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Finnish summary

Diss.

The papers included in the thesis are focused on functional type a posteriori error
estimates for the Stokes problem, the Stokes problem with friction type bound-
ary conditions, the Oseen problem, and the anti-plane Bingham problem. In the
summary of the thesis we consider only the Oseen problem. The papers present
and justify special forms of these estimates which are suitable for the approxima-
tions generated by the Uzawa algorithm. The estimates are of two main types.
Estimates of the first type use exact solutions obtained on the steps of the Uzawa
algorithm. They show how errors encompassed in Uzawa approximations be-
have and have mainly theoretical meaning. Estimates of the second type operate
only with approximations (e.g. finite element solutions). Therefore, they are fully
computable. In the thesis it is shown that estimates of this type indeed provide
realistic evaluation of errors for finite element approximations of problems asso-
ciated with viscous incompressible fluids.

Keywords: functional a posteriori error estimates, Stokes problem, Oseen prob-
lem, Bingham problem, nonlinear boundary conditions, Uzawa algo-
rithm
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1 INTRODUCTION

Various phenomena appearing in natural sciences are modeled with the help of
partial differential equations. Typical examples are presented by diffusion type
problems, electromagnetic problems, continuum media, etc. Other typical appli-
cations include medicine, meteorology, and aerodynamics. In the thesis, we focus
our attention on mathematical models of viscous incompressible fluids, which
belong to the class of most important and interesting models in continuum me-
chanics.

Only in very rare cases partial differential equations can be solved exactly.
In the majority of cases, only approximations (numerical solutions) are indeed
available. Here, the most known methods are the finite element method (FEM)
(there is a large amount of literature devoted to this subject, see, e.g., [10, 17, 49]),
the finite difference method (FDM) (a consequent exposition is presented in, e.g.,
[50]) and the finite volume method (FVM) (see, e.g., [27]). By using numerical
methods, we find an approximate solution, which always contain errors of differ-
ent origin.

There exist two main approaches to analysis of these errors. The first ap-
proach is to measure the error a priori, which means that we determine the error
before finding the approximation of the exact solution. A priori analysis forms
the first stage of studying. Typical a priori estimate is derived under rather de-
manding conditions (higher regularity of the exact solution, certain regularity of
the mesh, Galergin orthogonality), which are difficult to guarantee in real life
computations. This approach provides a general presentation on properties of
approximations. It is difficult to use if we wish to get a realistic estimate of the er-
ror encompassed in concrete numerical solution. Moreover, a priori estimates do
not suggest an information on local distribution of errors, what is very important
for modern mesh-adaptive algorithms.

For these reasons, other error control methods (known as a posteriori meth-
ods) started to attract serious attention. A posteriori type error estimate targets
to get computable and realistic estimates of the accuracy of particular solution.
There are several types of a posteriori error indicators, namely, the explicit resid-
ual method [3, 4, 6, 48, 49], equilibration based methods [11] and gradient aver-
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aging type methods [76, 77]. In this thesis we use and investigate another group
of estimates called a posteriori estimates of the functional type, (see [51, 66], and ref-
erences cited therein). A posteriori estimates of this type are independent of the
numerical method that has been used to compute the approximate solution. The
estimates contain only global constants, which are independent of the mesh used
to discretize the domain.

The main goal of the research is to investigate how a posteriori estimates
of functional type can be used in the context of iteration Uzawa type methods,
which are often used in computer modeling of viscous problems. For this pur-
pose, we deduced special modifications of the estimates adapted to the structure
of Uzawa approximations and obtained easily computable error majorants for the
Stokes, Stokes with nonlinear boundary conditions, Oseen and Bingham prob-
lems.

Author’s contribution to included articles:

[PI] This paper is concerned with new type of functional a posteriori er-
ror estimates adapted to approximations generated by the Uzawa method. The
proofs of the error estimates presented here are based on a posteriori error es-
timates for the generalized Stokes problem as they are presented in [71]. The
mathematical results were done in close collaboration with co-authors I. Anjam
and S. Repin.

[PII] This paper is concerned with a posteriori error estimates for the sta-
tionary Stokes problem with nonlinear friction type boundary conditions. The
mathematical results were done in close collaboration with co-authors P. Neit-
taanmaki and S. Repin.

[PIII] The focus of this paper is to derive error estimates for the station-
ary Oseen problem. Also in this paper the estimates are applied to the Uzawa
method. The numerical experiments confirming the results in the paper were
carried out by the author, using The FEniCS Project [28]. The mathematical re-
sults were carried out in close collaboration with co-author S. Repin.

[PIV] In this paper, we focus on bounds of error for variational problems
in the theory of visco-plastic fluids. These bounds of error have two forms. The
first form includes global constants (such as the constant in Friedrichs inequality)
and the second one is based on decomposition of the domain into a collection of
subdomains, and uses local constants. The mathematical results were carried out
in close collaboration with co-author S. Repin.



2 MATHEMATICAL BACKGROUND

In this chapter, we introduce the notation and basic mathematical knowledge that
we need for the results presented in this thesis.

By RY we denote the space of d-dimensional real valued vectors, and by
M4 the space of real valued second order tensors (d > 2). The inner products
ofa,b € R? and 7,0 € M?*4 are defined by

d d d
a-b:= Zaibi and T:0:= Z ZTi]'U’i]',
i=1 i=1j=1

respectively. They generate the norms |a| = \/a-a and |o| = \/v : 7, respectively.
Throughout the thesis Q C R? denotes a connected bounded domain with Lips-
chitz continuous boundary 9Q) and () is the closure of Q). These requirements for
Q) will not be repeated, and additional requirements will be separately empha-
sized if necessary.

2.1 Function spaces

By V we denote a Banach space with the norm || - ||y. The respective dual space
is V*, it consists of linear functions of V and is equipped with norm

Il = sup 29

veV,0£0 HUHV

If V is Hilbert space, then the norm || - ||y is generated by the scalar product
(-,-)1/2. The so-called duality product (-, )y, : V¥ x V — R is defines the
value of a linear functional v* on the element v

(U5, 0)puyy :=0"(v), Yo e V.
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The Lebesgue-measurable functions v with finite norm

1/p
oLy == (/Iv(x)V’dx)
)

form a separable Banach space that is denoted by L¥(Q)), p € [1,+oo[. The case
p = oo defines the space of essentially bounded functions and the norm is defined
as

||| := esssup |v(x)].
xeQ)

Our main interest is the Hilbert space of square-integrable functions L?(Q)) equipped
with the norm

induced by
(1,0)12(q) = (w,0) == / uvdx, Yu,v € L*(Q).
Q
The space of scalar valued square summable functions with zero mean is denoted
by L(Q). The ath generalized derivative of u € L?(Q) is denoted by w = D*u €
L%(Q) and is defined as a function satisfying the integral identity

/wvdx = (1)l /uD"‘vdx, Yo € Ci°(Q).
O Q

The Banach space W’;(Q), p € [1,+oo[, and k € N is called the Sobolev space
W(Q) == {v € LP(Q) | D*v € LP(Q), |a| < k}

and is equipped with the norm

1/p
o]l = (Z IID"‘UIILP> :

la|<k

Often the Hilbert spaces with p = 2 are denoted as H*(Q)) = W(Q). In this
thesis, we use spaces

HY(Q) = {v € LX(Q)|Voe LZ(Q,le)}, and (1)
H(div, Q) := {v € L2(Q,RY) | divo € Lz(Q,]Rd)}. )
Also, we use the space H ™!, which is defined as the dual space of H}(Q), i.e.
H™H(Q) = (Hp(2))".
The space H1(Q) is equipped with the norm

| <ov,w>|

Ol-1 = su

weH(Q)
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S(Q)) denotes the subspace of V := H'(Q) that consists of solenoidal (divergence
free) functions and V;(Q)) denotes the subspace of V that consists of the functions
vanishing on the Dirichlét part of the boundary.

Important differential operators applied in the thesis are listed below:

— The gradient of a scalar valued function v is a vector

._ d
Vo := [axi e R%.

aw} d
i=1
— Gradient of a vector valued function [w]?_, is a tensor valued function

5 d

w:

Vw:= |— € M,
ax]‘ -
i,j=1

— For vector and tensor valued functions the divergence is defined by the re-

lations p
ow;
divw := ) —*
=1 9%i
and P
d T
Divt := lz ”] ,
I axl- .
i=1 j=1
respectively.

2.2 Inequalities

In the thesis, we use the following inequalities.

— Fora,b € Rand for any & > 0 the general Young inequality reads as follows:

1 1/b\ 1 1
abgaa”+<> , —+—==1 (3)
P( ) p\a p v

— For any functional 7 : V — R and its convex conjugate F* : V* — R, the
generalized Fenchel inequality reads

< 0%, 0 >y < FH(0*) + F(v), Yor € V, Yo e V. 4)

— When Young and Fenchel inequalities are used in combination, then we
sometimes use the term Young-Fenchel inequality.

— For all integrable functions f, g the Holder inequality reads

/ 1 1
[ faax < Iflusligl,p, VFELP(Q), Vg e P (Q), S+~ =1 O
@)

p P
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— As a special case of the Holder inequality we have the Cauchy-Schwarz
inequality

[ reax <Iifll ligh vr.g € L3(). ©
(@]

— The Friedrichs inequality
lwll < CrlIVwl, Yw e HY(Q), )

where Cr > 0is a constant, independent of the function w.
— The classic trace inequality reads

Ipllr < Cr|[ Vol V¢ € H'(Q). ®)

Lemma 2.2.1 [43, 44] Let Q) be a bounded domain with Lipschitz continuous boundary.
There exists a constant Crgp > 0 depending only on the domain ), such that for any
function g € Ly(QY) there is a function v € Vy satisfying the condition divo = g and

IVoll < Crpsligll-

Here the constant C; pp is the constant in the well-known Ladyzhenskaya-Babuska-
Brezzi (LBB) condition.

Above lemma leads to important condition in theory of incompressible flu-
ids. The so called Inf-Sup (or Ladyzhenskaya-Babuska-Brezzi (LBB)) condition
reads: There exists a constant C; gg > 0 such that

[ gdivw dx

inf su e > Crg3. 9)
1T (0, 120 wey, uzo NIV ]

The LBB condition and its discrete analogs are in proving the convergence and
stability of numerical methods in problems related to the theory of viscous incom-
pressible fluids. The LBB condition can also be justified by the Necas inequality
(for domains with Lipschitz boundaries [12]). For estimates of Cypp for various
domains, see, e.g., [24, 56, 58].



3 BASIC MATHEMATICAL MODELS OF VISCOUS
FLUIDS

It is commonly accepted that evolution of a generalized Newtonian fluid is de-
scribed by the Navier-Stokes differential equation of motion

uy —Divoe+ (u-Vu)=f—Vp inQ, (10)
incompressibility condition
divu =0 inQ, (11)
and the differential inclusion
o€ on(Vu) (12)

that reflects mechanical properties of the fluid. In (12) 7r denotes the dissipative
potential of the fluid and 0 denotes the subdifferential. In addition, the system
(10)-(12) should be supplied with boundary and initial conditions. See, e.g., [25]
for mathematical details.

3.1 The generalized Stokes problem

The Stokes model is one of the simplest models in the theory of viscous incom-
pressible fluids. The generalized formulations of the Stokes problem are often
motivated by semi-discrete formulations of evolutionary problems. In these for-
mulations u(x, t) is represented as a sequence of approximations u" (x) := u(x, t,),
where t,;,, n = 0,1,...,N are values of the time variable t. Here we consider a
scheme

u — un—l
T — Div(yVu") + Diviu" '@u" 1) = f - VpinQ
n— tn-1

divu" = 0in Q.
This scheme differs from the Stokes problem by the term uu, where we have

_ 1
V - tp—ty 1"
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We consider the (stationary) generalized Stokes problem described as

—Div(vVu)+pu = f—Vp inQ, (13)
divu =0 in Q), (14)

u=up onlp, (15)

on=F onT, (16)

where v > 0 is the viscosity, n denotes the unit outward normal vector to the
boundary, p is the pressure, f € L?(Q,RY), and ¢ = vVu is the stress tensor. The
function up defines the Dirichlét boundary condition and satisfies

/ up-ndS =0.
Q)

The system (13)-(16) describes a slow motion of an incompressible fluid. We as-
sume that
O<v<v(x) <y VxeQ

and
0<pu<u(x)<p VxeQ.

The generalized solution of (13)-(15) is a vector valued function u € Vy + up
satisfying the integral identity
/(vVu :Vw+pu-w)dy = /(f -w+ pdivw) dx, Yw € Vp(Q)).  (17)
Q Q
Notice, that 1 can also be defined as a divergence free (solenoidal) vector function
satisfying
/(vVu :Vw+pu-w)dx = /f-wdx, Vw € $o(Q)).
Q Q

3.1.1 Nonlinear boundary conditions

In the second paper, we consider the system (13)-(15) with the nonlinear bound-
ary condition on I':
up =0, —oy € golug|onT, (18)
where ¢ > 01is a constant and u,,, u; are the normal and tangential components of
u and
O 1= Oul, Opi= OppM, Opp i= Oy - N = 04N}
This boundary condition is equivalent to a friction type condition

low| < g, Outtn + glttn| =0onT.

The generalized solution u € $y(Q) + up of (13)-(15),(18) can be defined by the
variational inequality (see [31])

a(u,v—u)+ /F(](vt) —j(ur))dS > (f,v—u) Yo e $(Q), (19)

where j(17) := g|n| fory € Hl/z(l").
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3.2 The Oseen problem

The Oseen problem can be viewed as a linearization of the Navier-Stokes problem
ata neighborhood of a constant velocity field a € $(Q)). The Oseen system is often
used in quantative analysis of the Navier-Stokes problem. The classical formula-
tion of the stationary Oseen problem is to find the velocity field u € $(Q) + up
and the pressure function p € L,(0), which satisfy the relations

—Div(vVu)+Div(a®@u) = f — Vp in(Q, (20)
divu =0 in Q, (21)
u = up ondQ), (22)

where 4, up, and f are given vector valued functions. It is assumed that
/ up -ndx =0, (23)
200)

v is a positive bounded function for all x € (), and a € $(Q) is a bounded vector
function. The generalized solution of (20)-(23) is a function u € $(Q)) + up such
that
/(vVu:Vw—(a@u):Vw)dx:/f-wdx Yw € $(Q). (24)
0 0

Existence and uniqueness of generalized solution to Oseen problem is well estab-
lished (see, e.g., [43])

3.3 The Bingham model

Models of fluids with nonlinear viscosity are commonly used in natural sciences
and engineering applications [18, 32, 33]. Physically interesting models are de-
scribed by the dissipative potential in the form

1
ri(e) = vlel™ + kilel, (25)

where m > 1 is associated with the energy growth at infinity, v is the viscosity
parameter, and k. > 0 is the plasticity parameter. This type of models are called
Bingham models. The most known Bingham fluid model is described by the
potential

1
n(e) = §V|£|2 +kile|, ke>0. (26)

This type of models are often used for computer simulation of the blood flow, see,
e.g., [18, 20, 29].
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In the thesis, we consider a stationary anti-plane flow of Bingham type in a
long domain ) x]0, L[, with the potential

1
nt(e) = EAS e+ kylel.
Here k. > 0 and A is a symmetric matrix satisfying the condition
Ale? < AZ- g <dle] Y eR e > e

In this case (see [25, 35]), the problem can be presented as a variational inequality:
Find the velocity u € Vp + up such that

a(u,w—u) + /(](Vw) —j(Vu))dx > l(w—u) Ywe Vy+up, (27)
0

where up € V is defines Dirichlet type boundary conditions, a : V x V — Risa
bilinear V-elliptic form

a(v,w) == /AVU~dex,
Q

and j : R — R is a convex continuous function, and is defined as

The inequality (27) is equivalent to the following variational problem: Find u €
Vo 4+ up such that
J(u)= inf J(w), (28)

weVy+up

where

J(w) := %a(w,w) + /](Vw) dx — 4(w).
0

Due to well known results in the theory of variational calculus, the problem
(28) associated with a strictly convex and lower semicontinuous functional is
uniquely solvable (see, e.g., [25]).

3.4 The Uzawa algorithm

Uzawa type methods form a well-known and easily implemented class of itera-
tive methods for solving saddle-point problems that arise, for example, in fluid
dynamics. Other applications include constrained optimization, linear elasticity,
and economics (see a survey of the use of the Uzawa algorithm in various saddle
point problems [7]). Originally, the classical Uzawa algorithm was proposed in
[2]. The classical Uzawa algorithm also many modifications and generalizations,
that include inexact Uzawa algorithm (see, e.g., [13, 15, 26, 41, 45, 46, 59, 78]) and
augmented Lagrangian (see, e.g., [8, 36, 47]).
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3.4.1 Uzawa algorithm for Stokes and Oseen problems

In the case of generalized Stokes problem and Oseen problem, the Uzawa algo-
rithm is often used to avoid difficulties with exact satisfaction of the divergence-
free condition. It can be used in the following form:

1. Setk = 0and p° € Ly(QQ).
2. Find uf € Vp(Q) + up such that
/(vVuk Vw4 ulf - w — (a@u¥) : Vw) dx

Q (29)
= /(f-w+pkdivw)dx Yw € V.
Q

3. Find
pk+1 — Pk — pdivuk, where p € (0,0). (30)

4. Setk =k + 1 and go to step 2.

In the above algorithm, equation (29) corresponds to generalized Stokes problem
by choosing a = 0 and to Oseen problem by choosing u = 0. It is well known
(see, e.g., [73]) that approximations generated by the Uzawa algorithm converge
in the sense that

uk — u e V(Q,RY),
pk — p weakly in LZ(Q),
as k — oo, provided that

2v ifu=0

O<p<p:= { 2 min {E,y} otherwise.

3.4.2 Uzawa algorithm for the anti-plane Bingham flow problem

For the anti-plane Bingham problem (27), numerical approximations can be con-
structed by different methods. Many of them are discussed in [14, 34, 35, 38] (see
also publications cited therein). In the thesis, we consider the simplest form of
the Uzawa method.

1. Set k = 0. Define p satisfying (34) and
ANWeK:={AecLl®Q) : |A| <1}. (31)
2. Find u**! € V; as a generalized solution of the problem

/(AVuk“ Vw4 kAR Vo) dx = / fwdy, Ywe Vo,  (32)
Q Q
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3. Find
ANFL = TI(AF 4 pVuktY), (33)

where Il : L* — K is the projection operator on the set K

Ax)

= s G

a.e. in Q.

4. Setk =k + 1 and go to step 2.

It is well known (see, e.g., [22]) that approximations generated by algorithm de-
scribed above converge to the exact solution as k — co in the sense that

uk — uinVv
provided that
2
0<p<pi=T3- (34)

The algorithms (29)-(30) and (32)-(33) generate infinite sequences {uk } In practi-
cal computations, we append them with certain stopping criteria that follow from
a posteriori estimates that control the accuracy of {u*}.



4 MAIN RESULTS

In the field of computational hydrodynamics, the error control problems have
gained a lot of interest, especially in solving problems related to incompressibility
condition.

In the framework of residual method, a posteriori error estimates for the
Stokes problem has been studied in numerous paper (see, for example [1, 5,
16, 21, 39, 42, 55, 57, 74, 75]). Computable error estimates, that do not contain
constants arising for solution methods or domain discrezation, we studied in
[61, 64]. For elliptic type problems of the divergent type, estimates were obtained
in [60, 61, 64]. These estimates utilize duality theory in the calculus of variations
(see [51]). Another method, based on transformations of the integral identities,
was presented in [63, 64, 65, 66].

Functional type a posteriori error estimates for Stokes problem were derived
in [63, 65]. The practical efficiency of these estimates was studied in [37]. For
nonlinear boundary conditions, the error estimates were studied in [52, 72]. In
[9, 30, 71] similar type of estimates were derived for classes of generalized New-
tonian fluids. For considered type of Bingham fluids, a posteriori error estimates
were studied in [62, 66, 68].

In the thesis, we focused on finding explicitly computable error estimates
that are realistic and generated by Uzawa iterations. These estimates take into ac-
count the approximation errors that are caused by the dicsretization of the bound-
ary value problem.

4.1 Upper bounds generated by the Uzawa algorithm for Oseen
problem

Guaranteed upper bounds of the distance to the exact solution of the Oseen prob-
lem were derived in [66, 69]. Following the methods presented there, we obtain
certain form of these estimates, which are suitable for the Uzawa algorithm. The
respective proofs and more details are presented in the paper [PIII]. Below, we
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explain the principal ideas with the paradigm of one simplest case.

Theorem 4.1.1 Let u be the exact solution of the problem (20)-(22) with pure Dirichlét
boundary conditions. Let v € Vo(Q) + up. Then for any q € Ly(Q)) and T € L(Q)) we
have

lu—oll< v 2 (D)l 0+ v 2d(0,7,0) e
+ (20'/2 + Cq)xq||divo|| ;== Ma(v,T,9). (35)

where
r(t) :=f + Divr, Cao= CFQHl/_l/zﬂHoo,Q,
d(v,7,q9) =t—vVo+a®v+]1g,
and
J(f-w—1:Vw) dx
Q
r(T)|| 14 := su
” ( )H 1,Q wGV(]}()Q) vaHZ

It is easy to see that the error majorant consists of residuals of two basic equations
forming the Oseen equation and a penalty term that penalizes violations of the
divergence free condition.

Now we want to use (35) and deduce a computable and realistic estimate of
u* — u. We use Theorem 4.1.1 with

v =k, (36)
q=7r" (37)
T=vViF —a@uf - ]ka. (38)

In this case,
d(v,7,q) =1 —vViF +a@u +1pF =0

and in view of (29),

[(f-w— Vit —a®u* —1p*) : Vw) dx

Q
r(T)| _ = su = 0. (39
H ( )H 1,0 weVOF(,Q) vaHZ

Thus we arrive at the following result.

Theorem 4.1.2 Let u* be the exact solution computed on the step k of the Uzawa algo-
rithm. Then

lu—uk || < (2072 + Cq)ralldivet|| = MU= (). (40)

This estimate shows the principal behavior of the error associated with the Uzawa
solutions. It is simply the value of ||divu*|| with the factor depending on viscosity
and constant Crn
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4.2 Advanced upper bounds

If we would have the function u* (exact solution of the boundary value problem
in the first step of the Uzawa method), then the estimate in Theorem 4.1.2 would
give a complete answer to the question stated. However, in practice, the problem
is solved on a certain mesh 7}, (h is considered as a characteristic size of cell of
the mesh). In order to take the approximation error into account, we need an
advanced form of the estimate.

Let Vg,(Q,IRY) and Ly, (Q) be a finite dimensional subspaces of V,(Q) and
L,(Q)), respectively. It is assumed, that these spaces are constructed so that the
corresponding numerical problem is stable and satisfies the discrete LBB-condition.
Let u’,; € Vo + up be an approximation of u* and pﬁ € Ly,(Q) be an approxima-
tion of p*. We have

Theorem 4.2.1 For any n € L(Q,Div),
=i < €" Gy ph ) + ME* (), (1)
where the first term

&y, i) = v~ (Crallr(n) la + 4w, 1, i) 1z)

is related to the approximation error and the second term presents the error associated
with the Uzawa method.

We see that the both terms are indeed computable and the numerical applicabil-
ity of this technology was verified. For an arbitrary domain (), the constant xq
may be difficult to define. However, for plane domains that are star-shaped with
respect to a ball, good upper bounds have been derived, see [19]. For arbitrary
domains, it was shown (see [66, 67]) that computation of the distance to the set of
divergence free fields can be performed by ideas of domain decomposition using
constants for local (simple) subdomains.

In [PIII] we presented the results from numerical computations to test the
majorants. The computations were performed with the help of the FEniCS Project
open source software [28]. Indeed, we see that the estimates provide guaranteed
upper bounds of error and the bounds reflect correctly the decrease of the cor-
responding errors and also indicate the moment when the mesh adaptation is
required.
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YHTEENVETO (FINNISH SUMMARY)

A posteriori virhearvioita variaatio-ongelmille viskoottisten nesteiden tapauk-
sessa

Matemaattiset mallit luovat tarkedn tavan tulkita luonnonilmioita. Erityisesti vir-
tausmekaniikka on tirkedssd roolissa fysikaalisia ilmi6itd mallinnettaessa. Vir-
tauksen mallintaminen on tdrkedd esimerkiksi lddketieteessd, meteorologiassa,
aerodynamiikassa ja putkistosuunnittelussa. Virtauksen mallintamiseen kaytet-
tavat yhtdlot ovat yleensd osittaisdifferentiaaliyhtaloita.

Vaikka osittaisdifferentiaaliyhtdloiden tutkimus on edennyt viime vuosisa-
dalla hyvinkin nopeasti, on tarkkojen ratkaisujen 16ytdminen vaikeaa, yleensd
jopa mahdotonta. Tapauksissa, joissa analyyttinen ratkaisu voidaan 16ytda koh-
tuullisella vaivalla, on yleensa tehty huomattavia yksinkertaistuksia, tai yhtdld on
alkujaankin keinotekoinen. Ndiden yksinkertaistusten myotd menetetdan mal-
linnuksen tarkkuus. Jotta edellamainituilta yksinkertaistuksilta valtyttadisiin, on
osittaisdifferentiaaliyhtéloille kehitetty monia numeerisia ratkaisumenetelmid, jot-
ka tuottavat osittaisdifferentiaaliyhtilolle numeerisen ratkaisun. Numeerisen rat-
kaisuun siséltyy aina jonkunlainen virhe, ja ndinollen on olennaista tietdd kuinka
suuri tdimd virhe on.

Téssd vaitoskirjassa keskitytddn tutkimaan funktionaalisia a posteriori
-virhearvioita. Viitoskirjaan sisallytetyissd artikkeleissa kasitelldan virhearvioi-
ta ajasta riippumattomille Stokesin, Oseenin ja Binghamin yhtéloille. Kolmessa
julkaisussa sovelletaan homogenisid reunaehtoja ja numeerisia ratkaisuja tuote-
taan Uzawan algoritmin avulla. Uzawan algoritmin erityispiirteitd hyodyntaen
virhearvioille saadaan hyvinkin yksinkertainen muoto. Neljannessa julkaisussa
mahdollistetaan ratkaisun epilineaarinen kdytos alueen reunalla Stokesin yhta-
16n tapauksessa. Esitetyt virhearviot edustavat kahta eri tyyppid. Ensimmdisen
tyypin virhearviot ottavat huomioon Uzawan algoritmin erityispiirteet ja niilld
on ldhinnéd teoreettinen merkitys. Toisen typpiset virhearviot ottavat huomioon
myos approksimaatiovirheen, miké tekee niistd taysin laskettavissa olevia.

Téssd véitoskirjassa esitellyt virhearviot tarjoavat aina todellisen yldrajan
virheelle. Virhearviot ovat myos tdysin laskettavissa, eli kaikki esiintyvat muut-
tujat ovat tiedossa. Téssa tyodssa tehdyt numeeriset kokeet suoritettiin FEniCSin
Python-rajapintaa hyodyntden.
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Abstract — In this paper, we derive computable a posteriori error bounds for approximations com-
puted by the Uzawa algorithm for the generalized Stokes problem. We show that for each Uzawa
iteration both the velocity error and the pressure error are bounded from above by a constant multi-
plied by the Ly-norm of the divergence of the velocity. The derivation of the estimates essentially uses
a posteriori estimates of the functional type for the Stokes problem.

1. Introduction

Let Q € R” be a bounded connected domain with a Lipschitz continuous boundary
0dQ. Henceforth, we use the space of vector valued functions

V(Q,R") := W, (Q,R")
and two spaces of tensor-valued functions

2(Q) == Lp(Q,M"™")
L(Div,Q) = {w e X(Q) | Divw € L,(Q,R")}

where M"*" is the space of symmetric n x n-matrices (tensors). The scalar product
of tensors is denoted by two dots (:), and the L, norm of ¥ is denoted by || - ||s. The
L, norm of scalar and vector valued functions is denoted by || - ||

By § () we denote the closure of smooth solenoidal functions w with compact
supports in Q with respect to the norm ||[Vw||x. Let V5 (Q,R") denote the subspace
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of V(Q,R") that consists of functions with zero traces on dQ. The space of scalar
valued square summable functions with zero mean is denoted by ZZ(Q, R).

The classical statement of the generalized Stokes problem consists of finding a
velocity field u € $(Q) + up and pressure p € L,(€) which satisfy the relations

—Div(vVu)+pu+Vp=f inQ (1.1)
divu=0 inQ (1.2)
u=up onad (1.3)

where f € L,(Q,R"), and

/ up-ndx=0.
IQ

Here and later on n denotes the outward unit normal vector to dQ, and we assume
that the material parameters v and i belong to the space L.(Q,R), and

O<v<vE) <V, YxeQ
O<pu<p)<p, YreQ.

The generalized solution of (1.1)—(1.3) is a function u € S (Q) + up such that
/(vvusz+uu.w)dx:/f.wdx v € $(Q). (1.4)
Q Q

It is well known that u can be defined as the first component of the saddle point
problem generated by any of the Lagrangians

1 1
L(v,q) ::/Q (EV\VV|2+§M|V|2—qdivv—f~v>dx
I B T
La(v,q) ::/Q EV\VV| +§u|v| +§Md1vv| —qdivv—f-v | dx.

The quantity in Ly, is called the augmented Lagrangian (in which A € R ). We have

L(v,p) <L(u,p) <L(u,q) YveVo+up, g€l
La(v,p) <La(u,p) < La(u,q) VveEVo+up, g€ Lo.

From the right-hand side inequalities we see that [,(p — ¢g)divu dx = 0 for all

q € L, from which we conclude that divu = 0. From the left-hand side inequali-
ties it follows that for any solenoidal v we have J(v) > J(u), where

1 1
J(v) :=/Q <EV|VV\2+§,u|v\2ff-v> dx.
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Indeed, the exact solution of the problems

inf  sup L(v,q), inf  sup La(v,q)
veVo+up gely veVo+up gel,

is (u, p). For a detailed exposition of this subject, we refer to [4].
Finding approximations of (u,p) can be performed by the Uzawa algorithm
presented below.

Algorithm 1.1 (Uzawa algorithm).

1: Setk=0and p € R,. Make initial guess for p* € L,.
2: Find «* by minimizing the Lagrangian L(v, p*) or Ls (v, p*) w.r.t. v, i.e., by solv-
ing either (1.5) or (1.6), respectively.

For the Lagrangian L, we have the problem: Find u* € Vj + up such that:
/ (vwk : vWﬂmk.w) dr = / (f-w+pkdivw) dr YweVp. (1.5
Jo Jo
For the Lagrangian L4, we have the problem: Find u* € Vo + up such that:
/ (vVuk Vw4 ik - w+ Adivuk div w) dx
Q

:/Q(f.w+pkdivw)dx Vw e Vo, (1.6)

3: Find P = (pk—pdivuk) cl,. (1.7)

4: Setk =k+ 1 and go to step 2.

Our goal is to deduce computable bounds of the difference between 1 and the
exact solution u in terms of the energy norms

P = [ (VP pw?) ds

and
lw B = /Q (VIVW]2 + w2+ Aldivw]?) dx.

Theorem 1.1. The Uzawa algorithm (Algorithm 1.1) converges, i.e.,

Wy strongly in V(Q,R")

Pk ko p weakly in L, (Q)

provided that
0 < p < 2min(v,u) (1.8)

and p° € Ly(Q). If p = 0, the condition is 0 < p < 2v. These conditions are the
same for both (1.5) and (1.6).



324 1. Anjam, M. Nokka, and S. I. Repin

Proof. The proof is based on well known arguments (see, e.g., [13]). However,
for the convenience of the reader, we present the proof for the generalized Stokes
problem, in the case of (1.5).

The exact solution of the generalized Stokes problem satisfies the relation

/Q(VVM:VWJr,uu«w)dx:/Q(f-erpdivw)dx Vw € Vp(Q). (1.9)

k

We set w = u* — u and subtract (1.9) from (1.5), which gives

Il == [ (0= p)aivu — ).
Let vf := u* —u and ¢* := p¥ — p. Then we rewrite this relation in the form
IV 2= /Q grdiviF d. (1.10)

On the other hand, (1.7) is equivalent to

/Q(pk+1 - dx+p/gdivu’<¢ dx=0 Vo€ Ly(Q).
By setting ¢ = p**! — p we obtain

/Q(p"“ =P = p)detp /Qdivu"(p"+1 ~p)dx=0
which is equivalent to

/Q(qk-H qu)qk“derp/QdivvquH dr=0

and
¢ = P 4+ 1+ = 1P = ~2p [ divifglar (i
JQ

By combining (1.10) and (1.11), we obtain
6" 1% = 1lg [P+ — g1 +2p 1V ||

—Zp/gdivvk(qurl —¢")dx

<2p|ldiv ¥ ¢! = ¢
<871 p?|divot|? + 8llg" ! — ¢
<

5702 (IVVH IR+ I4I7) +8llg 2 L12)
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where § € (0, 1). Note that
4112 = VIV + 2 > minCe, ) (19943 + 14]2)
and, therefore, (1.12) implies the estimates
g2 = g 17 + (1= 8) 1" — g2
+p (2min(v,u) — 87 p) (IVFIR+M42) <0, (113)
Now, we sum inequalities (1.13) for k =0,...,N and find that
N+12 Sk ke
gV P+ (1=8) Y g — 4"l
k=0
& 2 2
+p (2min(v,p) ~87p) Y (IVHIR+IVIR) <llgl. 114y
k=0
Because of condition (1.8), there exists a 0. € (0, 1) such that
2min(v,p) — 8, 'p > 0.
We set 6 = &, in (1.14), and see that
VA2 4+ 41> = IVt =) 3+ =l == 0.

Also, we see that ||¢*|| = ||p* — p|| is bounded in L,(Q), so ||p¥|| is bounded in
L, (). We also observe from (1.14), that

L k|2 = || ! k= g

g [P = ph|P =

so we can extract from p* a subsequence pk’, which converges to some element p*
weakly in L, (Q). The equation (1.5) gives in the limit

/ (vVu: Vw+[.m~w)dx:/ (f-w+p-divw)dx VYweV,
Q Q
and by comparison to (1.9) we find that

/ (p—p*)divwdr=0 VweV,
Q

which means that p* = p 4 ¢, where ¢ € R. In other words, the sequence pk/ con-
verges weakly to p in ZZ(Q) However, if p° € Ly, then it is easy to see from (1.7)
that pk € L, with all k. From this we make the conclusion that the sequence p’d
converges weakly to p in L (Q).
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2. Error estimates for exact solutions generated
by the Uzawa algorithm

In this section, we show that the errors of approximations generated by the Uzawa
algorithm are controlled by the L,-norm of the divergence of the velocity. First, we
compare approximations computed on two consequent iterations and establish the
following result.

Theorem 2.1. Let (u*, p*) and (u*', p*1) be the solutions of two consecutive
iterations of the Uzawa algorithm. Then, for both (1.5) and (1.6) we have

Il = | < v pdived| @.1)
1P = pM| = plldivad]. 2.2)
In addition, for (1.6) we also have

Jl bt = < v ol divad]. 2.3)

Proof. The equation for pressure (2.2) follows directly from (1.7). By subtract-
ing the kth equation (1.5) from the (k + 1)th equation, we obtain

/ VW — k) Vw4 (T — i) ow dx = / (P = phydivw du.
Q Ja

Since
divw]| < [[Vwllz < vV IVVWwls < v [l wl

we can estimate the right-hand side with
L = pdivw de < p = v

—1
<VY P =PIl
k+1 k

By choosing w = u*"" — u*, we obtain

k k12 —1y & T k
It = a2 < v = PR =)

By (2.2) we obtain the estimate for velocity (2.1). The estimate (2.3) is obtained
with exactly the same arguments applied for the augmented form (1.6). Since
[lwll <]l wllx for all A € R, we see by (2.3), that the estimate (2.1) holds also
for approximations calculated by (1.6).

Henceforth, we will use functional a posteriori error estimates for the Stokes
problem derived in [11, 12]. For a consequent exposition of the theory of functional
a posteriori error estimates we refer the reader to [8, 10].

The following lemma is essential in deriving our main results.
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Lemma 2.1. Let Q be a bounded domain with Lipschitz continuous boundary
0dQ. Then there exists a positive constant Cgg depending on the domain Q such
that for any function g € L (Q) there is a function v € Vj satisfying the condition
divv =g, and

IVvlz < Cipgllgll-

Here Cy g is the constant in the well-known Ladyzhenskaya-Babuska-Brezzi (LBB)
condition (see, e.g., [1,2]). See proofin [6,7].

For some simple domains the constant Cygp, or the bounds for it, are known
(see, e.g., [3,5,9]).

Lemma 2.1 implies an important corollary. Let v € Vp, and divv = g. Then there
exists a function v, € Vj such that div(v —v,) =0, and

[Vvells < Crppligl = Crpgldivyl.
This means that there exists a solenoidal field vo = (v —v,) € S(€) such that
1 .
Vv =v)llz < Cigglldivy].

A similar estimate holds for v € Vj + up. Indeed, for v —up we can find a solenoidal
field vp € S(Q) such that

IV(—un = vo)lls < Crgglldiv(y—up)|| < Crgyldivy.
Thus, we can find a function wy € $(Q) 4 up such that
IV =wo)llz < Cigldiv]. 24

With the help of (2.4) we can now derive our main results. We show that the
errors of u* and pf generated on the iteration k of the Uzawa algorithm are both
estimated from above by the L,-norm of the divergence of u* multiplied by a con-
stant depending on Cygg. The proofs are based on the derivation of functional a
posteriori error estimates for the generalized Stokes problem as they are presented
in [12].

Theorem 2.2. Let u* be the exact solution computed on the iteration k of the
Uzawa algorithm. Then, for solutions calculated by (1.5) or (1.6), we have

= u |l < 2C||div | (2.5)

C:=Cipg\/CEE+V. (2.6)

Here Cy is the constant in the Friedrichs inequality

Iwll < Cel[Vwllz

where

and Cy gg is the constant in the LBB-condition.
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Proof. Letug €S (Q) + up be such that, by using (2.4), we have
IV —uo)|lx < Cigglldiva|. 2.7

Let the pair (u¥, p¥) be an approximation of the saddle point computed on the itera-
tion k. We can now write

I ot = w1 < e = o || + [ o — I - (2.8)
First, we estimate from above the first term on the right-hand side of (2.8). Let w € S.

By subtracting the integral [ (VVug : Vw + pug - w) dx from both sides of (1.4) we
obtain

/Q(vV(u—uo) sVw A+ (i —up) -w)dx

:/Q((f—uuo)~w—vVu0:Vw)dx. (2.9)
It is easy to see that
/Q(Divr-w—l—T:Vw)dx:O V1 € L(DIv,Q), w e Vo(Q) 2.10)
and
/Q(Vq-w+qdivw)dx:o Vg e WHQR), weVo(Q). @.11)

By adding (2.10) and (2.11) to the right-hand side of (2.9), we rewrite it in the form
/ ((f — uuo+Divt —Vgq) -w+ (T — vVup) : Vw)dx (2.12)
Q
which is equivalent to
' ok Ty ) o k) .
/Q ((f Hu* +Divt Vq) w+ (T vVu ) .Vw)dx
+/ (vV(uk—uo) :Vw—l-u(uk—uo)-w) dx. (2.13)
Q

Let us choose T = vVu* and g = p*. In view of (1.5), we see that that the first
integral of (2.13) vanishes. Indeed,

/Q ((f* .uukJrDiv VVuk — Vpk) “w + (vVuk - vVuk) : Vw) dx

:/ (f-w—l—pkdivw—vVuk:Vw—uuk-w)dxzo. (2.14)
Q
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Since w is a function from f, the same conclusion is also true if #* has been calcu-
lated by (1.6). We combine (2.9) with (2.12)—(2.14), and arrive at the relation

/Q (VW (u— o) : Vw+ V(i — ug) - w) dx
=/Q (vV(ukfuo) : Ver[J(ukfuo)«w) dx. (2.15)
The right-hand side of (2.15) can be estimated from above as follows:
/Q (VW(u*~uo) : Vw+ p(u — ug) - w)dx

= /Q (\/VV(uk—uo) : \/VVW—I—\//.T(uk—uO) . \/ﬁw) dx
< IVVV (' = uo) |2V VYWl + Vi — o) || [|v/tw]|
< Ml =uo || 1wl (2.16)

where we have used the Cauchy—Schwarz inequality. We set w = u — up, and find
that

e —wo ||| < [l w* —uo | - 2.17)
Note that for all w € V we have
I w il = [IVVVwlz -+ [|/Ew]
V|Vl -+ Bl
V[|Vw§ + Rl Vwll3
(GFE+7) [|Vwz- (2.18)

NN

N

We substitute (2.17) into (2.8), and use (2.18) with w = u — ug, and obtain

“ “l

e —u < 20l wo —u
< 24/ CHE A V[V (ug — )|z (2.19)
Now, (2.7) and (2.19) imply the estimate

= o ] < 2C i /R + v | = 2C div |
where C is defined in (2.6).

In order to prove a similar estimate for the pressure, we also need Lemma 2.1.
Let g € L, be an approximation of the exact pressure p. Then (p —¢g) € L, and there
exists a function w € Vj, such that

diviw)=p—gq (2.20)
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and
IVwlls < Crggllp—dll. @21)

Theorem 2.3. Let p* be the function computed on the iteration k of the Uzawa

algorithm. Then,
lp =PIl < Cldivad| (2.22)

where C = 2C? for (1.5), and C = 2C* + A for (1.6).
Proof. We use (2.20) for g = p* and obtain

lp—pHII2 = /Qdivw(p—pk)dx - /Qdiva—f—Vpk~de.

Multiplying (1.1) by w and integrating over €2, we obtain
/Qdivadx :/Q(vVu VW4 pu-w— f-w)dx.

In view of this relation, we have

lp— Pt = /Q (vVu : VW+/.LM-W—f-W+Vpk~W) dx.
We use (2.10) with w = w, and arrive at the relation

e :/Q ((—r+nut=Dive+ V) e+ (vouk <) - V) ax
n /Q (vV(u—uk) LV — i) -w) dx. (2.23)

As before, we choose T = vVuf, and observe that the first integral is zero. By esti-
mating the latter integral with the help of the same arguments as in (2.16), we find
that

lp=p 1P <= 1wl (2.24)

By (2.18) and (2.21), we obtain

(> < (CEr+V) [|Viwlz
Crgs (CRE+V) [Ip— P!
C*lp-p|? (2.25)

IN N

where C is defined in (2.6). Substituting (2.25) into (2.24) results in the estimate
lp=p!l < Cllu—d.

Now, we apply Theorem 2.2 and deduce (2.22).
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In the case of (1.6), we add
/Qitdiv(uk —u")diviw dx =0
to (2.23) and obtain
FEalk :/Q ((—f+uu" —DiVT+Vpk) -W+/ldivukdivw) dx

+/ (vVukfr) :Vwdx
Q
+/ (VW) s e = ) = Adiv i div) d.
Q
Again, we choose 7= vVuk, and see from (1.6) that the first and second integrals are
zero. By estimating the latter integral with same arguments as in (2.16), we obtain
lp = PEI2 < M=o 1w I+ A fidivad|) || divem]. (2.26)
Recall that diviv = p — p*. Now, (2.25) and (2.26) imply the estimate
lp = PHI < Cllu—ud || + A diva].
Applying Theorem 2.2 results in (2.22).
By Theorems 2.2 and 2.3, we easily conclude the following statement.
Remark 2.1. The classical Stokes problem corresponds to the case where it =0
and v is a constant. Let (1, p*) be the exact solution computed on the iteration & of
the Uzawa algorithm, for the Stokes problem. Then, for velocity we have (for both
cases (1.5) and (1.6))
IV (= )] < 2G| dived].

For the pressure we have
lp =P < Clldiva|

where C = 2C; 3,V for (1.5) and C = 2C; 3, v + A for (1.6).

3. Computable error estimates for approximations
generated by the Uzawa algorithm

Let 9}, be a mesh having the characteristic size h, and let the spaces Vy, (Q,R") and
05,(Q) be finite dimensional subspaces of V(Q,R") and L(Q), respectively. We
assume that for all v;, € Vi, + up it holds that divv;, € Qp,. We also assume that the
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spaces are constructed so that they satisfy the discrete LBB-condition, i.e, for any
qn € Oy with zero mean, there exists v, € Vo, such that

divvy, = qp

and
[Vvalls < cllgnll

where the positive constant ¢ does not depend on /.

Let u’,‘l € Vo, + up be an approximation of #* calculated on the mesh 7. We
need to combine the error of the pure Uzawa algorithm with the approximation
error. Below we present the corresponding results, where we set p* = p’,‘l € Q0p on
the iteration k, and understand u* as satisfying (1.5), or (1.6), with the chosen p’,‘l.
Then, the pair (i, p’g) can be viewed as the exact pair associated with the Uzawa
algorithm on iteration k.

Our first goal is to derive fully computable error majorants Mé‘; and MfB‘)L for
approximate solutions (e.g., uﬁ) of the problems generated at the first step of Uzawa
algorithm by the Lagrangians L and Ly, respectively. In order to make the quality of
the majorants robust with respect to small or large values of the material functions
v or U, we apply the same method that was suggested in [12] for the generalized
Stokes problem.

Later we combine these estimates with the estimates of the difference between
u and ¥ and obtain estimates applicable for approximate solutions computed within
the framework of finite dimensional approximations.

First, we prove the following result for the problem generated by the La-
grangian L.

Theorem 3.1. Ler (u*, Ph) be the exact solution on the iteration k of the Uzawa
algorithm. Then, for the solutions calculated by (1.5), and for an approximation
ul}‘l € Von + up we have

Il —uy ||> < ME(uj, pj.T.B) VT €H(Div,Q), BER,
where

—1
ME (uj, pi,, T, B) :=/QHl(wu,ﬁ)rZ(uﬁ,f)dHHz(B)H\/V d(u, P, 013

and

_ _ G(+B)

Hi(v,u,B) = VIC B 3.1
Hy(B) :==1+p"" (3.2)
r(uf, ) := f— puf +Dive (3.3)

d(ub,ph 1) =1 — vVl +Tpk. (3.4)

Here 1l denotes the unit tensor.
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Proof. By equation (1.5) we have

/g(vVuk:VWnL,uukvw)dx: /Q(f~w+plfldivw)dx.

333

We subtract the integral [, (VVuf : Vw+ puj - w) dx from both sides of the above

equation, and obtain
/(;VV(uk—uf‘l):Vw—i—u(uk—u];l)-wdx
:/Q((f—uuﬁ).w—vvuﬁ:VW+p§,divw)dx.
By adding (2.10) to the right-hand side of (3.5) we have
/Q (vV(ukfuf,) : Ver/.L(ukfufl)-w) dx

:/Q((f—uu’,;+Divr)-w+(r—vw§+11p§):vw)dx
:L(r(uﬁ,r)-w+d(uﬁ,p;,r):vw)dx

where we have used the notation (3.3) and (3.4). Note that

/Qr-wdx:/Q<\/ﬁ_lar-\/ﬁw+(l—a)r~w)dx

< Ve ar| 1w + (1= a)r] w]

< v e Vi +Cey/v (1= a)rl| VvV wls

<

where 0 < a(x) < 1. Also, we have
~1
/Qd Vwdr < VY d|ls][VYIw]s.
By (3.7) and (3.8) the right-hand side of (3.6) becomes

(Cow (= @)l IV dlle ) IV wlis + VA arl] [ /Ew]

-1 -1 2 ~1
<\/(CF@ 1= eyl + Vv dlls) -+ /i el w )
We set w = uf — u’g, use (3.6) and (3.9), and obtain
_ 1 2 _
It =k 1 < (Cow (= @)l + VY dlle) + IV arl]?

<1+ B)CY (1 - a)r|?
+ (1B YV R + v e

(3.5)

(3.6)

3.7

(3.8)

(3.9)

(3.10)
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It is easy to see that the optimal value of « is defined by the relation

Ci(1+B)u

= 11
v+ B G-1D

so that (3.10) implies the estimate

"~ CH1+B) _ -1
kK k 2</ F 24t (14 B~ NIIVY dl2
= P < e i (B

:/QlezderHZH\/V_ldH%
where we have used the notation (3.1) and (3.2).
Remark 3.1. Itis easy to see that the upper bound Mé is sharp. Indeed, by setting
T=vVuk— ]Ipﬁ, and letting B tend to infinity, we get the exact error in the energy

norm | - [f.

A similar estimate can be derived for the problem generated by the augmented
Lagrangian Ly4.

Theorem 3.2. Let (u, 172) be the exact solution on the iteration k of the Uzawa
algorithm. Then, for the solutions calculated by (1.6), and for an approximation
“IZ € Vo + up we have

Il = 1> < = 5 < M5l ph 7. B) Ve € H(DIV,Q), BER,
where
M (i . B) = || (vt B uh 2) s+ Ha(B)IVY ™ ) .
The quantities Hy,H», and r are defined in (3.1)—~(3.3), and
d*(uf, pk 1) = T— vVl +1(pf — Adivid). (3.12)
Proof. By (1.6), we have
/Q (vVuk : Vw+uuk~w+7tdivukdivw> dx = /Q (f~w—|—pfldivw) dx.

We subtract the integral [, (vVufl : Vw+ pud - w+ Adivad div w) dx from both sides
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of the above equation, and use (2.10), and obtain
/ (vV(uk — ) Vwt (b — k) w Adiv(udf — ul,‘l)divw) dx
Q
= f—puk) - w—vVik Vw4 (pf — Adival)divw) dx
h h h h

Q

= / ((f*[.lM’E‘i’DiVT) w4 (‘Cf vVuh +1(pk f/ldivu’;l)) : Vw) dx
Q

— [ () wer a7 s V) de (3.13)
Q

where we have used the notation (3.3) and (3.12). By the same arguments as in (3.7)
and (3.8), we represent the right-hand side of (3.13) in the form

(Cow 0= eyl + IVV a5 IV wlis + VR arl | VEw]

< \/(CFﬂ"H(l —a)r+ I\W‘ldl\|z)2+ WE a2 llwil  (3.14)

since || w [|<]| w|[. By choosing w = u* —uk, (3.13) and (3.14) give

. ~1 2 _
o = 1 < (Cov/e (1 =@l + IV d )+ VR ar?
<(1+B)CV |1 - a)r?
_ —1 —
+ (LB IVV @R+ VE e

Again, we see that the optimal value of « is given by the relation (3.11), and obtain

k_ k2 G(1+B) > -1 —1 22
it = < [, 5 g e (1B IV R

= [ mr e mvv
where we have used the notation (3.1) and (3.2).

Finally, by using Theorems 2.2, 3.1, and 3.2 we obtain the final result.

Theorem 3.3. Let u be the exact velocity, (u" , pﬁ) be the exact solution calcu-

lated on the iteration k of the Uzawa algorithm, and ”If; € Von +up be an approxi-
mation of the velocity calculated on this iteration. For (1.5) we have

llu—u Il < M (o, 7.B) Ve H(Div,Q), B,
and for (1.6) we have

Il w—uf || < MEX(uf, pf, 7. B) W€ H(Div,Q), B R,
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where

ME (b, pk T, B) == 2C||divif]| + 2C/v " + 1)\ /ME (uk, pk T, B)
MER (. pfs, . B) -

with C defined in (2.6).

2C]|divul | + 2V + 1)/ MRk pk 7, B)

Proof. It is clear that
e =y I <= ol 4 1w = |-
By Theorem 2.2 we have

Clldiv |1+ [| ' — |

=y I < 2
< 2C | div | +2C | div(u — )|+ | o — |
<2
<2

. —1
Cl|div || +2C/v VYV (=) ||+ ||| w — u ||
Clldivuf||+Q2Cyy " +1) || b —uf || -

Using the upper bounds presented in Theorems 3.1 and 3.2 for the two cases (1.5)
and (1.6), respectively, we arrive at the result.

Finally, we note that estimates for the pressure follows from the above derived
estimates. The exact pressure in the Uzawa algorithm is calculated by (1.7), i.e.,

pk+1 = (pz - pdivuk) € 22(9) (3.15)

and an approximation of it is calculated within the framework of the selected finite
dimensional subspaces, i.e.,

pith = (pf — pdiviy) € 04(Q). (3.16)
Theorem 3.4. Let (u¥, p;;) be the exact solution calculated on the iteration k

of the Uzawa algorithm, and u’g € Vo +up be an approximation of the velocity
calculated on this iteration. Now, we apply the estimates presented in Theorems 3.1

and 3.2, and obtain for (1.5):
1P =Pk < pyv T ME (kT B) VT e H(Div,Q), BER,
and for (1.6)

-1 k,A .
1P =P < pyv M (uf, )7 B) VT € H(Div,Q), B € R
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Proof. Indeed, from (3.15) and (3.16) we find that
P4 =PI = pldiv(u — )|
<PV VYV~ )|
—1
<PVl —ug ]l

Applying the error bounds presented in Theorems 3.1 and 3.2 completes the proof.

This paper is focused on theoretical analysis of a posteriori error bounds for ap-
proximations computed by the Uzawa algorithm. However, it is worth adding some
comments on the practical applications of the above derived error majorants. The
majorants contain the function t € H(Div,Q) and a positive parameter 3, which in
general can be taken arbitrary. Getting sharp estimates requires a proper selection
of them. Finding an optimal 3 leads to a one-dimensional optimization problem
which is easy solvable. The reconstruction of the stress tensor 7 based upon com-
puted functions u’,; and p’; provides a reasonable first guess. A better selection can be
performed by methods that have been developed and tested for various elliptic prob-
lems (see, e.g., [8, 10, 14] and the references cited therein). A systematical study of
computational questions in the context of above derived estimates will be exposed
in a separate paper, which is now in preparation.
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A Posteriori Error Bounds for Approximations
of the Stokes Problem with Friction Type
Boundary Conditions

Pekka Neittaanméki* ~ Marjaana Nokka!  Sergey Repin'

Abstract

In the paper, we derive computable and fully guaranteed estimates of the
difference between exact solutions (velocity) of Stokes problems with nonlin-
ear (friction type) boundary conditions and vector functions from the admissi-
ble energy space. The estimates are valid for any function satisfying the main
boundary conditions and possessing first generalized derivatives. The esti-
mates can be used for a posteriori error control of numerical solutions obtained
by various numerical methods.

1 Introduction

Stokes type equations of viscous incompressible fluid supplied with nonlinear “slip”
and "leak” boundary conditions are often used for simulation of blood flow in veins
affected by sclerosis and in modelling of avalanche of water and rocks. These math-
ematical models were introduced by Fujita in [9]. In [10] Fujita proved existence
and uniqueness of weak solutions to Stokes problem with nonlinear slip and leak
boundary conditions. Applications to oil flow beneath or over sand layers are stud-
ied by Kawarada, Fujita and Saito [16], and Kawarada and Saito [17]. In this paper,
we are concerned with friction type boundary conditions, which are suitable, when
modeling some fragile state of the surface, that allows the fluid to slip on the surface,
but as long as the the pushing force is below a threshold, the fluid does not slip. Sim-
ilar boundary conditions are often used in mathematical models of solid mechanics.
Numerical methods for such type nonlinear problems are well developed (see, e.g.,
[8, 12,14, 13, 27, 34]).
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In this paper, we address a different problem, which arises when a numerical
solution has been already found and we need to estimate how accurately it repre-
sents the respective exact solution. For the considered class of problems, we deduce
such type estimates (error majorants). The majorants include only known functions
(approximations of the velocity, stress, and pressure fields) and global constants
associated with certain functional inequalities (Friedrichs, Poincaré, inf sup). Esti-
mates of these constants can be found by known methods discussed in the paper.
Therefore, the majorants are fully computable. Moreover, they are nonnegative and
vanish if and only if approximate solutions coincide with the exact ones. Another
important property of the majorants is their universality: they are valid for any ap-
proximation satisfying the main boundary conditions and having first generalized
derivatives. Hence they do not depend on special features of approximations (e.g.,
Galerkin orthogonality, extra regularity) or properties of a numerical method used.
A posteriori error majorants of this type has been derived and tested for a wide
spectrum of boundary value and initial boundary value problems (see [30, 20] and
references cited therein).

1.1 Notation and basic equations

Let 2 be a bounded domain in R?, d = 2,3 with Lipshitz boundary 02, which is
composed of two disjoint measurable parts I' and I'p. Throughout the paper, we
use the following notation: n denotes the outward unit normal vector to 052,

L@)i={o e 2X0) | {0)ai= gy [ oae |,

S(€2) denotes the subspace of V := H'(Q2,RY) that consists of solenoidal (divergence
free) functions, V;(€2) denotes the subspace of V(1) that consists of the functions
vanishing on the Dirichlet part of the boundary I'p.

Also, we use spaces of tensor valued functions %((2) := L?(Q2, M%*?), where M?*4
is the space of d x d-matrices (tensors). I denotes the unit element of M?*?. Since
no confusion may arise, we denote L?-norm of scalar and vector valued functions
by || - ||, which is associated with the corresponding inner product ( , ). The scalar
product of tensors is denoted by two dots (:). Since no confusion may arise, the norm
of this space containing tensor valued functions is denoted by the same symbol, i.e.,
|7|I> == [, |7|*dz. By div and Div, we denote the divergence of vector and tensor
fields, respectively, and introduce the Hilbert spaces

H(div,Q) == {w € %(Q) | divw € L*(Q)},
H(Div,Q) := {7 € (Q) | Divr € L*(Q,R%)}.

Henceforth, we use the bilinear form

alu,v) := /VVu : Vodx,
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where v is a positive constant (viscosity). In general, v can be a strictly positive
bounded function with values in [v, 7]. The forms are defined for u,v and p € L*(Q2).
The subindex 0 denotes subspaces of functions vanishing on T', i.e., Vj := {v € V|
v = 0onI'}. We assume that I" has positive d — 1 measure, so that for the functions
in V) the norms

lo]? ::/qu:Vvdx and [n[? :/fln.ndx

Q Q

are equivalent to the original norm of V. Analogously, Sy(2) denotes the subspace
of S(€2) consisting of functions vanishing on I'.

The classical Stokes problem consists of finding a velocity field v € So(€2) + up
and a pressure field p € EQ(Q) which satisfy the relations

—Div(wVu)+Vp=f inQ, (1)
divu=0 in{, (2)

u=up onlp, 3)

on=F onl, 4)

where f € Ly(Q2, R?), n denotes the unit outward normal vector to the boundary, up
is a given divergence free function, and ¢ = vVu is the stress tensor.

It is well known (see, e.g., [18, 19]) that the problem (1)—(4) possesses a unique
generalised solution, which satisfies the integral identity

a(u,v) = [ frwdx+ | Fwds Yw € Sp(€2). 5)
[rva

r

Approximation theory and various numerical methods for the Stokes problem
and other problems related to models of viscous incompressible fluids are well stud-
ied (see, e.g., [11, 34, 8]). In this paper, we are concerned with a posteriori error
estimation methods, which form another essential part of quantitative analysis of
boundary value problems. In this concise introduction we have no space to present
a consequent overview of the literature related to this actively studied problem (the
reader can find it in monographs [30, 20] and other publications cited therein). We
recall only some previous results related to Stokes type problems, which are closely
related to the method used in the paper.

Let v € Vi + up be a vector valued function considered as an approximation of
u. In general, a posteriori analysis of a problem is aimed to deduce fully guaranteed
two sided bounds of the error e = u — v in terms of the natural energy norm that
depends on the problem data and known approximation v (i.e., the estimates must
be indeed computable). To be of practical relevance, the estimates must possess
other properties. They must be continuous with respect to basic variables, vanish at
the exact solution, and do not generate significant gaps between the error and the
estimate. For the Stokes problem, such estimates has been derived in [29, 33, 30].



One of them (error majorant) has the following form: let v € 1j and { divv }, = 0.
Then,

[vV(u—v)|| < M(v,q,7) = |[vVv—1 - I
+ Cp|| Divrt + f|| + Crl|lm — F|| + 2vCql| divo|. (6)

Here ¢ € L2(Q) is considered as an approximation of the exact pressure p and 7 as
an approximation of the exact stress 0. The majorant involve three constants. The
first constant comes from the Friedrichs inequality

Jwllr < Cp[|Vol| Vv e Vg, 7)
Cr is a constant in the trace inequality
[¢llr < CrlVell e HY(Q), 8)

and Cq, is the constant in Babuska-Aziz-Ladyzhenskaya-Solonnikov lemma (also
called Ladyzhenskaya-Babuska-Brezzi (LBB) condition; see [3, 2, 4, 19]).

Lemma 1. For any function g € Ly(Q2) there exists a function v € V vanishing at the
boundary such that divv = g, and

Vol < Callgll,
where Cq, is a positive constant depending on the shape of €2.

Lemma 1 implies the estimate

inf V(0= )| < Calldiv . ©)

09 =0 on dQ

In general, the constants Cr, Cr, and Cgq are unknown and for domains with com-
plicated boundaries getting guaranteed and realistic majorants of them may be a
difficult task (especially for Cq). In [30], it was shown that using ideas of decom-
position and Poincaré inequality, we can avoid difficulties related to Cr and in []
it was shown that in a posteriori estimates C, can be replaced by a collection of
local constants associated with simple subdomains covering €2 (this result is based
on a modified version of Lemma 1. Estimates of the constant Cq, has been studied
by several authors (mostly for d = 2; see [6, 7, 15, 5]...). Thus, for relatively simple
domains (e.g., triangles, rectangles) we have explicit estimates of Cq, and, therefore,
difficulties related to this constant can be overtaken.

The trace constant C can be excluded if , = F on I". However, this condition
(as well as other more general conditions considered below) may be difficult to ex-
actly satisfy if either F’ or I' are complicated. To avoid these difficulties, we apply a
version of Poincaré inequality (the so-called “sloshing” inequality), which reads

lelle < Cr@) Vel (10)
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forany p € H'(Q) such that { ¢ }. = 0. Itis clear, that if we know the constant Cr(Q)
for some “simple” subdomain ¥ C € (which boundary contains I'), then we can use
it for the whole Q2. For such domains as parallelepipeds, triangles, tetrahedrons Cr
has been found analytically or numerically (see [22, 21] and references therein). In
the last paper, sharp bounds of Cr has been found for arbitrary simplexes. Ob-
viously the inequality (8) for scalar valued functions yields similar inequality for
vector valued functions, i.e.,

o]l = CRQ)IVul?, (11)

provided that {v; }, =0fori e 1,....d.

1.2 Nonlinear boundary conditions

In this paper, we consider the system (1)—-(3) with the following nonlinear boundary
conditions on I':
u, =0, —oy € golulonT, (12)

where ¢ > 0 is a constant (in general, a scalar valued function), w, := u - n and
u; := u — nu, (normal and tangential components of the velocity). Also, we define

Op = 0pN, Op:=0p — OppN, Opp i= Op N = 03NN;.

Since
if 2#0, 2 € RY,

d)z| = { I
CeRY, |C|<1 ifz=0, z€RY

the condition (12) is equivalent to
|O'n‘ Sg Unun+g|un| =0 onl.

Now we need to redefine the set S; that contains the divergence free functions
satisfying homogeneous main boundary conditions, i.e.,

So:={veS|v=00onTp, v,=00nT}.

The generalized solution v € Sy + up of (1)—(3), (12) is defined by the variational
inequality [9]

a(u, v —u) + / (J(vr) = j(w)) dS = (f,v —u) Vv €S, (13)
r
where j(¢) := g|¢| for n € H'*(I"). Hence, if |¢*| < g, then

D,(6.¢) = [ +4c) ¢ as = [(glel—¢ -0y as.

T



Our analysis is based on functional type a posteriori estimates. For a conse-
quent exposition of the theory of functional a posteriori error estimates we address
the reader to [23, 30]. A posteriori estimates for elasticity problems with nonlinear
boundary conditions were obtained in [24] by methods of duality theory and con-
vex analysis. For the Stokes problem, first a posteriori estimates of the functional
type were established in [28, 33]. Later, different form of these estimates has been
studied in [30]. In [1], the estimates were adapted to approximations generated by
the Uzawa method. In [26], a posteriori error majorants were derived for Bingham
fluids.

A significant modification of the estimates was presented in [32] (for the Stokes
problem) and in [25] (for the Oseen problem). In these papers, new majorants were
derived, where violations of the divergence free condition are estimated by terms
containing local constants Cg, for subdomains forming the domain €. This “local-
ization method” is used in this paper for similar purposes. Using these ideas, we
obtain new estimates that provide guaranteed error bounds for the problem with
nonlinear boundary conditions of friction type.

2 Error majorant for solenoidal approximations

Letv € Sy + up. Since (u — v) vanishes on I'p, (13) implies
o(u=vo—u)+ [ ()= i) 5= (fo—w) ~alvo—w, (49
I

wherefrom

flu —v])* < /(VVU —7—1g): V(v —u)dx
Q

" / (i(or) — j(ur)) dS — / (f-(w—u)—7:V(v—u)) dx. (15)

Q

Here 7 is any tensor function in %, ¢ € L,(Q2) and I is the unit tensor. In view of the
Young-Fenchel inequality, for any n € L?(T',R?), we have

[itwyas< [ G —n-u) as, (16)
r r
where j* is the functional conjugate to j. Notice that n can be viewed as an image of
the true normal stress o-n. In general, j* is defined on a wider set /7 ~1/2 however, we
will always operate with tensors having summable normal traces on I' and restrict



admissible arguments of j* accordingly. From (15) and (16), it follows that

flu —v])* < /(VVU —7—1g): V(v —u)dx
Q

+ [+ =) ds
+/F77~(vt—ut)dS—/(f-(v—u)—T:V(v—u)) dx. (17)

Notice that for any n and 7
L, (w) = /(T : Vuw — f-w)dx+/17 ~w dS
r
Q

is a linear continuous functional on
Vo={weH(QRY) [w=00nTp, w,=00nTl}.

Define

|Lr(w)]
L, -] :=sup —=—>~.
‘l 7, ‘l weVo ||VLUH

The set Ker £, ; contains tensor-valued functions that satisfy (in a generalized sense)
the equilibrium equation Div7 + f and the condition —7, = 7, which states the
identity between two functions serving as images of the true normal stress on. Then,

/(VVU —7—1g): V(v —u)dx+ |L, (v — u)|

1 1 ’
< Sl + 5 (9o =l + —=1£,01)

and we find that for any a < 2

1 1
5|||U —ol]* < Mg (v, 7,n, ¢, ) = ij(Utvn)
b (pawann+Liz,) . as
20(2 — ) V4Tl N 0,7 )
where
D, (o) = / (i(ur) + 5*(n) — 0 - ve) dS
I
and

d(v,q,7) :==vVv—71 —1Iq.



Assume that M (v, 7,7, ¢, «)=0. Then,
Divr+f=0, n=-mn, ne€ij(n), 7=vVuv-Iq

These relations mean that —7,, € Jj(v;) and 7 and ¢ satisfy (1). Thus, the majo-
rant vanishes if and only if v, 7, and ¢ coincide with the exact velocity, stress, and
pressure.

So far the estimate is not fully computable because of the term | £, ;| is defined
with the help of supremum over an infinite amount of functions (however, majo-
rants of these type can be useful for other purposes, e.g., for analysis of errors in
Uzawa type methods). We can deduce a fully computable error majorant if the sets
of admissible 7 and 7 are narrowed, namely,

7 € Hr(Div, Q) = {T € H(Div,Q), 7, € L2(Q,R%) on r} , (19)

/F(n —7,)dS = 0. (20)

It is clear that for 7 = ¢ and 7 = o, this condition holds, so that these restrictions do
not exclude physically meaningful functions. In this case,

L, (w) = /(f+DiVT) ~wdx+/(n—7't) -wy dS.
Q r
Notice that w, = 0 on I', so that the last integral is estimated as follows:

/(U—Tt)-wtdS:/(n—n) (wy — {wy }p) dS
r r
< ln=7lle o ={w}ell < Crlln = 7elle [Veol]
where Cr is a constant in the inequality (11). Analogously,
/(f + Divr) - wdx < Cpl|f + Div ||| Vuw],

Q
where CF is a constant in the Friedrichs type inequality

[wl| < Cp||Vw| Vw € V. (21)
As a result, we find that

1£,-] < Crllf +Divr| + Crlln—7-nr

and replace (18) by
1 1
§|||“ —ol* < MZ(v, 71,9, ) = ij(Ut,U)
s (Mo + (ol + Div e+ Gl =) ) - (22
2@(2 _a) U, q,T)|l* \/E F vT rin Tt||T .

Now, the only remaining difficulty is that the majorant is applicable only to solenoidal
approximation v.



3 Non solenoidal approximations

We begin with one auxiliary result important for extending majorant M2 to func-
tions in Vy + up. In [30, Chapter 6, Sect. 2.6], it was shown that if v € H'(Q, R?)
satisfies homogeneous Dirichlet boundary conditions on I', (which is only a part
of the overall boundary) and {divv }, = 0, then the distance to the set of diver-
gence free fields vanishing on I'p meets (9). Since in our case the mean condition is
automatically satisfied, we conclude that

Juf [[V(v =)l < Coll divol. (23)
Let v € Vj + up. Then, for any 5 > 0, we have

2
flve = ol* < (flu = voll + llo — woll)

1
< (L4 B)llu = wvol* + 1+ 2)llo = voll”,

+ J—
B
where vy € V is a divergence free field vanishing on I We need to estimate

Mg (vo, 7,1, q, &), which majorates the first norm in the right-hand side.
Consider the respective parts of the majorant. First, we notice that

ld(vo, g, T)ll+ < lvVv =7 =gl + |V (v = vo) |«
< fvvo —7 =Igll. + [ V(0 — v
< lvVo =7 =Tl + V7|V (0 = ).

Since v, vanishes on the boundary

/ (i(oor) + 5°(1) — 7 - vor) dS = Dy (wr,m) + / (n- v — j(v)) dS

r r

< Dyten) + [ =m) v+ () s

Notice that j*(r;) = 0 if || < g and

/(U*Tt)‘Utdsi/(nfn%(vt—vm) ds

Tr
< Crlln = 711V (o0 = vor) || < Crlln = =ll[[V (v = wo)]|-

We find that

1 ~
Mé(”oﬂ? 777 q, a7ﬂ) S ij(Ut, 77) + CFH” - Tt””V(U - UO)”
1

20(2 — )

2
+ ;

(Rv.q.7.m) + VIV (0 =)



where

1 . =
Rv,q.70) i= [d(v,0.D)ll- + = (Cellf + Div] + Cillo = 7).

In view of Lemma 1, there exists v, such that
[V(v— )|l < Cqlldivuoll.

Hence, we can estimate all terms containing the respective norms. As a result, we
arrive at the estimate.

1+

lu =l < >—
22—«

1
(Dj(vta 77) + %RQ(U7 q,T, 77)

v . |
+ ([R(v, a,7.m) + (2 — a)Crlln — Tt||) Col divo

4o — 202
+°‘2(2‘+5yc§||<1ivu||2>. (24)

This estimate holds for « € (0,2), # > 0, and 7 and 7 must satisfy additional condi-
tions

Il <g. Il <g.

We see that the right-hand side of (24) contains terms of three types. First, these are
the terms without a penalty for violations of the divergence free condition (in the
majority of cases these “zero order” terms will contain the main part of the approx-
imation error). The second term contains || div v||. It adds the major correction asso-
ciated with not exact satisfaction of the divergence free condition. Finally, the third
term contains “second order” corrections related to violations of the divergence free
condition.

Remark 1. Finding Cq, (or a close lower bound of this quantity) for an arbitrary do-
main €2 is not an easy task. To overcome this difficulty, we use the following result
from [31].

Lemma 2. Let Q) be represented as a set of nonintersecting convex subdomains );, i =
1,...,N,i.e.,Q: ZzﬁlQZ
For any function
e V¥ = {w € Vp | {divo}g, = 0}

there exists vy € Sy such that

N
IV (0 = vo)|* < dx(v) ==Y C [ divo]*. (25)
=1

10



By means of this lemma and arguments analogous to those used above, we obtain
another estimate

1+

1
flu— ol < 5= (Dj(vt,n) + 5 7 (v, 4, 7mm)

+ (fR(v, ¢, 7,m)+(2— 04)5}”7; — Tt|> dn(v)

do — 202 +
. 8

- vd?v(v)). (26)

The estimate (26) can be viewed as a generalisation of (6) to the case of friction type
boundary conditions, where the trace constant is replaced by the constant 61" and
Cq, is replaced by a collection of local constants Cg, for subdomains (which may
be easier to find or to estimate from above). Therefore, this estimate may be more
convenient numerically than the estimates based on global constants.
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1 Introduction

We consider the stationary Oseen problem in a bounded connected domain Q c R? (d = 2,3) with Lipschitz
continuous boundary 0Q. Throughout the paper, we use the following notation: n denotes the outward unit
normal vector to the boundary 0Q; the space of scalar valued square summable functions with zero mean
is denoted by L*(Q); S,(Q2) denotes the closure of smooth solenoidal functions with compact supports in Q
with respect to the norm of V(Q) := H'(Q, R%); and V,(Q) denotes the subspace of V(Q) that consists of the
functions with zero traces on 9Q.

Also, we use spaces of tensor valued functions 2(Q) := L*(Q, M*?), where M?* is the space of d x d-
matrices (tensors). I denotes the unit element of M*“. The L>-norms of scalar and vector valued functions
are denoted by |-|| and the corresponding inner products are denoted by (, ). The scalar product of tensors
is denoted by two dots (:), and the norm of X is denoted by |-|ly. By div and Div, we denote the divergence of
vector and tensor fields, respectively. Finally, we introduce the Hilbert space

3(Div, Q) := {w € 2(Q) | Divw € L*(Q,RY)},

which can be viewed as a tensor analogous to the vector space H(€, div) containing L? vector functions with
square summable divergence.

The classical formulation of the stationary Oseen problem is to find the velocity field u € Sy(Q) + u;, and
the pressure function p € L*(Q), which satisfy the relations

—-Div(vVu) + Div@®u) = f -Vp inQ, 1)
divu=0 inQ, 1.2)
u=up on 0, (1.3)
where a, up,, and f are given vector valued functions. It is assumed that
Jqudx:O, (1.4)
a0

that the viscosity v is a positive bounded function, i.e., 0 < v < v(x) < v forall x € O, and thata € Sp(Q)isa
bounded vector function.
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The generalized solution of (1.1)-(1.4) is a function u € S,(Q) + up, such that

J(vVu Vw-(a®u): Vw)dx = Jf cwdx  forallw € §y(Q). (1.5)
Q Q

Existence and uniqueness of generalized solutions to the Stokes and Oseen problems are well established
(see, e.g., [9]). In essence, the corresponding results are based on the following lemma.

Lemma 1.1. For any function g € L2(Q), there exists a function v € V,(Q) satisfying the condition divv = g such
that

IVolls < xallgll.
Here «, is a positive constant depending only on the domain Q.

We note that the constant inverse to x,, arises in the so-called Ladyzhenskaya—-Babuska-Brezzi (LBB) con-
dition (see, e.g., [2, 4]), which can be viewed as a different form of Lemma 1.1. Also, these results guarantee
boundedness of the energy norm of the exact solution, namely, [Jul| := v/ *Vully < ¢, where the constant ¢
depends on the problem data and on the constant Cy, in the Friedrichs type inequality

lwll < CppllVwly  forallw e V.

The constants Cj, and x, play an important role in our analysis because they control distances between
a vector valued function and the set of solenoidal fields evaluated in different norms (see [12, 15-17]). In
particular, Lemma 1.1 implies an important corollary: for any v € V,(Q) there exists v, € S,(Q2) such that

IV = v)lls < xqlldivol. (1.6)

A similar estimate holds for v € V;(Q) + up, with some v € Sy(Q) + up.

If functions vanish on the whole boundary, then a guaranteed upper bound of Cp, is easy to find. For
some domains the constant Cy g5 = &' or computable bounds for it can be found if the field satisfies some
additional requirements (see, e.g., [5, 8, 13, 18, 20]).

In [16, 17], guaranteed and fully computable bounds of the distance between the exact solution of the
stationary Stokes problem and any function in V;,(Q) +u, were derived by transformations of integral relations
similar to (1.5). If the function compared with u is an approximation, then these estimates yield robust and
efficient a posteriori error bounds (for the Stokes problem, they were numerically tested in [6, 7], see also
[11]). In [20], analogous estimates were derived for the generalized Stokes problem. In Section 2 of the present
paper, we use the same ideas in order to derive estimates of the distance to the exact solution of (1.1)-(1.4).
We obtain estimates for the velocity, pressure, and stress fields. In Section 3, similar estimates are derived
for the combined error norm, which encompasses errors of approximations related to all fields. In Section 4,
the estimates are applied to approximations generated by the Uzawa algorithm. Section 5 contains results of
numerical tests, which confirm practical applicability and efficiency of the estimates.

2 Estimates of Deviations from the Exact Velocity Field

Theorem 2.1. Let v € V,(Q) + up. Then for all g € L*(Q) and t € () we have
e = oll < v Iy g + v d(w, 7, 9)lls + 29 + Co)rglldivoll = My (v, 7, ), @)
where
r(t) .= f +Divr, Cg = CFQI\V’I/ZuIIOO’Q, d(v,7,q) =1-vWv+aeuv+Ig,

and I
(f - w-1:Vw)dx
Il = sup Lo
weVy(Q) Vwlls
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Proof. For any v, € Sy(Q) + up, we have
fllee = lll < izt = vl + fllvg = vlll- (2.2

First, we estimate from above the first term of the right-hand side of (2.2). Let w € S,(Q). By subtracting the
integral

j (VW : Vw = (a®v,) : Vw) dx

Q
from both sides of (1.5), we obtain
J-(VV(u —v): Vw - (a® (u-1vy)): Vw)dx = J-(f “w - vy, : Vw + (@ ® ) : Vw) dx. (2.3)
o !

Forany 7 € 2(Q) and g € 1%(Q) we rewrite the right-hand side and estimate it as follows:
J-(f-w—‘r:Vw+(r—vVv0+u®uo+]Iq):Vw)dx

Q
= J.(T(T) cw+d(vy, 7,9) : Vw) dx
Q
< Ir@l_yollVels + v d(y, 7, lls vVl

< (v PIr@l g + v d(e, 7, lly) IV Vwlls. (2.4)

Set w = u — v,. Since
J(a ® (u—-1vy)) : V(u—vy)dx =0,
Q

the estimates (2.4) and (2.3) yield

-1/2

e = voll < v r @)y 0 + IV d (v, 7, )l (25)

Now, we estimate the second term in the right-hand side of (2.5). We have

-1/2

Iv"2d (g, 7, s < IV *V(wy = V)lls + v d(0, 7, @)l + v 0 ® (v = v)lls.

Note that
Iv'ae (v, - vy < v alggllvy - vll,
where
||v_l/2a||009 1= max sup{v_l/za,-}.
” i=Lnd xeQ
We find that
v d(vy, 7, lls < 3 + CHIV (Y, - V)l + v *d (v, 7, @)l
Hence,
e = vll < @97 + CRIV(wy = V)l + v d(w, 7, )lls + v Ir@)]y 0.
In view of (1.6), we finally obtain (2.1). O

Remark 2.2. If 7 € £(Div, Q), then it is easy to show that
lr(@l-y,0 < Cralr(@)Il.

In this case, (2.1) is reduced to the majorant derived for the Oseen problem in [17].



376 =—— M. Nokkaand S. Repin, Error Bounds for the Oseen Problem DE GRUYTER

3 Estimate of Deviations from the Exact Pressure and Stress Fields
Let q € L*(Q) be a function considered as an approximation of the exact pressure p. Then (p - q) € L*(Q) and
due to Lemma 1.1 there exists a function w € V,(Q2) such that

div(w) = p-q 3.1

and

IVolly, < xollp - qll. (.2
As in the case of the Stokes problem (see [16, 17]), this fact allows us to deduce computable majorants of
Ip -4l
Theorem 3.1. Letq € LX(Q). Then for all T € 2(Q)

1
P =gl < Copllu = vll +1d(w, 7, )lls + I (D105 B3
Q

where C, ,, := (v'/* + v''2Cpqllallw,0) and llu - vll is estimated by (2.1).

Proof. From (3.1) we have

lp—ql* = jdivw(p -q)dx = J(divzi)p —ql : Vo) dx. (3.4)
Q Q

Multiplying (1.1) by w and integrating over (2, we obtain

jdivu‘)pdx: J(vVu:Vu‘)—(a@u):Vﬁ)—f'u'))dx. (3.5)
Q 0

From (3.4) and (3.5), we obtain

lp- q||2 < J((VVU —1-a®uv-1q): V) dx + |r(D)ll_; o | ViDI + j(vV(u -v): Vo -a® u-v):Vw)dx.
Q Q

Here

I(w(u ~0): Vi - a® (u—-v) : Vo) dx < ¥ lu - ollIV®ls + lallog ollu - vVl
Q

~1/2 +

—1/2
< o (7" + v Crgllallgo0)llu - vlllp - gl

and in view of (3.2) we have

Jd(v, 7,q) : Vb dx < |d(v, 7, @l IV, < xolld(w, 7, @)l p - qll.
Q

Thus, we arrive at the estimate (3.3). O
The exact solution generates the tensor
o:=vWu-a®u- pl
Assume that v € V;(Q) + up, € 2(Q),and g € L*(Q) approximate u, o, and p, respectively. Then,
ln=olly = g = vWu +a@u+ plly < g = vWo +a©v+qlly + [V (u - )l + laleallu - vl + Vdlp - gl
< ld(, 1, @lls + Cy o llu—vll + Vdllp - ql.

By (3.3) we obtain

iy - olls < Vargld@, 7, @l + 1d@, 7, @l + Vdrglr(D)ll_yq + (1 + Vdkg)C,p My (v, 7,9), (3.6)

where C,_ , is defined in Theorem 3.1.



DE GRUYTER M. Nokka and S. Repin, Error Bounds for the Oseen Problem = 377

Remark 3.2. If we choose n = vWv — a ® v — g, then [|d(v, 7, 9)lly = 0.
Also, we can measure the error in terms of the norm of the product space
W= (Vo(Q) +up) x LX(Q) x 2(Q),
which is
1w, g Dl = llvll + ligll + x5
Combining the estimates (2.1), (3.3) and (3.6) we find that
(=0 p=q,1 -0l < eMg(v,7, ) + ld(v, 7, @5,

where
=1+ (kg + \/EKQ)(CM + max{l, Cpq}).

4 Error Estimates for Approximate Solutions Generated by
the Uzawa Algorithm

Uzawa type algorithms are commonly used for solving various saddle point problems (see, e.g., the survey
article [3]). They are widely used in numerical analysis of incompressible media. In our case, the algorithm
can be used in the following form:

(1) Setk=o0and p°’ € L*(Q).

(2) Findu* e Vo(Q) + up, such that

J(vVuk :Vw - (a®u¥) : Vw) dx = J(f cw+ pFdivw)dx forallw e V. (4.1)
Q Q
(3) Find
P = pF - pdivi¥,  where p € (0, p). (4.2)

(4) Setk =k + 1 and go to step (2).
It is well known (see, e.g., [21]) that approximations generated by the Uzawa algorithm converge (as
k — o0) in the sense that

W > u in V(Q, ]Rd), pk — p weaklyin L*(Q)

provided that
0<p<p:=2v.

Our first goal is to deduce computable and realistic estimates of 1 —u and p* - p in terms of the respective
norms.
For this purpose, we use results of previous sections. We set

v=u, q=pk, T=vVuk—u®uk—I[pk.

In this case,
d(v,7,q) = T-wWilk raeuf +]ka =0

and in view of (4.1),

(f~w—(vVuk —a®uk—1[pk) : Vw) dx
Ir@l o= sup Ja =0.
weVy(Q) IVwlly

We use the estimate (2.1) and arrive at the following result.
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Theorem 4.1. Let u* be the exact solution computed in the k-th step of the Uzawa algorithm. Then
e — ¥l < (2977 + Co g ldiv ]| == MY () (4.3)

and
Ip = Il < 1o Cpy MY (). ()

Remark 4.2. Since 1
s — wll? > S vldiv uf|P = MPF(b),
we find that
MP (W) < flu - u*ll < MY (). (4.5)

This means that the efficiency index of the majorant is bounded by an explicitly computable constant, namely

_ Mgz(“k) <o

ff Uz k
I (M@Z(u )) = 7"'“7”’('" <I,

(4.6)
where . " s
ar MY h) § 292 4 Cpgllva

lloo,0
© Mg = w7 Vo

id, so that I;ﬁ > 1 (which of cause also follows directly from (4.5) and (4.6)).

In particular, for the Stokes problem with constant v the ratio is smaller than 2Vdxk,. The estimate (4.5)
shows that the quantity | div u¥| reliably controls convergence of W touinV.

We note that «, >

The estimates (4.3) and (4.4) are of theoretical relevance. In practice, the problem (4.1) is solved numerically
on a certain mesh T;,, whose cells have the characteristic size h. For this case, we need an advanced form of
the error majorant, which is derived below.

Let Vi, (Q, R%) and IZ%I(Q) be finite dimensional subspaces of V;,(Q) and I2(Q), respectively. We also as-
sume that the spaces are constructed so that the corresponding numerical problem is stable and satisfies the
discrete LBB-condition.

Let uf € Vi, + up, be an approximation of u* calculated in the k-th step (4.1) of the Uzawa algorithm
and pf, pi*! ¢ 12(Q) be approximations of the pressure related to step (4.2). Our goal is to derive a fully
computable error majorant for the pair (u’,j, pﬁ) generated in step k.

Theorem 4.3. For any n € £(Q, Div),
et = ufll < €™ Guf, pl ) + MOZ(u) = MO (uf, pfo ),

where the first term

T (Crallrmllg + I, 1, p)ls)

is related to the approximation error and the second term presents the error associated with the Uzawa method.
Analogously,

ewp, php =v

1
—lp- PRI < (1+ Cu ) EG, pfan) + Cuy MEE(uf).
Q

Proof. We set
v=u:, q=p£, T=vVuZ—a®u£—I[pZ

and use the estimate (2.1). In this case, d(uf, 7, pf) = 0 and

Jﬂ(f<w—(vVu’;—u®uZ—I[pﬁ) : Vw) dx
lr(Dll_yq = sup .
weVy(Q) [Vwlly

Let 7 € £(Div, Q). Then,

Div) - w - (dk, 1, p)) : Vw) d
Dy = sup Sl TP~ ) - V) d

. koK
< Cpollf + Divyllg + Id(w,, 1, py)lls-
weVy(Q) Vwls
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Hence, we arrive at estimate (4.3). Now, we use (3.3) and find that
1 k . k k
KfllP = pull < Capllu =t lll + Croll f + Divayllg + Id @y, 1, p)lls- O
Q

Remark 4.4. Analogously to (4.5), we find that
M7 (k) <l = upll < MEZ () + E(u, plo ), @.7)

which means that the guaranteed efficiency index of the error majorant is subject to similar estimates, namely

(MY ) < I + I, (4.8)

where the second term .
e _ Ety Ppo1)
ko k
llee — k1l
represents the efficiency index associated with the approximation error.

We end up this section with a short comment on practical applications of the estimate (4.7). First we note
that it has the form which is natural to expect. It is clear that the quality of error estimation related to solv-
ing the boundary value problem (4.1) by means of a certain numerical method should enter the estimate and
increase the overall value of the majorant (cf. (4.8)). In the numerical tests presented below, we indeed ob-
served this effect. In these examples, the function # was defined by means of very simple (and very cheap)
reconstructions of the numerical stress (based on local averaging) and, therefore, the term S(uﬁ, pﬁ, n) made
a considerable contribution to the overall error bound. Nevertheless, the majorant correctly reflects the de-
creasing of the error in the process of the Uzawa iterations. Certainly more sophisticated stress reconstruction
procedures (e.g., global minimization) would lead to much better results (see a consequent discussion of the
corresponding methods in [11]). However, even if the approximation error would be defined sharply, for suf-
ficiently large k the right-hand side of (4.7) will not decrease because the mesh T, is too coarse for getting
approximations with a required accuracy. In practice, this “saturation” phenomenon is easily detected by
comparing the values of two terms forming the majorant (in our tests this phenomenon was observed). This
means that fully reliable computations based on the Uzawa type methods require “modeling-discretization”
adaptive algorithms in the spirit of, e.g., [19].

5 Numerical Experiments

Below we present results from numerical computations performed to test the majorants and minorants. Ap-
proximations for model problem were calculated with MINI-elements [1] for the velocity field, linear triangu-
lar elements for the pressure field, and linear Raviart-Thomas elements [14] for the stress field.

We consider the Oseen problem with v = 1in Q = [0, 1] x [0, 1] and homogeneous Dirichlet boundary
conditions. The exact velocity

(208 y2y - D(x - 1*(y - 1)
9= (—ZOxy2<2x ~ -y - 1)

and the pressure p(x, y) = 2x—1 generate the right-hand side of the equation. The iterations were started with
p" = 0in Q. Computations were performed with the help of FEniCS Project open source software [10]. Uni-
form refinements of the mesh were performed if the majorant for the velocity field shows that practically the
error does not decrease (if the absolute value of difference between the values computed for two consecutive
iterations was less than 10%). At the very beginning we had 512 elements. At every refinement one triangle
element was divided into four similarly shaped triangles (so that we had 2048 degrees of freedom after the
first refinement, and then 8192 after the second refinement). The algorithm was stopped after the third mesh
refinement.
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k Mg (v,7,9) ldiv v] ld@,z.9)ll lr@ll l(u-v,p-q.1-0)llw oMo (v,79)
[E] Il [E] [E] ll(w.q.m)Iw ll(w.gm)lw
6 0.814861 0.108033 0.186701 6.14041x107° 0.18877 3.3947
9 0.394441 0.0533815 0.0840590 3.76671x107° 0.0921263 1.61059
12 0.197608 0.0266837 0.0424575 2.34323x1077 0.0509854 0.798602

Table 1. Components of the majorant, a = (1,0).

---Value of majorant
—Exact error of the velocity in energy norm
Mesh refinement

2 6 8 10 12
Number of Uzawa iterations
---Value of majorant
. —Exact error of the pressure in Ly-norm
Seel Mesh refinement
T T T T T ]
2 10 12

6 8
Number of Uzawa iterations

Figure 1. Behavior of the majorants, a = (1,0).

---Divergence of the approximate velocity
Mesh refinement

6 8
Number of Uzawa iterations

Figure 2. Divergence of the approximate velocity, a = (1,0).

DE GRUYTER



DE GRUYTER M. Nokka and S. Repin, Error Bounds for the Oseen Problem = 381

k Mg (v,7,9) Idiv v] ld@,z.9)ll lr@ll l(u-v,p-q,1-0)lw oMo (v:7,9)
[ vl [E] [ N(w.g:m)llw llw.q,m)lw
6 0.816497 0.108253 0.187053 6.13097x107° 0.187327 3.36203
9 0.394957 0.0534651 0.0840883 3.76496x107° 0.0913371 1.59401
12 0.197734 0.0267046 0.0424624 2.34283x1077 0.0505014 0.78988

Table 2. Components of the majorant, a = (1,1).

N ---Value of majorant
. —Exact error of the velocity in energy norm
0 Tl Mesh refinement
0 41 0 7Tt RET T
107
2 4 6 8 10 12
Number of Uzawa iterations
---Value of majorant
1 —Exact error of the pressure in Ly-norm
10" 5 . Mesh refinement
10° 4 e
107

6 8
Number of Uzawa iterations

Figure 3. Behavior of the majorants, a = (1,1).

. ---Divergence of the approximate velocity
. Mesh refinement
107
2 10 12

6 8
Number of Uzawa iterations

Figure 4. Divergence of the approximate velocity, a = (1,1).
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k Mg (v,7,9) ldiv v] ld@,z.9)ll lr@ll l(u-v,p-q.n-0)lw oMy (v,7,9)

[E] Il [E] [E] ll(w.q.m)Iw ll(w.gm)lw
5 0.78383 0.114972 0.182948 6.12371x107° 0.219877 3.03241
8 0.372967 0.0553391 0.0837532 3.76496x107° 0.102283 1.39201
11 0.185204 0.0273769 0.0421268 2.34320x1077 0.0542261 0.680833

Table 3. Components of the majorant, a = (0,0).

AN ---Value of majorant
AN —Exact error of the velocity in energy norm
0 Tl Mesh refinement
10" A RRRCEN
107
T T T T T T T T T
1 2 3 4 5 6 7 10 1
Number of Uzawa iterations
PRI ---Value of majorant
10 4 . —Exact error of the pressure in Lo-norm
... Mesh refinement
10” 4
107
T T T T T T
1 2 10 1

4 5 6 7
Number of Uzawa iterations

Figure 5. Behavior of the majorants, a = (0,0).

., ---Divergence of the approximate velocity’
. Mesh refinement
107"
1 2 10

4 5 6 7
Number of Uzawa iterations

Figure 6. Divergence of the approximate velocity, a = (0,0).

DE GRUYTER



DE GRUYTER M. Nokka and S. Repin, Error Bounds for the Oseen Problem = 383

We tested the algorithm for different a. Below, we focus attention on three examples, which present typ-
ical results. We seta = (1,0), a = (1,1) and a = (0, 0) (this case corresponds to the Stokes problem). Values
for majorants and exact errors are shown in Figure 1 for a = (1,0), Figure 3 for a = (1, 1) and Figure 5 for
a = (0,0). In Figures 2, 4 and 6 we show how the norm of the divergence decreases in the process of Uzawa
iterations. For the velocity field, errors are calculated in the energy norm and for the pressure in the L?-norm.
Values of the majorants and exact errors for the velocity and pressure are normalized with the norms ||v]| and
ligll, respectively. Dotted vertical lines mark the iterations after which mesh refinements were done. In the
examples, the “free” function r was computed by minimization of the majorant on the same mesh that was
used for the velocity field. Also, we can compute guaranteed bounds on the errors in terms of stresses and the
combined primal-dual norm (see Table 1 for a = (1,0), Table 2 for a = (1, 1) and Table 3 for a = (0,0)). We see
that the estimates indeed provide guaranteed upper bounds of errors in the functions computed by means
of the Uzawa iterations. These bounds correctly reflect decrease of the corresponding errors and indicate the
moment when adaptation of the mesh is required.

References

[1]  D.N.Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations, Calcolo 21 (1985), no. 4, 337-344.

[2] 1. Babu3ka, The finite element method with Lagrangian multipliers, Numer. Math. 20, pp. 179-192, 1973.

[3] M. Benzi, G. H. Golub and J. Liesen, Numerical solution of saddle point problems, Acta Numer. 14 (2005), 1-137.

[4] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers,
Rev. Franc. Automat. Inform. Rech. Operat. 8 (1974), 129-151.

[5] M. Dobrowolski, On the LBB condition in the numerical analysis of the Stokes equations, Appl. Numer. Math. 54 (2005),
314-323.

[6] E.Gorshkova, A. Mahalov, P. Neittaanmaki and S. Repin. A posteriori error estimates for viscous flow problems with rota-
tion, /. Math. Sci. (N.Y.) 142 (2007), no. 1, 1749-1762.

[7] E.Gorshkova, P. Neittaanmaki, and S. Repin. Comparative study of the a posteriori error estimators for the Stokes prob-
lem, in: Numerical Mathematics and Advanced Applications, Springer, Berlin (2006), 252-259.

[8] C.O.Horgan and L. E. Payne, On inequalities of Korn, Friedrichs and Babu3ka-Aziz, Arch. Ration. Mech. Anal. 82 (1982),
no. 2, 165-179.

[9] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Nauka, Moscov, 1970; English translation:
Gordon and Breach, New York, 1969.

[10] A.Logg, K.-A. Mardal and G. N. Wells (eds.), Automated Solution of Differential Equations by the Finite Element Method,
Lect. Notes Comput. Sci. Eng. 84, Springer, Berlin, 2012.

[11] 0. Mali, P. Neittaanmaki and S. Repin. Accuracy Verification Methods. Theory and Algorithms, Computat. Methods Appl.
Sci. 32, Springer, Dordrecht, 2014.

[12] P. Neittaanmaki and S. Repin, Reliable Methods for Computer Simulation. Error Control and A Posteriori Estimates, Else-
vier, Amsterdam, 2004.

[13] M. A. Olshanskii and E. V. Chizhonkov, On the domain geometry dependence of the LBB condition, M2AN Math. Model.
Numer. Anal. 34 (2000), no. 5, 935-951.

[14] P.A.Raviartand ). M. Thomas, Primal hybrid finite element methods for 2nd order elliptic equations, Math. Comput. 31
(1977), 391-413.

[15] S. 1. Repin, A posteriori estimates for the Stokes problem, J. Math. Sci. (N.Y.) 109 (2002), no. 5, 1950-1964.

[16] S. Repin, Estimates of deviations from exact solutions for some boundary-value problems with incompressibility condi-
tion (in Russian), Algebra Anal. 16 (2004), no. 5, 124-161; translation in St. Petersbg. Math. J. 16 (2005), no. 5, 837-862.

[17] S.Repin, A Posteriori Estimates for Partial Differential Equations, Radon Ser. Comput. Appl. Math. 4, De Gruyter, Berlin,
2008.

[18] S. Repin, Estimates of deviations from the exact solution of a generalized Oseen problem, J. Math. Sci. (N.Y.) 195 (2013),
no. 1, 64-75.

[19] S. Repin, T. Samrowski and S. Sauter, Combined a posteriori modeling-discretization error estimate for elliptic problems
with complicated interfaces, ESAIM Math. Model. Numer. Anal. 46 (2012), 1389-1405.

[20] S.RepinandR. Stenberg, Two-sided a posteriori estimates for a generalized Stokes problem, J. Math. Sci. (N.Y.) 159
(2009), no. 4, 541-556.

[21] R.Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland, New-York, 1977.

Received December 21, 2013; revised April 4, 2014; accepted April 8, 2014.



PIV

ERROR ESTIMATES OF UZAWA ITERATION METHOD FOR A

CLASS OF BINGHAM FLUIDS

by

M. Nokka and S. Repin 2015

Mathematical Modeling And Optimization of Complex Structures

Reproduced with kind permission of Springer.



	A Posteriori Error Estimates for Variational Problems in the Theory of Viscous Fluids
	ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF INCLUDED ARTICLES
	1 INTRODUCTION
	2 MATHEMATICAL BACKGROUND
	2.1 Function spaces
	2.2 Inequalities

	3 BASIC MATHEMATICAL MODELS OF VISCOUS FLUIDS
	3.1 The generalized Stokes problem
	3.2 The Oseen problem
	3.3 The Bingham model
	3.4 The Uzawa algorithm

	4 MAIN RESULTS
	4.1 Upper bounds generated by the Uzawa algorithm for Oseen problem
	4.2 Advanced upper bounds

	YHTEENVETO (FINNISH SUMMARY)
	REFERENCES
	ORIGINAL PAPERS
	ON A POSTERIORI ERROR BOUNDS FOR APPROXIMATIONS OF THE GENERALIZED STOKES PROBLEM GENERATED BY THE UZAWA ALGORITHM
	A POSTERIORI ERROR BOUNDS FOR APPROXIMATIONS OF THE STOKES PROBLEM WITH FRICTION TYPE BOUNDARY CONDITIONS
	A POSTERIORI ERROR BOUNDS FOR APPROXIMATIONS OF THE OSEEN PROBLEM AND APPLICATIONS TO UZAWA ITERATION ALGORITHM
	ERROR ESTIMATES OF UZAWA ITERATION METHOD FOR A CLASS OF BINGHAM FLUIDS



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




