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Abstract

In this paper we study the theoretical properties of the deflation-based Fas-

tICA method, the original symmetric FastICA method, and a modified sym-

metric FastICA method, here called the squared symmetric FastICA. This

modification is obtained by replacing the absolute values in the FastICA ob-

jective function by their squares. In the deflation-based case this replacement

has no effect on the estimate since the maximization problem stays the same.

However, in the symmetric case we obtain a different estimate which has been

mentioned in the literature, but its theoretical properties have not been stud-

ied at all. In the paper we review the classic deflation-based and symmetric

FastICA approaches and contrast these with the squared symmetric version

of FastICA in a unified way. We find the estimating equations and derive the

asymptotical properties of the squared symmetric FastICA estimator with an

arbitrary choice of nonlinearity. This allows the main contribution of the pa-

per, i.e., efficiency comparison of the estimates in a wide variety of situations
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using asymptotic variances of the unmixing matrix estimates.

Keywords: Affine equivariance, independent component analysis, limiting

normality, minimum distance index

1. Introduction

We assume that a p-variate random vector x = (x1, . . . , xp)
T follows

the basic independent component (IC) model, that is, the components of

x are linear mixtures of p mutually independent latent variables in z =

(z1, . . . , zp)
T . The model can then be written as

x = μ+Ωz, (1)

where μ is a location shift and Ω is a full-rank p × p mixing matrix. In

independent component analysis (ICA) the parameter μ is usually regarded

as a nuisance parameter as the main interest is to find, using a random sample

X = (x1, . . . ,xn) from the distribution of x, an estimate for an unmixing

matrix Γ such that Γx has independent components [7], [2], [3]. Notice that,

although we restrict in this paper to the case where x and z are of the

same dimension, there also exists such versions of (1) where the dimension

of z is larger than that of x (the underdetermined case) or the other way

around (the overdetermined case). In the latter case we can simply apply a

dimension reduction method as a first step.

The IC model (1) is a semiparametric model in the sense that the marginal

distributions of the components z1, . . . , zp are left unspecified. However, some

assumptions on z are needed in order to fix the model: for identifiability of

Ω, we need to assume that
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(A1) at most one of the components z1, . . . , zp is gaussian [18].

Nevertheless, μ, Ω and z are still confounded and the mixing matrix Ω

can be identified only up to the order and heterogenous multiplication of its

columns. To fix μ and the scales of the columns of Ω we further assume that

(A2) E(zi) = 0 and E(z2i ) = 1 for i = 1, . . . , p.

After these assumptions the order and signs of the columns of Ω still remain

unidentified. For practical data analysis this is usually sufficient. The impact

of the component order on asymptotics is discussed in Section 3.

The solutions to the ICA problem are often formulated as algorithms

with two steps. The first step is to whiten the data, and the second step

is to find an orthogonal matrix that rotates the whitened data to indepen-

dent components. In the following we formulate such an algorithm at the

population level using the random variable x: let S(Fx) = Cov(x) denote

the covariance matrix of a random vector x, where Fx denotes the cumu-

lative distribution function of x, and write xst = S−1/2(Fx)(x − E(x)) for

the standardized (whitened) random vector. Here the square root matrix

S−1/2 is chosen to be symmetric. The aim of the second step is to esti-

mate an orthogonal matrix U = (u1, . . . ,up)
T so that Uxst has independent

components, by finding the rows of the matrix either one-by-one (deflation-

based approach) or simultaneously (symmetric approach). The symmetric

version of the famous FastICA algorithm [6] finds the orthogonal matrix U

by maximizing the objective function

p∑
j=1

|E[G(uT
j xst)]|,
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where G is a twice continuously differentiable, nonlinear and nonquadratic

function (see Section 2.5 for more details).

In this paper we replace the absolute values by their squares as suggested

in [19] where the squared symmetric FastICA estimates based on convex

combinations of the third and fourth squared cumulants were studied in

detail. Notice that replacing the absolute values by their squares in the

objective function has been mentioned in [6] and [3, Section 6], but the

idea was never carried further. In Section 2 we formulate unmixing matrix

functionals based on the two symmetric approaches and the deflation-based

approach. Some statistical properties of the old estimators are recalled in

Section 3, and the corresponding results of squared symmetric FastICA are

derived for the first time for a general function G. The efficiencies of the

three estimators are compared in Section 4 using both asymptotic results

and simulations.

2. FastICA functionals

In this section we give formal definitions of three different FastICA un-

mixing matrix functionals with corresponding estimating equations and algo-

rithms for their computation. The formal definition of the squared symmetric

FastICA functional is new. The conditions for function G that ensure the

consistency of the estimates are also discussed.

2.1. IC functionals

Let again Fx denote the cumulative distribution function of a random

vector x obeying the IC model (1), and write Γ(Fx) for the value of an

unmixing matrix functional at the distribution Fx. Due to the ambiguity in

4



model (1) it is natural to require that the separation result Γ(Fx)x = Γ(Fz)z

does not depend on μ and Ω and the choice of z in the model specification.

This is formalized in the following.

Definition 1. The p× p matrix-valued functional Γ(Fx) is said to be inde-

pendent component (IC) functional if

1. Γ(Fx)x has independent components for all x in the IC model (1), and

2. Γ(Fx) is affine equivariant in the sense that Γ(FAx+b) = Γ(Fx)A
−1 for

all nonsingular p × p full-rank matrices A, for all p-vectors b and for

all x (even beyond the IC model).

The condition Γ(FAx+b) = Γ(Fx)A
−1 can be relaxed to be true only up

to permutations and sign changes of their rows. The corresponding sample

version, denoted from now on by Γ̂ = Γ(X), is obtained when the IC func-

tional is applied to the empirical distribution function of X = (x1, . . . ,xn).

Naturally, the estimator is then also affine equivariant in the sense that

Γ(AX + b1T
n ) = Γ(X)A−1 for all nonsingular p × p full-rank matrices A

and for all p-vectors b.

The rest of this section focuses on three specific FastICA functionals. For

recent overviews of FastICA and its variants see also [9] and [22].

2.2. Deflation-based approach

Deflation-based FastICA functional is based on the algorithm proposed

in [4] and [6]. In the deflation-based FastICA method the rows of an unmixing

matrix are extracted one after another. The method can thus be used in

situations where only the few most important components are needed. The

statistical properties of the deflation-based method were studied in [16] and
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[17] where the influence functions and limiting variances and covariances of

the rows of the unmixing matrix were derived.

Assume now that x is an observation from an IC model (1) with mean

vector μ = E(x) and covariance matrix S = Cov(x). In deflation-based

FastICA the unmixing matrix Γ = (γ1, . . . ,γp)
T is estimated so that after

finding γ1, . . . ,γj−1, the jth row vector γj maximizes a measure of non-

Gaussianity,

|E[G(γT
j (x− E(x)))]|,

under the constraints γT
l Sγj = δlj, l = 1, . . . , j, where δlj is the Kronecker

delta δlj = 1 (0) as l = j (l �= j). The requirements for the function G and

the conventional choices of it are discussed in Section 2.5.

The deflation-based FastICA functional Γd satisfies the following estimat-

ing equations which can be derived using the method of Lagrange multipli-

ers [17], [15].

Definition 2. For all j = 1, . . . , p, The deflation-based FastICA functional

Γd = (γd
1, . . . ,γ

d
p)

T solves the estimating equations

T (γj) = S

(
j∑

l=1

γ lγ
T
l

)
T (γj) and γT

kSγj = δkj, k = 1, . . . , j,

where T (γ) = E[g(γT (x− E(x)))(x− E(x))] and g = G′.

The estimating equations imply that ΓSΓT = Ip, where Ip denotes the

identity matrix. This is equivalent to Γ = US−1/2 for some orthogonal

matrix U . The estimation problem can then be reduced to the estimation of

the rows of U one-by-one. This suggests the following fixed-point algorithm
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for uj:

uj ←
(
Ip −

j−1∑
l=1

ulu
T
l

)
T (uj)

uj ← ||uj||−1uj,

where T (u) = E[g(uTxst)xst] and xst is the whitened random variable. How-

ever, this algorithm is unstable and we recommend the use of the original

algorithm [4], that is, a modified Newton-Raphson algorithm where T (u) is

replaced by T ∗(u) = E[g(uTxst)xst]− E[g′(uTxst)]u.

For the estimate based on the observed data set, all the expectations

above are replaced by the sample averages, e.g., E(x) is replaced by x̄ and

S by the sample covariance matrix Ŝ.

Notice that neither the estimating equations nor the algorithm fixes the

order in which the components are found, and the order depends to some

extent on the initial value in the algorithm. Since a change in the estimation

order changes the unmixing matrix estimate more than just by permuting its

rows, deflation-based FastICA is not affine equivariant if the initial value is

chosen randomly. To find an estimate which globally maximizes the objective

function at each stage, we propose the following strategy to choose the initial

value for the algorithm:

1. Find a preliminary consistent estimator Γ0 of Γ.

2. Find a permutation matrix P such that |E[G((PΓ0x)1)]| ≥ · · · ≥
|E[G((PΓ0x)p)]|.

3. The orthogonal initial value for U is PΓ0S
1/2.

The preliminary estimate in step 1 can be for example k-JADE estimate [10].
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This algorithm, as well as all other FastICA algorithms mentioned in this

paper, are implemented in the R-package fICA [11].

The extraction order of the components is highly important not only for

the affine equivariance of the estimate but also for its efficiency. In the defla-

tionary approach, for i < j, an accurate estimation of the ith component has

a direct impact on the accurate estimation of the jth component as well. [15]

discussed the extraction order and the estimation efficiency and introduced

the so-called reloaded deflation-based FastICA, where the extraction order is

based on the minimization of a sum of asymptotic variances, see Section 3.

[13] discussed the estimate that uses different G-functions for different com-

ponents. Different versions of the algorithm and their performance analysis

are presented for example in [24], [23].

2.3. Symmetric approach

In symmetric FastICA approach, the rows of Γ = (γ1, . . . ,γp)
T are found

simultaneously by maximizing

p∑
j=1

|E[G(γT
j (x− E(x)))]|

under the constraint ΓSΓT = Ip. The unmixing matrix Γ then optimizes

the Lagrangian function

L(Γ,Θ) =

p∑
j=1

|E[G(γT
j (x−E(x)))]|−

p∑
j=1

θjj(γ
T
j Sγj−1)−

p−1∑
j=1

p∑
l=j+1

θljγ
T
l Sγj,

where the symmetric matrix Θ = [θlj] contains p(p+1)/2 Lagrangian multi-

pliers. Differentiating the above function with respect to γj and setting the
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derivative to zero yields

E[g(γT
j (x− E(x)))(x− E(x))] πj = 2θjjSγj +

∑
l<j

θljSγ l +
∑
l>j

θjlSγ l,

where g = G′ and πj = sign(E[G(γT
j (x − E(x)))]). Then, by multiplying

both sides by γT
l we obtain γT

l E[g(γ
T
j (x − E(x)))(x − E(x))]πj = θlj, for

l < j, and γT
l E[g(γ

T
j (x − E(x)))(x − E(x))]πj = θjl, for l > j. Hence the

solution Γ must satisfy the following estimating equations.

Definition 3. The symmetric FastICA functional Γs = (γs
1, . . . ,γ

s
p)

T solves

the estimating equations

γT
l T (γj) πj = γT

j T (γ l) πl and γT
l Sγj = δlj, j, l = 1, . . . , p,

where T (γ) = E[g(γT (x− E(x)))(x− E(x))].

Again, Γ = US−1/2 for some orthogonal matrix U . Then the estimation

equations for U are

uT
l T (uj) πj = uT

j T (ul) πl and uT
l uj = δlj,

where l, j = 1, . . . , p, T (u) = E[g(uTxst)xst], and the equations suggest the

following fixed-point algorithm for U :

T ← (T (u1), . . . ,T (up))
T

U ← (TT T )−1/2T .

As in the deflation-based approach, a more stable algorithm is obtained when

T (uj) is replaced by T ∗(uj).

In symmetric FastICA, different initial values give identical unmixing

matrix estimates up to order and signs of the rows.
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2.4. Squared symmetric approach

In squared symmetric FastICA the absolute values in the objective func-

tion of the regular symmetric FastICA are replaced by squares [19]. The

squared symmetric FastICA functional Γs2 = (γs2
1 , . . . ,γs2

p )T maximizes

p∑
j=1

(E[G(γT
j (x− E(x)))])2,

under the constraint ΓSΓT = Ip. Similarly as in Section 2.3 the method of

Lagrange multipliers yields the following estimating equations.

Definition 4. The squared symmetric FastICA functional Γs2 = (γs2
1 , . . . ,γs2

p )T

solves the estimating equations

γT
l T 2(γj) = γT

j T 2(γ l) and γT
l Sγj = δlj, j, l = 1, . . . , p,

where T 2(γ) = E[G(γT (x− E(x)))]E[g(γT (x− E(x)))(x− E(x))].

The estimation equations for U are

uT
l T 2(uj) = uT

j T 2(ul) and uT
l uj = δlj, l, j = 1, . . . , p,

where T 2(u) = E[G(uT (xst))]E[g(u
T (xst))xst]. The following algorithm,

which is based on the same idea as the algorithm for symmetric FastICA,

can be used to find the solution in practice:

T ← (T ∗
2(u1), . . . ,T

∗
2(up))

T

U ← (TT T )−1/2T ,

where T ∗
2(u) = E[G(uT (xst))]{E[g(uT (xst))xst]− E[g′(uT (xst))]u}.
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Notice that

T ∗
2(u) = E[G(uTxst)]T

∗(u),

and hence the squared symmetric FastICA estimator can be seen as weighted

classical symmetric FastICA estimator. The more nongaussian an indepen-

dent component is (as measured by the function G), the more impact it has

in the orthogonalization step.

2.5. Function G

The function G is required to be twice continuously differentiable, nonlin-

ear and nonquadratic function such that E[G(z)] = 0, when z is a standard

Gaussian random variable. The derivative function g = G′ is the so-called

nonlinearity. The use of classical kurtosis as a measure of non-Gaussianity

is given by the nonlinearity function g(z) = z3 (pow3) [4]. Other popular

choices include g(z) = tanh(az) (tanh) and g(z) = z exp(−az2/2) (gaus)

with tuning parameters a as suggested in [5], and g(z) = z2 (skew).

The deflation-based, symmetric and squared symmetric FastICA esti-

mators need extra conditions for G to ensure the consistency of the esti-

mation procedure: one then requires that for any z = (z1, . . . , zp)
T with

independent and standardized components and for any orthogonal matrix

U = (u1, . . . ,up) the following hold, where ei is a p-vector with ith ele-

ment one and others zero and we may without loss of generality assume the
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component ordering |E[G(z1)]| ≥ · · · ≥ |E[G(zp)]|.

def For all k = 1, . . . , p, |E[G(uT
k z)]| ≤ |E[G(zk)]|,

when uT
k ej = 0 for all j = 1, . . . , k − 1,

sym |E[G(uT
1 z)]|+ · · ·+ |E[G(uT

p z)]|
≤ |E[G(z1)]|+ · · ·+ |E[G(zp)]| or

sym2 (E[G(uT
1 z)])

2 + · · ·+ (E[G(uT
p z)])

2

≤ (E[G(z1)])
2 + · · ·+ (E[G(zp)])

2.

[14] and [19] proved that for pow3 and skew (as well as for their any convex

combination) all three conditions are satisfied. On the contrary, turning our

attention next to the bivariate case, z = (z1, z2)
T , tanh and gaus do not

satisfy the conditions for all choices of the distributions of z1 and z2. For

these two nonlinearities [20] found bimodal distributions for which the fixed

points of the deflation-based FastICA algorithm are not correct solutions

of the IC problem. In Figure 1 we plot the density functions of random

variables z1 and z2 which serve as examples for a case where none of the

three inequalities hold for gaus. These examples should however be seen as

rare and artificial exceptions and FastICA with tanh and gaus satisfy the

conditions for most pairs of distributions of z we have checked. For example,

in Section 4.3 FastICA with tanh worked as expected under a wide variety

of source distributions. Deflation-based or symmetric FastICA with tanh is

perhaps the most popular unmixing matrix estimate.

See Section 4.2 for the optimal choice of the nonlinearity for a component

with a known density function.
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Figure 1: Density functions of z1 and z2, which violate the conditions def, sym and sym2

with nonlinearity gaus. Both distributions are mixtures of four Gaussian distributions.

For more details, see Appendix.

3. Asymptotical properties of the FastICA estimators

The limiting variances and the asymptotic multinormality of the deflation-

based and symmetric FastICA unmixing matrix estimators were found quite

recently in [17], [15], [21] and [22]. In this section, we review these findings

and derive the corresponding results for the squared symmetric FastICA es-

timator.

Let now X = (x1, . . . ,xn) be a random sample from the distribution of

x following the IC model (1). The deflation-based, symmetric and squared

symmetric FastICA estimators Γ̂
d
, Γ̂

s
and Γ̂

s2
are then obtained when the

three functionals are applied to the empirical distribution of X.

Due to affine equivariance, we can in the following assume without loss of

generality that Ω = Ip. Before proceeding we need to make some additional

assumptions on the distribution of zi = (zi1, . . . , zip)
T , namely,
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(A3) The fourth moments βj = E[z4ij] as well as the following expected values

νj = E[G(zij)], μj = E[g(zij)], σ2
j = Var[g(zij)],

λj = E[g(zij)zij], δj = E[g′(zij)], τj = E[g′(zij)zij]

exist. Write also πj = sign(νj).

Write now

T j =
1

n

n∑
i=1

(g(zij)− μj)zi and

T 2j =
1

n

n∑
i=1

G(zij)
1

n

n∑
i=1

(g(zij)− μj)zi,

for j = 1, . . . , p. To avoid division by zero in the following theorem, assume

that νj(λj − δj) ≥ 0 for all j = 1, . . . , p, with equality for at most one j.

Notice that in [6] it was stated that νj(λj − δj) > 0 for most reasonable

functions G and distributions of zij. For (pow3), νj(λj − δj) > 0 for any

distribution with E(z4ij) �= 3. The limiting behavior of the deflation-based

FastICA estimate was first given in [15]. The corresponding results of the

symmetric FastICA estimates are given in the following. The result (iii) is

proved in the Appendix and the proof of (ii) is essentially similar to the

proof of (iii). In the following theorem oP (1) refers to a random variable that

converges in probability to zero as n goes to the infinity.

Theorem 1. LetX = (x1, . . . ,xn) be a random sample from the IC model (1)

satisfying the assumptions (A1)-(A3): If Ω = Ip then there exist a sequence

of solutions Γ̂
d
, Γ̂

s
and Γ̂

s2
converging to Ip such that

14



(i) (deflation-based)

√
n γ̂d

jl = −√
n γ̂d

lj −
√
n Ŝjl + oP (1), l < j,

√
n (γ̂d

jj − 1) = −1

2

√
n (Ŝjj − 1) + oP (1), l = j,

√
n γ̂d

jl =
eT
l

√
nT j − λj

√
n Ŝjl

λj − δj
+ oP (1), l > j,

(ii) (symmetric)

√
n (γ̂s

jj − 1) = −1

2

√
n (Ŝjj − 1) + oP (1), l = j,

√
n γ̂s

jl =
eT
l

√
nT jπj − eT

j

√
nT lπl − (λj πj − δlπl)

√
n Ŝjl

(λj − δj)πj + (λl − δl)πl

+ oP (1), l �= j,

(iii) (squared symmetric)

√
n (γ̂s2

jj − 1) = −1

2

√
n (Ŝjj − 1) + oP (1), l = j,

√
n γ̂s2

jl =
eT
l

√
nT 2j − eT

j

√
nT 2l + (νlδl − νjλj)

√
n Ŝjl

νj(λj − δj) + νl(λl − δl)
+ oP (1), l �= j.

For the asymptotical properties of deflation-based FastICA using several

nonlinearities g, see [13]. As seen from Theorem 1(i), the limiting distribu-

tions of the vectors γ̂d
1, . . . , γ̂

d
p depend on the order in which they are found.

It is shown in Corollary 2 that, for j < l, the asymptotic variances of γ̂d
lj

and γ̂d
jl are equal and depend only on the distribution of the jth indepen-

dent component. The limiting distributions of the diagonal elements do not

depend on the method or the chosen nonlinearity g. [19] discovered that the

squared symmetric FastICA estimator with the pow3 nonlinearity has the

same asymptotic behavior as the JADE (joint approximate diagonalization

of eigenmatrices) estimator [1]. We then have the following straightforward

but important corollaries. When A is a p× q matrix, vec(A) is the pq-vector

obtained by concatenating the column vectors of A.

15



Corollary 1. Under the assumptions of Theorem 1, if the joint limiting

distribution of
√
nT jl and

√
nT 2jl for j �= l = 1, . . . , p and

√
n (Ŝjl−δjl) for

j, l = 1, . . . , p, is a multivariate normal distribution, then also the limiting

distributions of
√
n vec(Γ̂

d − Ip),
√
n vec(Γ̂

s − Ip) and
√
n vec(Γ̂

s2 − Ip) are

multivariate normal.

Corollary 2. Under the assumptions of Theorem 1, the asymptotic covari-

ance matrix (ASV) of the jth source vector γj is of the form

ASV (γ̂j) =

p∑
l=1

ASV (γ̂jl)ele
T
l ,

with ASV (γ̂jj) = (βj − 1)/4, j = 1, . . . , p, for each estimator. The other

variances are

(i) (deflation-based)

ASV (γ̂d
jl) =

σ2
l − λ2

l

(λl − δl)2
+ 1, l < j

ASV (γ̂d
jl) =

σ2
j − λ2

j

(λj − δj)2
, l > j.

(ii) (symmetric)

ASV (γ̂s
jl) =

σ2
j + σ2

l − λ2
j + δl(δl − 2λl)

((λj − δj)πj + (λl − δl)πl)2
, l �= j.

(iii) (squared symmetric)

ASV (γ̂s2
jl ) =

ν2
j (σ

2
j − λ2

j) + ν2
l (σ

2
l + δl(δl − 2λl))

(νj(λj − δj) + νl(λl − δl))2
, l �= j.

The asymptotic variances of the deflation-based and symmetric FastICA

estimators were first derived in [17] and [21], respectively. The asymptotic

covariance matrices of the FastICA estimators for given marginal densities

can be computed using the R package BSSasymp [12].
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4. Efficiency comparisons

The asymptotical results derived in Section 3 allow us to evaluate and

compare the performances of the FastICA methods. In this section the

asymptotic and finite sample efficiencies of deflation-based and symmetric

FastICA estimators are compared to those of squared symmetric FastICA

estimators using a wide range of distributions with varying skewness and

kurtosis values.

4.1. Performance index

We measure the finite sample performance of the unmixing matrix esti-

mates using the minimum distance index [8],

D̂ = D(Γ̂Ω) =
1√
p− 1

inf
C∈C

‖CΓ̂Ω− Ip‖, (2)

where ‖ · ‖ is the matrix (Frobenius) norm and C is the set of p × p matri-

ces with exactly one non-zero element in each column and each row. The

minimum distance index is scaled so that 0 ≤ D̂ ≤ 1. If Ω = Ip and
√
n vec(Γ̂ − Ip) → Np2(0,Σ), then the limiting distribution of n(p − 1)D̂2

is that of a weighted sum of independent chi squared variables with the ex-

pected value

Trace [(Ip2 −Dp,p)Σ(Ip2 −Dp,p)] , (3)

where Dp,p =
∑

i(eie
T
i ) ⊗ (eie

T
i ), and ⊗ means the Kronecker product.

Notice that (3) equals the sum of the limiting variances of the off-diagonal

elements of
√
n vec(Γ̂− Ip) and therefore

p−1∑
j=1

p∑
l=j+1

(ASV (γ̂jl) + ASV (γ̂lj)) (4)

provides a global measure of the variation of the estimate Γ̂.

17



4.2. Asymptotic efficiency

Let fj be the density function and gj = −f ′
j/fj be the optimal loca-

tion score function for the jth independent component zj. Also let Ij =

V ar(gj(zj)) be the Fisher information number for the location problem.

Write

αj :=
σ2
j − λ2

j

(λj − δj)2
= [(Ij − 1)ρ2g(zj)gj(zj)·zj ]

−1,

where ρ2g(zj)gj(z)·zj is the squared partial correlation between g(zj) and gj(zj)

given zj. Then we have the following result.

Theorem 2. For our three estimates and for non-gaussian zj and zl, j �= l,

ASV (γ̂jl) + ASV (γ̂lj) is(
βj

βj + βl

)2

(2αj + 1) +

(
βl

βj + βl

)2

(2αl + 1)

where ⎧⎨
⎩ βj = 1, πj(λj − δj) and νj(λj − δj)

βl = 0, πl(λl − δl) and νl(λl − δl)

for deflation-based, symmetric and squared symmetric FastICA estimates,

respectively.

Notice first that the value of ASV (γ̂jl)+ASV (γ̂lj) only depends on the jth

and lth marginal distributions, which means we can restrict the comparison

to bivariate distributions as the multivariate comparison would only mean

summing the bivariate comparisons. If the jth and lth marginal distributions

are the same, then the three values of ASV (γ̂jl) + ASV (γ̂lj) are (2αj + 1),

(2αj +1)/2 and (2αj +1)/2 and these are minimized with the choice g = gj.

So, if z1, . . . , zp are identically distributed with the density function f , then

the optimal choice for g is −f ′/f .
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If the lth component is Gaussian, then λl = δl, and for the deflation-based

and squared symmetric FastICA estimates, ASV (γ̂jl)+ASV (γ̂lj) = (2αj+1)

and for the symmetric FastICA estimate one gets

ASV (γ̂jl) + ASV (γ̂lj) = (2αj + 1) +
2(σ2

l − λ2
l )

β2
j

= (2αj + 1) +
2σ2

l

β2
j

(
1− ρ2g(zil)zil

)
,

where ρg(zil)zil is the correlation between g(zil) and zil. The symmetric Fas-

tICA is therefore always poorest in this case.

For further comparison of the estimators we use two families of source dis-

tributions, the standardized exponential power distribution family and the

standardized gamma distribution family. The density function of standard-

ized exponential power distribution with shape parameter β is

f(x) =
β exp{−(|x|/α)β}

2αΓ(1/β)
,

where β > 0, α = (Γ(1/β)/Γ(3/β))1/2 and Γ is the gamma function. The

distribution is symmetric for any β, and β = 2 gives the normal (Gaussian)

distribution, β = 1 gives the heavy-tailed Laplace distribution and the den-

sity converges to the low-tailed uniform distribution as β → ∞. The density

function of standardized gamma distribution with shape parameter α is

f(x) =
(x+

√
α)α−1αα/2 exp{−(x+

√
α)

√
α}

Γ(α)
.

Gamma distributions are right skew, and for α = k/2, the distribution is

a chi square distribution with k degrees of freedom, k = 1, 2, . . . . When

α = 1, we have an exponential distribution, and the distribution converges

to a normal distribution as α → ∞.
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We next compare the asymptotic variances of the unmixing matrix es-

timates with the same nonlinearity and for Ω = Ip. For the comparison,

write

AREs2,d =
ASV (γ̂d

jl) + ASV (γ̂d
lj)

ASV (γ̂s2
jl ) + ASV (γ̂s2

lj )
,

for the asymptotic relative efficiency of the squared symmetric estimate with

respect to the deflation based estimate, and similarly for AREs2,s. Notice

that AREs2,d and AREs2,s depend on the two marginal distribution as well

as on the chosen nonlinearity. We then plot the contour maps of the ARE’s

as functions of the shape parameters of the exponential power or gamma

distributions with nonlinearities pow3 and tanh. The equal efficiency is given

by the ARE value 1 and can be found using the bar with contour thresholds

on the right-hand side of the figures, or AREs2,d = 1 can be found where

one of the components is Gaussian, and the color of AREs2,s = 1 where the

two distributions are the same. The darker the point the higher the relative

efficiency.

In Figure 2, the map is mostly darker than the color of AREs2,d = 1,

and hence the squared symmetric FastICA estimator is in most cases more

efficient than the deflation-based estimator. Figure 3 shows that the areas

where ASV (γ̂s
jl) > ASV (γ̂s2

jl ) and ASV (γ̂s
jl) < ASV (γ̂s2

jl ) are almost equally

large, but the differences in favour of the squared symmetric estimator are

larger. They also occur in cases where the separation of the components is

difficult, and hence the efficiency is important.

In Table 1 the values of AREs2,s and AREs2,d are displayed for different

pairs of source distributions, for pow3 in the upper triangle and for tanh in

the lower triangle. Table 1 thus presents a sample of the values of Figure 2
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and Figure 3 in a numerical form.

Table 1: Values of AREs2,s (on the top) and AREs2,d (on the bottom) for different

pairs of distributions. L=Laplace distribution=EP1=exponential power distribution with

β = 1, N=Normal distribution=EP2, U=Uniform distribution, G1=Gamma distribution

with α = 1. Upper triangle for pow3 and lower triangle for tanh.
L EP1.5 EP1.75 N EP 3 EP4 U G1 G3 G6

L 1 0.87 0.96 1.10 0.79 0.74 0.70 0.84 1.00 0.94

EP1.5 1.05 1 1.02 1.46 0.87 1.05 1.61 0.87 0.84 0.95

EP1.75 1.21 1.10 1 1.72 1.53 2.21 3.75 0.95 0.93 0.92

N 1.50 1.79 1.90 – 3.09 3.85 5.49 1.03 1.13 1.25

EP3 0.91 0.99 1.29 2.23 1 1.23 1.45 0.86 0.74 0.77

EP4 0.85 1.13 1.55 2.32 1.05 1 1.13 0.81 0.71 0.86

U 0.87 1.46 1.90 2.45 1.24 1.08 1 0.76 0.74 1.20

G1 0.97 0.94 1.12 1.43 0.82 0.74 0.76 1 0.84 0.87

G3 1.15 0.93 0.97 1.67 0.85 1.18 1.39 1.07 1 0.93

G6 1.27 1.10 0.92 1.79 1.16 1.70 1.91 1.18 1.06 1

L EP1.5 EP1.75 N EP 3 EP4 U G1 G3 G6

L 2 1.12 1.02 1 1.07 1.15 1.34 1.46 1.53 1.18

EP1.5 1.16 2 1.02 1 0.87 0.55 0.40 1.03 1.26 1.89

EP1.75 1.03 1.21 2 1 0.90 0.83 0.81 1.00 1.04 1.15

N 1 1 1 – 1 1 1 1 1 1

EP3 1.19 2.44 1.12 1 2 1.13 1.01 1.02 1.17 1.72

EP4 1.42 1.17 1.04 1 1.42 2 1.23 1.04 1.35 2.60

U 2.24 1.02 1.01 1 1.14 1.34 2 1.08 1.83 0.21

G1 2.32 1.18 1.03 1 1.19 1.74 2.24 2 1.20 1.05

G3 1.12 2.29 1.24 1 2.54 0.81 0.81 1.17 2 1.39

G6 1.04 1.15 1.91 1 0.94 0.93 0.94 1.05 1.29 2

4.3. Finite-sample efficiencies

We compare the finite-sample efficiencies of the estimates in a simulation

study using the same two-dimensional settings withΩ = Ip as in the previous

section. In each setting we consider the average of n(p− 1)D̂2 which has the

limiting expected value ASV (γ̂jl) + ASV (γ̂lj). Thus the simulation study

also illustrates how well the asymptotic results approximate the finite-sample

variances. Let Γ̂
s2

i and Γ̂
s

i , i = 1, . . . ,M , be the estimates from M samples.
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Figure 2: Contour maps of AREs2,d when Ω = Ip and the source distributions are ex-

ponential power (EP) or gamma (Gamma) distributions with varying shape parameter

values. The nonlinearities are pow3 on the top row and tanh on the bottom row.

Then the finite sample asymptotic relative efficiency is estimated by

̂AREs2,s =

∑M
i=1{D(Γ̂

s

iΩ)2}∑M
i=1{D(Γ̂

s2

i Ω)2}
.

In Table 2, we list the estimated values of AREs2,s and AREs2,d for the

same set of distributions as in Table 1. For each setting, M = 10000 samples

of size n = 1000 are generated. In most of the settings, the ratios of the

averages are close to the corresponding asymptotical values. When both

components are nearly Gaussian, a larger sample size than 1000 is required

for ̂AREs2,s and ̂AREs2,d to converge to AREs2,s and AREs2,d, respectively.

Also, if E[G(zij)] ≈ E[G(zil)], then the extraction order of the deflation-
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Figure 3: Contour maps of AREs2,s when Ω = Ip and the source distributions are ex-

ponential power (EP) or gamma (Gamma) distributions with varying shape parameter

values. The nonlinearities are pow3 on the top row and tanh on the bottom row.

based estimate is not always the one which is assumed when computing the

asymptotical variances. This may have a large impact on the efficiency of

the deflation-based estimate.

In Figure 4 we plot the contour maps of the average of n(p − 1)D̂2 over

200 simulation runs for deflation-based, symmetric and squared symmetric

FastICA estimates using tanh. Each setting has two independent components

with exponential power distribution and varying shape parameter values,

and n = 1000. Also the contour maps of the limiting expected values are

given, and the corresponding maps resemble each other rather nicely. The

23



Table 2: Values of ̂AREs2,s (on the top) and ̂AREs2,d (on the bottom) computed from

10000 samples of size n = 1000 for different pairs of distributions. L=Laplace distri-

bution=EP1=exponential power distribution with β = 1, N=Normal distribution=EP2,

U=Uniform distribution, G1=Gamma distribution with α = 1. Upper triangle for pow3

and lower triangle for tanh.
L EP1.5 EP1.75 N EP 3 EP4 U G1 G3 G6

L 0.98\0.86 0.94 1.09 1.17 0.80 0.75 0.73 0.85 0.88 0.98

EP1.5 1.03 1.01\0.95 1.15 1.34 0.94 1.07 1.49 0.92 0.89 0.95

EP1.75 1.27 1.27 1.14\1.13 1.07 1.66 2.10 3.13 1.02 1.06 1.08

N 1.47 1.65 1.12 – 2.22 2.99 4.13 1.05 1.25 1.25

EP3 0.92 1.06 1.59 1.91 1.31\1.07 1.08 1.45 0.85 0.77 0.90

EP4 0.84 1.14 1.67 2.12 1.06 1.07\1.00 1.14 0.81 0.76 0.98

U 0.87 1.41 1.89 2.22 1.25 1.08 1.00\1.00 0.76 0.82 1.23

G1 0.96 0.97 1.18 1.43 0.84 0.76 0.76 0.99\0.84 0.88 0.93

G3 1.15 0.94 1.12 1.51 0.87 1.01 1.38 1.13 1.10\0.83 0.90

G6 1.31 1.21 1.09 1.23 1.19 1.47 1.86 1.25 1.15 1.11\0.93
L EP1.5 EP1.75 N EP 3 EP4 U G1 G3 G6

L 1.93\1.79 1.12 1.02 1.00 1.09 1.18 1.38 1.47 1.53 1.18

EP1.5 1.14 1.82\1.47 1.14 0.98 1.66 1.54 0.85 1.04 1.29 1.40

EP1.75 1.03 1.24 1.14\1.04 1.03 1.18 0.89 0.72 1.00 1.04 1.11

N 1.00 0.98 1.05 – 0.89 0.91 0.92 1.00 1.00 1.00

EP3 1.18 1.78 1.19 0.93 1.82\1.78 1.35 1.01 1.03 1.25 1.50

EP4 1.42 1.41 1.01 0.97 1.40 1.93\1.94 1.23 1.05 1.42 1.52

U 2.14 1.00 0.99 0.99 1.13 1.33 1.92\1.94 1.11 1.64 1.30

G1 2.23 1.18 1.03 1.00 1.20 1.44 2.27 2.04\1.66 1.22 1.06

G3 1.43 1.99 1.20 0.99 1.79 1.85 1.03 1.26 2.18\1.57 1.36

G6 1.05 1.83 1.21 0.99 1.35 1.05 0.91 1.06 1.49 1.29\1.36

asymptotical results thus provide good approximations already for n = 1000.

5. Conclusions

In this paper we reviewed in a unified way the estimating equations,

algorithms and the asymptotic theory of the classical deflation-based and

symmetric FastICA estimators and provided similar tools and derived simi-

lar results for the novel squared symmetric FastICA estimator. The squared

symmetric FastICA estimator can be derived as the regular symmetric Fas-

tICA estimator, but replacing the analytically cumbersome absolute values
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Figure 4: Contour maps of the average of n(p − 1)D̂2 over 200 simulation runs with

deflation-based, symmetric and squared symmetric FastICA estimates using tanh on the

top and the contour maps of the limiting expected values on the bottom. Two independent

components with exponential power distribution and varying shape parameter values were

used.

in the objective function by their squares. The asymptotic variances were

used to compare the three methods in numerous different situations.

The asymptotic and finite sample efficiency studies imply that although

none of the methods uniformly outperforms the others, the squared symmet-

ric approach has the best overall performance under the considered combina-

tions of source distributions and nonlinearities. Also a crude ranking order,

(deflation-based, symmetric, squared symmetric), from worst to best can be

given. Thus the use of the squared symmetric variant over the two other
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methods is highly recommended.

Appendix

For the proof of Theorem 1, write

T̂ (γ̂) =
1

n

n∑
i=1

g(γ̂T (xi − x̄))(xi − x̄) and

T̂ 2(γ̂) =
1

n

n∑
i=1

G(γ̂T (xi − x̄))
1

n

n∑
i=1

g(γ̂T (xi − x̄))(xi − x̄).

The deflation-based, symmetric and squared symmetric FastICA estimators

Γ̂
d
= (γ̂d

1, . . . , γ̂
d
p)

T = Γd(X), Γ̂
s
= (γ̂s

1, . . . , γ̂
s
p)

T = Γs(X) and Γ̂
s2

=

(γ̂s2
1 , . . . , γ̂s2

p )T = Γs2(X) are defined as follows.

Definition 5. The deflation-based, symmetric and squared symmetric Fas-

tICA estimates Γ̂
d
, Γ̂

s
and Γ̂

s2
solve the following sets of estimating equations

T̂ (γ̂j) = Ŝ

(
j∑

l=1

γ̂ lγ̂
T
l

)
T̂ (γ̂j), j = 1, . . . , p,

γ̂T
l T̂ (γ̂j) π̂j = γ̂T

j T̂ (γ̂ l) π̂l and γ̂T
l Ŝγ̂j = δlj, j, l = 1, . . . , p,

γ̂T
l T̂ 2(γ̂j) = γ̂T

j T̂ 2(γ̂ l) and γ̂T
l Ŝγ̂j = δlj, j, l = 1, . . . , p,

respectively.

To prove Theorem 1, we need the following straightforward result:

Lemma 1. The second set of estimating equations γ̂T
j Ŝγ̂ l = δlj, j, l =

1, . . . , p yields to

√
n (γ̂jj − 1) = −1

2

√
n (Ŝ − Ip)jj + oP (1) and

√
n γ̂jl +

√
n γ̂lj = −√

n Ŝjl + oP (1). (5)
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Proof of Theorem 1 (iii)

Let us now consider the first set of estimating equations. To shorten the

notations, write T̂ 2(γ̂j) = T̂ 2j. Now

√
n γ̂T

l T̂ 2j =
√
n (γ̂ l − el)

T T̂ 2j +
√
n eT

l (T̂ 2j − νjλjej).

By Taylor expansion and Slutky’s Theorem, we have

√
n (T̂ 2j − νjλjej) =

√
n (T 2j − νjλjej)− (μjλj + νjτj)eje

T
j

√
n x̄

+ (λ2
jeje

T
j + νjΔj)

√
n (γ̂j − ej) + oP (1),

where Δj = E[g′(zij)ziz
T
i ]. Consequently,

√
n γ̂T

l T̂ 2j =
√
n (γ̂ l − el)

Tνjλjej + eT
l (
√
nT 2j − (μjλj + νjτj)eje

T
j

√
n x̄

+ (λ2
jeje

T
j + νjΔj)

√
n (γ̂j − ej)) + oP (1)

=νjλj

√
n γ̂lj + eT

l

√
nT 2j + νjδj

√
n γ̂jl + oP (1).

According to our estimating equations, above expression is equivalent to

√
n γ̂T

j T̂ 2l = νlλl

√
n γ̂jl +

√
n eT

j T 2l + νlδl
√
n γ̂ lj + oP (1),

which means that

(νlλl − νjδj)
√
n γ̂jl − (νjλj − νlδl)

√
n γ̂lj =

√
n eT

l T 2j −
√
n eT

j T 2l + oP (1).

From (5) in Lemma 1, we have
√
n γ̂lj = −√

n (γ̂jl + Ŝjl) + oP (1), and thus

(νj(λj − δj) + νl(λl − δl))
√
n γ̂jl

=
√
n (eT

l T 2j − eT
j T 2l) + (νlδl − νjλj)

√
n Ŝjl + oP (1),

which proves the Theorem.
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The densities of z1 and z2 in Section 2.5 are given by

fi =
4∑

j=1

πijN(μij, σ
2
ij), i = 1, 2,

where N(μ, σ2) denotes the Gaussian density function with mean μ and vari-

ance σ2, and the (rounded) parameter values are π11 = 0.09, π12 = 0.43,

π13 = 0.43, π14 = 0.04, π21 = 0.15, π22 = 0.31, π23 = 0.45, π24 = 0.09, μ11 =

−1.76, μ12 = −0.34, μ13 = 0.54, μ14 = 1.79, μ21 = −1.71, μ22 = −0.36,

μ23 = 0.48, μ24 = 1.66, σ2
11 = 0.13, σ2

12 = 0.50, σ2
13 = 0.28, σ2

14 = 0.13,

σ2
21 = 0.11, σ2

22 = 0.26, σ2
23 = 0.11, σ2

24 = 0.11.
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