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Abstract: Simulation is widely used for analysis of Costas loop based circuits. However it
may be a non-trivial task, because incorrect choice of integration parameters may lead to
qualitatively wrong conclusions. In this work the importance of choosing appropriate parameters
and simulation model is discussed. It is shown that hidden oscillations may not be found by
simulation in SPICE, however it can be predicted by analytical methods.

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

1. INTRODUCTION

The Costas loop based circuits are widely used nowa-
days in various applications (see e.g. Kaplan and Hegarty
(2006); Best (2007); Mitchell and Guichon (2002)). Costas
loop PLL (phase-locked loop) is a nonlinear circuit with
a feedback loop and its rigorous mathematical analysis is
a challenging task. Thus, in practice, simulation is widely
used for the study of PLL-based circuits (see, e.g. Bianchi
(2005); Best (2007); Tranter et al. (2010); Talbot (2012)).
At the same time, simulation of nonlinear control system
(see, e.g.Banerjee and Sarkar (2008)) or linear analysis
may not reveal non-trivial effects. In recent work (see Lau-
vdal et al. (1997)) it was noted that stability in simulations
may not imply stability of the physical control system, thus
stronger theoretical understanding is required.

The following article is further development of Bianchi
et al. (2015), which considers two-phase PLL. In our work
the two-phase Costas loop is studied and corresponding
examples, where simulation leads to unreliable results, is
demonstrated in SPICE.

2. PLL OPERATION

First, let us consider analog multiplier PLL operation.
Typical analog PLL consists of a VCO (voltage-controlled
oscillator), a linear low-pass filter (Filter), a reference
oscillator (REF), and an analog multiplier ® used as the
phase detector (PD). The phase detector is used to extract
the phase difference of VCO signal and reference signal; the
output of the PD is proportional to the phase difference
between its two inputs plus a high-frequency component.
Then the PD output is filtered by Filter. The output of
the filter is fed to the control input of the VCO, which

* This work was supported by Russian Science Foundation (project
14-21-00041, s. 3-4) Saint-Petersburg State University (project
6.38.505.2014, s. 2.)

adjusts the frequency and phase to synchronize with the
reference signal.

Consider now mathematical model of PLL in the signal
space (see Gardner (1966); Viterbi (1966); Leonov et al.
(2012b); Kuznetsov et al. (2011); Leonov et al. (2015c))
(see Fig. 1).
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Fig. 1. Operation of classical phase-locked loop for sinu-
soidal signals

Suppose that input signal waveforms and VCO waveform
are sinusoidal (see Fig. 1). The filter (Filter) passes low-
frequency signal 0.5sin(0;(t) — 62(t)) and filters high-
frequency component 0.5sin(61(t) + 02(t)).

To simplify the analysis of signal space model it is possible
to apply averaging methods (Krylov and Bogolyubov
(1947); Kudrewicz and Wasowicz (2007); Leonov et al.
(2012b); Leonov and Kuznetsov (2014); Leonov et al.
(2015¢)) and approximation ¢(t) =~ sin(fy(t) — 02(t)),
which allow one to consider phase model of PLL. Rigorous
consideration of this point is often omitted (see, e.g.
classical books (Viterbi, 1966, p.12,p15-17), (Gardner,
1966, p.7)) while it may lead to unreliable results (see,
e.g. Kuznetsov et al. (2015a); Best et al. (2015)).

One of the approaches to avoid double-frequency problem
is the use of two-phase Costas loop, which does not have
high-frequency oscillations at the output of the phase
detector Emura (1982).
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3. TWO-PHASE COSTAS LOOP

Consider two-phase Costas loop model in Fig. 2
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Fig. 2. Two-phase Costas loop

Here an input signal is m(t) cos(0; (t)) (Binary Phase Shift
Keying, BPSK), where m(t) = +1 is binary data and
cos(01(t)) is carrier with 6;(t) as a phase. The output
of Hilbert block is m(t)sin(61(¢)). The VCO generates
two orthogonal signals —sin(f2(¢)) and cos(62(t)) with
02(t) as a phase. Figure 3 shows the structure of complex
multiplier (phase detector). The phase detector consists of
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Fig. 3. Complex multiplier in two-phase Costas loop

four analog multipliers and two analog summators. Two
outputs of PD are multiplied:

() = m(t) cos(0h (1) — O(1))m(t) sin(6 (1) —
- %m%) sin(201 (1) — 205(2)).

02(t)) =

(1)
Unlike the classic PLL, two-phase Costas loop does not
contain high-frequency components at the output of PD.
Therefore filter acts as noise filter and defines stabil-
ity ranges (see Leonov et al. (2015b); Kuznetsov et al.
(2015b)). Consider a filter with the transfer function H(s).

The relation between input ¢(t) and output g(t) of the
filter is as follows

&= Az +bp(t), g(t) =c"z+ he(t), @)
H(s)=c*(A—sI)"'b— h.
The control signal g(t) is used to adjust the VCO phase
to the phase of the input carrier signal. Here we consider
non-linear dependents of VCO phase on input signal

ez(t):/wz Jdr =L /f

where L is the VCO gain, and f(+) is a non-linear function.
In this article we consider non-linear function! shown in
Fig. 4,

+ufree)d (3)
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Fig. 4. Nonlinear VCO characteristics

however other types of non-linearity can be considered in
similar manner. Function f(-) is a polynomial approxima-
tion of real VCO scaled from Ghz frequency range

f(z) = 7466 4 9752 — 702> + 223, (4)
Additional input voltage of VCO u . defines free-running
frequency of VCO.

Next section demonstrates that simulation of two-phase
Costas loop in SPICE with default simulation parameters
may lead to wrong conclusions concerning the pull-in range
and lock-in range (see rigorous definitions in Kuznetsov
et al. (2015b); Leonov et al. (2015b)).

4. SIMULATION IN SPICE
Consider a passive lead-lag filter (other filters (Pinheiro

and Piqueira (2014)) can be considered in a similar
manner). Transfer function of lead-lag filter is H(s) =

%, 71 = 0.0448, 72 = 0.0185 and the corresponding
_ _ 1
parameters are A = Tl+72 b=1- ", c= 4

T Jsz !
In our work SIMetrix SPICE simulator is used. Model
of two-phase Costas loop in SIMetrix is shown in Fig. 5.
Similar to (Bianchi et al. (2015)), the input signal in Fig. 2
is modeled by sinusoidal voltage sources V1 (a frequency
parameter is 1.5915494k) and the output of Hilbert block
is modeled by voltage source V2 (a frequency parameter is
1.5915494k and a phase is 90) (sin-input and cos_input).
Since complex multiplier in Fig. 3 contains four multipliers
it is modeled as four arbitrary sources ARB1, ARB2,

1 VCO characteristics is polynomial fit for measurements of real
VvCO
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PD_output filter_out

4.48k

R2
Yo

— 10u IC=200m

integrator_in
veo_frequency

] - integrator_in

sin_Input V(N1)*V(N2) V(N1)*V(N2)
RB1 1 ARB7
N1 OUT + N1 OUT
0 Sine(0 1 1.592k 0 0) N2 N2
o\ V1 I
T E3
cos_input V(N1)*V(N2)
ARB2
N1 OuT
" 0Sine(0 1 1,592k -157.03518u 0) N2
N\ V2
- V(N1)*V(N2)
ARB5 . 1
N1 ouT h
N2
SV(N1)*V(N2)
ARB6
N1 OUT
N2
vco_cos_output cos(V(N1))
ARB4 integrator_out
OUT N1
veco_sin_output -sin(V(N1))
ARB3

-2.961302

7466 + 975"V(N1)-70*V(N1)*V(N1)+2*V(N1)*V(N1)*V(N1)

two-phase Costas loop in SIMetrix SPICE

Fig. 5. Model of two-phase Costas loop in SIMetrix SPICE

ARBS5, and ARB6 with definitions set to V(N1)*V(N2).
To subtract the output signals of multipliers, Voltage Con-
trolled Voltage Sources E3 and E4 are used. Then outputs
of E3 and E4 are multiplied by ARB7 (V(N1)*V(N2)).
Filter in Fig. 2 is modeled as a passive lead-lag filter
with two resistors R1 and R2, and capacitor C2. To tune
VCO to appropriate frequency its input is shifted by
DC Voltage Source V3 (—ufree). Therefore V3 is set to
—2.961302. Voltage Controlled Voltage Source E2 summa-
rizes a VCO self frequency and a control signal from filter
output (filter_out). Non-linear characteristics of VCO is
defined by ARBS (74664+975*V (N1)=70*V(N1)*V(N1)+
2*V(N1)*V(N1)*V(N1)) according to (4). Resistor R1bl
(100k), capacitor C1 (5), and amplifier E1(500k) form an
integrator. The VCO waveforms are defined by arbitrary
blocks ARB3 (with the function —sin(V(N1))) and ARB4
(with the function cos(V(N1)))). SIMetrix netlist for the
circuit is shown in the following list:

1 | *#SIMETRIX
2 |Vl sin_Input O O Sine(0 1 1.592k 0 0)

3 | V2 cos_input O O Sine(0 1 1.592k
— -157.03518u 0)
4 |R1 C2_N 0 1.85k
5 | V3 vco_frequency 0 -2.961302
6 |[R2 filter_out PD_output 4.48k
7 | X$ARB1 sin_Input vco_sin_output ARB1_0OUT

— $$arbsourceARB1 pinnames: N1 N2 OUT
8 | .subckt $$arbsourceARB1 N1 N2 0UT

9 |B1 OUT 0 V=V(N1)*V(N2)

10 | . ends

11 | X$ARB2 cos_input vco_cos_output E3_CN

— $$arbsourceARB2 pinnames: N1 N2 0UT

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

32
33
34
35

36
37

38

.subckt $$arbsourceARB2 N1 N2 0UT
B1 0UT 0 V=V(N1)=x*V(N2)
.ends
X$ARB3 integrator_out vco_sin_output
— $$arbsourceARB3 pinnames: N1 O0OUT
.subckt $$arbsourceARB3 N1 0UT
Bl OUT 0 V=-sin(V(N1))
.ends
X$ARB4 integrator_out vco_cos_output
<~ $$arbsourceARB4 pinnames: N1 0UT
.subckt $$arbsourceARB4 N1 0UT
B1 OUT O V=cos(V(N1))
.ends
X$ARB5 sin_Input vco_cos_output ARB5_0UT
— $$arbsourceARB5 pinnames: N1 N2 0UT
.subckt $$arbsourceARB5 N1 N2 O0UT
B1 OUT O V=V(N1)*V(N2)
.ends
X$ARB6 cos_input vco_sin_output E4_CN
— $$arbsourceARB6 pinnames: N1 N2 0UT
.subckt $$arbsourceARB6 N1 N2 0UT
B1 OUT 0 V=-V(N1)*V(N2)
.ends
X$ARB7 E3_P ARB7_N2 PD_output
— $$arbsourceARB7 pinnames:
.subckt $$arbsourceARB7 N1 N2 0UT
B1 OUT O V=V(N1)=*V(N2)
.ends
X$ARB8 ARB8_N1 integrator_in
— $$arbsourceARB8 pinnames:
.subckt $$arbsourceARB8 N1 0UT
B1 0OUT 0 V=7466 + 975*V(N1) -
— T7O0xV(N1)*V(N1) + 2xV(N1)*V(N1)*V(N1)
.ends

N1 N2 0OUT

N1 0UT

47
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39 |E1
40 |cC1
41 | E2
42 | E3
43 | C2

integrator_out 0 E1_CP 0 500k

E1_CP 0 5

ARB8_N1 O filter_out vco_frequency 1
E3_P 0 ARB1_0UT E3_CN 1

filter_out C2_N 10u IC=200m

<~ BRANCH={IF (ANALYSIS=2,1,0)}

44 |E4 ARB7_N2 0 ARB5_0UT E4_CN 1

45 |R1bl integrator_in E1_CP 100k

46 | .GRAPH integrator_in curvelabel=

< integrator_in nowarn=true ylog=auto
— xlog=auto disabled=false

47 | .TRAN 0 10 UIC

48 | .OPTIONS tnom=27

In Fig. 6 are shown simulation results in SPICE. For de-
fault simulation parameters in SIMetrix two-phase Costas
loop synchronizes the VCO signal (green line). Default
maximum step size is approximately 52u. However, if we
choose smaller simulation step (e.g. 1u), the simulation
reveals an oscillations (red line).

integrator_in
integrator _in (tran128)

integratdr_in / k

2

* 2Secs/div

El'ime/Secs

Fig. 6. Hidden oscillations in SPICE. Default simulation
step (sampling rate 52u) — synchronization (green
line), smaller simulation step (sampling rate lu) —
no synchronization (red line).

Therefore default SPICE simulation shows that particular
frequency difference can be in pull-in range. However more
accurate simulation show that this frequency difference
can not belong to pull-in range.

5. NONLINEAR MATHEMATICAL ANALYSIS OF
TWO-PHASE COSTAS LOOP

For a lead-lag filter (H (s) = %), two-phase Costas

loop is described by (1), (3), (4), and (2), which form the
following system of differential equations

-1 1
T = z+(1-— —sin(204),
T1 + To ( 71%-72)2 ( A)
. 1
Op =wy — L 2" sin(20 roe ),
AT f(7'1+7'2x+7'1+7'22snl( A)J’_Ufee)

OA(t) = 61(t) — 62(2).
()
For equations (5) equilibrium points are defined by (6).
Teq = % sin(204), sin(26.4) = 2f_1(%) — Qfree.

(6)

Here f~!' is an inverse function, which exists for non-
linearity (4) and “* € [0,12]. For 71 = 0.0448, ujfpcc =
2.955, L = 1, and w; = 10° equilibria can be approximated

as
ZTeq ~ 0.016,

7
Oog ~ (—1)%0.398 + gk keN. (7)
Consider now a phase portrait (where the system’s evolv-

ing state over time traces a trajectory (x(t),0a(t))), cor-
responding to signal’s phase model (see Fig. 7).

X
0.015 equilibrium point
0.01
0.005
% 20 40 60 0

A

Fig. 7. Phase portrait of the classical PLL with stable and
unstable periodic trajectories

Black dot corresponds to one of the equilibrium points.
Trajectory starting with filter initial state 2(0) = 0.009
and zero initial phase shift of VCO (red line in Fig. 7)
tends to equilibrium point. This trajectory corresponds to
synchronization of two-phase Costas loop. The solid blue
line in Fig. 7 shows the trajectory with the initial state
of filter £(0) = 0.008 (and the same zero initial phase of
VCO). This line tends to the periodic trajectory, therefore
it will not acquire lock. Since phase-portrait trajectories
can not intersect, all the other trajectories under the blue
line also tend to the same periodic trajectory. For example
trajectory starting from zero initial state of filter also tends
to oscillations.

The gap between stable and unstable periodic trajecto-
ries is very small. Therefore if the discretization step
(sampling) is larger than this gap, the numerical inte-
gration method may “overshoot” stable and unstable pe-
riodic trajectories (see Fig. 8). Therefore pull-in range

— real trajectories -+ simulation

X .

Fig. 8. Phase portrait of the classical PLL with stable and
unstable periodic trajectories
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obtained by inaccurate simulation is infinite, while it is
bounded by unstable trajectory. The case corresponds
to the close coexisting attractors and the bifurcation of
birth of semistable trajectory (Gubar’, 1961; Shakhtarin,
1969; Belyustina et al., 1970; Leonov and Kuznetsov, 2013;
Kuznetsov et al., 2014). In this case numerical methods are
limited by the errors on account of the linear multistep
integration methods (see Biggio et al. (2013, 2014)). As
noted in (Brambilla and Storti-Gajani (2003)), low-order
methods introduce a relatively large error that, in some
cases, could lead to corrupted solutions (i.e., solutions that
are wrong even from a qualitative point of view). This ex-
ample demonstrate also the difficulties of numerical search
of so-called hidden oscillations, whose basin of attraction
does not overlap with the neighborhood of an equilibrium
point, and thus may be difficult to find numerically 2. In
this case the observation of one or another stable solution
may depend on the initial data and integration step.

CONCLUSION

The example, considered in the paper, is a motivation
to apply rigorous analytical methods for the analysis of
PLL-based loop nonlinear models (see, e.g. (Leonov and
Kuznetsov, 2014; Leonov et al., 2015b)).
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