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REVIEW ARTICLE

Electronic shell structures in bare and protected metal 
nanoclusters

Hannu Häkkinen

Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland

ABSTRACT
This short review discusses the concept of the electronic shell 
structure in the context of metal nanoclusters. Electronic shell 
structure is a natural consequence of quantization of fermionic 
states in a quantum confinement, where the symmetry of  
the confining potential creates energetically close-lying sets 
of states that reflect the symmetry of the potential. It was 
introduced in cluster physics in early 1980s and initially 
influenced greatly by the related model of nuclear shell 
structure from 1950’s. Three application areas are discussed 
consisting of free gas phase clusters, clusters supported by 
insulating oxides or oxide thin films, and clusters that are 
synthesized by wet chemistry and stabilized by an organic 
ligand layer. In all these systems, the concept of electronic 
shell structure has turned out to be useful to organize a vast 
amount of observations on abundance, stability, chemical 
reactivity and optical properties. Although this review focuses 
on theoretical concepts and computational results, relevant 
experiments are discussed as well.

 1.  Introduction: quantum size effects and the fundamental energy gap

Every undergraduate textbook of solid state physics contains a discussion of a 
‘perfect theorist’s metal’: the three-dimensional electron gas of N electrons 
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confined in volume V, where the electrons interact only by virtue of being fermi-
ons, i.e. obeying the Pauli exclusion principle. In such system, the dispersion 
relation for the electron states is parabolic (E ∝ k2) where k is the wave vector in 
reciprocal space. The available N/2 quantum states are filled by N electrons up to 
the Fermi energy EF. The density of electron states D(E) follows a square-root 
behavior as a function of the electron energy, 

which leads to a simple estimate of D at the Fermi energy
 

In macroscopic metal, the density of states has a finite value at EF. As discussed 
long ago by Fröhlich [1] and Kubo [2], confining electrons in a nanometer-scale 
volume discretizes the allowed levels and thus can create an energy gap Δ also 
at the Fermi level (Figure 1). The existence of this fundamental gap (or ‘band 
gap’) changes profoundly the physical properties of the system since the external 
perturbations thus need to have a minimum energy to excite electrons over the 
band gap. Conventionally, the magnitude of the gap has been taken as a measure 
to classify systems into ‘metallic’ (with Δ approaching zero), ‘semiconducting’ or 
‘insulating’. For practical matters, systems have been considered ‘metallic’ when 
Δ is of the order of the thermal energy at room temperature (kBTR ≈ 25 meV).

This criterion leads to interesting predictions regarding the critical size (diame-
ter dcr) where Δ exceeds kBTR as the size of the system is decreased. From Equation 
(2), the mean spacing of electron levels at EF is simply
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Figure 1. A schematic representation of the electron states in bulk metal (left) and in a nanoparticle 
(right). The energy gap Δ is zero in the bulk metal while the gap is nonzero in the nanoparticle. EF 
denotes the Fermi energy.
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Note that Equation (3) is equivalent to Kubo’s original result (Δ = 4EF/3Natoms) 
which was derived by assuming a monovalent metal and ignoring the spin degen-
eracy of electron states [2]. Clearly, Δ approaches zero as N grows. Knowing the 
value of the Fermi energy from the free-electron model for the metal in question 
as a material parameter [3], Equation (3) yields predictions for the critical size, 
both in terms of diameter (dcr) and the number of electrons (Ncr = 2 EF/3Δ), when 
Δ ≈ kBTR and quantum size effects will emerge. Table 1 shows these estimates. It 
is interesting to note that while the values of Ncr vary for more than sixfold, the 
varying valence electron densities equalize the differences and the dcr values are 
consistently within 1.6–2 nm for different metals.

In addition to creating a fundamental band gap at the Fermi energy, decreasing 
the size of metal clusters into nanometer-scale has another fundamental effect for 
single-electron levels, as will be discussed next.

2.  Electron shell structure

Shell structure, i.e. bunching of single-electron levels into groups of (nearly) 
degenerate energy, is a fundamental property of fermions confined in small sys-
tems. It is observed for nucleons in atomic nuclei, electrons in ordinary atoms, 
in metal nanoclusters and in semiconductor quantum dots, and arises from the 
symmetry properties of the Schrödinger equation governing the solutions to their 
quantum states. Historically, the concept of fermionic shell structure and sym-
metry principle in quantum mechanics were tied together in the Nobel prize of 
Physics 1963. Half of the prize was given to Eugene Paul Wigner ‘for his contribu-
tion to the theory of the atomic nucleus and the elementary particles, particularly 
through the discovery and application of fundamental symmetry principles’ and 
the other half was shared by Maria Goeppert Mayer and J. Hans D. Jensen ‘for 

(3)Δ =
1

D
(
E
F

) =
2E

F

3N

Table 1. Critical diameters and number of electrons for metal clusters where the ‘Kubo gap’ equals 
the thermal energy. Values for the free electron density and Fermi energy are taken from Ref. [3].

Z nfree (1/nm3) EF (eV) Ncr dcr (nm)
Li 1 47.0 4.72 126 1.7
Na 1 26.5 3.23 86 1.8
K 1 14.0 2.12 57 2.0
Cu 1 84.5 7.00 187 1.6
Ag 1 58.5 5.48 146 1.7
Au 1 59.0 5.51 147 1.7
Mg 2 86.0 7.13 190 1.6
Ca 2 46.0 4.68 125 1.7
Zn 2 131.0 9.39 250 1.5
Al 3 180.6 11.63 310 1.5
Ga 3 153.0 10.35 276 1.5
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their discoveries concerning nuclear shell structure’.1. In fact, theories first worked 
out for nuclear shell structure in 1950’s greatly fertilized the field of metal cluster 
physics in 1980’s and 1990’s.

The basics of the shell structure can be grasped by considering quantum 
mechanics of non-interacting fermions in simple forms of radial potentials, solved 
routinely as an exercise in undergraduate physics courses. Figure 2 shows the 
degeneracies (2(2l + 1)) of solutions to the radial Schrödinger equation for the 3D 
infinite spherical well with a ‘square box shape’, organized to the increasing order 
in energy according to the angular momentum (l) sub-shells [4]. Note that it is 
customary to label each set of sub-shells by a ‘principal’ quantum number starting 
always from n = 1 (1s, 1p, 1d, …; 2s, 2p, 2d, …). This notation differs from electron 
shells in hydrogen-like atoms where additional rules between quantum numbers 
arise due to the 1/r potential between electrons and the point-like nucleus. Figure 2  
clearly shows that angular momentum sub-shells at higher energies start to group 
together; this is seen already in the set of 2d–1h–3s subshells that accommo-
date electrons between the major shell-closing (‘magic’) numbers of 58 and 92. 
Furthermore, details of the radial potential affect sensitively this grouping. For 
instance, the infinite harmonic well (V ∝ r2) has high degenerate levels at strong 
magic numbers of 40, 70, 112, 168…, but when the shape of the potential is 
modified by increasing anharmonicity, finally reaching a shape of the square well, 
many of the sub-shells split and group together in a new way. This gives rise to 
the often-quoted series of magic numbers 2, 8, 18, 20, 34, 40, 58, … (Figure 3).

Deformation from 3D radial symmetry modifies the shell structure in a differ-
ent way [5,6]. Reducing the spherical symmetry to spheroidal, two of the principal 
axes of the cluster remain the same while the third one is different. This gives 

Figure 2. Shell structure of non-interacting fermions in an infinite spherical well. Solutions to the 
radial Schrödinger equation are grouped into sub-shells according to the radial quantum number 
(l) with degeneracy of 2(2l + 1). The cumulative number of fermions needed to fill all levels up to 
each sub-shell is shown. The shells are ordered according to an increasing momentum (x-axis). 
Reproduced by permission from Ref. [4]. Copyright American Chemical Society 1991.
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rise to prolate (cigar-like) and oblate (disk-like) shapes. In the field of nuclear 
physics, Nilsson [7] worked out the effect of spheroidal deformations to nucleon 
shell structure in 1950’s and similar ideas were applied for alkali metal clusters 
by Clemenger in 1980’s [8]. The ‘Clemenger–Nilsson’ model was successful in 
explaining the observed relative abundance (based on cluster energetics and 
stability) of sodium clusters in the early molecular beam experiments in 1980’s 
[9]. Shape deformations are discussed more below in the context of models for 
interacting electron gas.

3.  Interacting electron gas – the jellium model

The Hamiltonian problem for condensed matter systems
 

is easy to write up but impossible to solve accurately. The reason lies in ψ which 
is the hugely complicated many-body wave function of the system, depending 
on principle on the positions of all the atomic nuclei {Ri, i = 1, …, Na} and all the 
electrons {rj, j = 1, …, Ne}:
 

(4)HΨ = EΨ

(5)Ψ = Ψ
(
�

1
,… ,�

Na
;�

1
,… , �

Ne

)

Figure 3. Energy levels of non-interacting fermions in various 3D infinite potential wells (from left: 
harmonic, intermediate anharmonic, square well). The numbers above levels denote cumulative 
shell-filling electron counts. Quantum numbers (principal and angular momentum) specifying 
each shell are given on the right. Reproduced by permission from Ref. [6]. Copyright American 
Physical Society 1993.
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Even after applying the Born–Oppenheimer approximation (which decouples 
nuclear and electronic motion and considers the electronic system adiabatically 
relaxed for each fixed configuration of nuclei) the problem is unsolvable due to the 
many-body nature of the electron–electron interaction. Since 1960s, the density 
functional theory (DFT) has facilitated a convenient treatment of this many-body 
problem, by reducing the number of important degrees of freedom from 3Ne to 
just 3 – defining the density of the electrons ρ(r) in the ground state as the key 
variable instead of ψ. A classic review of how various theoretical treatments have 
been applied in the study of metal clusters is provided by Brack [5], here the dis-
cussion focuses only on the key points to treat the electron–electron interactions 
in the electron gas model and what additional insight the electron gas models are 
able to yield beyond the ‘toy models’ discussed above.

In DFT, the total energy of the electron–ion system in the electronic ground 
state is a function of the (valence) electron density ρ(r) of the ground state: 
(Equation (6))

where Ts is the kinetic energy of a single-particle (Kohn–Sham, KS) reference 
system with the same electron density as the true system, Exc is the quantum-
mechanical exchange-correlation energy, VI is the Coulomb energy between ion 
cores and valence electrons, the fourth term is the Coulomb self-energy of the 
valence electrons and EI is the energy of the ion system. The electron density is 
expressed as a sum over occupied states whose wave functions are represented by 
the KS virtual orbitals φ(r) (Equation (7)):

where w is the number of valence electrons per atom in the system of N atoms. In 
the limit of weak ion core – valence electron interactions (good approximation for 
instance for alkali metals), the density of the (positive) ion cores is approximated 
as constant in space over the volume of the cluster, with the normalization that it 
produces the total positive background charge that neutralizes the total negative 
charge of the valence electrons (Equation (8))

This approximation is commonly termed as the jellium model – perhaps due to 
the fact that the electron gas is living in a ‘jelly-like’ medium made out of averaged 
ion density instead of discrete ions. This model, with several sophistications, was 
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broadly applied in many of the pioneering theoretical studies in the field of metal 
cluster physics in 1980’s and early 1990s [5,10,11].

Apart from simple non-spherical deformations such as spheroidal shapes, it 
is also of interest to study electron shell structure in jellium systems where the 
background density has various polyhedral shapes. This is relevant particularly 
for ligand-stabilized metal clusters where the metal cores often assume polyhedral 
shapes due to constraints from the ligand shell. Due to numerically efficient DFT 
codes, it is now possible to solve the KS equations virtually for any shape of the 
background jellium density.

Figure 4 shows symmetry analyses of KS states solved self-consistently for five 
common polyhedra and their comparison to a sphere. The systems were solved 
for 92 electron states inside the polyhedra, out of which 58 states were occupied 
providing an electron density corresponding to the density of bulk gold, and 
the electron–electron interaction was treated by the local density approximation 
(LDA). The symmetry of the KS wave functions φi(r) was analyzed by decom-
posing them into angular momenta by calculating weights ci,l(R0) (Equation (9))

(9)c
i,l

(
R
0

)
=
∑

m
∫
R
0

0

r
2
dr|�

i,lm
(r)|2

Figure 4. Electron shells obtained in a fixed-background DFT–LDA jellium calculation for various 
shapes (shown on top) of the background density. The systems contain 58 electrons corresponding 
to the 6s-electron density of bulk gold. The LUMO state (‘59th electron’) is marked by a dashed 
vertical line (Kaappa and Häkkinen, unpublished).
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where (Equation (10))

is the projection of a given wave function onto spherical harmonics Ylm. Here, R0 
is a radius of a sphere where the symmetry analysis was done.

58 and 92 are magic shell-closing numbers for the spherical well as shown in 
Figures 2 and 3. Figure 4 shows that all the considered polyhedral (icosahedron, 
dodecahedron, decahedron, cuboctahedron and octahedron) preserve the same 
shell ordering as seen in the spherical system: 1s, 1p, 1d, 2s, 1f, 2p and 1g for the 
occupied states and 2d, 3s and 1h for the unoccupied states. However, the poly-
hedral shapes split many of the angular momentum shells. 1p and 2p shells are 
split in the decahedron, 1d and 2d are split in decahedron, cuboctahedron and 
octahedron, and 1f, 1g and 1h shells are split in all polyhedra. Cuboctahedron 
and octahedron mix some of the states with different angular momenta together.

DFT – jellium calculations and state symmetry analysis can be done also for 
quasi-2D systems. Figure 5 shows circular, hexagonal and triangular disks with 
a thickness corresponding to two monolayers of gold containing 60 electrons at 
the density of bulk gold, with several unoccupied states solved as well. State sym-
metries can be identified using a similar decomposition into angular momenta 
as for 3D systems. Figure 6 visualizes the electron orbitals of some of the lowest 
energy states for the three considered shapes, making it is easy to visually identify 
most of the low angular momentum states. It is important to realize that the flat 
systems obey drastically different shell-closing sequence from 3D systems. The 

(10)𝜙
i,lm

(r) = ∫ dr̂Y
∗
lm
(r̂)𝜑

i
(r⃗)

Figure 5.  Electron shells obtained in a fixed-background DFT–LDA jellium calculation for flat 
circular (disk), hexagonal, and triangular shapes of the background density. The systems contain 
60 electrons corresponding to the 6s electron density of bulk gold and a thickness of two gold 
monolayers. The LUMO state (‘61st electron’) is indicated by the dashed vertical line (Kaappa and 
Häkkinen, unpublished).
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overall degeneracy of the states is either 1 (s-states) or 2 (all the higher states), 
giving a sequence of ‘magic numbers’, for instance, for a circular disk as 2, 6, 10, 
12, 16, 20, 24, … Figure 5 shows that six is quite a strong magic number (meaning 
that the energy gap to the next shell is large) for all of the considered 2D shapes 
(circular, triangular and hexagonal). This may in fact be connected to the concept 
of ‘aromaticity’ in carbon clusters or carbohydrates: the aromaticity of the benzene 
molecule C6H6 arises from six delocalized C(p) electrons forming a delocalized 
pi-system in a hexagonal confinement, and the configuration is thus analogous to 
1S2 1P4. In a similar way, stability of gas-phase Au6 cluster was attributed back in 
2000 to the shell-closing of six Au(6s) electrons in a 2D triangular structure [12]. 
It can be remarked that a combined experimental and theoretical study in 2003 
clearly showed the importance of the six-electron system as a stabilizing factor in 
gas phase experiments for a series of planar Au5X

+ clusters [13].
The 2D jellium treatment can straightforwardly be extended to shell (or ‘onion 

shell’) structures, by defining volumes (shells) of varying background density 
or missing background density and solving for the self-consistent electronic 
structure. In fact, by doing so, one recover yet another series of magic electron 

Figure 6. Shapes of the electron orbitals corresponding to the 15 lowest energy states of the flat 
clusters shown in Figure 5 (Kaappa and Häkkinen, unpublished).
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numbers 2, 8, 18, 32, 50, 72, … that correspond to 1S2 1P6 1D10 1F14 1G18 1H22 
… shell fillings, i.e. with ever-larger angular momenta but lacking radial nodes. 
This series of numbers corresponds to the series of magic numbers for ‘spherical 
aromaticity’ [14].

As the examples shown above, considering electron shells in different pre-de-
fined shapes of the positive background density give useful information on the 
effect of the shape on the splitting of angular momentum sub-shells. However, one 
can ask an important question: given the number of electrons, what is the optimal 
shape of the electron cluster, corresponding to the minimal energy? A conventional 
approach to this question involves studies of a large number of different fixed 
shapes and making conclusions from comparison of their total energies. This 
approach is completely analogous to a study into optimal structure (lowest-energy 
isomer) of clusters with real atoms. However, an elegant method development in 
mid-1990s introduced the ‘ultimate’ jellium model where the positive background 
density is allowed to freely deform during the iterative solution of the electronic 
problem so that in the converged , the system is charge-neutral in each point in 
space [15]. This brings about a special situation where all the Coulomb energies 
in the system (electron–electron, electron–ion and ion–ion) cancel exactly and 
the energetics is defined only by the quantum mechanical kinetic energy of the 
KS electrons and the exchange-correlation energy:

 

Another special feature of this model is that there are no free parameters, and 
the bulk limit of the model gives a universal ‘jellium material’ with the electron 
density parameter of rs = 4.18 Bohr units (rs is defined as the radius of a sphere 
that holds one electron). This density, most closely realized by alkali metals sodium 
and potassium, minimizes the total energy per electron in an infinite bulk electron 
gas. A slight drawback of the model is that only neutral systems can be considered 
due to the requirement of charge cancellation by electrons and the background 
at each point in space.

Figures 7 and 8 shows the optimal shapes of electron clusters from 2 to 22 
electrons, calculated from the ultimate jellium model with LDA and taking spin 
polarization into account. It is important to realize that the obtained shapes are 
free from any shape constraints, i.e. all possible multipolar deformations can occur. 
The evolution of the shape for the smallest clusters from 2 to 8 electrons is easily 
understood by considering shapes of the single-particle s, px, py and pz orbitals. 
3- and 4-electron clusters have one and two electrons in one of the p-orbitals – say 
px, which makes the electron density axially symmetric and prolate. The initial 
symmetry degeneration of p orbitals is broken by the Jahn–Teller deformation 
which favors shape deformation rather than a symmetric shape with paramag-
netic spin configuration (such as occupation of spin triplet 1s2 1px

2/3py
2/3pz

2/3 for a 
spherical 4-electron cluster). The 5th and 6th electrons go to the py orbital, making 
the 6-electron cluster axially symmetric oblate. Note that Figure 5 indicates 6 as 

(11)E[�] = T
s
[�] + E

xc
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Figure 7. Left: Ground state densities of electron cluster from two to eight electrons, obtained 
from the ‘ultimate’ jellium model. The 3D constant density surface is plotted at the value of 38% of 
the bulk density. Reproduced by permission from Ref. [15]. Right: orbitals for the valence electrons 
of Na3

−, Na5
− and Na7

− from atomistic DFT calculations. Angular-dependent photoelectron 
spectroscopy of these clusters can be interpreted using this orbital scheme. Reproduced by 
permission from Ref. [16]. Copyright 2014 American Chemical Society.

Figure 8. Same as Figure 7, but from 9 to 22 electrons. Reproduced by permission from Ref. [15].
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the magic electron number for circular, hexagonal and triangular disks as well –  
there the orbital filling is identical to this case. Clusters with 7 and 8 electrons fill 
the remaining pz orbital which makes the 8-electron cluster a magic, spherical 
1s2 1p6 octet.

Atomistic DFT calculations for sodium clusters have predicted minimum-
energy structures that rather well reflect the shapes of the electron density . As 
a recent example, photoelectron imaging spectroscopy of sodium cluster anions 
Na3

−, Na5
− and Na7

− [16]. was interpreted in terms of atomic structures and 
electron orbitals as shown in Figure 7.

Clusters with 9–20 electrons can be understood in terms of filling 1d and 2s 
orbitals (Figure 8). Generally, elongated shapes are observed in the beginning of 
the d-shell filling up to the mid-shell 13- and 14-electron clusters, after which 
the shapes turn oblate. Some of the clusters however are missing both axial and 
inversion symmetry. Likewise, 21- and 22-electron clusters can be understood in 
terms of the 1f shell filling.

Shape isomers exist and were largely discussed in the original paper. [15] For 
instance, two shapes were obtained with an almost degenerate energy for the 
18-electron cluster: a non-spherical shape as shown in Figure 8 and a spherical 
shape with a reduced density at the center (‘hollow-like’). Figure 9 demonstrates 
that even the 8-electron cluster, assumed usually as the spherical 1s2 1p6 octet 
configuration discussed above, has several isomeric shapes that are energetically 
quite close to each other. The shapes shown in Figure 9 suggest that these isomeric 

Figure 9.  Three shape isomers for the 8-electron cluster in the ‘ultimate’ jellium model. The 
converged shapes were started from electron densities shown on the right. The energies per 
electron are 8a: −1.831 eV; 8b: −1.855 eV; 8c: −1.841 eV; as compared to −1.915 eV for the ground 
state sphere shown in Figure 7 (Selenius and Häkkinen, unpublished).
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clusters could be understood as ‘clusters of electron clusters’, i.e. consisting of 
linked, spherical 2-electron systems. It is important to realize that a cluster with 
a ‘magic’ number of electrons may not always be spherical.

The ultimate jellum model discussed above deals with the ideal ‘jellium mate-
rial’ with rs = 4.18 Bohr units and may thus miss important electron–electron 
interaction effects when metal clusters with considerably smaller density (larger 
rs) need to be considered. In fact, a recent work by Aguado [17] studied a large 
number of structural isomers of Cs clusters up to 80 atoms. A remarkable exchange 
splitting was observed for many of the larger clusters, consistent with highly sym-
metric atomic structures. This brings an important new concept of a possibility 
to have ‘magnetic superatoms’ where the magnetism arises from the exchange 
interactions between delocalized electrons alone.

The remaining of this paper highlights three classes of systems where electron 
shell structure has played an important role for interpreting the physical properties 
of the system. First, a prototypical system of gas phase sodium clusters is briefly 
discussed. This is perhaps the best-known system that has been instrumental in 
the development of the field since the classic experiments in 1980s that connected 
the abundance and several physical properties of small sodium [9] and other alkali 
[18] clusters to electron shell models [5,6,10,11,19]. Second, flat gold clusters 
grown on insulating surfaces were predicted [20] to have observable quantum 
dot states which were later confirmed using scanning tunneling microscopy and 
spectroscopy techniques [21]. Finally, metal clusters that are synthesized by wet 
chemistry and stabilized by an organic ligand layer form an intriguing class of 
novel nano-structured materials. The ‘superatom’ model [22] that has been moti-
vated by the knowledge from gas phase cluster physics has turned out to be quite 
successful for rationalizing experimental observation particularly for systems that 
are close to spherical.

4.  Metal clusters in gas phase: sodium as the prototypical case

The electron shell structure of various metal clusters in gas phase has been 
extensively probed by photoelectron spectroscopy (PES). It is an attractive, 
‘non-intrusive’ method to probe the ‘intrinsic’ binding energy distribution of 
valence electrons in mass-selected clusters, without the need to couple the clusters 
to the environment as would be required in a conventional solid-state conductance 
experiment, which would both be technically very demanding and change the 
clusters’ intrinsic electronic structure. The method was pioneered in mid-1980s, 
first in studies of metal-oxide molecules [23] and later applied to a large number of 
studies of alkali, alkali-earth and noble metal clusters [24–37]. The laser excitation 
is routinely done with UV–vis lasers which cover a range of several electron volts 
in valence binding energies particularly for metal cluster anions whose electron 
affinity is typically of the order of 0.5–2 eV (which by definition is the binding 
energy of the ‘outermost electron’ or the ‘most weakly bound electron’). Studying 
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the cluster anions is beneficial also due to the fact that the PES gives information 
about the electron energy level structure of the clusters in the final neutral state –  
although, due to the vertical nature of the process, in the atomic configuration 
corresponding to the anion. In the theoretical side, several schemes based on the 
KS single electron concept are frequently used for interpreting the experimental 
binding energy distributions (photoelectron spectra) [29,33,34,38–45]. In fact, 
due to the lack of direct methods to determine the atomic structure of metal 
clusters in gas phase, it has become a practice to compare the KS density of states 
calculated for either single isomers or isomer ensembles (time-averaged over 
atomistic dynamic simulations) to experimental PES data. This allows for indirect 
assignment of the plausible structures in several cases. Electron shell effects are 
clearly seen for smaller clusters in the PES data, as an example of the shell closing 
for sodium cluster cations at 40 electrons, see Figure 10, but atomic packing for 
certain ‘magic’ sizes such as the icosahedral Na55

+ is strongly suggested by the data 

Figure 10. Left: Photoelectron spectra of sodium cluster cations with 41, 42 and 59 atoms (40, 41 
and 58 electrons, respectively, three lower panels) compared to DFT simulations of the electron 
density of states of a neutral, approximately spherical Na40 cluster [44] shown in the top panel. 
The progression of the observed PES peaks matches very well with the predicted electron shell 
structure around 40 electrons, showing the successive emergence of 1f, 2p and 1g shells. Right: 
Comparison of the PES data of Na55

+ to the calculated [42] density of states of the icosahedral 
Na55

+. Based on this comparison, 1f, 2p and 1g shells can be assigned in the PES data. The dashed 
lined in the top panel denotes the unoccupied part of the density of states. Reproduced by 
permission from Ref. [26]. Copyright 2002 American Physical Society.
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as well (Figure 10). Recent extensive DFT calculations [30,31,45] seem to agree 
that electron shell effects are mostly dominant up to about 40 electrons, while 
icosahedral Mackay packing motif is clearly observed for the expected sizes of 
55, 147 and 309 atoms, with anti-Mackay face-by-face growth dominating in the 
intermediate ranges.

Recently, Köster and co-workers [46] suggested an interesting possibility to 
have a magnetic cluster Na55

+, arising from a special connection of highly sym-
metric (icosahedral) atomic structure and a filling of an electronic sub-shell (Gg 
point symmetry) with 54 electrons.

5.  Two-dimensional shell structure: gold clusters on supported oxides

Recent progress in the controlled growth of ultrathin (a few monolayers, ML, 
thick) insulating alkali metal-halide or metal-oxide films has made it possible to 
fabricate well-defined substrates for spectroscopic studies of metal particles and 
molecule–metal systems [47–54]. While these films are thick enough to isolate an 
adsorbate electronically from the metal support, they are thin enough to enable 
tunneling from or to the scanning tunneling microscope (STM) tip under imag-
ing conditions. This facilitates investigations of nanoscale metal–insulator–metal 
systems, where new insights can be gained into (i) factors defining the electronic 
structure, (ii) the charge state(s) of the adsorbate and (iii) the molecule–metal 
bond formation. Several studies have been focusing on gold adatoms and nano-
clusters on metal-oxides, motivated by the catalytic activity of such systems.

Walter et al. [20] considered the electronic structure of small gold clusters on 
magnesia surfaces by doing DFT computations on clusters bound to an oxygen 
vacancy (color center) on a bulk MgO or to non-defected thin MgO film supported 
by another metal. One such example is a flat Au20 cluster at the color center of 
magnesia (Figure 11). The atomic structure of the cluster can be described by 
‘19 + 1’, i.e. one atom pins the cluster to the defect and 19 atoms form a roughly 
hexagonal closely packed layer. Many metallic properties of bulk gold can be 
understood by considering it as a simple monovalent (6s) metal, and theory indeed 

Figure 11. A side view (a) and a top view (b) of a flat, roughly hexagonal model cluster Au20 bound 
at an oxygen vacancy on MgO. The blue sphere is the Au atom closest to the vacancy. Reproduced 
by permission from Ref. [20]. Copyright 2007 American Physical Society.
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predicts delocalized states in small gas phase gold clusters [55]. The computed 
electronic structure of the MgO-supported Au20 cluster is shown in Figure 12. As 
is well known, the gold 5s–6s electrons spread out to a wide mixed band (from the 
highest occupied level, denoted as zero energy, down to −7 eV in Figure 12). At the 
bottom of the band, several delocalized states can be recognized whose symmetry 
and energy ordering resemble a simple physical model of a 2D Fermi gas confined 
by a harmonic potential (Figure 13). In the middle of the band, the states are pre-
dominantly linear combinations of Au(5d) orbitals. Around the highest occupied 
cluster, delocalized ‘quantum dot’ states are again found. Counting the number and 
symmetries of the occupied states yields a sequence of 1s2 1p4 2s2 1d4 1f4 2p4, with 

Figure 12. (a) Left: Local density of electron states calculated for the system shown in Figure 11. 
The energy levels of the KS states with a clear delocalized character are indicated in the middle, 
and the corresponding wave functions are plotted on the right. The simulated STM pictures (b) 
and (c) show the two occupied, 2p-like states below the Fermi energy. (d) shows the sum of (b) 
and (c). (e) and (f ) show the first two empty states and (g) their sum. The atom positions are 
indicated by diamonds in (b), (c), (e), and (f ). Reproduced by permission from Ref. [20]. Copyright 
2007 American Physical Society.
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1g4 as the first unoccupied state. The sequence of the symmetries follows fully the 
quantum dot model, except that the degeneracies for subshells 1d–2s and 1f–2p 
are broken most likely due to the facts that the atomic symmetry of the cluster 
deviates from perfect circular symmetry, and the true effective potential in the 
DFT calculation for gold electrons deviate from the harmonic dot potential. The 
DFT computations in Ref. [20] also considered flat gold clusters supported on thin 
MgO films on top of metal supports, and found qualitatively similar conclusions 
for the existence of shell structures of delocalized Au(6s) states.

Since the highest occupied states of the gold clusters lie in the energy gap 
between the valence and conduction bands of the MgO support (Figure 12), the 
work of Walter et al. also predicted that the quantum dot states of gold clusters 
could be detected by means of STM. This was indeed realized by Lin et al. [21] who 
observed nucleation of small flat gold clusters on an ultrathin MgO/Ag support. 
A few of the observed clusters could be assigned to precise atomic geometries 
by comparing results to atomistic DFT simulations on corresponding systems 
that produced information on the symmetries of cluster states in the MgO band 
gap. A notable result from this work is that the flat clusters can be rather highly 
negatively charged, since the support transfers about 0.2 electron charge per clus-
ter atom, meaning that a cluster of about 20 atoms can have an excess charge of 
−4 units. This can have important consequences to catalytic reactions involving 
charge transfer to adsorbed molecules [56–59]. Similar charge transfer between 
the support and gold clusters takes place also on thick, doped oxide films, allowing 
for control of the dimensionality of electronic properties of oxide-supported gold 
nanostructures [51,60,61].

6.  Ligand-stabilized metal nanoclusters

In recent years, ever-increasing numbers of chemically stabilized (‘passivated’) 
metal clusters have been synthesized, and successful structural characterizations 
have opened a fascinating view on how metal atoms organize in the nanometer 

Figure 13. Energy levels and number of electrons for shell closings of the 2D harmonic oscillator 
model for a planar quantum dot. Reproduced by permission from Ref. [20]. Copyright 2007 
American Physical Society.
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scale [22,62–72]. The large database of solved structures has given a treasure trove 
for theoretical analysis. It has been confirmed numerous times that electron shell 
structure does play a role and is a useful concept for understanding electronic and 
optical properties of chemically stabilized metal clusters (the so called monolayer 
protected clusters or MPCs). This has led to the use of the concept of ‘superatom’ 

Figure 14.  Visualization of ligand-stabilized metal nanoclusters composed of three different 
metals: (a) Protected gold cluster, Au102(SC6H5COOH)44 (b) Protected aluminum cluster, 
Al50(C5(CH3)5)12 (c) Protected gallium cluster, Ga23(N(Si(CH3)3)2)11. The colored spheres denote 
metal atoms in various atom shells of the core and the organic layer is shown by sticks. A few 
ligands have been removed in the front for a better view of the core. Reproduced by permission 
from Ref. [74]. Copyright 2011 American Physical Society.
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Figure 15. Superatom analysis: angular momentum coefficient cl from Equation (9) (l = 0,1, … 
,6) as a function of the energy of the projected KS orbital for the systems shown in Figure 14. The 
HOMO state is at zero energy. Reproduced by permission from Ref. [74]. Copyright 2011 American 
Physical Society.

Table 2. The correlation between the electronic structure and binding characteristics of O2 for 
partially protected gold clusters 1–5, with binding of dioxygen at Au(111) as reference. Nega-
tive binding energy denotes endothermic adsorption. D and DC are the overall and metal core 
diameters, respectively, ne and ne

′ are the free electron counts of the fully and partially protected 
clusters, HL gap is the HOMO–LUMO gap of the fully protected cluster which is activated towards 
oxygen adsorption by removing part of the ligand layer. BE(O2) is the binding energy of dioxygen 
on the activated clusters and d(Au–O) and d(O–O) are the binding distance of dioxygen to gold 
and O–O bond distance, respectively. From Ref. [78].

D 
(nm)

DC 
(nm) ne

HL gap 
(eV)

Ligand 
removed ne

′
BE(O2) 

(eV)
d(Au–O) 

Å
d(Au–O) 

Å
1 Au11(PH3)7Cl3 1.2 0.9 8 2.03 Cl 9 0.95 2.17 1.31
2 Au25(SR)18

−1 1.6 0.9 8 1.25 Au2(SR)3 9 0.72 2.24 1.31
3 Au39(PH3)Cl6

−1 1.8 1.5 34 0.85 Cl 35 0.59 2.25 1.32
4 Au102(SR)44 2.2 1.5 58 0.53 Au(SR)2 59 0.08 2.19 1.30
5 Au144(SR)60 2.4 1.7 84 0.08 Au(SR)2 85 −0.15 2.22 1.29
6 Au(111) surface −0.54 2.26 1.24
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Figure 16.  Correlation between the binding energy of O2 to partially protected clusters 1–5, 
shown in Table 2, and the HOMO–LUMO gap of the corresponding fully protected cluster. The 
clusters are labeled by the gold atom count. Although all the clusters activate the O–O bond, only 
clusters 1–3 (derived from Au11, Au25 and Au39) bind O2 appreciably (by more than 0.5 eV). For 
comparison, the result for O2 adsorption on the Au(111) surface is also shown. In that case, the 
O2 remains neutral and the O–O bond is not activated. Note that the binding of O2 to the Au144 
cluster and Au(111) surface is metastable (endothermic). Reproduced by permission from Ref. 
[78]. Copyright 2010 Macmillan Publishers Ltd.

Figure 17. (a) HOMO and LUMO states of the fully protected Au11(PH3)7Cl3 cluster. These states are 
composed of Au(6s) states delocalized over the metal core. The green and blue show the major 
center of mass angular momentum character assigned to the states by projection to spherical 
harmonics inside the metal, indicating that the HOMO has the superatom P symmetry and LUMO 
has D symmetry. (b) Spin-polarized states in the partially protected Au11(PH3)6Cl2 cluster. H and 
L refer to HOMO and LUMO, respectively. The HOMO of the partially protected cluster has D-
symmetry, as does the LUMO of the fully protected cluster in (a). One electron has thus been 
transferred to this state over the HOMO–LUMO gap of the fully protected cluster. The P and D 
symmetries of the H- and L-orbitals are visualized. (c) On O2 adsorption, the D-symmetric HOMO 
state in (b) is depleted completely and the electron is transferred to one of the 2π* states of O2, 
lying in the HOMO–LUMO gap of the gold cluster. This 2π* state is empty in the neutral O2 triplet. 
Au, yellow; Cl, green; P, orange; H, white; C, grey; O, red. Reproduced by permission from Ref. [78]. 
Copyright 2010 Macmillan Publishers Ltd.
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in the field of MPCs as well, just as it has been used for decades in the field of gas 
phase metal clusters [73].

Generally, the composition of the ligand-stabilized clusters that have N metal 
atoms (M), S charge-donating ligands (L), Y charge-withdrawing ligands (X) and 
an overall charge z can be written as [LS MN XY]z. In addition, the ligand layer may 
include ligands that are neither charge donating nor withdrawing. The count of 
‘free’ or delocalized electrons is defined by the simple formula

 

where VM, VX and VL are the valence numbers of the metal and the ligands [22]. 
It is clear that this formula may be generalized to intermetallic clusters as well 
including all the metal types and their valences.

As an example, the electronic structure of three different systems,  
consisting of different metals (Au, Al, Ga) and different organic ligand layers, 
was recently compared by DFT calculations.[73] Figure 14 shows their 
compositions and atomic structures as determined from single-crystal X-ray 
diffraction: Au102(SC6H5COOH)44 (Ref. [75]), Al50(C5(CH3)5)12 (Ref. [76]) 
and Ga23(N(Si(CH3)3)2)11 (Ref. [77]). All the ligands in these systems are one-
electron withdrawing ligands, so Equation (12) yields the free electron counts of 
58 (102 − 44), 138 (3 × 50 − 12) and 58 (3 × 23 − 11) for the gold, aluminium and 
gallium compounds, respectively. The symmetries of HOMO and LUMO orbitals 
were analyzed employing Equations (9) and (10), and the results are shown in 
Figure 15. It is seen that for both the 58 electron systems (Au102 and Ga23), the 
symmetry changes from 1G to 1H over the HOMO–LUMO gaps (with a strong 
mixing of 2D for the gallium cluster) hence for the 138 electron Al50 cluster, the 
symmetry changes from (predominantly) 1I to 2G. These results are in agreement 
with the shell model in an approximately spherical system.

Equation (12) predicts that the free electron count ne could be controlled by 
changing the number of electron-withdrawing or electron-donating ligands. In 
particular, partially protected clusters could be made electronically ‘active’ towards 
electron transfer reaction such as dioxygen binding and reduction, by promoting 
one or more electrons over the HOMO–LUMO gap of the protected, stable cluster. 
Several clusters were studied in this respect (Ref. [78] and Table 2). A surprisingly 
clear correlation between the HOMO–LUMO gap of the (non-activated) cluster 
and dioxygen binding to the activated cluster was found (Figure 16). In the limit 
where the HOMO–LUMO gap approaches zero, the binding of dioxygen turns 
endothermic. Figure 17 illustrates the electron transfer upon dioxygen activation. 
One phosphine and one chlorine ligand were removed from the fully protected, 
neutral Au11(PH3)Cl3 cluster, which renders the partially protected Au11(PH3)
Cl3 to be a 9-electron system where the electron at the HOMO level is actually 
transferred over the HOMO–LUMO gap of the parent cluster. When O2 and CO 
are co-adsorbed on the available gold sites at the partially protected cluster, the 
HOMO electron transfers to the 2π* orbital of O2 and activates the O–O bond, 

(12)n
e
= NV

M
− YV

X
+ SV

L
− z
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making the cluster effectively an 8-electron system again. Mechanisms like this 
may be important to understand the reactivity of the ligand layer and inter-cluster 
reactions [79].

7.  Conclusions

The concept of the electronic shell structure has been a fundamental one in the 
field of cluster science for over 30 years. This brief review discussed its origin and 
validity in three distinct fields comprising fee gas-phase metal clusters, clusters 
supported on insulating surfaces and clusters stabilized chemically by an organic 
ligand layer. Experiments on free gas-phase metal clusters have shown that the 
electronic shell structure is not just of academic interest but creates a real driv-
ing force behind systematic behavior of the cluster morphology particularly for 
Group I alkali metal clusters, that is, tendency to ‘spherical’ structures for sizes 
that correspond to magic electron-shell closing numbers. Group II, X, XI and XII 
elements display similar physics, however they have a larger tendency to direc-
tional binding and the s–d hybridization masks out some of the features of shell 
structure. Scanning tunneling microscopy and spectroscopy techniques have been 
used to probe the electronic states of metal clusters on insulating oxide thin films. 
Clusters that are close to circular symmetry have been found to exhibit sequence 
of states close to EF that resemble fermionic states in a 2D harmonic quantum 
dot. Finally, metal clusters protected and stabilized by an organic ligand layer 
constitute a rapidly growing topical field of nanostructured materials. Electron 
shell structure is discernible particularly in the smallest systems. This has led to 
a useful concept of ‘superatom’ that allows rationalization of a vast amount of 
observations on chemical stability, reactivity and optical properties.

Note

1. � http://www.nobelprize.org/nobel_prizes/physics/laureates/1963/
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