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1. INTRODUCTION

The phase-locked loop (PLL) is an electric circuit exten-
sively used in various applications in computer architec-
tures and telecommunications (see, e.g. Kroupa (2003);
Bianchi (2005); Gardner (2005); Best (2007); Shakhtarin
et al. (2009)). A PLL is essentially a nonlinear control
system, which allows one to tune frequency (phase) of
the controlled oscillator to the frequency (phase) of the
reference oscillation (reference signal). One of the main
characteristics of PLL is the lock-in range (Gardner, 1966;
Best, 2007): the range of frequencies of the reference signal
for which fast synchronization without cycle sipping is
guaranteed.

In this work for a classic PLL with square waveform signals
and lead-lag filter for all possible parameters the lock-in
range is computed and corresponding diagrams are given.
The computed lock-in range is compared with estimates
in (Best, 2007).

2. MATHEMATICAL MODEL OF PLL WITH
LEAD-LAG FILTER

Consider signal’s phase space model of classic PLL circuit
(see Fig. 1). Here the phase detector (PD) is a nonlinear
block and the phases θ1,2(t) of the input (reference) and
VCO signals are PD block inputs and the output is
a function ϕ(θe(t)) = ϕ(θ1(t) − θ2(t)) named a phase
detector characteristic, where

θe(t) = θ1(t)− θ2(t), (1)

named the phase error. Consider triangular PD character-
istic (see Fig. 2):
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Fig. 1. PLL-based circuit in a signal’s phase space.
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This characteristic appears for the case of classical mul-
tiplier/mixer and impulse signal waveforms of VCO and
reference. For exclusive-or (EXOR) the phase detector
characteristic is also triangular. The output of the PD is
connected to the input of the passive lead-lag filter with
the transfer function

F (s) =
1 + τ2s

1 + τ1s
, (3)

where 0 < τ2 < τ1. Loop filter dynamics can be described
by the following differential equations

ẋ = − 1

τ1
x+

1

τ1
ϕ(θe(t)),

g = (1− τ2
τ1

)x+
τ2
τ1

ve(θe(t)).
(4)
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where x(t) is a state of the loop filter, KDϕ(t) is the PD
output, and g(t) is a filter output.

The output of the filter g(t) adjusts the frequency of the
VCO to the frequency of the input signal:

θ̇2(t) = ω2(t) = ωfree
2 +KV g(t), (5)

where ωfree
2 is called free-running frequency (i.e. for g(t) ≡

0) and KV is the VCO gain. Nonlinear VCO models can
be studied similarly (see, e.g. Margaris (2004); Suarez
(2009)).

The frequency of the input signal (reference frequency) is
usually assumed to be constant:

θ̇1(t) = ω1(t) ≡ ω1. (6)

The difference between the reference frequency and the
VCO free-running frequency is denoted as ωfree

e :

ωfree
e ≡ ω1 − ωfree

2 . (7)

Combining (4) – (6), one obtains the following equations:

ẋ = − 1

τ1
x+

1

τ1
ϕ(θe(t)),

θ̇e = ωfree
e −KV

(
(1− τ2

τ1
)x+

τ2
τ1

ve(θe(t))

)
.

(8)

System (8) is periodic in θe, therefore the analysis is
restricted to the range θe ∈ [−π, π). The equilibria of (8)
are denoted by (xeq, θeq):

θeq =
π

2

ωfree
e

KV COKD
,

xeq =
ωfree
e

KV COKD
.

(9)

Stable equilibria correspond to the locked states of the
loop. Since PD characteristic (2) is an odd function
(ϕ(−θe) = −ϕ(θe)), system is not changed by the trans-
formation(

ωfree
e , x(t), θe(t)

)
→

(
−ωfree

e ,−x(t),−θe(t)
)
. (10)

This symmetric property of PD allows one the analysis of
system (8) with only ωfree

e ≥ 0 and introduces the concept
of frequency deviation

|ωfree
e | = |ω1 − ωfree

2 |.

3. LOCK-IN RANGE DEFINITION

The concepts of lock-in frequency and lock-in range were
intended to describe the set of frequency deviations for
which the loop can acquire lock within one beat without
cycle slipping. Next we use the definitions of the cycle

slipping and lock-in range from (Kuznetsov et al., 2015;
Leonov et al., 2015). If

lim sup
t→+∞

|θe(0)− θe(t)| > 2π, (11)

we say that cycle slipping occurs. The lock-in range may
be define as follows: if the model is in an equilibrium state,
then after an abrupt change of ωref within a lock-in range
|ωfree

e | < ωlock−in, the model locks without cycle slipping.
Here ωlock−in is called lock-in frequency.

Thus, the lock-in domain (i.e. a domain of the model
states, where fast acquisition without cycle slipping is
possible) contains both symmetric locked states (i.e. stable
equilibrium points for the positive and negative value of
the difference between the reference frequency and the
VCO free-running frequency).

3.1 Lock-in range computation

System (8) depends on 5 parameters: τ1, τ2,KV ,KD, ωfree
e .

Introduce parameter τ = t
√
KV KD/τ1 and reduce (8) to

the following equation

θ̈e=
ωe

KV KD
− θ̇e√

KV KDτ1
− τ2

τ1

√
KV KDτ1

dϕ

dθe
θ̇e − ϕ(θe).

(12)
This equation contains only three parameters. The first
one is the normalized frequency deviation ωe

KV KD
, and two

others are the normalized loop filter parameters: τ2
τ1

and
KV KDτ1.

Consider now simple numerical algorithm for computation
of the lock-in range. For each pair ( τ2τ1 ,KV KDτ1) the nor-

malized frequency deviation
ωfree

e

KV KD
is increased starting

from zero. The largest possible value of frequency devia-

tion is
ωfree

e

KV KD
= 1 since there are no equilibrium points

for bigger values. Taking into account that equilibria are
proportional to the frequency deviation and using the
symmetry

(
xeq(ωl), θeq(ωl)

)
= −

(
xeq(−ωl), θeq(−ωl)

)
, one

can effectively determine the lock-in range. We have to
increase the frequency deviation |ωfree

e | step by step and at
each step, after the loop achieves a locked state, to change
ωfree
e = ω̃ abruptly to ωfree

e = −ω̃ and to check if the loop
can achieve a new locked state without cycle slipping. If
so, then the considered value belongs to the lock-in range.

Consider example in Fig. 3. Here filter parameters τ1 =
0.02, τ2 = 0.008 correspond to a curve τ2

τ1
= 0.4 (see the

right-hand side axis). By substituting PD gain KD and
VCO gain KV into KV KDτ1 one determines a point on
the curve (see horizontal axis). The corresponding lock-
in frequency ωl is then computed from the corresponding
value of the normalized value of the lock-in frequency
ωfree

e

KV KD
on the left-hand side of vertical axis. Note that

the same diagram may be used for any filter as long
as τ2

τ1
= 0.4. Lock-in frequencies for other loop filter

parameters are in Fig. 4. Lock-in range for considered the
case is estimated in (Best (2007)) for the case of small τ2

τ1
and large loop gain KDKV :

ωl ≈ KDKV (
τ2
τ1

+
1

KDKV τ1
). (13)

 IFAC PSYCO 2016
June 29 - July 1, 2016. Eindhoven, The Netherlands

2



44	 M.V. Blagov et al. / IFAC-PapersOnLine 49-14 (2016) 042–044

0 0

0.4

10-1 101 102 103 104100

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

τ2
τ1

ωe

KVKD

KVKDτ1

N
or

m
al

iz
ed

 lo
ck

-in
 ra

ng
e

Fig. 3. Lock-in range for parameters τ1 = 0.02, τ2 = 0.008.

For τ2
τ1

= 0.01 lock-in diagrams are in Fig. 5. These
diagrams were constructed numerically in Matlab, by
integrating system (8) with “ode15s”.
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