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Abstract

In this paper, we present a framework of different interactive NAU-
TILUS methods for multiobjective optimization. In interactive methods,
the decision maker iteratively sees solution alternatives and provides one’s
preferences in order to find the most preferred solution. We question the
widely used setting that the solutions shown to the decision maker should
all be Pareto optimal which implies that improvement in any objective
function necessitates allowing impairment in some others. Instead, in
NAUTILUS we enable the decision maker to make a free search without
having to trade-off by starting from an inferior solution and iteratively
approaching the Pareto optimal set by allowing all objective functions
to improve. The framework presented consists of different modules for
preference elicitation and optimization. Four main NAUTILUS method
variants are introduced as well as ideas of utilizing the framework in a
flexible way to derive further variants.

Keywords: Interactive methods, multicriteria optimization, Pareto
optimality

1 Introduction

Decision problems occur in various application areas including business, engi-
neering and environment where several conflicting objectives must be simultane-
ously considered and optimized. Such problems are known as multiobjective op-
timization problems. Because of the conflicting nature of the objectives, instead
of a single optimal solution, a set of so-called Pareto optimal or nondominated
solutions can be identified. They have different trade-offs among the objectives
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and can be regarded as compromise solutions. Mathematically, Pareto optimal
solutions cannot be ordered, and some preference information from a human
decision maker is typically needed to identify one, the most preferred, solution
to be implemented.

Multiobjective optimization methods can be divided to four classes based on
the role of the decision maker in the solution process (Hwang and Masud, 1979;
Miettinen, 1999). If no decision maker is available, some neutral compromise
solution must be found. In a priori methods, the decision maker specifies prefer-
ence information before the solution process whereas in a posteriori methods a
representative set of Pareto optimal solutions is first generated and the decision
maker is then expected to select some of them. The class of interactive methods
aims at avoiding shortcomings of the above classes: the decision maker can iter-
atively specify and modify one’s preferences and, thus, no pre-fixed preference
structure is assumed. On the other hand, the amount of information and solu-
tions to be considered at a time is low which should decrease the cognitive load.
During an interactive solution process, the decision maker can learn about the
interdependencies among the objectives, what kind of solutions are attainable
and about one’s own preferences (see, e.g., Belton et al., 2008).

Because of their desirable properties, many interactive methods have been
proposed in the literature (see, e.g., Luque et al. (2011); Miettinen (1999); Miet-
tinen et al. (2008) and references therein). They differ from each other, for ex-
ample, by the type of preference information utilized, the way of incorporating
the preference information in the solution process and the information that is
given to the decision maker. However, what is common is that they deal with
Pareto optimal solutions only, that is, throughout the solution process the deci-
sion maker is shown Pareto optimal solutions and new Pareto optimal solutions
are generated based on her/his preference information. This means that when
moving from a Pareto optimal solution to another, the decision maker must
allow sacrifice in some objective(s) to gain improvement in others.

In this paper, we deal with interactive methods as well but question the idea
that the whole solution process should focus on Pareto optimal solutions. It
has been observed, e.g., in Buchanan and Corner (1997) that the starting point
of an interactive method matters. This can be explained by the anchoring and
adjustment bias in decision making, that is, people anchor their thinking on
given information and may not be able to adjust from the anchor even if the
information turns out to be irrelevant. Furthermore, the experiments conducted
in Aloysius et al. (2006) show that if decision makers are required to make
explicit trade-off judgement, they experience a higher level of decisional conflict
than otherwise. According to the authors, this may lead to decision makers
not finding decision support methods acceptable or continue using them. One
more motivation in the background of this paper is prospect theory proposed
in Kahneman and Tversky (1979). According to the prospect theory, people
do not react symmetrically to gains and losses but our attitudes to losses loom
larger than gains. Furthermore, our past experiences define an adaptation level
and we perceive stimuli in relation to it. To overcome the above-mentioned
challenges, we here introduce a NAUTILUS framework of different interactive
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NAUTILUS methods which we can also call as a NAUTILUS family. All these
methods start from an inferior solution instead of a Pareto optimal one.

Methods in the NAUTILUS family enable a free search without requiring
the decision maker to trade off. The interactive solution process starts from
the nadir objective vector or some other point from where improvement in each
objective function is possible. Iteratively, the decision maker approaches the set
of Pareto optimal solutions and is able to gain improvement in all objectives
compared to the previous iteration. Only the final solution at the end of the
solution process is Pareto optimal. In other words, we do not question the fact
that the final solution should be Pareto optimal. But a necessity of trading off
should not limit the decision maker’s willingness to keep searching for promising
solutions during the solution process.

The NAUTILUS framework is also suited for group decision making where
different decision makers need to find a solution which is acceptable to them
all. A setting where each decision maker can gain without a need to sacrifice
is fruitful for negotiations. We have a similar motivation to the joint gains
method for multi-party negotiations proposed in Ehtamo et al. (2001) where a
method of improvement directions is suggested to be used as a mediator’s tool
and the mediator generates jointly preferred proposals. Not many other related
methods have been proposed in the literature. One of the few exceptions is the
interior primal-dual method introduced in Arbel and Korhonen (1996) for linear
multiobjective optimization problems. This method leads the decision maker
through the feasible region involving dominated solutions.

The NAUTILUS framework consists of different modules and combinations
of module options, which result with four main NAUTILUS variants and en-
ables developing further variants. Among others, the NAUTILUS methods that
have been published before can be derived from the framework. The original
NAUTILUS method was presented in Miettinen et al. (2010) where the deci-
sion maker provides preference information by ranking the objective functions
according to the relative importance of improving their current values or dis-
tributing points indicating how much improvement is needed in the current
values. However, this was regarded as a very rough approach and in Mietti-
nen et al. (2015) an another technique was proposed where the decision maker
provides ratios of improvement and a direction of simultaneous improvement is
determined from them. With this information the decision maker can directly
control the solution process.

The third published method which can be derived from the NAUTILUS
framework is E-NAUTILUS which has been directed, in particular, for com-
putationally expensive problems. It consists of a pre-processing, an interactive
decision making and a post-processing stage. The decision maker is involved
only in the second stage where the original objective functions (which may be
computationally expensive) are not dealt with. It can also be used to find the
most preferred solution of the ones generated by any a posteriori method. What
is different in E-NAUTILUS compared to the two above-mentioned methods is
that the decision maker can consider several solutions at each iteration.

All members of the NAUTILUS family give information to the decision
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maker of the proximity of the point considered to the Pareto optimal set as
well as the ranges of objective function values that are still reachable from
the current iteration point without any impairment. During the iterations, the
ranges naturally shrink but the decision maker can go backwards if the reachable
values are not acceptable.

In this paper, we propose a general NAUTILUS framework. Besides the
previously published methods, the modular framework enables creating further
NAUTILUS method variants and even changing the module options during the
solution process, i.e., utilizing the framework in a flexible way. This gives more
flexibility for the decision maker for directing the solution process.

The rest of this paper is organized as follows. In Section 2 we introduce
the basic concepts and notations used and in Section 3 we outline the core
that is common to all NAUTILUS methods. We present the actual NAUTILUS
framework in Section 4 and, finally, conclude in Section 5.

2 Basic Concepts and Notations

We consider multiobjective optimization problems of the form

minimize f(x) = (f1(x), . . . , fk(x))
T

subject to x ∈ S,
(1)

where the decision maker wishes to simultaneously minimize k (k ≥ 2) objective
functions fi : S → R. The so-called feasible set S, which is a nonempty compact
subset of Rn, is formed by feasible decision vectors x = (x1, . . . , xn)T . The
image of the feasible set in the objective space Rk is called the feasible objective
set f(S) and its components z = f(x) = (f1(x), . . . , fk(x))T , which consist of
objective (function) values, are called objective vectors.

For any two vectors v, w ∈ Rk, we say that v dominates w if vi ≤ wi for
all i = 1, . . . , k and v 6= w. All feasible solutions whose corresponding objective
vectors are not dominated by others, form the set of Pareto optimal decision
vectors:

E = {x ∈ S : there is no x′ ∈ S such that f(x′) dominates f(x)}.

For the sake of simplicity, we use the term Pareto optimal solution to refer either
to an element of E or f(E) (the image of E in the objective space), which will
be clear from the context. The set f(E) is called the Pareto optimal set.

Solving problem (1) means finding the most preferred decision vector (also
referred to as the most preferred solution), i.e., an element of S which is the
most satisfying for the decision maker. It is rational to assume that if one
solution dominates another solution, the decision maker always prefers the for-
mer to the latter. Therefore in multiobjective optimization, the search for the
most preferred solution is constrained to the Pareto optimal solution set (Miet-
tinen, 1999; Branke et al., 2008). For this reason, it is desirable to have some
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information about the ranges of the objective function values in the Pareto op-
timal set. The ideal objective vector is defined as z? = (z?1 , . . . , z

?
k)T such that

z?i = minx∈E fi(x) for i = 1, . . . , k. Thus, its components are the best values
that each objective function can achieve in the Pareto optimal set. This vec-
tor can be obtained by separately minimizing each of the objective functions
in the feasible set. In calculations, a utopian objective vector z?? with com-
ponents strictly smaller than those of the ideal objective vector is often used
instead of z? (see, e.g., Miettinen (1999)). On the other hand, the nadir objec-
tive vector is defined as znad = (znad1 , . . . , znadk )T such that znadi = maxx∈E fi(x)
for i = 1, . . . , k, and its components are the worst values that each objective
function can achieve in the Pareto optimal set. The nadir objective vector is, in
general, more difficult to obtain and typically one needs to settle for approxima-
tions by using, e.g., payoff tables (see Miettinen (1999) and references therein).
Lately, some approaches for more reliable nadir objective vector generation have
been proposed (see, e.g., Deb et al. (2010); Szczepanski and Wierzbicki (2003)).

As mentioned in the introduction, in this paper, we concentrate on interac-
tive methods because they are regarded as the most promising methods of mul-
tiobjective optimization due to numerous advantages (Miettinen et al., 2008;
Miettinen and Hakanen, 2009). Broadly speaking, an interactive method con-
sists of iteratively generating Pareto optimal solution candidates based on pref-
erence information provided by the decision maker. In general, at each iteration
the decision maker is shown one or several solution candidates and, by expressing
preferences, (s)he indicates how the candidates should be changed to get more
preferred solution candidates. Solution processes facilitated by such methods
involve moving from one Pareto optimal solution to another and comparing
solution candidates by the decision maker.

The reference point method, originally proposed by Wierzbicki (1980), which
assumes that the decision maker specifies aspiration levels (or reference levels)
for each objective function reflecting objective values that the decision maker
regards as desirable, is one of the most widely used interactive approaches. Let
q = (q1, . . . , qk)T be a so-called a reference point consisting of aspiration levels.
Furthermore, q is said to be an achievable reference point, if q ∈ f(S) + Rk+
(where Rk+ = {y ∈ Rk | yi ≥ 0 for i = 1, . . . , k}), that is, if either q ∈ f(S) or q
is dominated by some Pareto optimal objective vector. Once a reference point
has been given, a so-called achievement (scalarizing) function is minimized over
the feasible set:

minimize max
i=1,...,k

{µi(fi(x)− qi) }+ ρ

k∑
i=1

fi(x)− qi
znadi − z??i

subject to x ∈ S,
(2)

where ρ is a small positive number, and µi (i = 1, . . . , k) are positive weights. In
most of the interactive methods using achievement functions, weights are kept
unaltered during the whole process and their purpose is mainly to normalize
different ranges of objectives. However, these weights can have different roles
(from the original idea of purely normalizing to fully preferential) as described

5



in Ruiz et al. (2008) and they can be varied to get different Pareto optimal
solutions (see, for example, Luque et al. (2009)).

The optimal solution of problem (2) is assured to be Pareto optimal for any
reference point (see, e.g. Miettinen (1999)). Besides, it is easy to prove that if
q is an achievable reference point, then either q is a Pareto optimal objective
vector of problem (1), or q is dominated by the Pareto optimal objective vector
corresponding to the optimal solution of problem (2).

3 NAUTILUS Core

The philosophy underlying the NAUTILUS framework consists of starting from
a bad solution and moving towards the Pareto optimal set so that each iteration
point dominates the previous one, until a Pareto optimal solution is reached
at the last iteration. In this way, every objective function is improved at each
iteration, and the decision maker is not compelled to trade off when moving from
one iteration to the next. Therefore, we assume that our starting solution is
znad, which stands for the nadir objective vector, an approximation of the nadir
objective vector, or some solution regarded as clearly inferior by the decision
maker.

In the following, we describe a basic NAUTILUS iteration, and its main
features. This iteration is taken at every step of the NAUTILUS framework,
regardless of the specific options chosen for eliciting preferences or for solving
the intermediate optimization problems, and this is why we regard it as the
NAUTILUS core.

First, the decision maker is asked to give the overall number of iterations
(s)he wishes to carry out, itn. This parameter determines the speed of the
approach to the Pareto optimal set, and the decision maker can change it at
any time along the solution process if (s)he estimates that this speed is not
adequate. Let us denote by h the current iteration number and let zh be the
point in the objective space corresponding to the current iteration to be referred
to as an iteration point. We will assume that z0 is the initial estimate of the nadir
objective vector, or a starting point which the decision maker regards consisting
of bad objective values. Except in trivial problems, z0 is not a Pareto optimal
objective vector, and it is an achievable reference point. Let us denote by ith the
number of iterations left (including iteration h). Therefore, it1 = itn. Given
the previous iteration point zh−1, the basic iteration of NAUTILUS is based
on somehow finding a Pareto optimal solution xh so that the corresponding
objective vector dominates zh−1. Once this solution has been found, let fh =
f(xh), the next iteration point is obtained as

zh =
ith − 1

ith
zh−1 +

1

ith
fh. (3)

Therefore, a step is taken from zh−1 towards the Pareto optimal set, in the
direction given by fh − zh−1.
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This basic iteration has a series of interesting properties. First, it must be
noted that if h is the last iteration, then ith = 1, and thus, zh = fh is a Pareto
optimal objective vector, which is the final solution, and xh is the final solution
in the decision space. If, on the other hand, h is not the last iteration, then zh

can even be an infeasible vector in the objective space, but the following results
hold:

Theorem 1 (Miettinen et al., 2010)

1. If ith 6= 1, then zh is not Pareto optimal but is an achievable reference
point.

2. At any iteration h, zh dominates zh−1.

Therefore, although zh is not a Pareto optimal objective vector of problem
(1) (if h is not the last iteration), and it may even be infeasible for this problem,
it is assured to be an achievable reference point, that is, it is either in the feasible
objective set f(S) for problem (1) or it is dominated by some Pareto optimal
objective vector. On the other hand, each iteration point zh dominates all the
previous ones. Therefore, each iteration improves the values of the objectives,
without impairing any of them.

Not having to trade off among objectives is the main feature of the NAU-
TILUS basic iteration. However, a price has to be paid at each iteration: the
range of reachable values that each objective function can take (in this and
further iterations) will shrink, in general, because iteration points get closer to
the Pareto optimal set. Therefore, it is interesting for the decision maker to see
lower and upper bounds on these reachable values when possible. Let us denote
by zh,lo = (zh,lo1 , . . . , zh,lok )T and zh,up = (zh,up1 , . . . , zh,upk )T these lower and up-
per bounds, respectively, for iteration h. Initially, z1,lo = z? and z1,up = znad.
In iteration h, vectors zh,lo can be calculated as follows. Given zh−1, let us
consider the following ε-constraint problems for r = 1, . . . , k:

(Phr )


minimize fr(x)

subject to fi(x) ≤ zh−1i i = 1, . . . , k, i 6= r

x ∈ S.

Let us denote by zh,lor the optimal objective function value of problem (Phr )

and zh,lo = (zh,lo1 , . . . , zh,lok ) the vector formed by these values. Then, the fol-
lowing result holds:

Theorem 2 (Miettinen et al., 2010) zh,lo dominates both zh and zh−1.

From Theorem 2, the reachable values of zh are bound in the following way:

zhi ∈ [zh,loi , zh−1i ] (i = 1, . . . , k).

If we denote zh,up = zh−1, then we have

zhi ∈ [zh,loi , zh,upi ] (i = 1, . . . , k). (4)
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Note that due to the iterative nature of NAUTILUS, it is obvious that for each
iteration h, [zh,loi , zh,upi ] ⊆ [zh−1,loi , zh−1,upi ], and thus, in general,

zji ∈ [zh,loi , zh,upi ] (i = 1, . . . , k), j ≥ h.

This means that if a Pareto optimal solution is left out of the interval defined
in (4), it will not be reachable again in any following iteration. On the other
hand, the amount of unreachable Pareto optimal solutions increases with each
iteration. For this reason, these ranges of reachable values of the objective
functions for each iteration are very useful for the decision maker.

Besides, it is also possible to provide the decision maker with a measure of
the closeness of the current iteration point to the Pareto optimal set:

dh =
‖zh − znad‖2
‖fh − znad‖2

× 100 (5)

where ‖ · ‖2 is the L2 norm, that is, given a vector z = (z1, . . . , zk)T ∈ Rk,
‖z‖2 =

√
z21 + · · ·+ z2k. Note that if zh = znad, then dh = 0 and, on the other

hand, if zh = fh, then dh = 100. Therefore, the greater dh is, the closer the
corresponding iteration point is to the Pareto optimal set. This measure allows
the decision maker to determine whether the approach rhythm to the Pareto
optimal set is appropriate, too fast or too slow.

Based on the information given by the intervals [zh,loi , zh,upi ] and by the
closeness measure dh, instead of carrying out the standard (forward) iteration
previously defined, the decision maker may wish instead to:

• redefine the number of remaining iterations, so as to change (increase or
decrease) the approach pace to the Pareto optimal set or

• take a step backwards, go back to the previous iteration, and reconsider
the preference information given.

In general, there are two main issues that must be taken into account in
order to decide how each iteration must be carried out:

1. The type of preference information the decision maker is willing to give
at each iteration. The decision maker can somehow define a direction of
improvement of the objectives, which is used to determine xh, or (s)he
may prefer to choose one solution among some alternatives, obtained for
different vectors xh.

2. The computational complexity of the problem solved, which may allow or
not to solve single objective optimization problems at each iteration.

These issues yield different options of NAUTILUS iterations, which are discussed
in depth in the next section.
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4 NAUTILUS Framework

In order to carry out each iteration, following the NAUTILUS core described in
Section 3, we need, on the one hand, to establish a procedure for the preference
elicitation from the decision maker, and on the other hand, to decide how the
Pareto optimal solutions xh are determined. Therefore, the general NAUTILUS
framework consists of connecting the core to two modules: the preference elic-
itation module, and the solver module (see Figure 1). Next, we describe the
different options available for each of these modules. 

 

 

 

 

 

 

 

 

 

 

 

NAUTILUS

CORE 

Preference 

elicitation 

module 

Solver 

module 

Figure 1: General NAUTILUS framework

4.1 Preference Elicitation Module

In the preference elicitation module, the decision maker is asked to provide
her/his preference information, in order to evolve from the previous iteration
zh−1 to the next one zh. To this end, two different options are provided:

1. Generation of a new iteration point following a direction of si-
multaneous improvement. Given zh−1, the decision maker is asked to
give preference information which allows us to build a direction of simul-
taneous improvement δh of the objective functions. Once this direction
has been determined, the solver module is used to find the corresponding
Pareto optimal solution xh, and to build the next iteration zh as described
in formula (3). The new iteration point zh is expected to improve all the
objective functions from zh−1, following the direction of improvement δh.

2. Choice of one among several alternatives. Instead of building a
direction of improvement, we can generate a number of solutions which
somehow represent what is achievable from zh−1, and ask the decision
maker to choose one. Namely, given zh−1, the solver module is used to get
a number of Pareto optimal solutions which provide a good representation
of the part of the Pareto optimal set that is reachable from zh−1. This
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reachable part of the Pareto optimal set is defined by the bound vectors
zh−1,lo = (zh−1,lo1 , . . . , zh−1,lok )T and zh−1,up = (zh−1,up1 , . . . , zh−1,upk )T ,
which are calculated in the core module as described in Section 3. From
each one of these Pareto optimal solutions, the corresponding alternatives
as the next iteration point are calculated following formula (3). All these
alternatives are presented to the decision maker, who is asked to choose
one of them.

Next, let us describe in further detail these two preference elicitation options.
The direction of simultaneous improvement δh expresses the way the decision
maker wishes to improve each of the objectives. Roughly speaking, it means
that the decision maker would like to obtain a vector lying in the half line
zh−1 +λδh, (λ > 0). Therefore, δh expresses improvement proportions for each
objective function, from the previous iteration zh−1. Several ways to build this
direction if improvement are described in Miettinen et al. (2010) and Miettinen
et al. (2015). Let us briefly classify and summarize them as follows.

• Direct specification is obviously the most straightforward option. If the
decision maker is well aware of the meaning of the direction of simultane-
ous improvement δh, then (s)he can provide its components directly.

• In importance based options the decision maker can specify preference
information in terms of the importance given to the improvement of each
objective function. There are two different possibilities for giving this
information:

– Rank the objectives according to the relative importance of improv-
ing each current objective value. This importance evaluation allows
to allocate the k objective functions into index sets Jr which rep-
resent the importance levels r = 1, . . . , s. Note that there can be
more than one objective function in one index set. If r < t, then
improving the current objective function values in the index set Jr is
less important than improving the current objective function values
in Jt. In this case, the direction of improvement is built as follows:

δhi = r(znadi − z??i ) (i ∈ Jr). (6)

– Specify percentages reflecting how the decision maker would like to
improve the current objective values, by answering to the follow-
ing question: Assuming you have one hundred points available, how
would you distribute them among the current objective values so that
the more points you allocate, the more improvement on the corre-
sponding current objective value is desired? If pi points are given to
the objective function fi (for i = 1, . . . , k), then ∆qi = pi/100 and

δhi = ∆qi(z
nad
i − z??i ). (7)
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• In pairwise comparison options the decision maker can define the di-
rection of improvement by considering the objective functions in a pairwise
fashion. Namely, we can define the improvement ratio between two differ-
ent objectives fi and fj as θij = δj/δi. That is, the decision maker wishes
that the improvement of fi by one unit should be accompanied with the
improvement of fj by θij units. Two ways of defining the direction of
improvement by means of improvement ratios are the following:

– The decision maker can select a reference objective function fi (i =
1, . . . , k), and for each of the other objectives fj , (s)he sets the value
θij . Then the direction of improvement is defined by

δhi = 1, δhj = θij , j 6= i. (8)

– The decision maker can freely give improvement ratios for the pairs
of objectives (s)he wishes. In this case, a procedure is carried out
which assists the decision maker in giving the improvement ratios
that are needed in order to build δh. The procedure consists of
building an indirected graph G where the set of nodes is the set of
indices of objectives V = {1, . . . , k}, and the set of edges contains
the index pairs {i, j}, for which the decision maker has set the value
of θij . The decision maker continues giving improvement ratios until
G contains a spanning tree of the complete graph on k vertices of
V . More details of this procedure, the way δh is built from these
ratios, and a discussion about the advantages and disadvantages of
the different ways proposed for giving δh can be found in Miettinen
et al. (2015).

Once the direction of simultaneous improvement has been determined, fol-
lowing any of the options described above, the solver module is called to solve
problem (2) with

qi = zh−1i and µi =
1

δhi
(i = 1, . . . , k).

Then, xh is set to the optimal solution obtained, we set fh = f(xh), and the
new iteration point zh is generated as described in formula (3). The direction of
simultaneous improvement option of the preference elicitation module is graph-
ically illustrated in Figure 2. In this figure, from the previous iteration point
zh−1, and taking into account the reachable ranges of the objectives, the deci-
sion maker gives a direction of simultaneous improvement δh. Here fh is the
optimal solution of (2) and zh is the next iteration point.

Let us now describe the second preference elicitation option: choosing one
among several solutions. The decision maker initially sets the number NS of
solutions that (s)he wishes to see at each iteration. Then, given the previous
iteration zh−1, the solver module is called in order to generate a well-spread set
Ph of Pareto optimal solutions (in the objective space) lying in the part of the
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Figure 2: The generation of a new iteration point following a direction of simul-
taneous improvement option for a hypothetical biobjective optimization prob-
lem.

Pareto optimal set that is reachable from zh−1, that is, that satisfy the bounds
given by zh,lo and zh,up. Once Ph is available, a procedure described in Ruiz
et al. (2015) is used to determine the NS solutions that are presented to the
decision maker:

(a) The set Ph is divided into NS subsets using some clustering technique like,
for example, the average linkage method (Morse, 1980).

(b) The centroids of these NS subsets are determined, and they are regarded
as the NS most representative solutions of Ph.

(c) For each centroid, formula (3) is used to determine NS alternatives lying
on the segments joining zh−1 and each of the centroids. All these solutions
dominate the previous iteration point zh−1.

(d) The alternatives are presented to the decision maker, who is asked to choose
one of them. The solution chosen is the next iteration point zh.

This preference elicitation option is graphically illustrated in Figure 3. In the
figure, given the previous iteration zh−1, fh,i are the NS (6 in this case) solutions
in the reachable part of the Pareto optimal set, and zh,i are the alternatives
presented to the decision maker for the next iteration point.
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Figure 3: The choice of one among several alternatives option for a hypothetical
biobjective optimization problem.

4.2 Solver Module

As it has been mentioned before, the application of the interactive method
NAUTILUS involves solving problem (2) repeatedly in order to get new Pareto
optimal solutions, and also to solve the ε-constraint problems (Phr ) in order to
determine the vectors of bounds zh,lo. Therefore, depending on the computa-
tional complexity of problem (1), two situations can take place: the problems
can be accurately solved in a reasonable time using an appropriate single ob-
jective optimization method, or the optimization would be too time-consuming,
and new iteration points cannot be produced in a reasonable time. Therefore,
two options can be considered for the solver module:

1. Optimization option. Problems (2) and (Phr ) are solved at each it-
eration using an appropriate single objective optimization method, i.e.,
solver. To this end, the solver module can incorporate different exact
solvers for linear and convex problems, or (heuristic) global solvers for
nonconvex problems.

2. A posteriori option. If online optimization is not viable, then one can
carry out a pre-processing phase before the interactive phase, in order to
generate an accurate enough representation of the Pareto optimal set with
any a posteriori method. For example, evolutionary multiobjective opti-
mization (EMO) methods can be used. The idea is to use these solutions
in the interactive phase instead of solving optimization problems involving
functions of the original (computationally expensive) problem.
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4.3 Different Variants of NAUTILUS Methods

Next, the two options as the solver module and their adaptation to the two
options as the preference elicitation module are discussed in further detail. Ob-
viously, if the first preference elicitation option is chosen, and a direction of
simultaneous improvement is built in the preference elicitation module, the first
option of the solver module consists of choosing an appropriate solver to deal
with problems (2) and (Phr ) every time they are needed. The main steps of each
iteration of the resulting method are:

Method A.1

1. In the preference elicitation module, given the previous iteration zh−1, the
decision maker provides, following one of the ways described in Section 4.1,
the direction of improvement δh.

2. In the solver module, problem (2) with qi = zh−1i and µi = 1
δhi

, (i =

1, . . . , k) is solved using an appropriate solver. Let xh be the optimal
solution, and fh = f(xh).

3. In the core module, the next iteration point zh is generated by formula
(3).

4. In the solver module, problems (Phr ) are solved to determine the compo-
nents of zh+1,lo.

5. In the core module, iteration point zh, together with the bound vectors
zh+1,lo and zh+1,up, and the distance to the Pareto optimal set dh obtained
according to formula (5) are presented to the decision maker.

The first solver option (i.e., the optimization option) can also be combined
with the second preference elicitation option (i.e., the choice of one among sev-
eral alternatives) although this is only advisable when single objective optimiza-
tion problems can be solved in very short times. To this end, a large number
of vectors of weights (with weights between 0 and 1, and adding up to 1) is
initially generated. This can be done, for example, using the approach defined
in Steuer and Choo (1983) for the Interactive Weighted Tchebycheff Method.
Then, the main steps of each iteration of the resulting method are:

Method A.2

1. In the optimization option of the solver module, problem (2) is solved for
qi = zh−1i , and for each of the weight vectors previously mentioned. The
optimal solutions (in the objective space) form a set Ph.

2. In the preference elicitation module, Ph is divided into NS subsets, and
their centroids are calculated, as described in Section 4.1.
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3. In the core module, formula (3) is used to calculate an alternative corre-
sponding to each of the NS centroids.

4. In the solver module, problems (Phr ) are solved for each of the NS alter-
natives.

5. In the core module, the NS alternatives, together with their bound vectors
and their estimated distances to the Pareto optimal set are presented to
the decision maker.

6. In the preference elicitation module, the decision maker chooses one of
these solutions, which is the next iteration point zh.

On the other hand, the a posteriori option of the solver module, i.e., repre-
senting the Pareto optimal set in a pre-processing phase, can also be combined
with the two preference elicitation options. Let us denote by P the represen-
tative set of Pareto optimal solutions generated in the pre-preprocessing phase
and by Ph its subset which is reachable from zh−1. If a direction of improvement
is determined in the preference elicitation module, then the resulting method,
to be called Method B.1 is exactly like Method A.1, but problems (2) and
(Phr ) are solved in the set Ph, rather than in the feasible set S. Given that Ph

contains a finite number of solutions, this can be done in very short times.
Finally, Method B.2 combines the second preference elicitation option, i.e.,

the choice of one among several alternatives, with the a posteriori option of the
solver module. In this case, the resulting method differs from Method A.2 in
steps 1 and 4. In step 1, the set Ph is formed by the solutions in P that satisfy
the bounds zh,lo and zh,up. In step 4, problems (Phr ) are solved over Ph. Again,
these steps will now take short computing times, given that we are working with
a finite number of solutions.

To summarize, the preference elicitation options and the solver options can
be combined as wished, and these combinations yield different ways of iterat-
ing in NAUTILUS. Some of these combinations have already been reported in
published papers, while others have not (see Figure 4).

Let us point out that the combinations of options presented are not neces-
sarily strict, meaning that they can be combined in a flexible way during the
interactive solution process. For example, if the computational complexity of
the problem makes it advisable, a mixed solver option can be used, and prob-
lems (2) can be solved using the optimization option, while problems (Phr ) can
be solved over Ph, using the a posteriori option. This will reduce the computing
times of each iteration while producing good quality iteration points. On the
other hand, it is also possible to give the decision maker the possibility to switch
among different options during the interactive solution process. For example, a
decision maker might like to give directions of improvement at the beginning of
the solution process, and then see several solutions when approaching the Pareto
optimal set. In addition, the generation of the representative set can be done,
if possible, also at some point of the process (not necessarily at the beginning),
in order to generate only solutions that satisfy the current bound vectors. This
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Figure 4: Combining preference elicitation and solver options

can allow the decision maker to focus on a certain part of the Pareto optimal set
which is interesting for her/him. Again, the computational complexity of the
problem, and the overall time available for the whole interactive solution pro-
cess must be taken into account when deciding which mixed option to employ.
Therefore, this modular framework and implementation of NAUTILUS provides
the decision maker with a flexible decision framework that can be adapted, by
combining different options, to the needs of the decision maker at each moment.

As mentioned in the introduction, NAUTILUS methods can be employed in
group decision making besides solving problems with a single decision maker or a
unanimous group of decision makers. When a group is concerned, the direction
of simultaneous improvements may then be a preferred option for preference
elicitation but this is naturally up to the decision makers.

5 Conclusions

We have presented the modular NAUTILUS framework for multiobjective op-
timization and introduced four different main variants of the interactive NAU-
TILUS methods that can be derived. Furthermore, the framework enables a
flexible utilization of the modules involved. What is common in all the methods
is that the decision maker does not have to trade off but one can iteratively ap-
proach the Pareto optimal set and gain improvements in all objective functions.

The NAUTILUS framework generalizes the NAUTILUS approaches pub-
lished so far by presenting them in a common framework which enables the
birth of new method variants. The NAUTILUS framework provides a founda-
tion for implementation and versatile applicability of method variants.
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