + 1)

−18 1
~2

∑
λ′

∑
λ′′

|V (−λ;λ′;λ′′)|2

×
[

n̄λ′ + n̄λ′′ + 1
(ω + ωλ′ + ωλ′′)P

− n̄λ′ + n̄λ′′ + 1
(ω − ωλ′ − ωλ′′)P

+ n̄λ′ − n̄λ′′

(ω − ωλ′ + ωλ′′)P

− n̄λ′ − n̄λ′′

(ω + ωλ′ − ωλ′′)P

]
,

Γ (λ|ω) ≡ −18 π
~2

∑
λ′

∑
λ′′

|V (−λ;λ′;λ′′)|2

× {(n̄λ′ + n̄λ′′ + 1) δ [ω − ωλ′ − ωλ′′ ]
+ 2 (n̄λ′ − n̄λ′′) δ [ω + ωλ′ − ωλ′′ ]} . (2.122)

The retarded Green’s function can be written as

GR (qjj′|ω) ≈ 2ωj (q)
β~

δjj′

ω2 + ω2
j (q) + 2ωj (q) {∆ (qj|ω) + iΓ (qj|ω)}

. (2.123)

The real part of the retarded self-energy ∆ (λ|ωλ), represents the shift of the phonon
eigenvalue ωλ caused by the third and fourth-order anharmonic Hamiltonian while the
imaginary part Γ (λ|ωλ) is proportional to the reciprocal of the lifetime of a phonon
state λ [62]. The imaginary part of the retarded self-energy is used in the zeroth-order
solution of the linearized BTE in the ShengBTE program [22].

To summarize, the Green’s functions give information about the states of a many-body
system. For instance, the poles of the non-interacting Green’s function G0 (qj|ωn)
are the harmonic phonon eigenvalues ωλ, while the poles of the interacting Green’s
function are shifted by an amount 2ωj (q) {∆ (qj|ω) + iΓ (qj|ω)} and are complex,
in general. By approximating the interacting Green’s function as in Eq. (2.123), some
particular class of interactions are taken into account up to infinite-order as can be
seen from Eq. (2.117). This particular class of interactions is generated by the phonon
self-energy Σ (qj|ωn), which is a special case of Eq. (2.119). If the approximation given
by Eq. (2.123) does not describe the system appropriately, one may have to include
the polarization mixing in order to obtain reliable results.

2.4.3 Evaluation of the perturbation expansion

Here the evaluation of the perturbation expansion used in Article IV is summarized.
The present method is based on the imaginary time Green’s function formalism [40,
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41, 54]. The starting point is to find a suitable form for the partition function to be
used in the perturbative calculations and to obtain such a form, one may write

e−βĤd = e−β(Ĥ0+Ĥint) = e−βĤ0Ŝ (β) , Ŝ (β) = e−βĤint , (2.124)

since Ĥ0 and Ĥint commute. With this notation, the partition function may be written
as

Z = Z0
⟨
Ŝ (β)

⟩
0
. (2.125)

The ensemble average in Eq. (2.125) can be written as [Eq. (2.86)]⟨
Ŝ (β)

⟩
0

= Z−1
0
∑

n

⟨n|e−βĤ0Ŝ (β) |n⟩ . (2.126)

and after differentiation of Ŝ (β) with respect to β

∂

∂β
Ŝ (β) = −Ĥint (β) Ŝ (β) . (2.127)

It can be seen from Eq. 2.124 that Ŝ (0) = 1. Then, by integration and iteration of
Eq. 2.127, one obtains

Ŝ (β) = 1 −
∞∑

h=1

(−1)h

h!

∫ β

0
dτ1 · · ·

∫ β

0
dτhT

{
Ĥint (τ1) · · · Ĥint (τh)

}
, (2.128)

where
Ŝ (β) = e−βĤint , Ĥint (τi) = eτiĤ0Ĥinte

−τiĤ0 , (2.129)
and the time-ordering means that

T
{
Ĥint (τ1) · · · Ĥint (τh)

}
= Ĥint (τ1) · · · Ĥint (τh) , τ1 ≥ . . . ≥ τh. (2.130)

The interaction Hamiltonian Ĥint (τi) is given by Eq. (2.61), that is Ĥint = Ĥa + Ĥs.
Now, by using Eqs. 2.125 and 2.128, the perturbation expansion for the partition
function can be written as

Z = Z0

∞∑
h=0

(−1)h

h!

∫ β

0
dτ1 · · ·

∫ β

0
dτh

⟨
T
{
Ĥint (τ1) · · · Ĥint (τh)

}⟩
0
, (2.131)

and the Helmhotz free energy may be expressed as

F = Φ0 − 1
β

lnZ0 − 1
β

ln
⟨
Ŝ (β)

⟩
0

= F0 + F̃A. (2.132)

where F0 is given by Eq. (2.93) and F̃A is the last term after the first equality in Eq.
2.132. One can show by using, for instance, combinatorial arguments that only the
connected terms need to be included in the expansion of F̃A and one may write [41,54]

F̃A = − 1
β

⟨
Ŝ (β)

⟩
0,c
. (2.133)
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As in Article IV, all the anharmonic elastic and thermodynamical quantities consid-
ered can be written in terms of the harmonic ensemble average Ŝ (β), namely

ŨA = − ∂

∂β

⟨
Ŝ (β)

⟩
0,c
,

S̃A = 1
Tβ

⟨
Ŝ (β)

⟩
0,c

− 1
T

∂

∂β

⟨
Ŝ (β)

⟩
0,c

= 1
T

(
ŨA − F̃A

)
,

C̃A,η = β

T

∂2

∂β2

⟨
Ŝ (β)

⟩
0,c
,

c̃T
µ1ν1···µkνk

= − 1
β

∂k
⟨
Ŝ (β)

⟩
0,c

∂uµ1ν1 · · · ∂uµkνk

∣∣∣∣∣∣∣
uµ1ν1 =0,...,uµkνk

=0

,

c̃A
µ1ν1···µkνk

= − ∂

∂β

∂k
⟨
Ŝ (β)

⟩
0,c

∂uµ1ν1 · · · ∂uµkνk

∣∣∣∣∣∣∣
uµ1ν1 =0,...,uµkνk

=0

. (2.134)

where ŨA is the anharmonic part of internal energy, S̃A the anharmonic part of entropy,
C̃A,η the anharmonic part of heat capacity at constant strain, c̃T

µ1ν1···µkνk
the kth-order

isothermal and c̃A
µ1ν1···µkνk

the kth-order adiabatic elastic constants. Thus, one may
calculate all the quantities considered here in terms of the ensemble average taken
over the quantity Ŝ (β). This makes the actual calculations rather consistent since
one can consider the elastic and thermal properties of a crystal by means of the same
perturbation expansion. The CTE can be written as [78] [see also Eqs. (2.99)-(2.101)]

αµν = −
3∑

γ,δ=1
sT

µνγδ

∂σT
γδ

∂T
= 1
T

3∑
γ,δ=1

sT
µνγδ

(
σA

γδ − σT
γδ

)
, (2.135)

which can be evaluated by using the quantities included in Eq. (2.134).

The following steps are made to evaluate the integrals over the ensemble averages as
in Eq. 2.131: the ensemble averages are simplified by using Wick’s Theorem given by
Eq. 2.108, the resulting Green’s functions are written in terms of their Fourier series
given in Eq. 2.105 and finally the integrals are simplified by using Eq. (2.113). The
resulting summations can be calculated by applying the residue theorem as shown
in Appendix A. Terms in the expansion can be represented with algebraic expres-
sions or alternatively by diagrams (see Sec. 3.4). Terms of the perturbation expansion
considered in Article IV were⟨

Ŝ (β)
⟩

0,c,h=1
= −

∫ β

0
dτ1

⟨
T
{
Ĥa (τ1) + Ĥs (τ1)

}⟩
0,c
, (2.136)
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⟨
Ŝ (β)

⟩
0,c,h=2

= 1
2

∫ β

0
dτ1

∫ β

0
dτ2

⟨
T
{
Ĥa (τ1) Ĥa (τ2)

}⟩
0,c

+1
2

∫ β

0
dτ1

∫ β

0
dτ2

⟨
T
{
Ĥs (τ1) Ĥs (τ2)

}⟩
0,c

+
∫ β

0
dτ1

∫ β

0
dτ2

⟨
T
{
Ĥs (τ2) Ĥa (τ1)

}⟩
0,c
, (2.137)

and ⟨
Ŝ (β)

⟩
0,c,h=3

= −1
6

∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3

⟨
T
{
Ĥa (τ1) Ĥa (τ2) Ĥa (τ3)

}⟩
0,c

−1
2

∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3

⟨
T
{
Ĥa (τ1) Ĥa (τ2) Ĥs (τ3)

}⟩
0,c

−1
2

∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3

⟨
T
{
Ĥs (τ1) Ĥs (τ2) Ĥa (τ3)

}⟩
0,c

−1
6

∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3

⟨
T
{
Ĥs (τ1) Ĥs (τ2) Ĥs (τ3)

}⟩
0,c
.

(2.138)

While the first order term, Eq. (2.136), was considered as a whole, only some terms of
Eqs. (2.137) and (2.138) were taken into account. Few example calculations for Eqs.
(2.137) and (2.138) are established in Appendix C.

2.5 Interatomic force constants and density func-
tional theory

The IFCs have been quite central quantities in the discussion so far, but not much have
been about mentioned how IFCs are actually calculated. In this section, a summary
of the methods applied is given. In Sec. 2.5.1, the quantum many-body problem is
discussed and the adiabatic approximation is considered. The DFT applied in the
present work in order to calculate the IFCs is considered In Sec. 2.5.2.

2.5.1 General notes and adiabatic approximation

In a non-relativistic case, a state which describes a quantum mechanical system can
be obtained by solving the Schrödinger equation [51]

i~
∂

∂t
|Ψ⟩ = Ĥ |Ψ⟩ = E |Ψ⟩ , (2.139)

where Ĥ is the Hamiltonian of the system and the same equation holds for a partic-
ular representation chosen. For example, the present many-body system is the lattice
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comprising n electrons and k nuclei for which the wave function in the position rep-
resentation may be written as Ψ (r1, . . . , rn,R1, . . . ,Rk). The ket |Ψ⟩ or the wave
function obtained by solving Eq. (2.139) can be used to calculate the expected value
of an observable Ô. In the case of electrons, for instance, the kets and wave functions
are anti-symmetrized such that the anti-symmetrized m-body wave function can be
written as [compare to Eqs. (2.31) and (2.32)]

Ψ(−)
i1···im

= Ŝ−Ψi1···im , Ŝ− ≡ 1√
n!
∑
σn

(−1)N(σn) P̂σn , (2.140)

where N (σn) is the number of inversions in the permutation σn. Due to the complexity
of Eq. (2.139) in the case of many-body systems, some approximate methods are
needed to solve the Schrödinger equation. In one of the simplest approximations,
called the Hartree-Fock approximation, one assumes that the Hamiltonian does not
contain two-body interactions, except in some average sense [see Eq. (2.158)], and
that the wave function can be written as [12]

Ψ(−)
i1···im

= Ŝ−Ψi1 · · · Ψim . (2.141)

The right hand side of Eq. (2.141) is sometimes called the Slater determinant. To make
a comparison, in the case of discrete basis, a general m-body state can be written as
(Sec. 2.2.1, anti-symmetrization neglected)

|Ψ⟩ =
∑

i1,...,im

Ψi1···im |e(1)
i1 ⟩ ⊗ · · · ⊗ |e(m)

im
⟩ (2.142)

and in the special case of Eq. (2.141), this state becomes

|Ψ⟩ ≈
∑

i1,...,im

Ψi1 · · · Ψim |e(1)
i1 ⟩ ⊗ · · · ⊗ |e(m)

im
⟩ . (2.143)

If a quantum state can be written in the form given by Eq. (2.143) [or Eq. (2.141)],
it is said to be separable, otherwise it is said to be entangled [83]. Therefore, the
Hartree-Fock approximation assumes that the states are separable, which is not the
case in general. Sometimes the Hartree-Fock approximation does not describe the
system appropriately due to simplifications made and more rigorous methods are
needed. However, when calculating better approximations for the wave function, the
computational cost increases rather rapidly as a function of system size and some
alternative methods may be needed in order to describe the many-body quantum
systems. In addition to the calculation of the many-body wave function, there are
several alternative ways to calculate observable quantities for a many-body quantum
systems. One approach is to use the many-body Green’s function method [13, 14, 40,
62,68–74,84] discussed in the lattice dynamical context in Sec. 2.4. Another and rather
extensively used method in the computational study of many-body quantum systems
is the DFT [85–88], which is applied also in the present work [17] (see Sec. 2.5.2).
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Before even choosing the approximate method in order to solve the Schrödinger equa-
tion, the wave function is usually simplified by some other means. In the case of crystal
lattices, for example, due to the rather large mass difference between electrons and
nuclei, the wave function can be written within the so-called adiabatic approximation
as follows [15,42,48]

Ψn (r,R) ≈ Ψn

(
r, R̃

)
≈ χ (u) θn

(
r, R̃

)
, (2.144)

where
r ≡ r1, . . . , rn, R̃ ≡ R̃1, . . . , R̃k, u ≡ u1, . . . ,uk. (2.145)

In Eqs. (2.144) and (2.145), the tilde placed on the R = x+u indicates that the nuclei
coordinates are treated as parameters and the subscript n refers to some particular
electronic state. Further, {ui} are the displacements of the nuclei from their equilib-
rium positions {xi}. A special case of the adiabatic approximation is the harmonic
approximation [15,42] in which

Ψn (r,R) ≈ Ψn

(
r, R̃

)
≈ φ (u)ϕn (r, x̃) , (2.146)

where the electronic wave function depends only on the parametric equilibrium posi-
tions x̃ instead of the instantaneous positions R̃ of the nuclei. Within the adiabatic
approximation, the Schrödinger equation for electrons with fixed R̃ can be written as

Ĥadθn

(
r, R̃

)
= Eadθn

(
r, R̃

)
, Ĥad = Ĥe + Ĥen + Ĥnn, (2.147)

where Ĥe is the electron-electron interaction Hamiltonian with the kinetic energy of
electrons included, Ĥen is the electron-nuclei interaction Hamiltonian and Ĥnn is the
nuclei-nuclei interaction Hamiltonian. Within this approximation, the nuclei are fixed
to their instantaneous positions and the kinetic energy of the nuclei vanishes. Thus,
the second-order partial derivatives of Ead with respect to the nuclei coordinates,
evaluated at the equilibrium positions, can be used to calculate the second-order
IFCs included in the harmonic Hamiltonian Ĥ0 [Eq. (2.6)]. To obtain the second-
order derivatives the Hellmann-Feynman theorem [47] may be used with the DFT and
DFPT [17]. Since the adiabatic approximation is valid for the instantaneous positions
R̃ of the nuclei, one may use finite differences to calculate estimates for the higher-
order IFCs as well. The validity of the adiabatic approximation is considered in Refs.
[15,42] and it is usually expected to hold in the case of insulators and semiconductors.

2.5.2 Density functional theory

The DFT allows the calculation of various observables of a system without the knowl-
edge of the many-body wave function, which usually makes the numerical computa-
tions more feasible. Let the Hamiltonian of the system be Ĥ = T̂ + V̂ + Ŵ , where T̂
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is the kinetic energy of electrons, V̂ is the external potential and Ŵ is the electron-
electron interaction potential. The external potential in the present case could be the
interaction between the fixed nuclei and electrons. The Schrödinger equation can be
written as (

T̂ + V̂ + Ŵ
)

|ψ⟩ = E |ψ⟩ , (2.148)
and it can be shown that the external potential may be written in the form

V̂ =
∫
drn̂ (r) v (r) . (2.149)

In Eq. (2.149), n̂ (r) is the electron density operator. The form of the operator given
by Eq. (2.149) is quite general because, when one (assumed to be diagonal) and
two-body interactions are included an arbitrary operator (in non-relativistic quantum
mechanics) can be written in terms of the creation and annihilation operators as
[14,51]

Ô =
∫
dro1 (r) ψ̂† (r) ψ̂ (r) + 1

2

∫
dr
∫
dr′o2 (r, r′) ψ̂† (r) ψ̂† (r′) ψ̂ (r′) ψ̂ (r) , (2.150)

where ψ̂† (r) ψ̂ (r) = n̂ (r). The operators ψ̂† (r) and ψ̂ (r) satisfy the commutation
(anti-commutation) relations in the case of bosons (fermions), namely[

ψ̂ (r) , ψ̂† (r′)
]

±
= δ (r − r′) . (2.151)

For instance, in the case of fermions, Eq. (2.150) can be written in terms of densities
as follows

Ô =
∫
dro1 (r) n̂ (r) − 1

2

∫
dro2 (r, r) n̂ (r) + 1

2

∫
dr
∫
dr′o2 (r, r′) n̂ (r) n̂ (r′) . (2.152)

Now, the Hohenberg-Kohn theorem [89] states that there is a bijective map (function)
between potentials and ground state wave functions and a bijective map between the
ground state wave functions and ground state electron densities. A ground state |ψ0⟩ is
defined to be a state with the lowest energy. Since a bijective map is also invertible, the
ground state wave function can be calculated, in principle, by using the ground state
density et cetera. The ground state expected value of an observable can be written as
O = ⟨ψ0|Ô|ψ0⟩ and in particular for energy

Eṽ = F +
∫
drn (r) ṽ (r) , F ≡ ⟨ψ0|T̂ + Ŵ |ψ0⟩ . (2.153)

Here, F is the Hohenberg-Kohn functional and ṽ (r) is a fixed external potential at r.
Since the so-called Rayleigh-Ritz variational principle states that the expected value of
the energy is greater or equal to the ground state energy Ev,0, namely ⟨ψ|Ev|ψ⟩ ≥ Ev,0,
one may use the calculus of variations to obtain an expression for the energy. The
ground state energy can be found when

δEṽ

δn (r)
= k ⇔ δF

δn (r)
= k − ṽ (r) , k ∈ R. (2.154)
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However, the form of the functional F is not known and in the practical implementa-
tions it is approximated in various ways.

The actual implementations of the DFT are sometimes, as in the present work, based
on the Kohn-Sham scheme [90]. Within the Kohn-Sham scheme, the electron density
of the interacting system can be calculated by using the eigenstates of the Hamiltonian
Ĥs = T̂+V̂s, where the external potential V̂s is assumed to be known. The Schrödinger
equation for this Hamiltonian, Ĥs |Ψs⟩ = Es |Ψs⟩, can be written separately for each
eigenstate, that is [

− ~2

2me

∇2
r + vs (r)

]
φn (rσ) = ϵnφn (rσ) . (2.155)

The approximate ground state wave function can be represented as a Slater determi-
nant of the eigenfunctions φn (rσ) and the electron density at r may be written in
terms of the single particle wave functions

n (r) =
∑

σ

∑
n

|φn (rσ)|2 . (2.156)

The wave functions {φn (rσ)} are sometimes called the Kohn-Sham orbitals. The
interactions are included by defining the Hohenberg-Kohn functional as a sum of
kinetic energy of the non-interacting system T̂s, Hartree energy Eh and exchange-
correlation energy Exc, namely

F ≡ Ts + Eh + Exc. (2.157)

The kinetic energy can be calculated from the expected value Ts = ⟨Ψs|T̂ |Ψs⟩ and the
Hartree energy is given by [compare to Eq. (2.152)]

Eh = 1
2

∫
dr
∫
dr′w (r, r′)n (r)n (r′) , (2.158)

while the form of the exchange-correlation energy is unknown in general and various
approximations are needed. After using Eq. (2.157) in Eq. (2.154), one may write
(k = 0)

vs (r) = ṽ (r) + vH (r) + vxc (r) , (2.159)
where

vs (r) = − δTs

δn (r)
, vH (r) = δEh

δn (r)
=
∫
dr′w (r, r′)n (r′) , vxc (r) = δExc

δn (r)
.

(2.160)
Now, the expression for vs (r) given by Eq. (2.160) can be used in Eq. (2.155) and
provided the expression for the exchange-correlation energy and potential is known,
the electron density can be solved. In Article I, the local density approximation
(LDA) [85–87, 90–92] for the exchange-correlation energy was used, while a gener-
alized gradient approximation (GGA) [93–96] was used in Articles II and III. In the
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local spin density approximation (LSDA), the exchange-correlation energy is assumed
to be of the following form

ELSDA
xc =

∫
drϵxc [n↓ (r) , n↑ (r)]n (r) , (2.161)

where ϵxc [n↓ (r) , n↑ (r)] is the exchange-correlation energy at r of the homogenous
electron gas. Given Eqs. (2.152), (2.157), (2.158) and (2.161), the present approach
gives a rather general form for the Hohenberg-Kohn functional apart from the ap-
proximation made for the exchange-correlation energy ϵxc [n↓ (r) , n↑ (r)]. As the name
implies, the system from which ϵxc [n↓ (r) , n↑ (r)] is obtained is a box of interact-
ing electrons with constant density. In GGAs, one assumes that there are density
variations in the system of interacting electrons, the exchange-correlation energy is
expanded in the density variations and eventually in density gradients and one obtains
approximations of different order. GGAs are usually expected to be more suitable for
describing systems with stronger electron density variations. Thus, in order to cal-
culate observables within DFT, it is not necessary to calculate the many-body wave
function, which leads to the reduction of the computational cost.

After the approximation for the Exc is given, the Kohn-Sham equations can be solved
as follows. An initial guess for the electron density is given, the potential vs (r) is
calculated and after that the Kohn-Sham equation is solved to obtain the wave func-
tions {φn (rσ)} and the electron density through Eq. (2.156). The obtained electron
density is used to calculate the potential vs (r) and the described procedure is con-
tinued to self-consistency, which is achieved for example, when the energy difference
of subsequent iterations is smaller than the predetermined cut-off value. To obtain
the initial guess for the electron density it is useful to have some initial form for the
wave functions {φn (rσ)}. In the present work, plane wave basis sets were used to
describe the wave functions. In numerical calculations, some finite set of basis func-
tions is used. The number of basis functions is sometimes determined by establishing
several calculations with a different number of basis functions and by making a com-
promise between the accuracy and computational cost. The so-called pseudopotential
method [97–100] can be used to further decrease the computational cost by neglecting
the explicit effect of the electrons which are relatively close to the nuclei. That is, only
the valence electrons are described by the wave functions and the effect of the rest
of the electrons are included in the pseudopotentials, which are effective potentials
induced by the nuclei and inner electrons. Based on the quantities obtained from DFT
calculations, such as the energy of the system, the second and higher-order IFCs can
be calculated by applying DFPT [17,101–104].



3 Results and discussion

3.1 Phonon spectrum

In the present work, the phonon spectrum of seven different silicon clathrate frame-
works (I, II, IV, V, VII, VIII, H, Article I), two different Zintl clathrates ([Si19P4]Cl4,
Na4[Al4Si19], Article III), and the silicon diamond structure (d-Si, Articles I and II)
was studied. It is known [16, 17], that the DFT and DFPT methods provide rela-
tively accurate results for the harmonic phonon eigenvalues. The experimental and
computational results for d-Si were compared in Articles I-II and the maximum dif-
ference between the experimental and the computed phonon eigenvalues were 7%-11%
depending on the plane-wave basis sets, pseudopotentials and exchange-correlation en-
ergy functionals used in the calculations. In Article I, all calculations were conducted
by using the LDA to describe the exchange-correlation energy, while in Articles II and
III the GGA was used instead. In the actual measurements of the phonon eigenstates,
the anharmonicity of the crystal lattice is included and the resulting states observed
do not have well determined harmonic energy. Further, as shown in Sec. 2.4.2, the
anharmonic IFCs cause temperature dependent shifts on the harmonic phonon eigen-
values. This effect was neglected in the present work.

All silicon clathrate frameworks considered in Article I, except the framework VII,
were found to have a rather similar phonon spectrum from which similar thermal
properties, such as the heat capacity and CTE follow. Few distinctive features arose,
however. For instance, the silicon clathrate framework V was found to possess two
phonon band gaps, while the other silicon clathrate frameworks, excluding VII, were
found to have only one phonon band gap. As an example, the phonon dispersion
relations along high symmetry paths in the first Brillouin zone for the silicon clathrates
VII are shown in Fig. 3.1. In obtaining the results depicted in Fig. 3.1, the same
pseudopotential and plane-wave basis set was used as in Articles II and III (GGA
applied with the same computational details), while the applied k and q samplings
were the same as in Article I. The results obtained with GGA and LDA approaches
are otherwise quite similar except for the lowest energy optical modes. In Article I,
the lowest energy optical modes for VII were found to have values near 10 cm−1 when
q → 0, while the minimum values for these modes obtained with the method used in
Articles II and III are approximately 60 cm−1. The preceding can be verified from Fig.
3.1. The CTE values calculated with the GGA and LDA methods are compared in
Sec. 3.2. Even though the lowest optical modes of VII have smaller values in the long
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Figure 3.1: Phonon dispersion relations along high symmetry paths in the first Brillouin zone for
the silicon clathrate framework VII calculated with the method used in Articles II and III.

wave length limit than obtained for the other cubic silicon clathrate frameworks, there
is no visible flattening of the acoustic modes. In the actual measurements, the strict
values of energy shown in dispersion curves are absent. Instead, some distribution of
energy values is found and if the anharmonic interactions are sufficiently weak the
distribution can be of the Lorentzian form, the width of the Lorentzian being related
to the lifetime (or zeroth-order RT) of a particular state [62]. The aforementioned
distribution is temperature dependent.

The silicon clathrate framework VIII (Si23) is taken to be as the representative of the
silicon clathrate frameworks. The phonon dispersion relations for Si23, [Si19P4]Cl4 and
Na4[Al4Si19] are shown in Fig. 3.2. As discussed in Article III, the acoustic modes of
the clathrate Na4[Al4Si19] have rather different dispersion than obtained for Si23 and
[Si19P4]Cl4. In comparison to [Si19P4]Cl4, it seems that the highest and lowest energy
phonon states of Na4[Al4Si19] have smaller values. Since the wave vector dependence
is the same in both cases, it is useful to consider the dynamical matrix at q = 0, thus
from Eq. (2.22) it follows that

Dαα′ (κκ′|0) =
∑

l′

Φαα′ (lκ; l′κ′)√
MκMκ′

=
∑

l′
Dαα′ (0κ; l′κ′) , (3.1)

or
Dαα′ (κκ′|0) ≡ D (ςς ′|0) , ς ≡ ακ, ς ′ ≡ α′κ′. (3.2)

The corresponding eigenvalues can be obtained from Eq. (2.23). One way to estimate
the phonon eigenvalues is the method of Gerschgorin circles [105] applied on D (ςς ′|0).
The method of Gerschgorin circles states that the eigenvalues ω2 of D (ςς ′|0) are
contained in the following union

rς1 ∪ rς2 ∪ · · · ∪ rς3n , (3.3)
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where ∣∣∣ω2 −D (ςς|0)
∣∣∣ ≤ rς , rς =

3n∑
ς′=1,ς ̸=ς′

D (ςς ′|0) . (3.4)

Since the eigenvalues of the dynamical matrix are real, the Gerschgorin circles are in
fact intervals on the real axis. First, all the diagonal elements D (ςς|0) in the case of
the clathrate [Si19P4]Cl4 are higher than obtained for Na4[Al4Si19]. The ratio of the
diagonal elements is within the interval [1.21, 1.49]. Further, the length of the intervals,
rς , are larger for the clathrate [Si19P4]Cl4 and the ratio is within the interval [1.16, 2.50]
the largest values being obtained for the guest atoms Na/Cl. Both of these observations
favor the smaller phonon eigenvalues to be obtained for the clathrate Na4[Al4Si19]. In
particular, the lengths rςg centered at D (ςgςg|0) are so small that there is no overlap
between the diagonal elements D (ςf ςf |0) and the intervals rςg . Here, the subscripts
g and f refer to the guest (Na/Cl) and framework atoms (P/Al/Si), respectively.
However, the overlap of these intervals is obtained since the lengths rςf

centered at
D (ςf ςf |0) overlap with the diagonal elements D (ςgςg|0). The results thus indicate,
that in order to minimize the energy of the lowest phonon states it is favorable to
minimize the diagonal elements D (ςς|0) and perhaps the length of the intervals rς as
well.

It was found in Article III, that the difference in the second-order IFCs in the
clathrates [Si19P4]Cl4 and Na4[Al4Si19] leads to a more local characteristics of the
acoustic modes in Na4[Al4Si19]. The localization was measured with the participation
ratio (PR) defined as [106–109]

PR (λ) ≡

[∑
κ |e (κ|λ)|2 M−1

κ

]2
Na

∑
κ |e (κ|λ)|4 M−2

κ

. (3.5)

In Eq. (3.5), Na is the number of atoms within the unit cell. The more local character
the phonon state possesses, the value of PR (λ) approaches N−1

a . The opposite is
indicated by the PR (λ) values near to unity. Similar deductions can be made from
the quantities |e (κ|λ)|2 by using a physical interpretation given in Sec. 2.2.3. Measured
with these quantities, a state λ with a more local character have the |e (κ|λ)|2 value
near to unity for some κ. It is expected that in the localized mode, an atom κ vibrates
in isolation such that the displacement of other atoms decays faster than exponentially
as a function of distance from the atom κ. If the probability |e (κ|λ)|2 that an atom
lκ vibrates in the phonon mode λ is unity, the probability for the other atoms to
vibrate in the phonon mode λ is zero (Sec. 2.2.3), which would make this mode rather
localized. The PR values for Si23, [Si19P4]Cl4 and Na4[Al4Si19] together with the atom
projected density of states ρκ (ω) = 1/N ∑

λ |e (κ|λ)|2 δ (ω − ωλ) are shown in Fig.
3.3. As already mentioned, the clathrate Na4[Al4Si19] has acoustic modes with more
local characteristics and as the ρκ (ω) values indicate, the probability that the guest
atoms Cl/Na contribute to the low energy acoustic modes is higher than for the other
atoms in these structures. Sometimes these kind of phonon modes, observed at the low
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frequencies in Na4[Al4Si19], are called resonance modes [110]. It is usually expected
that the atoms which mainly contribute to these modes are either heavier or coupled
rather weakly to the lattice when compared with the other atoms in the structure [110]
and it appears that the latter condition may hold in the present case. There seems to
be a connection between the lower phonon energies and local characteristics of these
phonon states. Further studies are needed to find possible reasons for this behavior.

3.2 Thermal expansion

The CTE of the silicon clathrate frameworks I, II, IV, V, VII, VIII, and H was studied
in Article I. In particular, the differing NTE of the framework VII was considered.
The calculated linear and volumetric CTEs as a function of temperature for d-Si and
seven different silicon clathrate frameworks is depicted in Fig. 3.4. For d-Si, also the
experimental values obtained in Ref. [111] are shown. The values shown in Fig. 3.4
were calculated by using Eq. (2.102) and αL = αV /3 (valid for cubic structures).
The calculated CTE values for d-Si are lower than the experimental ones at all tem-
peratures considered. One reason, which may lower the calculated CTE is that the
temperature dependence of the bulk modulus BT and thus the elastic constants is ne-
glected. Experiments have shown that for d-Si, all the second-order elastic constants
and bulk modulus have decreasing values as a function of temperature. At 300 K, for
instance, the experimental bulk modulus value is approximately 97.8 GPa [112, 113].
On the other hand at 100 K, the experimental bulk modulus is about 99.2 GPa [112].
The computed value for the bulk modulus used in the calculation of the CTE was
96.5 GPa in the case of d-Si, which is the static lattice contribution at 0 K. The
calculated value is already lower than the experimental one, but larger CTE values
are obtained provided the calculated bulk modulus has similar dependence on the
temperature as obtained by experiments. In some cases, the anharmonic IFCs may
have some measurable significance in calculating the temperature dependence of the
bulk modulus, since the anharmonic IFCs contribute to the elastic constants as the
results of Ref. [54] and Article IV show, for example.

All the studied silicon clathrate frameworks, except VII, were found to have a rather
similar CTE as a function of temperature, as can be verified from Fig. 3.4. A tem-
perature range where the NTE occurred was found to be approximately 100 K wide
in these cases, while in the case of VII, the NTE temperature range was about 300 K
wide. The results shown in Fig. 3.4 are similar to those obtained in Ref. [39] by using
GGA. In order to compare the CTE for VII obtained by using the LDA and GGA, the
calculation of CTE with the same plane wave pseudopotentials used in Articles II and
III was established. Further, instead of using the finite difference method to calcu-
late the Grüneisen parameters, a perturbative approach to calculate the parameters
was used [see Eq. (3.6)]. This approach is implemented in the ShengBTE program
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package. By using the preceding method, the NTE temperature range was found to
be about 255 K wide, which is less than obtained with LDA used in Article I. The
minimum value of the CTE was found to be approximately the same and it occurred
at ∼95 K.

Since the Grüneisen parameters in the present approach were taken to be independent
of temperature, only temperature dependent quantity in the calculation of the CTE
was the heat capacity cv (λ). Further, when Eq. (2.102) is considered, the only quantity
which makes the CTE contribution of a particular state negative is the Grüneisen
parameter γ (λ). The Grüneisen parameter values were found to have a rather different
kind of distribution in the case of the silicon clathrate framework VII, than in the other
cases and this is the quantity which can be used to explain some of the differences in
CTE between VII and the other structures. The Grüneisen parameters is related to
the third-order IFCs through the relation [54]

γµν (λ) = −
3n∑

j′=4

12Vµν (0j′)V (0j′;λ; −λ)
~2ω0j′ωλ

− 2Vµν (λ; −λ)
~ωλ

, (3.6)

In Eq. (3.6), the coefficients V (λ;λ′;λ′′) and Vµν (λ;λ′) are given by Eqs. (2.45) and
(2.58), respectively. Furthermore, in the case of cubic crystals, one may write γ (λ) =
γµµ (λ) /3. In the open source program package ShengBTE (version 1.0.2), only the
second term in Eq. (3.6) is taken into account, the other being non-zero in general
for crystals where the position of every atom is not determined by the symmetry [54].
From Eq. (2.58) it follows that one may write for the coefficients

Vµµ (λ; −λ) = ~
4ωλ

∑
κ,α

∑
l′,κ′,α′

∑
l′′,κ′′

Φαα′µ (0κ; l′κ′; l′′κ′′)

×eα (κ|λ) e∗
α′ (κ′|λ)√

MκMκ′
e−iq·x(l′)xµ (l′′κ′′) . (3.7)

The atomic masses Mκ are the same in all cases and makes no difference between
the silicon clathrate frameworks. Further, since the silicon clathrate frameworks VII
and VIII have body-centered cubic Bravais lattices, the exponential factors e−iq·x(l′)

are the same in both cases and cannot be used to explain the differences in the
Grüneisen parameter distributions in these structures (VIII has similar distribution
than the other studied structures excluding VII). As the acoustic modes at relatively
small wave vector values in VII are not particularly flat in comparison to the other
structures, the factor 1/ωλ in Eq. (3.7) cannot be used either to explain the difference.
What is left to explain the difference in the Grüneisen parameter distributions is the
following factor

Φαα′µ (0κ; l′κ′; l′′κ′′) eα (κ|λ) e∗
α′ (κ′|λ)xµ (l′′κ′′) . (3.8)

For phonon states with more local character, the eigenvectors components eα (κ|λ) are
expected to have larger values when compared with the states with less local character.
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As stated in Sec. 2.2.3, e (κ|λ) can be considered as the probability amplitude that
the atom l = 0, κ vibrates in the phonon mode λ. In Fig. 3.5, the PR as a function
of frequency is depicted for VII in order to compare the localization and thus the
possible effect of the eigenvector components on Eq. (3.8) in VII and VIII. The smallest
PR value for the acoustic modes is about 0.62 which indicates that the modes are
relatively delocalized, which is a similar result as obtained for VIII (see Fig. 3.3).
Therefore it seems that the differing Grüneisen parameter distribution for the acoustic
modes in the case of VII is probably due to the differing third-order IFCs through the
factor Φαα′µ (0κ; l′κ′; l′′κ′′) xµ (l′′κ′′). With the preceding in mind, it appears that the
third-order IFCs may have a relatively large role in explaining the anomalous NTE
behaviour of the structure VII.

In particular, it seems that the anharmonicity in the silicon clathrate framework VII
and in the clathrate Na4[Al4Si19] arise mostly for different reasons. In the case of
Na4[Al4Si19] (Article III), rather large absolute values of γ (λ) were found. However,
the Grüneisen parameters for acoustic modes were found to be positive, while in
the case of VII most of the corresponding values were negative. The preceding indi-
cates that the CTE for Na4[Al4Si19] is relatively large when compared with Si23 and
[Si19P4]Cl4, but positive. Further, it was found that the anharmonicity in Na4[Al4Si19]
is mostly due to differing harmonic quantities. The anharmonicity in VII, on the other
hand, appears to be mostly due to the third-order IFCs. Thus, further comparative
study of these structures may give answers to questions such as: why the anharmonic-
ity observed in Na4[Al4Si19] does not lead to NTE, what is the role of NTE on the
lattice thermal conductivity or how to maximize the third-order IFCs and at the same
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time the effect of harmonic quantities on the anharmonicity.

3.3 Lattice thermal conductivity

The lattice thermal conductivity of the silicon clathrate frameworks II and VIII was
studied in Article II. The validity of the method was tested by comparing the cal-
culated lattice thermal conductivity of d-Si with experimental results [114] within
the temperature range 5-300 K. The lattice thermal conductivity values obtained for
d-Si were in agreement with the earlier computational results [60, 115]. Within the
temperature range 100-300 K the maximum difference between the experimental and
computational results is 4%-13% (the largest difference is at 125 K). A possible reason
for these rather large differences at lower temperatures is, for example, the descrip-
tion of isotopic scattering, since the expressions used are expected to be valid only
for relatively weak perturbations and long wavelengths [61]. It was also justified in
Article II that the difference at temperatures below 100 K may not be solely explained
by the absence of boundary scattering in the model used, since the crystal size in the
experiments was about 2 mm. The calculated lattice thermal conductivity values of
the clathrate structures II and VIII (Si23) are depicted in Fig. 3.6. At 300 K, the
lattice thermal conductivities were approximately 52 and 43 W/(m K) for the silicon
clathrate frameworks II and VIII, respectively. It was concluded that the difference
may be partly due to the differing coefficients V (λ;λ′;λ′′). Further, the lattice ther-
mal conductivity of the silicon clathrate framework II was found to be about twenty
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times higher than measured previously for polycrystalline samples at 300 K [116].
For a better comparison, the lattice thermal conductivity values measured for single
crystals are needed.

The calculated lattice thermal conductivity values obtained in Article III are shown
in Fig. 3.7. At 300 K, the calculated lattice thermal conductivities obtained for Si23
(VIII), [Si19P4]Cl4 and Na4[Al4Si19] are approximately 43 W/(m K), 25 W/(m K) and
2 W/(m K), respectively. It was found that the clathrate Na4[Al4Si19] possesses lower
lattice thermal conductivity due to smaller RTs and phonon group velocities. The
RTs were found to be smaller due to larger three-phonon phase space and differing
second-order IFCs, which change the phonon spectrum such that the anharmonicity
increases. The third-order IFCs were found to have a rather similar distribution in all
structures considered in Article III.

The lattice thermal conductivity of the semiconducting clathrates has been investi-
gated quite intensively in recent years [39,108,109,116–134]. Several different mecha-
nisms have been proposed to explain the reduced lattice thermal conductivity values
in these clathrates and lattice thermal conductivity values as low as ∼ 1 W/m K at
150 K have been obtained experimentally for some silicon clathrates [1,123], by using
a single crystal samples. Some experimental and computational studies have given
different explanations for the reasons behind the reduction of the lattice thermal con-
ductivity in semiconducting clathrates [108, 109]. For instance, in Ref. [109] for the
clathrate Ba8Ga16Ge30 the reduction was suggested to arise mainly from rather short
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RTs, while in Ref. [108] it was summarized that the reduction of the lattice thermal
conductivity of the Ba8Si46 clathrate is mostly due to the harmonic phonon spectrum
(not dominated by the scattering processes). As already mentioned, when compared
with [Si19P4]Cl4, it seems that in the case of Na4[Al4Si19], the reduction in the lattice
thermal conductivity appears to be mainly due to the shorter RTs, which in turn
are shorter mostly due to the different harmonic phonon spectrum. Eventually, the
differing harmonic phonon spectrum of these structures arise due to the mass reduced
second-order IFCs. It also seems that similar mechanisms cause a rather low lattice
thermal conductivity of BaCo4Sb12 and YbFe4Sb12 skutterudites [135,136]

There are several shortcomings in the method used to calculate the lattice thermal
conductivity and some of these issues were discussed in Article II. One issue is the
same as encountered in amorphous solids [137, 138], namely, when the mean free
path (MFP) of a phonon mfp (λ) = τ (λ) |v (λ)| becomes shorter than the shortest
distance between the atoms comprising the crystal. Since the aforementioned harmonic
phonons do not exist a contradiction is encountered. In Article II it was discovered that
in the case of the silicon clathrate framework VIII at 300 K, the percentage of q-points
violating the criterion mfp (λ) < a (a is the lattice constant of the primitive unit
cell) is about 2% for acoustical modes and 2%-96% for optical modes. Thus, strictly
speaking, some of the phonon states are not well defined in the present perturbative
approach. In other words, the states violating the criterion are not stationary, but
are instead time dependent. The effect of the preceding may be identified when more
rigorous methods are used to describe these systems in more detail.

It has been shown that the form of the energy flux used [Eq. (2.73)] is a special case
of a more general energy flux, which may be written as [56]

Ĵ′ = 1
V

∑
l,κ

p̂ (lκ)
Mκ

Ĥ + 1
V

∑
l,κ,l′,κ′

[û (lκ) − û (l′κ′)] 1
i~

[
p̂2 (lκ)
2Mκ

, Ĥa0

]
−

+ 1
V

∑
l,κ,l′,κ′

[x (lκ) − x (l′κ′)] 1
i~

[
p̂2 (lκ)
2Mκ

, Ĥa0

]
−
, (3.9)

where
Ĥa0 = 1

2
∑
l,κ,α

∑
l′,κ′,β

Φαβ (lκ; l′κ′) ûα (lκ) ûβ (l′κ′) + Ĥa. (3.10)

In Eq. (3.10), the first term on the right hand side is the potential energy part of
the harmonic Hamiltonian Ĥ0 and Ĥa is given by Eq. (2.44). The first term on the
right hand side of Eq. (3.9) is the lattice Hamiltonian Ĥ = Ĥ0 + Ĥa times the velocity
p̂ (lκ) /Mκ of an atom lκ and it is usually expected to be rather small in crystals [137],
but to our acknowledge, there is no known proof that this is true for arbitrary crystals.
The relative contribution of the second and third term on the right hand side of Eq.
(3.9) is determined by the following terms x (lκ) − x (l′κ′) and û (lκ) − û (l′κ′). If the
relative displacements of the atoms lκ and l′κ′ is relatively large, the second term may
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have some significance, but it is usually expected to be rather small in crystals [56].
On the other hand, atoms vibrating in the so-called resonance modes are expected
to have relatively large mean square displacements [110] and therefore in crystals in
which such resonance modes exist, the second term may have some larger significance.

The energy flux used in the present work [Eq. (2.73)] can be obtained from Eq. (3.9)
by using the following steps. First, the energy flux given by Eq. (3.9) is approximated
as

Ĵ′ ≈ 1
V

∑
l,κ,l′,κ′

[x (lκ) − x (l′κ′)] 1
i~

[
p̂2 (lκ)
2Mκ

, Ĥa0

]
−
. (3.11)

Then, Ĥa is neglected in the expression given by Eq. (3.10) giving

Ĵ′ ≈ 1
V

∑
l,κ,l′,κ′

[x (lκ) − x (l′κ′)] 1
i~

[
p̂2 (lκ)
2Mκ

, Ĥp0

]
−
, (3.12)

where Ĥp0 denotes the potential energy part of the harmonic Hamiltonian. After using
the expansions given by Eqs. (2.34) and (2.35), by applying the commutation relations
for the creation and annihilation operators and imposing some further simplifications
on the resulting expression (discussed in Ref. [56]) one obtains the energy flux Ĵ given
by Eq. (2.73). Thus, the energy flux used to calculate the lattice thermal conductivity
in the present work is a special case of the last term on the right hand side of Eq.
(3.9) and there are more general harmonic energy fluxes than used here. Moreover,
if the anharmonicity of a crystal is sufficiently strong, the anharmonic energy fluxes
may have some significance in the calculation of lattice thermal conductivity. In the
case of some particular triangular lattices, the lowest-order anharmonic energy fluxes
have been shown to make even larger contribution to the lattice thermal conductivity
than the harmonic ones [139]. To the author’s knowledge, there is no ab initio lat-
tice thermal conductivity computations applied on real materials so far by using the
anharmonic heat fluxes. Since the harmonic heat flux already contains such contribu-
tions that are not taken into account in the present approaches, these contributions
should not be discarded in general, unless it can be shown that such contributions
are in practice insignificant. The preceding, however, can be rather difficult to verify
without explicit computations due to the complexity of the systems.

The present method also neglects the effect of thermal expansion, which makes the
IFCs temperature dependent. Ab initio calculations of the lattice thermal conduc-
tivity have already been established for PbTe and the results show that in some
materials the effect of thermal expansion on the lattice thermal conductivity may be
rather significant [31]. There is also some development in the computational methods
that allow the calculation of anharmonic properties beyond the present perturbative
approach [19]. Application of such methods on the lattice thermal conductivity calcu-
lations of semiconducting clathrates, for example, may provide some further insights
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about the lattice thermal conductivity in these materials and can be used to test the
validity of the present results.

One further issue causing some numerical inaccuracy is the way by which the Sheng-
BTE program package treats the third-order IFCs. The second-order IFCs in the
QE program package are obtained by Fourier transforming the dynamical matrix
Dαβ (κκ′|q) by using arbitrary q meshes. However, q meshes used are usually smaller
than (10, 10, 10), say, for materials with unit cells larger than that of d-Si (two atoms
per primitive unit cell). After the calculation with (n1, n2, n3) mesh is completed, the
QE program package uses Fourier interpolation to obtain the dynamical matrix in a
mesh (n′

1, n
′
2, n

′
3), which is denser than the original one. One obtains the second-order

IFCs by (discrete) Fourier transform within a cell, which consists of n′
1 × n′

2 × n′
3

unit cells [18]. In Ref. [19], the third-order IFCs have been treated in a similar way.
In ShengBTE, a different approach is used in order to calculate the third-order IFCs
(the program thirdorder.py included in the ShengBTE distribution [21]): ShengBTE
creates a super cell (m1,m2,m3) and then forms displacement patterns for single point
DFT calculations from which all the different third-order IFCs up to some cut off value
are calculated by using finite differences and by taking the symmetry into account.
In the calculation of the RTs, for example, the third-order Hamiltonian [Eqs. (2.44)
and (2.44)] is used and what is needed is the Fourier transform of the third-order
IFCs. The issue is that the ShengBTE program uses the third-order IFCs obtained
within a super cell (m1,m2,m3) with arbitrary q meshes. The preceding procedure is
different from that used with the second-order IFCs implemented in the QE and this
causes some errors in the calculations. In the case of the clathrates, it was not possible
to test the convergence with respect to the super cell size due to the computational
requirements.

3.4 Elastic and thermal properties

In Article IV, the elastic and thermal properties of crystals with arbitrary symmetry
were considered by using many-body perturbation theory. There have been several
works discussing these properties by applying different techniques [15,41,45,54,68,69,
140–145], but to the author’s knowledge no such a systematic approach established
in Article IV exist. For instance, generic expressions for kth-order elastic constants
were derived up to third-order [h = 3, Eq. (2.128)] and to various orders in IFCs. The
adiabatic and isothermal stress with the second-order isothermal elastic constants are
essential when the CTE is calculated by using Eq. (2.135), for example. The higher-
order elastic constants, on the other hand, can be useful in the study of physical
acoustics and non-linear elasticity of crystals [146,147]. Present computational meth-
ods allow the calculation of the elastic constants for arbitrary crystals and elastic
constants up to fourth-order have been computed for some crystalline materials [148].
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... {μm ,ν  }m 
...

Figure 3.8: The first order diagrams considered in Article IV.

However, the computations as established in Refs. [148–150], for example, take only
the so-called static terms into account and thus neglect the effect of the vibrations
of the lattice (phonons), which may have some importance in some cases. Both of
these effects are taken into account when the perturbative approach applied in Ar-
ticle IV is used. In the situation when the anharmonic forces are sufficiently strong,
the perturbation theory with a few lowest-order terms, used in the present approach,
may not describe the system in sufficient detail and more rigorous methods are prob-
ably needed. An example of such method is the self-consistent theory for phonons
described, for instance, in Refs. [71, 151–153].

All diagrams considered in Article IV are depicted in Figs. 3.8-3.10. Some of the dia-
grams shown in Figs. 3.8-3.10 have been given earlier by using diagrams or algebraic
expressions. The third and higher-order elastic constants have not been considered in
such a systematic manner before by applying the present approach. For example, in
Ref. [142], only the static contribution to the third-order elastic constant was con-
sidered, while in Ref. [54] only one contribution to the isothermal third-order elastic
constant was taken into account and was represented as a diagram. All diagrams
represented in Ref. [41] (diagrams related to elastic constants or stresses) were also
shown in Ref. [54]. In Ref. [54], two algebraic expressions corresponding to stress con-
tributions were given. The stress diagrams considered in Ref. [54] were a special case
of Fig. 3.8, special cases of diagrams h), k) and m) in Fig. 3.9 and one third-order
diagram. Furthermore, in Ref. [54], three different algebraic expressions were given for
the second-order isothermal elastic constants, while diagrams included were special
cases of Fig. 3.8, special cases of diagrams e), f), h), i), j), l), m) and n) shown in Fig.
3.9 and special cases of diagrams e), f), g) and m) shown in Fig. 3.10.

To get some understanding how the diagrams shown in Figs. 3.8-3.10 arise, few ex-
amples are considered. To first-order (h = 1), the isothermal elastic constants may be
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Figure 3.9: Some second-order diagrams considered in Article IV.
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Figure 3.10: Some third-order diagrams considered in Article IV.
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written as [Eqs. (2.128), (2.133) and (2.134)]

c̃
T,(1)
µ̄mν̄m

= 1
β

∫ β

0
dτ1

∑
n=2m′

∑
λ̄n

1
m!
Vµ̄mν̄m

(
λ̄n

) ⟨
T
{
Âλ1 (τ1) · · · Âλn (τ1)

}⟩
0,c

=
∑

n=2m′

∑
λ̄n

1
m!
Vµ̄mν̄m

(
λ̄n

) n−1∏
k=1∧k= odd

(k)

×
∞∑

n1=−∞
G0 (λ1|ωn1) δλ1−λ2 · · ·

∞∑
nn−1=−∞

G0
(
λn−1|ωnn−1

)
δλn−1(−λn)

=
∑

n=2m′

∑
λ̄n/2

1
m!
Vµ̄mν̄m

(
λ̄n/2; −λ̄n/2

) n−1∏
k=1∧k= odd

(k)

×
∞∑

n1=−∞
G0 (λ1|ωn1) · · ·

∞∑
nn/2=−∞

G0
(
λn/2|ωnn/2

)
, (3.13)

where m′ ∈ N and Wick’s Theorem is used. Further, the notation introduced in
Secs. 2.2.2 and 2.4.2 is used. The lowest-order case (n = 0) is Vµ̄mν̄m/m! and the
corresponding diagram is a special case of the second diagram in Fig. 3.8, that is a
dot and a fan of dashed lines. The number of dashed lines in the fan depends on the
order of the elastic constants considered, the lowest-order case (m = 1) being the
isothermal stress. The next case is n = 2, which can be written as

∑
λ

1
m!
Vµ̄mν̄m (λ; −λ)

∞∑
n=−∞

G0 (λ|ωn) = 2
m!

∑
λ

Vµ̄mν̄m (λ; −λ)
(
n̄λ + 1

2

)
. (3.14)

The corresponding diagram is a dot connected with a fan of dashed lines and cir-
cle which intersects the dot. Each circle in Fig. 3.8 represents a Green’s function∑∞

n=−∞ G0 (λ|ωn). The number of outgoing lines from a dot gives the number of
phonon labels included in the coefficients Vµ̄mν̄m

(
λ̄n

)
or V

(
λ̄n

)
. The vertices de-

scribing the coefficients V
(
λ̄n

)
are otherwise the same as the vertices describing the

strained coefficients Vµ̄mν̄m

(
λ̄n

)
, except that in the former case, there is no fan of

dashed lines. The lines between two vertices arise from the terms like
∞∑

n1=−∞
G0 (λ1|ωn1) δλ1−λ2 , (3.15)

where λ1 and λ2 belong to different coefficients such that after the summation over
λ2, say, two different coefficients share the same label λ1. Another example is diagram
n) of Fig. 3.9, the algebraic expression for this diagram can be written as (m+m′ = l,
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which is the order of the elastic constant)

− 1
β

∑
λ1,λ2

∑
m,m′=1

1
m!m′!

∑
µ̄m,ν̄m

∑
µ̄′

m′ ,ν̄
′
m′

∑
n′=1

∑
λ̄′

2n′

Vµ̄mν̄m (λ1;λ2)Vµ̄′
m′ ν̄

′
m′

(
λ̄′

2n′

)
×n′δλ1(−λ′

1)δλ2(−λ′
2)δλ′

3(−λ′
4)δλ′

5(−λ′
6) · · · δλ′

2n′−1(−λ′
2n′)

×
∫ β

0
dτ1

∫ β

0
dτ2

∞∑
n1,n2=−∞

G0 (λ1|ωn1) eiωn1 (τ1−τ2)G0 (λ2|ωn2) eiωn2 (τ1−τ2)

×
2n′−3∏

k=1∧k=odd

k
∞∑

n3=−∞
G0 (λ′

3|ωn3) · · ·
∞∑

n2n′−1=−∞
G0

(
λ′

2n′−1|ωn2n′−1

)
. (3.16)

The summations in Eq. (3.16) can be simplified by using the method described in
Appendix A. When the summations over the labels λ′

1, λ
′
2, λ

′
4, λ

′
6, . . . are established,

it can be seen that the coefficients share the labels λ1, λ2, that is, the coefficients
after the summations can be written as Vµ̄mν̄m (λ1;λ2)Vµ̄′

m′ ν̄
′
m′

(−λ1; −λ2;λ′
3; −λ′

3; . . .).
The Green’s functions on the third line of Eq. (3.16) connect the vertices and are
therefore represented by the semicircle shaped lines in diagram n) of Fig. 3.9. Few
example calculations corresponding to the second and third-order diagrams are given
in Appendix C.

As stated in Article IV, the perturbation expansion for arbitrary macroscopic param-
eters is similar in all such cases provided the coefficients have the same symmetry
properties and the number of parameters is the same. For instance, if the parameters
are electric field components, the expansion allows the calculation of the pyroelectric
coefficient from the derivatives of free energy [79]. Furthermore, if the macroscopic
parameters in the expansion [Eq. (2.55)] are the infinitesimal strain parameters and
electric field components, one may obtain, for example, the components of the piezo-
electric tensor from the mixed derivatives of free energy [79]. The lowest-order terms
of expansions where the macroscopic parameters are infinitesimal strains and electric
field components are considered in Refs. [15] and [41] and the latter work is based on
the Green’s function technique. With the preceding discussion in mind, all the dia-
grams shown in Figs. 3.8-3.10 are valid for arbitrary macroscopic parameters in Eq.
(2.55) difference being in the coefficients gλ11 ···λkm

(superscripts omitted). This can
be indicated by changing the symbols in the diagrams which refer to the parameters
used.

The CTE can be calculated by using Eq. (2.135). Thus, the diagrams of Figs. 3.8-
3.10 which contribute to the CTE are those having one or two strained vertices. For
example, the first-order contributions needed to calculate the CTE can be written as
(results of Article IV)

c̃
T (1)
µ̄kν̄k

= 1
k!

∑
n=2m

∑
λ̄n/2

Vµ̄k ν̄k

(
λ̄n/2; −λ̄n/2

)
ξ(1)

(
λ̄n/2

)
+ 1
k!
Vµ̄kν̄k

, (3.17)
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σA(1)
µν − σT (1)

µν = −β~
∑

n=2m

∑
λ̄n/2

Vµν

(
λ̄n/2; −λ̄n/2

)
ξ(2)

(
λ̄n/2

)
. (3.18)

In Eqs. (3.17) and (3.18), m = 1, 2, . . . and the notation introduced in Appendix B is
used for ξ(1)

(
λ̄n/2

)
and ξ(2)

(
λ̄n/2

)
. From Eqs. (3.17) and (3.18) it follows that only

the compliance tensor s̃T (1)
µ̄kν̄k

has the so-called static term Vµ̄kν̄k
, while in the expression

for σA(1)
µν − σT (1)

µν this term is absent. In order to calculate the lowest-order non-static
contributions to sT (1)

µ1ν1µ2ν2 , the fourth-order IFCs are needed while the lowest-order
contribution to σA(1)

µν −σT (1)
µν requires third-order IFCs. Few second-order contributions

to σA(2)
µν − σT (2)

µν , derived in Article IV, are shown in Appendix B. In the calculations
of the present work (Article I), only the static contribution to the second-order elastic
constants and the lowest-order term (n = 2) of Eq. (3.18) were taken into account.

Symmetry restrictions simplify the calculation of the CTE and for cubic crystals, for
example, Eq. (2.135) can be written as

αµµ = 1
T

σA
µµ − σT

µµ

cT
1111 + 2cT

1122
. (3.19)

To obtain the elastic constants cT
µ̄kν̄k

, defined in terms of finite strain parameters,
from the elastic constants c̃µ̄kν̄k

, which are defined in terms of infinitesimal strain
parameters, transformation equations must be used. The aforementioned equations
are considered in Refs. [15, 78] and the transformation equation for the second-order
elastic constants was given in Article IV. Since for cubic crystals cT

1111 +2cT
1122 > 0 [79],

the NTE occurs in cubic crystals only if σA
µµ − σT

µµ < 0. Thus, only the non-static
terms cause the NTE. As can be seen from Eqs. (3.17) and (3.18), to first-order, the
magnitude of the CTE is proportional to Vµν

(
λ̄n/2; −λ̄n/2

)
/Vµ̄2ν̄2

(
λ̄n/2; −λ̄n/2

)
. That

is, the magnitude of the CTE is proportional to the ratio of the IFCs of odd and
even-order.

The explicit algebraic expressions derived in Article IV can be used to calculate the
CTE such that the method goes beyond the QHA and more rigorous results can be
obtained. By applying such methods, one may obtain some further understanding
about the NTE phenomenon.



4 Conclusions

The thermal conductivity and thermal properties of silicon clathrates were studied.
In Article I, the silicon clathrate framework VII was found to have NTE temperature
range up to 255 K. The reason for this rather anomalous NTE behavior seems to
be a relatively strong anharmonicity through the third-order IFCs. Since some of
the reasons behind the NTE phenomena are unknown, further and more detailed
study of the materials such as the silicon clathrate framework VII may give some
useful information about the NTE in general. More detailed calculations of the CTE
including higher-order perturbative terms, given for example in Article IV, may be
used to test the validity of the present results.

The lattice thermal conductivity of two different silicon clathrate frameworks and
two different semiconducting (or Zintl) clathrates was calculated by using an iterative
solution of the linearized BTE and ab initio lattice dynamics. The validity of the
method was tested by comparing computational results with the experimental ones in
the case of d-Si. At 300 K, the obtained lattice thermal conductivities were 52 W/(m
K), 43 W/(m K), 25 W/(m K) and 2 W/(m K) for the clathrates II, VIII (Si23),
[Si19P4]Cl4 and Na4[Al4Si19], respectively. The one-order of magnitude lower lattice
thermal conductivity of the clathrate Na4[Al4Si19] seems to be due to increased anhar-
monicity and smaller phonon group velocities which in turn appear to result mostly
from rather different harmonic phonon spectrum. The results indicate that in some
cases, the harmonic quantities can make relatively large differences in the anharmonic-
ity of two similar crystal structures, even when the anharmonic IFCs appear to be
rather similar. The possible shortcomings of the present method used to calculate the
lattice thermal conductivity were discussed and further studies of these materials with
more rigorous methods are needed to assess the validity of the present results. The
results of the present work may give some insight on what properties are needed in
the development of new crystalline materials with relatively low lattice thermal con-
ductivity, which in turn is expected to increase the thermoelectric efficiency through
the thermoelectric figure of merit ZT .

Derivation of the expressions for different elastic and thermal quantities was estab-
lished by using the method of many-body Green’s functions and many-body pertur-
bation theory. A physical interpretation of the phonon eigenvectors from a quantum
mechanical point of view was also discussed. The expressions obtained extend the
existing results and allow the calculation of the adiabatic and isothermal kth-order
elastic constants whenever the needed IFCs are available. The results can be also
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used to calculate the anharmonic thermal properties of a crystal such as the inter-
nal energy, Helmholtz free energy, heat capacity at constant strain (volume), heat
capacity at constant stress (pressure), entropy and CTE. In particular, the derived
expressions may be used to give some further insights about the NTE phenomenon.
Further, the derived expressions can be used for systems, which are not described
appropriately by the QHA. However, when the anharmonicity is sufficiently strong,
few lowest-order terms in the expansion, considered in this thesis, may not describe
the system appropriately and more rigorous methods are needed.

The quest for more efficient thermoelectric materials is a relatively complicated one.
In addition to the properties considered in this thesis, one has to describe the elec-
tronic transport problem in order to describe quantities such as the thermoelectric
efficiency. The description of the electronic transport problem, in turn, is a rather
challenging task since couplings like the electron-phonon interactions must usually be
included. Further, all the quantities needed to calculate the thermoelectric efficiency
are somehow dependent on each other. For instance, the electronic structure partly
determines the values of the IFCs and thus the harmonic phonon spectrum and anhar-
monic IFCs. The harmonic and anharmonic IFCs, in turn, determine the CTE which
shows how the crystal expands or contracts as a function of temperature. While the
crystal expands or contracts, the electronic structure changes determining again the
phonon spectrum, phonon-phonon interactions, electron-phonon interactions and so
on, which leads to the chance in the values of lattice thermal conductivity, electronic
part of thermal conductivity et cetera. At the present, to the author’s knowledge,
there is no such method, which takes all the aforementioned properties into account.
Thus, there are many open questions related to the lattice thermal conductivity and
thermoelectricity and it is thus probably useful to continue the development of theo-
retical, computational and experimental techniques to achieve deeper understanding,
which may lead to the actual applications in a more extensive manner. While pursuing
this understanding, some unpredictable findings may occur as the history of science
has shown.



A Solutions for integrals

Some rather complicated integrals appear when the perturbation series of Article IV
is evaluated (Sec. 2.4.3). By using the Fourier transforms of Green’s functions, these
integrals are transformed into infinite series. In this Appendix, a method, which can
be used to simplify these series is described. The method is based on the residue
theorem.

A.1 Generic method

The residue theorem states that [154]∮
C
dzg (z) = 2πi (a−1 + b−1 + c−1 + · · · ) . (A.1)

where g (z) is an analytic function within a simple closed curve C except at singular-
ities a, b, c, . . ., with residues a−1 + b−1 + c−1. Let g (z) = f (z)m (z), then, one may
write the residue theorem as∮

C
dzf (z)m (z) = 2πi [sum of res. of f (z)m (z) at the poles of f (z) and m (z)] .

(A.2)
The contour C and the function m (z) is chosen in such that the integral in Eq. (A.2)
vanishes and in this case one obtains

∞∑
n=−∞

f (n) = − [sum of res. of f (z)m (z) at the poles of f (z)] . (A.3)

Let
m (z) = π cotπz, (A.4)

then, it can be shown that if [154]

|f (z)| ≤ M

|z|k
, k > 1 ∧M ∈ R, (A.5)

then ∮
C
dzf (z)m (z) = 0, (A.6)
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as one considers a limit where the contour C encircles all the poles of the function
m (z) (the number of simple poles is infinite). Since m (z) has simple poles at z = n =
0,±1,±2, . . ., one obtains the following residues for these poles

lim
z→n

(z − n)m (z) f (z) = π lim
z→n

(z − n) cot πzf (z) = f (n) . (A.7)

Since there is an infinite number of these poles, one may write Eq. (A.2) as [noting
also Eq. (A.6)]

∞∑
n=−∞

f (n) = −
∑

n

Res [f (z) π cotπz, pn] , (A.8)

where the right hand side is the sum of residues of f (z)m (z) at the poles {pn} of
f (z).

A.2 Example calculations

As an example, the following calculation is established. From Eq. (2.120)

G0 (λ|ωn) = 1
β~

2ωλ

ω2
λ + ω2

n

, ωn = 2πn
β~

. (A.9)

Let
f (n) = G0 (λ|ωn) = 1

β~
2ωλ

ω2
λ + ω2

n

= 1
β~

2ωλ

ω2
λ +

(
2πn
β~

)2 , (A.10)

f (z) = G0 (λ|ωn, n → z) = 1
β~

2ωλ

ω2
λ +

(
2πz
β~

)2 . (A.11)

The poles of f (z) are at (poles are simple)

pm = ±iωλ
β~
2π
. (A.12)

One may calculate the residues at these simple poles as follows

π lim
z→+iωλ

β~
2π

(
z − iωλ

β~
2π

)
cot (πz) 1

β~
2ωλ

ω2
λ +

(
2πz
β~

)2 = −1
2

coth
(
β~ωλ

2

)
, (A.13)

π lim
z→−iωλ

β~
2π

(
z + iωλ

β~
2π

)
cot (πz) 1

β~
2ωλ

ω2
λ +

(
2πz
β~

)2 = −1
2

coth
(
β~ωλ

2

)
. (A.14)

Thus, from Eqs. (A.8), (A.13) and (A.14), it follows that
∞∑

n=−∞
f (n) = coth

(
β~ωλ

2

)
. (A.15)
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One may write

coth
(
β~ωλ

2

)
= 2n̄λ + 1, n̄λ = 1

eβ~ωλ − 1
, (A.16)

and thus
∞∑

n=−∞
f (n) =

∞∑
n=−∞

G0 (λ|ωn) =
∞∑

n=−∞

1
β~

2ωλ

ω2
λ + ω2

n

= 2n̄λ + 1. (A.17)

Another example to be considered is
∞∑

n,n′′=−∞
G0 (λ|ωn)G0 (λ′|ωn′′) δ−m+n+n′′ =

∞∑
n=−∞

G0 (λ|ωn)G0 (λ′|ωn − ωm) (A.18)

where

G0 (λ|ωn)G0 (λ′|ωn − ωm) = 1
β~

2ωλ

ω2
λ + ω2

n

1
β~

2ωλ′

ω2
λ′ + (ωn − ωm)2 . (A.19)

From Eq. (A.8)
∞∑

n=−∞
f (n) = −

∑
m

Res [f (z) π cotπz, pm] , (A.20)

where
f (n) = G0 (λ|ωn)G0 (λ′|ωn − ωm) , (A.21)

f (z) = G0 (λ|ωn, n → z)G0 (λ′|ωn − ωm, n → z)

= 1
β~

2ωλ

ω2
λ +

(
2πz
β~

)2
1
β~

2ωλ′

ω2
λ′ +

(
2πz
β~ − ωm

)2 . (A.22)

The poles of f (z) are at

pm =
{

±iωλ
β~
2π
,+iβ~

2π
(ωλ′ − iωm) ,−iβ~

2π
(ωλ′ + iωm)

}
. (A.23)

The residues at these poles can be written as

Res

[
f (z) π cotπz,+iωλ

β~
2π

]
= − 1

β~
ωλ′ coth

(
β~ωλ

2

)
(−ωλ + ωλ′ − iωm) (ωλ + ωλ′ + iωm)

, (A.24)

Res

[
f (z)π cotπz,−iωλ

β~
2π

]
= − 1

β~
ωλ′ coth

(
β~ωλ

2

)
(ωλ + ωλ′ − iωm) (−ωλ + ωλ′ + iωm)

, (A.25)

Res

[
f (z) π cotπz,+iβ~

2π
(ωλ′ − iωm)

]
= − 1

β~
ωλ coth

(
β~ωλ′

2 − iβ~ωm

2

)
(ωλ + ωλ′ − iωm) (ωλ − ωλ′ + iωm)

,

(A.26)
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Res

[
f (z) π cotπz,−iβ~

2π
(ωλ′ + iωm)

]
= − 1

β~
ωλ coth

(
β~ωλ′

2 + iβ~ωm

2

)
(ωλ − ωλ′ − iωm) (ωλ + ωλ′ + iωm)

.

(A.27)
In Eqs. (A.26) and (A.27)

coth
(
β~ωλ′

2
± iβ~ωm

2

)
= coth

(
β~ωλ′

2

)
. (A.28)

By using Eq. (A.28) and decomposition to partial fractions, one may write Eqs. (A.24)-
(A.27) as

∞∑
n=−∞

f (n) = − 1
2β~

−
coth

(
β~ωλ′

2

)
+ coth

(
β~ωλ

2

)
ωλ + ωλ′ + iωm

+
coth

(
β~ωλ

2

)
− coth

(
β~ωλ′

2

)
ωλ − ωλ′ + iωm

+
coth

(
β~ωλ

2

)
+ coth

(
β~ωλ′

2

)
−ωλ − ωλ′ + iωm

+
coth

(
β~ωλ′

2

)
− coth

(
β~ωλ

2

)
−ωλ + ωλ′ + iωm

 . (A.29)

One may write

coth
(
β~ωλ

2

)
= 2n̄λ + 1, n̄λ = 1

eβ~ωλ − 1
, (A.30)

and thus
∞∑

n=−∞
f (n) =

∞∑
n=−∞

G0 (λ|ωn)G0 (λ′|ωn − ωm)

= 1
β~

[
n̄λ′ + n̄λ + 1
ωλ + ωλ′ + iωm

− n̄λ + n̄λ′ + 1
−ωλ − ωλ′ + iωm

+ n̄λ − n̄λ′

−ωλ + ωλ′ + iωm

− n̄λ − n̄λ′

ωλ − ωλ′ + iωm

]
. (A.31)

Next summation to be considered is
∞∑

n=−∞
f (n) = −

∑
m

Res [f (z)π cot πz, pm] , (A.32)

where
f (n) = G0 (λ|ωn)G0 (λ′|ωn) , (A.33)

and thus

f (z) = G0 (λ|ωn, n → z)G0 (λ′|ωn, n → z)

= 1
β~

2ωλ

ω2
λ +

(
2πz
β~

)2
1
β~

2ωλ′

ω2
λ′ +

(
2πz
β~

)2 . (A.34)
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The poles of f (z) are at (poles are simple)

pm =
{

±iωλ
β~
2π
,±iωλ′

β~
2π

}
. (A.35)

The residues at these simple poles are

Res

[
f (z) π cotπz,+iωλ

β~
2π

]
= − 1

β~
ωλ′ coth

(
β~ωλ

2

)
−ω2

λ + ω2
λ′

, (A.36)

Res

[
f (z) π cotπz,−iωλ

β~
2π

]
= − 1

β~
ωλ′ coth

(
β~ωλ

2

)
−ω2

λ + ω2
λ′

, (A.37)

Res

[
f (z)π cotπz,+iωλ′

β~
2π

]
= − 1

β~
ωλ coth

(
β~ωλ′

2

)
ω2

λ − ω2
λ′

, (A.38)

Res

[
f (z) π cotπz,−iωλ′

β~
2π

]
= − 1

β~
ωλ coth

(
β~ωλ′

2

)
ω2

λ − ω2
λ′

. (A.39)

Thus, from Eq. (A.32) and from Eqs. (A.36)-(A.39) it follows that

∞∑
n=−∞

f (n) = 2
β~

ωλ coth
(

β~ωλ′
2

)
− ωλ′ coth

(
β~ωλ

2

)
ω2

λ − ω2
λ′

. (A.40)

One may write

coth
(
β~ωλ

2

)
= 2n̄λ + 1, (A.41)

and thus ∞∑
n=−∞

f (n) = 2
β~

ωλ (2n̄λ′ + 1) − ωλ′ (2n̄λ + 1)
ω2

λ − ω2
λ′

. (A.42)

In the limit ωλ → ωλ′

lim
ωλ→ωλ′

∞∑
n=−∞

G0 (λ|ωn)G0 (λ′|ωn) = 2
β~

lim
ωλ→ωλ′

ωλ (2n̄λ′ + 1) − ωλ′ (2n̄λ + 1)
ω2

λ − ω2
λ′

= 2
[
n̄λ (n̄λ + 1) +

n̄λ + 1
2

β~ωλ

]
. (A.43)
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B Contributions to CTE

The following notations are sometimes used in this Appendix and in this thesis in
general

ξ(1)
(
λ̄n/2

)
≡

n−1∏
k=1∧k= odd

k 2n/2
(
n̄λ1 + 1

2

)(
n̄λ2 + 1

2

)
· · ·

(
n̄λn/2 + 1

2

)
,

ξ(2)
(
λ̄n/2

)
≡

n−1∏
k=1∧k= odd

k 2n/2
n/2∑
i=1

ωλi
n̄λi

(n̄λi
+ 1)

n/2∏
l=1∧l ̸=i

(
n̄λl

+ 1
2

)
, (B.1)

ξ(3)
(
λ̄n/2

)
≡

n−1∏
k=1∧k= odd

k

2n/2
n/2∑
i=1

ω2
λi
n̄λi

(n̄λi
+ 1) (n̄λi

+ 1)
n/2∏

l=1∧l ̸=i

(
n̄λl

+ 1
2

)

+ 2
n/2∑
i=1

ωλi
n̄λi

(n̄λi
+ 1)

n/2∏
l=1∧l ̸=i

ωλl
n̄λl

(n̄λl
+ 1)

 , (B.2)

G(3) (λ;λ′;λ′′) ≡
[
3 n̄λ (n̄λ′ + n̄λ′′ + 1) − n̄λ′n̄λ′′

−ωλ + ωλ′ + ωλ′′

+ (n̄λ + 1) (n̄λ′ + 1) (n̄λ′′ + 1) − n̄λn̄λ′n̄λ′′

ωλ + ωλ′ + ωλ′′

]
, (B.3)

G(3,β) (λ;λ′;λ′′) ≡
[

2ωλ′n̄λ′ (n̄λ′ + 1) (n̄λ′′ − n̄λ)
−ωλ + ωλ′ + ωλ′′

− ωλn̄λ (n̄λ + 1) (n̄λ′ + n̄λ′′ + 1)
−ωλ + ωλ′ + ωλ′′

+ ωλn̄λ (n̄λ + 1) n̄λ′n̄λ′′

ωλ + ωλ′ + ωλ′′
− ωλn̄λ (n̄λ + 1) (n̄λ′ + 1) (n̄λ′′ + 1)

ωλ + ωλ′ + ωλ′′

]
.

(B.4)
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The second-order contribution to the quantity can be approximated as

σA(2)
µν − σT (2)

µν ≈ −12β
∑

λ

∑
λ′
Vµν (λ)V (−λ;λ′; −λ′) ωλ′n̄λ′ (n̄λ′ + 1)

ωλ

−72β
∑

λ

∑
λ′

∑
λ′′
Vµν (λ; −λ;λ′) V (−λ′;λ′′; −λ′′)

ωλ′

×
[
ωλn̄λ (n̄λ + 1)

(
n̄λ′′ + 1

2

)
+ ωλ′′n̄λ′′ (n̄λ′′ + 1)

(
n̄λ + 1

2

)]
+36β

∑
λ

∑
λ′

∑
λ′′
Vµν (λ;λ′;λ′′)V (−λ; −λ′; −λ′′)G(3,β) (λ;λ′;λ′′)

−192β
∑

λ

∑
λ′

∑
λ′′
Vµν (λ;λ′)V (−λ; −λ′, λ′′; −λ′′)

×

ωλωλ′′n̄λ′′ (n̄λ′′ + 1)
(
n̄λ′ + 1

2

)
ω2

λ − ω2
λ′

+
ωλ′n̄λ′ (n̄λ′ + 1)

(
n̄λ′′ + 1

2

)
ω2

λ − ω2
λ′

 .
(B.5)

The second-order terms contribute to the NTE if σA(2)
µν − σT (2)

µν < 0.



C Evaluation of perturbation
expansion

In this Appendix, few evaluations of the perturbation expansion used in Article IV
are shown.

C.1 Second-order examples

First example is taken to be [see Eq. (2.137)]

⟨
Ŝ (β)

⟩
0,c,h=2,ss

≡ 1
2

∫ β

0
dτ1

∫ β

0
dτ2

⟨
T
{
Ĥs (τ1) Ĥs (τ2)

}⟩
0,c

= 1
2
∑
n=0

∑
λ̄n

∑
m=1

1
m!

∑
µ̄m

∑
ν̄m

∑
n′=0

∑
λ̄′

n′

∑
m′=1

1
m′!

∑
µ̄′

m′

∑
ν̄′

m′

×Vµ̄mν̄m

(
λ̄n

)
Vµ̄′

m′ ν̄
′
m′

(
λ̄′

n′

)
ūµmνm ūµ′

m′ ν
′
m′

×
∫ β

0
dτ1

∫ β

0
dτ2

⟨
T
{
Âλ̄n

(τ1) Âλ̄′
n′

(τ2)
}⟩

0,c
, (C.1)

where the notation given by Eq. (2.60) is used and furthermore

Âλ̄n
(τ1) ≡ Âλ1 (τ1) · · · Âλn (τ1) . (C.2)

The special cases of Eq. (C.1) considered in this section are⟨
Ŝ (β)

⟩
h=2,1

≡
⟨
Ŝ (β)

⟩
0,c,h=2,ss,n=1,n′=odd

=
⟨
Ŝ (β)

⟩
0,c,h=2,ss,n=odd,n′=1

= 1
2
∑
λ1

∑
m=1

1
m!

∑
µ̄m

∑
ν̄m

∑
n′=1

∑
λ′

1

· · ·
∑

λ′
2n′−1

∑
m′=1

1
m′!

∑
µ̄′

m′

∑
ν̄′

m′

×Vµ̄mν̄m (λ1) ūµmνmVµ̄′
m′ ν̄

′
m′

(
λ̄′

2n′−1

)
ūµ′

m′ ν
′
m′

×
∫ β

0
dτ1

∫ β

0
dτ2

⟨
T
{
Âλ1 (τ1) Âλ̄′

2n′−1
(τ2)

}⟩
0,c
, (C.3)
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and ⟨
Ŝ (β)

⟩
h=2,2

≡
⟨
Ŝ (β)

⟩
0,c,h=2,ss,n=2,n′=even

=
⟨
Ŝ (β)

⟩
0,c,h=2,ss,n=even,n′=2

= 1
2
∑
λ1

∑
λ2

∑
m=1

1
m!

∑
µ̄m

∑
ν̄m

∑
n′=1

∑
λ′

1

· · ·
∑
λ′

2n′

∑
m′=1

1
m′!

∑
µ̄′

m′

∑
ν̄′

m′

×Vµ̄mν̄m (λ1;λ2) ūµmνmVµ̄′
m′ ν̄

′
m′

(λ′
1; . . . ;λ′

2n′) ūµ′
m′ ν

′
m′

×
∫ β

0
dτ1

∫ β

0
dτ2

⟨
T
{
Âλ1 (τ1) Âλ2 (τ1) Âλ̄′

2n′
(τ2)

}⟩
0,c
. (C.4)

By using Wick’s Theorem [Eq. (2.108)], the ensemble averages in Eqs. (C.3) and (C.4)
can be written as⟨

T
{
Âλ1 (τ1) Âλ̄′

2n′−1
(τ2)

}⟩
0,c

= (2n′ − 1)
⟨
T
{
Âλ1 (τ1) Âλ′

1
(τ2)

}⟩
0

⟨
T
{
Âλ′

2
(τ2) · · · Âλ′

2n′−1
(τ2)

}⟩
0,c

=
2n′−1∏

k=1∧k=odd

k
⟨
T
{
Âλ1 (τ1) Âλ′

1
(τ2)

}⟩
0

×
⟨
T
{
Âλ′

2
(τ2) Âλ′

3
(τ2)

}⟩
0

· · ·
⟨
T
{
Âλ′

2n′−2
(τ2) Âλ′

2n′−1
(τ2)

}⟩
0

= δλ1(−λ′
1)δλ′

2(−λ′
3)δλ′

4(−λ′
5) · · · δ

λ′
2n′−2

(
−λ′

2n′−1

) 2n′−1∏
k=1∧k=odd

k

×G0 (λ1τ1|λ1τ2)
(
2n̄λ′

2
+ 1

) (
2n̄λ′

4
+ 1

)
· · ·

(
2n̄λ′

2n′′−2
+ 1

)
, (C.5)

and ⟨
T
{
Âλ̄2 (τ1) Âλ̄′

2n′ (τ2)
}⟩

0,c

= 2n′
⟨
T
{
Âλ1 (τ1) Âλ′

1
(τ2)

}⟩
0

⟨
T
{
Âλ2 (τ1) Âλ′

2
(τ2) · · · Âλ′

2n′
(τ2)

}⟩
0,c

= 2n′
2n′−3∏

k=1∧k=odd

k
⟨
T
{
Âλ1 (τ1) Âλ′

1
(τ2)

}⟩
0

⟨
T
{
Âλ2 (τ1) Âλ′

2
(τ2)

}⟩
0

×
⟨
T
{
Âλ′

3
(τ2) Âλ′

4
(τ2)

}⟩
0

· · ·
⟨
T
{
Âλ′

2n′−1
(τ2) Âλ′

2n′
(τ2)

}⟩
0

= 2n′δλ1(−λ′
1)δλ2(−λ′

2)δλ′
3(−λ′

4)δλ′
5(−λ′

6) · · · δλ′
2n′−1(−λ′

2n′)
2n′−3∏

k=1∧k=odd

k

×G0 (λ1τ1|λ1τ2)G0 (λ2τ1|λ2τ2)
(
2n̄λ′

3
+ 1

) (
2n̄λ′

5
+ 1

)
· · ·

(
2n̄λ′

2n′−1
+ 1

)
.

(C.6)
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In Eqs. (C.5) and (C.6) n′ = 1, 2, . . .. By using the results given by Eqs. (C.5) and
(C.6), Eqs. (C.3) and (C.4) can be written as⟨
Ŝ (β)

⟩
h=2,1

= 1
2
∑
λ1

∑
m=1

1
m!

∑
µ̄m

∑
ν̄m

∑
n′=1

∑
λ′

1

· · ·
∑

λ′
2n′−1

∑
m′=1

1
m′!

∑
µ̄′

m′

∑
ν̄′

m′

×Vµ̄mν̄m (λ1)Vµ̄′
m′ ν̄

′
m′

(
λ′

1; . . . ;λ′
2n′−1

)
ūµmνm ūµ′

m′ ν
′
m′

2n′−1∏
k=1∧k=odd

k

×
∫ β

0
dτ1

∫ β

0
dτ2δλ1(−λ′

1)δλ′
2(−λ′

3)δλ′
4(−λ′

5) · · · δ
λ′

2n′−2

(
−λ′

2n′−1

)
×G0 (λ1τ1|λ1τ2)

(
2n̄λ′

2
+ 1

) (
2n̄λ′

4
+ 1

)
· · ·

(
2n̄λ′

2n′′−2
+ 1

)
= 1

2
∑
λ1

∑
m=1

1
m!

∑
µ̄m

∑
ν̄m

∑
n′=1

∑
λ̄′

n′−1

∑
m′=1

1
m′!

∑
µ̄′

m′

∑
ν̄′

m′

×Vµ̄mν̄m (λ1)Vµ̄′
m′ ν̄

′
m′

(
−λ1;λ′

1; −λ′
1 . . . ;λ′

n′−1; −λ′
n′−1

)
ūµmνmūµ′

m′ ν
′
m′

×
2n′−1∏

k=1∧k=odd

k
∫ β

0
dτ1

∫ β

0
dτ2G0 (λ1τ1|λ1τ2)

×
(
2n̄λ′

1
+ 1

) (
2n̄λ′

2
+ 1

)
· · ·

(
2n̄λ′

n′−1
+ 1

)
, (C.7)

and⟨
Ŝ (β)

⟩
h=2,2

= 1
2
∑
λ1

∑
λ2

∑
m=1

1
m!

∑
µ̄m

∑
ν̄m

∑
n′=1

∑
λ̄′

2n′

∑
m′=1

1
m′!

∑
µ̄′

m′

∑
ν̄′

m′

×Vµ̄mν̄m (λ1;λ2)Vµ̄′
m′ ν̄

′
m′

(
λ̄′

2n′

)
ūµmνmūµ′

m′ ν
′
m′

2n′−3∏
k=1∧k=odd

k

×
∫ β

0
dτ1

∫ β

0
dτ22n′δλ1(−λ′

1)δλ2(−λ′
2)δλ′

3(−λ′
4)δλ′

5(−λ′
6) · · · δλ′

2n′−1(−λ′
2n′)

×G0 (λ1τ1|λ1τ2)G0 (λ2τ1|λ2τ2)
×
(
2n̄λ′

3
+ 1

) (
2n̄λ′

5
+ 1

)
· · ·

(
2n̄λ′

2n′′−1
+ 1

)
= 1

2
∑
λ1

∑
λ2

∑
m=1

1
m!

∑
µ̄m

∑
ν̄m

∑
n′=1

∑
λ′

3

∑
λ′

5

· · ·
∑

λ′
2n′−1

∑
m′=1

1
m′!

∑
µ̄′

m′

∑
ν̄′

m′

×Vµ̄mν̄m (λ1;λ2)Vµ̄′
m′ ν̄

′
m′

(
−λ1; −λ2;λ′

3; −λ′
3; . . . ;λ′

2n′−1; −λ′
2n′−1

)
×ūµmνmūµ′

m′ ν
′
m′

∫ β

0
dτ1

∫ β

0
dτ22n′G0 (λ1τ1|λ1τ2)G0 (λ2τ1|λ2τ2)

×
2n′−3∏

k=1∧k=odd

k
(
2n̄λ′

3
+ 1

) (
2n̄λ′

5
+ 1

)
· · ·

(
2n̄λ′

2n′−1
+ 1

)
. (C.8)

The integral in Eq. (C.7) is of the form∫ β

0
dτ
∫ β

0
dτ ′G0 (λτ |λτ ′) . (C.9)
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One may write Eq. (C.9) in terms of the Fourier transform of the Green’s function
(Sec. 2.4)

∫ β

0
dτ
∫ β

0
dτ ′

∞∑
n1=−∞

G0 (λ|ωn1) eiωn1 (τ−τ ′)

=
∫ β

0
dτeiωn1 τ

∫ β

0
dτ ′e−iωn1 τ ′

∞∑
n1=−∞

G0 (λ|ωn1) , (C.10)

and then by using Eq. (2.113), Eq. (C.10) becomes
∫ β

0
dτ
∫ β

0
dτ ′

∞∑
n1=−∞

G0 (λ|ωn1) eiωn1 (τ−τ ′) = β2G0 (λ|0) . (C.11)

Since G0 (λ|0) = 2/ (β~ωλ), Eq. (C.11) can be written as∫ β

0
dτ
∫ β

0
dτ ′G0 (λτ |λτ ′) = 2β

~ωλ

. (C.12)

The integral in Eq. (C.8) is more complicated, one may write∫ β

0
dτ
∫ β

0
dτ ′G0 (λτ |λτ ′)G0 (λ′τ |λ′τ ′) . (C.13)

One may write Eq. (C.13) in terms of the Fourier transforms
∫ β

0
dτ
∫ β

0
dτ ′

∞∑
n1,n2=−∞

G0 (λ|ωn1)G0 (λ′|ωn2) eiωn1 (τ−τ ′)eiωn2 (τ−τ ′)

=
∞∑

n1,n2=−∞
G0 (λ|ωn1)G0 (λ′|ωn2)

∫ β

0
dτei(ωn1 +ωn2)τ

∫ β

0
dτ ′e−i(ωn1 +ωn2)τ ′

,

(C.14)

and then, by using Eq. (2.113) and the result given by Eq. (A.42) for the summation,
Eq. (C.14) may be written as

∞∑
n=−∞

G0 (λ|ωn)G0 (λ′|ωn) = 2
β~

ωλ (2n̄λ′ + 1) − ωλ′ (2n̄λ + 1)
ω2

λ − ω2
λ′

. (C.15)

Thus, Eq. (C.15) and hence the integral in Eq. (C.13) can be written as
∫ β

0
dτ
∫ β

0
dτ ′G0 (λτ |λτ ′)G0 (λ′τ |λ′τ ′) = 2β

~
ωλ (2n̄λ′ + 1) − ωλ′ (2n̄λ + 1)

ω2
λ − ω2

λ′
. (C.16)
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By using these results for the integrals, Eqs. (C.7) and (C.8) can be written as

⟨
Ŝ (β)

⟩
h=2,1

= β

~
∑
λ1

∑
m=1

1
m!

∑
µ̄m

∑
ν̄m

∑
n′=1

∑
λ̄′

n′−1

∑
m′=1

1
m′!

∑
µ̄′

m′

∑
ν̄′

m′

×Vµ̄mν̄m (λ1)
Vµ̄′

m′ ν̄
′
m′

(
−λ1;λ′

1; −λ′
1 . . . ;λ′

n′−1; −λ′
n′−1

)
ωλ1

ūµmνmūµ′
m′ ν

′
m′

×

 2n′−1∏
k=1∧k=odd

k

 2n′−1
(
n̄λ′

1
+ 1

2

)(
n̄λ′

2
+ 1

2

)
· · ·

(
n̄λ′

n′−1
+ 1

2

)
,

(C.17)

and⟨
Ŝ (β)

⟩
h=2,2

= 2β
~
∑
λ1

∑
λ2

∑
m=1

1
m!

∑
µ̄m

∑
ν̄m

∑
n′=2

∑
λ̄′

n′−1

∑
m′=1

1
m′!

∑
µ̄′

m′

∑
ν̄′

m′

×Vµ̄mν̄m (λ1;λ2)Vµ̄′
m′ ν̄

′
m′

(
−λ1; −λ2;λ′

1; −λ′
1; . . . ;λ′

n′−1; −λ′
n′−1

)
×ūµmνmūµ′

m′ ν
′
m′

ωλ1

(
n̄λ2 + 1

2

)
− ωλ2

(
n̄λ1 + 1

2

)
ω2

λ1
− ω2

λ2

2n′−3∏
k=1∧k=odd

k

×
(
n′2n′)(

n̄λ′
1

+ 1
2

)(
n̄λ′

2
+ 1

2

)
· · ·

(
n̄λ′

n′−1
+ 1

2

)
. (C.18)

These terms are represented by diagrams l) and n) of Fig. 3.9. The contribution to
elastic constants, for example, can be obtained by using Eq. (2.134). Eight additional
second-order terms were represented in Article IV. All these terms were obtained by
similar calculations that were shown here.

C.2 Third-order examples

In this section, some special cases of the following contribution are considered [see Eq.
(2.138)]

⟨
Ŝ (β)

⟩
0,c,ssa

= −1
2

∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3

⟨
T
{
Ĥs (τ1) Ĥs (τ2) Ĥa (τ3)

}⟩
0,c
. (C.19)
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The first special case of Eq. (C.19) is taken to be⟨
Ŝ (β)

⟩
ssa,1

≡
⟨
Ŝ (β)

⟩
0,c,ssA,n=2,n′=1,n′′=3

+
⟨
Ŝ (β)

⟩
0,c,ssA,n=1,n′=2,n′′=3

= −
∑
λ̄2

∑
m=1

1
m!

∑
µ̄m

∑
ν̄m

∑
λ′

1

∑
m′=1

1
m′!

∑
µ̄′

m′

∑
ν̄′

m′

∑
λ̄′′

3

×Vµ̄mν̄m

(
λ̄2
)
Vµ̄′

m′ ν̄
′
m′

(λ′
1)V

(
λ̄′′

3

)
ūµmνm ūµ′

m′ ν
′
m′

×
∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3

⟨
T
{
Âλ̄2 (τ1) Âλ′

1
(τ2) Âλ̄′′

3
(τ3)

}⟩
0,c
.

(C.20)

By using Wick’s Theorem [Eq. (2.108)], Eq. (C.20) can be written as
⟨
Ŝ (β)

⟩
ssa,1

= −6
∑
λ̄2

∑
m=1

1
m!

∑
µ̄m

∑
ν̄m

∑
λ′

1

∑
m′=1

1
m′!

∑
µ̄′

m′

∑
ν̄′

m′

∑
λ̄′′

3

×Vµ̄mν̄m

(
λ̄2
)
Vµ̄′

m′ ν̄
′
m′

(λ′
1)V

(
λ̄′′

3

)
ūµmνmūµ′

m′ ν
′
m′

×
∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3

[⟨
T
{
Âλ1 (τ1) Âλ′

1
(τ2)

}⟩
0

×
⟨
T
{
Âλ2 (τ1) Âλ′′

1
(τ3)

}⟩
0

⟨
T
{
Âλ′′

2
(τ3) Âλ′′

3
(τ3)

}⟩
0

+
⟨
T
{
Âλ1 (τ1) Âλ′′

1
(τ3)

}⟩
0

⟨
T
{
Âλ2 (τ1) Âλ′′

2
(τ3)

}⟩
0

×
⟨
T
{
Âλ′

1
(τ2) Âλ′′

3
(τ3)

}⟩
0

]
. (C.21)

Furthermore⟨
Ŝ (β)

⟩
ssa,1

= −6
∑
λ1

∑
λ2

∑
m=1

1
m!

∑
µ̄m

∑
ν̄m

∑
m′=1

1
m′!

∑
µ̄′

m′

∑
ν̄′

m′

∑
λ′′

2

∑
λ′′

3

×Vµ̄mν̄m (λ1;λ2)Vµ̄′
m′ ν̄

′
m′

(−λ1)V (−λ2;λ′′
2; −λ′′

2) ūµmνmūµ′
m′ ν

′
m′

×
(
2n̄λ′′

2
+ 1

) ∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3G0 (λ1τ1|λ1τ2)G0 (λ2τ1|λ2τ3)

−6
∑
λ1

∑
λ2

∑
m=1

1
m!

∑
µ̄m

∑
ν̄m

∑
λ′

1

∑
m′=1

1
m′!

∑
µ̄′

m′

∑
ν̄′

m′

×Vµ̄mν̄m (λ1;λ2)Vµ̄′
m′ ν̄

′
m′

(λ′
1)V (−λ1; −λ2; −λ′

1) ūµmνmūµ′
m′ ν

′
m′

×
∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3G0 (λ1τ1|λ1τ3)G0 (λ2τ1|λ2τ3)G0 (λ′

1τ2|λ′
1τ3) .

(C.22)

The second integral in Eq. (C.22) is of the form∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3G0 (λ1τ1|λ1τ3)G0 (λ2τ2|λ2τ3)G0 (λ3τ2|λ3τ3) , (C.23)
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and in terms of the Fourier transforms (Sec. 2.4)∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3

∞∑
n1,n2,n3=−∞

G0 (λ1|ωn1)

×G0 (λ2|ωn2)G0 (λ3|ωn3) eiωn1 (τ1−τ3)eiωn2 (τ2−τ3)eiωn3 (τ2−τ3), (C.24)
By using Eq. (2.113), Eq. (C.24) becomes

β3G0 (λ1|0)
∞∑

n1=−∞
G0 (λ2|ωn1)G0 (λ3|ωn1) . (C.25)

Here G0 (λ|0) = 2/ (ωλβ~). The result for the summation in Eq. (C.25) is given by
Eq. (A.42), thus, Eq. (C.23) can be written as

β3G0 (λ1|0)
∞∑

n1=−∞
G0 (λ2|ωn1)G0 (λ3|ωn1) = 8β

~2ωλ1

ωλ2

(
n̄λ3 + 1

2

)
− ωλ3

(
n̄λ2 + 1

2

)
ω2

λ2
− ω2

λ3

.

(C.26)
After the simplification of the first integral and by using Eq. (C.26) for the second
integral, Eq. (C.22) can be written as⟨

Ŝ (β)
⟩

ssa,1
= −48β

~2

∑
λ1

∑
λ2

∑
m=1

1
m!

∑
µ̄m

∑
ν̄m

∑
m′=1

1
m′!

∑
µ̄′

m′

∑
ν̄′

m′

∑
λ′′

2

∑
λ′′

3

n̄λ′′
2

+ 1
2

ωλ1ωλ2

×Vµ̄mν̄m (λ1;λ2)Vµ̄′
m′ ν̄

′
m′

(−λ1) ūµmνmūµ′
m′ ν

′
m′
V (−λ2;λ′′

2; −λ′′
2)

−48β
~2

∑
λ1

∑
λ2

∑
m=1

1
m!

∑
µ̄m

∑
ν̄m

∑
λ′

1

∑
m′=1

1
m′!

∑
µ̄′

m′

∑
ν̄′

m′

×Vµ̄mν̄m (λ1;λ2)Vµ̄′
m′ ν̄

′
m′

(λ′
1) ūµmνmūµ′

m′ ν
′
m′

×V (−λ1; −λ2; −λ′
1)

ωλ′
1

ωλ2

(
n̄λ1 + 1

2

)
− ωλ1

(
n̄λ2 + 1

2

)
ω2

λ2
− ω2

λ1

. (C.27)

Terms included in Eq. (C.27) are special cases of diagrams d) and e) of Fig. 3.10. In
Article IV, general form for the algebraic expressions corresponding to these diagrams
was given.

The last term to be considered is the algebraic expression for diagram m) of Fig. 3.10,
namely⟨

Ŝ (β)
⟩

ssa,2
≡

⟨
Ŝ (β)

⟩
0,c,ssA,n=n′=2,2n′′≥4

= −
∑
λ1

∑
λ2

∑
m=1

1
m!

∑
µ̄m

∑
ν̄m

∑
λ′

1

∑
λ′

2

∑
m′=1

1
m′!

∑
µ̄′

m′

∑
ν̄′

m′

∑
λ̄′′

2n′′

×Vµ̄mν̄m (λ1;λ2)Vµ̄′
m′ ν̄

′
m′

(λ′
1;λ′

2)V
(
λ̄′′

2n′′

)
ūµmνmūµ′

m′ ν
′
m′

×1
2

∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3

⟨
T
{
Âλ̄2 (τ1) Âλ̄′

2
(τ2) Âλ̄′′

2n′′
(τ3)

}⟩
0,c
,

n′′ = 2, 3, . . . . (C.28)
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By using Wick’s Theorem⟨
T
{
Âλ̄2 (τ1) Âλ̄′

2
(τ2) Âλ̄′′

2n′′
(τ3)

}⟩
0,c

= 8n′′

 2n′′−1∏
k=1∧k=odd

k

 δλ1(−λ′
1)δλ2(−λ′′

1)δλ′
2(−λ′′

2)δλ′′
3(−λ′′

4)δλ′′
5(−λ′′

6) · · · δλ′′
2n′′−1(−λ′′

2n′′)

×G0 (λ1τ1|λ1τ2)G0 (λ2τ1|λ2τ3)G0 (λ′
2τ2|λ′

2τ3)
×
(
2n̄λ′′

3
+ 1

) (
2n̄λ′′

5
+ 1

)
· · ·

(
2n̄λ′′

2n′′−1
+ 1

)
+2n′′ (2n′′ − 2)

 2n′′−1∏
k=1∧k=odd

k

 δλ1(−λ′′
1)δλ2(−λ′′

2)δλ′
1(−λ′′

3)δλ′
2(−λ′′

4)

×δλ′′
5(−λ′′

6)δλ′′
7(−λ′′

8) · · · δλ′′
2n′′−1(−λ′′

2n′′)
×G0 (λ1τ1|λ1τ3)G0 (λ2τ1|λ2τ3)G0 (λ′

1τ2|λ′
1τ3)G0 (λ′

2τ2|λ′
2τ3)

×
(
2n̄λ′′

5
+ 1

) (
2n̄λ′′

5
+ 1

)
· · ·

(
2n̄λ′′

2n′′−1
+ 1

)
. (C.29)

By using the result given in Eq. (C.29), Eq. (C.28) can be written as
⟨
Ŝ (β)

⟩
ssa,2

= −1
2
∑
λ1

∑
λ2

∑
m=1

1
m!

∑
µ̄m

∑
ν̄m

∑
λ′

1

∑
λ′

2

∑
m′=1

1
m′!

∑
µ̄′

m′

∑
ν̄′

m′

∑
λ̄′′

2n′′

×Vµ̄mν̄m (λ1;λ2)Vµ̄′
m′ ν̄

′
m′

(λ′
1;λ′

2)V
(
λ̄′′

2n′′

)
×ūµmνm ūµ′

m′ ν
′
m′

8n′′

 2n′′−1∏
k=1∧k=odd

k


×δλ1(−λ′

1)δλ2(−λ′′
1)δλ′

2(−λ′′
2)δλ′′

3(−λ′′
4)δλ′′

5(−λ′′
6) · · · δλ′′

2n′′−1(−λ′′
2n′′)

×
∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3G0 (λ1τ1|λ1τ2)G0 (λ2τ1|λ2τ3)

×G0 (λ′
2τ2|λ′

2τ3)
(
2n̄λ′′

3
+ 1

) (
2n̄λ′′

5
+ 1

)
· · ·

(
2n̄λ′′

2n′′−1
+ 1

)
−1

2
∑
λ1

∑
λ2

∑
m=1

1
m!

∑
µ̄m

∑
ν̄m

∑
λ′

1

∑
λ′

2

∑
m′=1

1
m′!

∑
µ̄′

m′

∑
ν̄′

m′

×Vµ̄mν̄m (λ1;λ2)Vµ̄′
m′ ν̄

′
m′

(λ′
1;λ′

2) ūµmνm ūµ′
m′ ν

′
m′

×
∑
λ′′

1

· · ·
∑
λ′′

2n′′

V (λ′′
1; . . . ;λ′′

2n′′) 2n′′ (2n′′ − 2)
2n′′−1∏

k=1∧k=odd

k

×δλ1(−λ′′
1)δλ2(−λ′′

2)δλ′
1(−λ′′

3)δλ′
2(−λ′′

4)δλ′′
5(−λ′′

6)δλ′′
7(−λ′′

8) · · · δλ′′
2n′′−1(−λ′′

2n′′)
×
(
2n̄λ′′

5
+ 1

) (
2n̄λ′′

7
+ 1

)
· · ·

(
2n̄λ′′

2n′′−1
+ 1

)
×
∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3G0 (λ1τ1|λ1τ3)G0 (λ2τ1|λ2τ3)

×G0 (λ′
1τ2|λ′

1τ3)G0 (λ′
2τ2|λ′

2τ3) , n′′ = 2, 3, . . . , (C.30)
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and furthermore⟨
Ŝ (β)

⟩
ssa,2

= −4
∑
λ̄2

∑
m=1

1
m!

∑
µ̄m

∑
ν̄m

∑
λ′

2

∑
m′=1

1
m′!

∑
µ̄′

m′

∑
ν̄′

m′

∑
λ′′

3

∑
λ′′

5

· · ·
∑

λ′′
2n′′−1

×Vµ̄mν̄m (λ1;λ2)Vµ̄′
m′ ν̄

′
m′

(−λ1;λ′
2) ūµmνm ūµ′

m′ ν
′
m′

×V
(
−λ2; −λ′

2;λ′′
3; −λ′′

3; . . . ;λ′′
2n′′−1; −λ′′

2n′′−1

)
×n′′

2n′′−1∏
k=1∧k=odd

k
(
2n̄λ′′

3
+ 1

) (
2n̄λ′′

5
+ 1

)
· · ·

(
2n̄λ′′

2n′′−1
+ 1

)
×
∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3G0 (λ1τ1|λ1τ2)G0 (λ2τ1|λ2τ3)G0 (λ′

2τ2|λ′
2τ3)

−2
∑
λ1

∑
λ2

∑
m=1

1
m!

∑
µ̄m

∑
ν̄m

∑
λ̄′

2

∑
m′=1

1
m′!

∑
µ̄′

m′

∑
ν̄′

m′

∑
λ′′

5

∑
λ′′

7

· · ·
∑

λ′′
2n′′−1

×Vµ̄mν̄m (λ1;λ2)Vµ̄′
m′ ν̄

′
m′

(λ′
1;λ′

2) ūµmνm ūµ′
m′ ν

′
m′

×V
(
−λ1; −λ2; −λ′

1; −λ′
2;λ′′

5; −λ′′
5; . . . ;λ′′

2n′′−1; −λ′′
2n′′−1

)
×n′′ (n′′ − 1)

2n′′−1∏
k=1∧k=odd

k
(
2n̄λ′′

5
+ 1

) (
2n̄λ′′

7
+ 1

)
· · ·

(
2n̄λ′′

2n′′−1
+ 1

)
×
∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3G0 (λ1τ1|λ1τ3)G0 (λ2τ1|λ2τ3)

×G0 (λ′
1τ2|λ′

1τ3)G0 (λ′
2τ2|λ′

2τ3) , n′′ = 2, 3, . . . , (C.31)

The integrals in Eq. (C.31) are rather complicated, but can be simplified with the
same method as before. Let

Xλ1λ2λ′
2

≡

 ωλ1

(
n̄λ2 − n̄λ′

2

)
(ωλ1 − ωλ2) (ωλ1 + ωλ2)

(
ωλ′

2
− ωλ2

)
+

ωλ1

(
n̄λ2 + n̄λ′

2
+ 1

)
(ωλ1 − ωλ2) (ωλ1 + ωλ2)

(
ωλ2 + ωλ′

2

)
+

ωλ2

(
n̄λ1 − n̄λ′

2

)
(ωλ2 − ωλ1) (ωλ1 + ωλ2)

(
ωλ′

2
− ωλ1

)
+

ωλ2

(
n̄λ1 + n̄λ′

2
+ 1

)
(ωλ2 − ωλ1) (ωλ1 + ωλ2)

(
ωλ1 + ωλ′

2

)
 , (C.32)
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then, after the calculation, Eq. (C.31) becomes

⟨
Ŝ (β)

⟩
ssa,2

= −16β
~2

∑
λ̄2

∑
m=1

1
m!

∑
µ̄m

∑
ν̄m

∑
λ′

2

∑
m′=1

1
m′!

∑
µ̄′

m′

∑
ν̄′

m′

∑
n′′=2

∑
λ̄′′

n′′−1

×Vµ̄mν̄m

(
λ̄2
)
Vµ̄′

m′ ν̄
′
m′

(−λ1;λ′
2) ūµmνmūµ′

m′ ν
′
m′

×V
(
−λ2; −λ′

2;λ′′
1; −λ′′

1; . . . ;λ′′
n′′−1; −λ′′

n′′−1

)
×n′′

2n′′−1∏
k=1∧k=odd

k
(
2n̄λ′′

1
+ 1

) (
2n̄λ′′

2
+ 1

)
· · ·

(
2n̄λ′′

n′′−1
+ 1

)
Xλ1λ2λ′

2

−32β
~2

∑
λ̄2

∑
m=1

1
m!

∑
µ̄m

∑
ν̄m

∑
λ̄′

2

∑
m′=1

1
m′!

∑
µ̄′

m′

∑
ν̄′

m′

∑
n′′=2

∑
λ̄′′

n′′−2

×Vµ̄mν̄m

(
λ̄2
)
Vµ̄′

m′ ν̄
′
m′

(
λ̄′

2

)
ūµmνm ūµ′

m′ ν
′
m′
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−λ1; −λ2; −λ′

1; −λ′
2;λ′′

1; −λ′′
1; . . . ;λ′′

n′′−2; −λ′′
n′′−2

)
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(C.33)

As before, the contribution to elastic constants, for example, can be obtained by using
Eq. (2.134).
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