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Sex-role evolution theory attempts to explain the origin and direction of male–female

differences. A fundamental question is why anisogamy, the difference in gamete size that

defines the sexes, has repeatedly led to large differences in subsequent parental care. Here

we construct models to confirm predictions that individuals benefit less from caring when

they face stronger sexual selection and/or lower certainty of parentage. However, we

overturn the widely cited claim that a negative feedback between the operational sex ratio

and the opportunity cost of care selects for egalitarian sex roles. We further argue that our

model does not predict any effect of the adult sex ratio (ASR) that is independent of the

source of ASR variation. Finally, to increase realism and unify earlier models, we allow for

coevolution between parental investment and investment in sexually selected traits.

Our model confirms that small initial differences in parental investment tend to increase due

to positive evolutionary feedback, formally supporting long-standing, but unsubstantiated,

verbal arguments.

DOI: 10.1038/ncomms12517 OPEN

1 Department of Biological and Environmental Science University of Jyvaskyla, PO Box 35, FI-40014 Jyvaskyla, Finland. 2 Ecology, Evolution & Genetics,
Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia. Correspondence and requests for materials
should be addressed to L.F. (email: lutzfromhage@web.de) or to M.D.J. (email: Michael.Jennions@anu.edu.au).

NATURE COMMUNICATIONS | 7:12517 | DOI: 10.1038/ncomms12517 | www.nature.com/naturecommunications 1

mailto:lutzfromhage@web.de
mailto:Michael.Jennions@anu.edu.au
http://www.nature.com/naturecommunications


I
n most animal species, males and females exhibit clear
differences in appearance and behaviour. In general, males
invest less than females in their offspring, and instead allocate

resources to costly traits that elevate their mating success1.
This mating investment can involve the evolution of weapons
when males compete directly for access to mates, or the evolution
of ornaments, elaborate advertisement signals and coercive traits
when mates compete indirectly to induce females to mate and
then use their sperm.

Sex-role evolution theory attempts to explain the origin and
direction of male–female differences. The main areas of attention
are sex differences in traits that increase mating rates (for example,
searching, courting and fighting)2; in discrimination between
potential mates3 and in traits that improve offspring survival (for
example, gamete provisioning and parental care; jointly referred to
as parental investment)4–7. A fundamental question is why
anisogamy, the difference in gamete size that defines the sexes,
generally correlates with large differences in post-fertilization
parental investment in the form of extended parental care. Why
does greater investment per gamete (that is, producing eggs, which
defines females) tend to be associated with providing more
parental care? More generally, how is anisogamy linked to sex-
specific selection that produces the full spectrum of sex differences
that exist across taxa8? The answer to this question is intimately
related to the trade-off between parental care and competition for
mates9, and the fact that greater parental care by one sex increases
the costs of choosiness for the other sex, by reducing the encounter
rate with potential mates10. Explaining sex differences in parental
care is therefore central to explaining sex roles.

According to a popular view rooted in the seminal works of
Bateman11 and Trivers4, small initial differences in parental
investment became subject to a positive feedback: ‘If you specialize
in competing, you gain most selective advantage by putting
more into competing; and the same for caring. And so the
divergence widened over evolutionary time, with natural selection
proliferating and amplifying the differences, down the
generations’12. By definition, anisogamy provides the requisite
initial difference in caring because gamete provisioning increases
zygote survival and can therefore be regarded as a form of care.
This sex difference in early investment leads to the general
prediction that, all else being equal, females will invest more into
subsequent parental care, and, given a trade-off between caring and
competing, that males will invest more into being reproductively
competitive. On closer inspection, however, this verbal argument
does not really explain why greater mean competitiveness in one
sex will select for even greater competitiveness13. This relationship
is simply asserted, and the underlying assumptions are neither
made explicit nor properly justified.

In contrast to the idea that small initial differences between the
sexes increase over time due to a positive feedback, Kokko and
Jennions13 recently argued that a powerful and general force acts in
the opposite direction to hinder sex-role divergence due to a
negative feedback. Their argument ran as follows: if the operational
sex ratio (the ratio of males to females available to mate at a given
time, OSR14) becomes male-biased because males spend less time
providing parental care, then it is more difficult for males to find
mates. A male-biased OSR makes being in the mating pool less
profitable (that is, lowers the mean mating rate of deserting males),
which then makes it more beneficial for males to prolong the
period of parental care (see the conceptual analysis in Fig. 1 of
Kokko and Jennions13). According to this view, even though
anisogamy creates an initial asymmetry in parental investment,
egalitarian sex roles are stable unless additional factors come into
play (for example, stronger sexual selection on one sex, mixed
parentage of broods, or a biased adult sex ratio (ASR)). This line of
argument is based on a formal mathematical model13 and, as a

result, now seems to be broadly accepted (for example, cited in the
well-known textbook of Davies et al.15). Unfortunately the model
and the resultant line of argumentation are, we will argue here,
incorrect. We rectify these problems with an updated model,
explain the flaws in the previous model, and show that the earlier
prediction of convergence towards egalitarian care by males and
females in a null model (that is, when the only initial difference
between the sexes is anisogamy) does not follow. Our revised
model still confirms that predictions about how multiple paternity,
sexual selection and the ASR are related to sex differences in
parental care remain similar. Crucially, however, we argue that
previous explanations for the relationship between the ASR and
the proportion of care given by males that invoked a direct causal
role for the ASR are misleading. Our revised model ensures that
the concepts underpinning our understanding of sex-role evolution
is not based on demonstrably flawed arguments. The so-called
‘Fisher condition’16 is a consistency requirement that matings and
offspring must be accounted for from the perspective of both sexes:
because each diploid offspring in a sexual species has a mother and
a father; and each heterosexual mating involves a male and a
female. We clarify how the Fisher condition applies to the different
life history stages at which the sex ratio is measured, namely birth,
maturation, adults and in the mating pool (OSR).

In our model, individuals alternate between two possible states,
during which they are either available for mating and in the
mating pool (time-in) or unavailable (time-out). During time-in,
females are subject to mortality rate mI and (if qualified to mate)
mating rate a; males are subject to mortality rate ~mI and mating
rate ~a (throughout, male variables are marked with a sperm-like
tilde). Upon mating, individuals enter time-out, and provide
parental care for duration T or ~T with corresponding mortality
rates mO and ~mO. If still alive they then return to time-in. To vary
the mean relatedness between carers and offspring, we specify the
number of females and males involved per breeding event as n
and ~n. So monandry occurs when n ¼ ~n ¼ 1, and polyandry
when n ¼ 1; ~n41. To model non-random variation in mating
success due to intra- and/or inter-sexual selection, parameters k
and ~k elevate the expected mating rates of individuals to k-fold
(~k-fold) that of average individuals of their sex. To increase
generality, we define r as the sex ratio at maturation (henceforth,
MSR), that is, among individuals that enter time-in for the first
time in their life. This definition makes the model applicable
without making any assumptions about whether or not juvenile
mortality is equal in each sex (as was required by Kokko and
Jennions13 because they defined r as the sex ratio at conception).
For an overview of model variables, see Table 1.

Empiricists are familiar with, and possibly even frustrated by,
the apparent ease with which modellers can overturn familiar
predictions by altering a few key assumptions. It is therefore
important to note that our updated initial null model for the
evolution of sex differences in parental care retains the same key
assumptions as the original model of Kokko and Jennions13. For
example, there is a temporal trade-off between caring and
competing, both sexes have the same mortality costs when caring
(or when competing for mates), both sexes provide the same
fitness-enhancing benefits to their offspring when they care
(contra McNamara and Wolf17), and the effects of biparental care
are additive (dependent on the total time parents spend caring)
rather than synergistic (contra Barta et al.18). Despite a similar
setup to the earlier model, in our current null model equal
levels of care by both sexes is an unlikely outcome of evolution
even though the evolution of caring remains equally likely for
both sexes (that is, symmetric). This conclusion arises because
our null model predicts that the proportion of care provided
by each sex is prone to drift (along a line of equilibria ranging
from male-only to female-only care), and that unisexual care is
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selected for if the sexes differ even slightly in the costs and/or
benefits of a given level of caring.

This prediction from our initial null model hinges on the
assumption that broods benefit to the same extent from a given
increment of care by either sex. To relax this assumption, we also
present a synergistic null model in which the benefits of care from
both sexes are synergistic rather than additive. Assuming that
there are synergistic gains from biparental care is often
appropriate. For example, it is likely whenever the sexes provide
somewhat different forms of care that complement each other
(for example, food versus protection). In contrast to our initial
null model, this synergistic model predicts that a specific division
of care between the sexes will evolve. This outcome additionally
allows us to explore the effect that various factors of interest
(for example, sex-specific mortality rates) have on the evolution
of the proportion of care provided by males. In so doing, we reject
some of the arguments made by Kokko and Jennions13 that
invoke a direct causal effect of the ASR on caring.

Kokko et al.9 reported that the sex providing less parental
investment has greater scope for competitive investment (sensu9),
because, for a given proportional increase in mating rate, this sex
can profitably accept a relatively greater cost due to a decline in
another fitness component (for example, longevity). This finding is
suggestive of self-reinforcing selection for greater competitiveness
(hence less care) but the implications are difficult to assess
because Kokko et al.9 did not formally model feedback between
competitiveness and parental investment. Here we extend
and unify a series of earlier models that separately examined
the evolution of either competitiveness or parental investment
by treating the other trait as fixed (for example, refs 9,13,19,20).
We explicitly investigate how parental investment (specifically,
an extended period of parental care) coevolves with investment
in sexually selected traits (x or ~x) that elevate mating rates
(that is, by searching for mates, or bearing weapons and
ornaments) but impose mortality costs. We model this
coevolution as a feedback loop in which parental care affects the
evolution of competitiveness, competitiveness has mortality costs,
and mortality affects the evolution of parental care.

Our model shows that a positive feedback can drive sex-role
divergence and select for greater investment into caring by the sex
that cares more initially. This finding is in agreement with
well-known claims based on verbal arguments4,21, albeit that
these were not formally substantiated nor fully explained. We
believe that we add much needed biological realism by presenting
a model that includes feedback between investment into caring
and into competing. The model provides a better representation
of verbal arguments about sex-role evolution.

Results
Basic model. If the sexes initially differ only in their care duration
ð~T 6¼ TÞ, their behaviour evolves to a line of equilibria because
there is selection for a constant total amount of care per brood
(Fig. 1a). Along this line there is, however, no selection towards
any particular combination of care durations, so the proportion
of care provided by each sex can change by genetic drift
(although this is excluded from our model). The line of equilibria
is replaced by unisexual care if the sexes differ even slightly in the
costs and benefits of caring. For example, if males face stronger
sexual selection (~k4k; Fig. 1b,d) or lower relatedness to the brood
than females (~n4n; Fig. 1c,d), the outcome shifts towards
female-only care, even if males initially care for longer.
The outcomes of the model (Fig. 1) were obtained using two
alternative methods that are presented in equations (3) and (4)
and equations (8)–(15). Our null model is therefore that
selection favours neither single-sex care nor equal parental
care by both sexes. In contrast, Kokko and Jennions13

(see their Fig. 3a) predicted equal care by both sexes
which they attributed to a negative feedback process driven by
how the OSR affects mating rates.

Synergy model and the ASR. A model with synergistic benefit of
care by both sexes generally predicts parental care by both sexes
(Fig. 2a–c), but with less male care than female care if males face
stronger sexual selection (~k4k; Fig. 2b) or if males are less closely
related to the brood (~n4n; Fig. 2c). Parental care by only one sex
can still arise though if the sexual asymmetry in k and/or n is
sufficiently strong (Fig. 2d). Given synergy there is therefore no
longer a line of equilibria (compare Figs 1a and 2a), but rather an
optimal level of care for each sex that need not be equal (Fig. 2b,c).

The relationship between the ASR and sex differences in
parental care was a key feature of Kokko and Jennions13.
They predicted increasing proportions of male care when the
ASR becomes more male-biased through either of two routes: by
increasing the sex ratio at maturation, r, or by simultaneously
decreasing the costs of competing mI and ~mI (which
disproportionally increases male lifespan if males are initially
the less-caring sex). In addition to re-examining these two routes
to vary the ASR, we facilitated some important general insights by
considering sex-specific differences in mortality when caring or
competing (see Discussion section).

Intriguingly, the source of variation driving changes in the ASR
determined whether or not the ASR is related to the proportion of
care provided by males. If the ASR varies because both male
mortality rates (~mI and ~mO) change, or because the maturation sex
ratio (r) changes, then the proportion of care provided by males
increases as the ASR becomes more male biased (Fig. 3a).
However, if the ASR varies solely due to changes in time-in
mortality (either for both sexes, or for males only), this does not
affect the proportion of male care (Figs 3b and 4b). This result
contradicts the paradoxical finding of Kokko and Jennions13

(see their Fig. 5), that the proportion of care provided by males
decreased when competing became costlier. The source of this
discrepancy is a conceptual error in their derivation of selection

Table 1 | Overview of notation.

Symbol Meaning

T Female care duration
n Number of females per breeding attempt
k Strength of sexual selection on females (proportion of maturing

females qualified to mate)
mI, mO Female mortality during time-in and time-out
x Female competitiveness
r Maturation sex ratio (MSR)
M Mate search coefficient
a Shape coefficient of brood survival function
g Synergy coefficient
t Expected care duration per brood provided by a given female

(accounting for the possibility that she may die during care)
a Mating rate of female qualified to mate
p Probability to survive a given time-in period (for female

qualified to mate)
s Probability to survive a given time-out period (for caring

female)
b Brood size
S Brood survival
W Fitness of average female
v Reproductive value of average female
rO Operational sex ratio (OSR)
rA Adult sex ratio (ASR)

Corresponding male symbols are obtained by marking female symbols with a tilde (B).
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gradients (see Methods: Revising Kokko and Jennions’ model).
In general, the OSR increases with the ASR, but the shape of this
relationship depends on the source of ASR variation (Fig. 3c,d).

Two-trait model. Synergy can be said to select for egalitarianism
in our models because it stabilizes outcomes where both sexes
contribute to care. In contrast, coevolution between caring
(T or ~T) and competitiveness (x or ~x) has the opposite effect: it
can select for uniparental care (Fig. 5) under conditions that
would otherwise lead to stable care by both sexes (Fig. 2). If the
sexes initially differ only in care duration, the more-caring sex
ends up caring alone (Fig. 5a). However, if males face stronger
sexual selection (~k4k) and/or are less related to the brood than
females (~n4n), then female-only care can evolve even if males
initially provide more care (Fig. 5b–d). Care by both sexes can
always be restored, however, by imposing even stronger
synergistic benefits. The non-caring sex exhibits higher
competitiveness (x¼ 1.59 in Fig. 5a,d) than the caring sex (x¼ 0.9
in Fig. 5a,c; x¼ 0.92 in Fig. 5b,d) at equilibrium. Although we
did not formally model the coevolution of investment into
competitive traits (x and ~x) and changes in the strength of sexual
selection (that is, k and ~k), it is likely that they will coevolve. It is,
however, difficult to know their exact relationship. The same
holds for the relationship between sexual selection and the OSR22.
Exploring these relationships could be a profitable line of future
research. Nonetheless, our current model still allows us to
determine how changes in sexual selection (arising for whatever
reason, including changes in competitiveness) affect patterns

of care. For example, the effect of stronger sexual selection on
male care can be seen by comparing the left and right graphs in
Figs 1, 2 and 5.

Discussion
In most taxa, males invest more than females into competing for
access to mates (for example, searching, signalling, courting and
fighting) and less than females into parental investment (that is,
parental care)2,5,6 (but see refs 1,23 for some notable exceptions).
Even if ultimately rooted in anisogamy8,24, these sex differences
are not directly due to anisogamy because gamete size usually
accounts for a miniscule part of the total sexual asymmetry in
parental investment. The deeper question is what mechanisms
link the small initial asymmetry in parental investment,
because eggs are larger than sperm, with the subsequent
large difference in how much parental care each sex provides.
A long-held claim is that small initial differences in parental
investment tend to increase over evolutionary time due to a
positive feedback process4,21. These statements do not by
themselves qualify as an explanation for sex roles, however,
because they assume the direction of selection a priori.
Ultimately, they merely re-describe the known pattern, yield no
causal insights, and do not explain exceptions to the rule
(for example, seahorses and many fish where male-only care has
evolved). They replace one unexplained asymmetry with another
because they are not explicit about how selection acts13. Here we
fill this gap with explicit mathematical models to explain the
underlying process driving sex differences in care levels.
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As with many theoretical modelling exercises, a simple null
model is the foundation for what follows25. Kokko and Jennions13

built on the insights of Queller6 to produce a mathematical null
model that yielded the key prediction that selection results in a
stable equilibrium of equal investment into parental care by both
sexes if the only difference between the sexes is anisogamy. Here
we overturn this null model. Our most surprising result when re-
evaluating Kokko and Jennions13 is that sex roles do not converge
towards equal care, and that equal care is unstable. This instability
arises because equal care is either prone to drift (Fig. 1a), or to
being replaced by unisexual care if the sexes differ even slightly in
the costs and benefits of caring. The reason for this new outcome
is that the original analysis contained a conceptual error in
identifying the costs of caring (see Methods: Revising Kokko and
Jennions’ model). We obtained our results using two different
methods: one relies on a revised cost-benefit analysis; the other on
differentiation of fitness functions (which avoids the difficulty of
identifying a priori the costs and benefits of caring). Reassuringly,
both methods yield identical outcomes.

The practical importance of this new approach is neatly
illustrated by looking at how different sources of variation
in the ASR affect sex roles. To do so, however, we had to
use a second null model that assumes synergistic benefits
of care by both sexes. This approach was necessary because
this second null model predicts stable levels of care by each
sex (Fig. 2), while the additive model does not do so.
The synergistic null model confirms earlier predictions6,13

that males evolve to care less when facing stronger sexual
selection (Fig. 2b), reduced share of paternity (Fig. 2c), or
both (Fig. 2d).

Kokko and Jennions13 predicted that a greater proportion of
care will be provided by males when the ASR is more male biased.
They then argued that the ASR has an independent, causal effect
on the net benefit of competing for mates. Unfortunately, it turns
out that this claim was misleading: our updated model no longer
predicts any effect of the ASR per se that is independent of the
source of ASR variation. In other words, without specifying the
source of ASR variation, we cannot predict the relationship
between the ASR and the proportion of male care. We therefore
consider it more appropriate to explain causal relationships, and
formulate predictions, at the level of the underlying factors
affecting the ASR, rather than based on the ASR itself. If the
ASR is manipulated by changing the sex ratio at maturation
(MSR) then a positive relationship with the proportion of male
care does indeed arise (Fig. 3a), confirming the scenario modelled
by Kokko and Jennions13. This positive relationship occurs
because the MSR (which in the absence of sex differences in
mortality is equivalent to the ASR) is inversely proportional to
male reproductive value. If males have low reproductive value
(compared with females, and compared with a given brood), they
are more willing to care because they have less to lose in the event
of their death. In other words, they are more willing to lay down
their own life for the survival of a given brood. The dependence
of reproductive values on the MSR follows from the Fisher
condition (see Methods: Revising Kokko and Jennions’ model).
By contrast, a similar relationship between reproductive values
and the ASR does not generally hold; adult mortality can affect
the ASR without changing the sexes’ reproductive values.
Intuitively, this occurs because, regardless of adult mortality, an
even MSR imposes the constraint that maturing males must on
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average have the same number of offspring as maturing females.
Thus, if (say) males suffer high adult mortality, their lifespan
decreases but simultaneously they increase their reproductive rate
while alive, generating no overall (dis-)advantage as compared to
females. This argument is analogous to the well-known logic of
Fisherian sex ratio evolution26, whereby adult mortality generates
no selection on the primary sex ratio as it makes neither sex more
valuable than the other.

The same relationship of a more male-biased ASR being
associated with a greater proportion of male care also arises
if the ASR varies due to a general change in male mortality
(both in time-in and time-out) (Fig. 3a). This positive
relationship occurs because low mortality makes it cheaper for
males to care (equation (13)), by reducing their probability of
dying while caring. Simultaneously, because males become more
numerous through reduced mortality, male mortality is inversely
proportional to the ASR in this scenario.

By contrast, the ASR is uncorrelated with the proportion of
male care if it changes solely due to variation in time-in mortality
(Figs 3b and 4b). For example, if competing becomes more
dangerous for males than females (that is, ~mI4mI), this lowers the
ASR but it does not affect the proportion of male care (Fig. 3b).
Similarly, if competing becomes equally more dangerous than
caring for both sexes (that is, ~mI ¼ mI increases relative to
mO ¼ ~mO) this decreases the ASR whenever males spend more
time in the mating pool than females, because they are then more
exposed to the elevated risk (Fig. 4c). Again, however, this change
in the ASR (despite affecting the OSR; Fig. 4d) does not affect the

proportion of care provided by males (Fig. 4b). This result
directly contradicts a similar case study in Kokko and Jennions13

(see their Fig. 5). It is tempting to predict that males will benefit
more from deserting if a female-biased ASR increases mate
availability. The incentive to desert sooner is, however, perfectly
negated by the greater risk of succumbing to the very mortality
that creates the ASR bias. We conclude that time-in mortality
does not affect the proportion of male care (Figs 3b and 4b)
because it does not affect the reproductive value of males
compared to females (see above); nor does it affect the cost of
male care (equation (13)) relative to female care (equation (10)).
Why then do both sexes care more when it becomes more
dangerous to compete (Fig. 4a,b)? This occurs because, as
parents expect to raise fewer broods over their lifespan, each
brood becomes more valuable. Finally, we note that our model
does not consider facultative parental care decisions. The model
therefore cannot be tested based on phenotypically plastic shifts
in the level of male care in response to, say, mate availability.

Given our findings, how should we interpret recent empirical
evidence that a male-biased ASR is associated with a higher
proportion of male care in birds27,28? Or that parental care is more
female-biased in mammals than birds, and that birds more often
have a male-biased ASR? There are several possibilities. First, an
ASR bias might be caused by a MSR bias. In this case, individuals
of the rarer sex have higher reproductive value, and are selected to
care less because they have more to lose when risking their life
while caring (Fig. 3a). This possibility could be particularly relevant
in sexually size dimorphic species, where a negative correlation
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between body size dimorphism and ASR arises through sex
differences in juvenile mortality and/or maturation rates29,30.
Future studies should focus on estimating the MSR. Second,
an ASR bias might arise if one sex generally suffers higher
mortality, including while caring, which would reduce its
propensity to care (Fig. 3a). Mortality differences could arise if
greater competitiveness is associated with sexually selected traits
that are costly even outside the context of competing, for example,
because they elevate parasite load31 or raise energetic demands. In
general, many morphological sexual traits are likely to elevate
mortality even when a male is neither courting nor mate searching
(for example, a peacock’s train). Third, competitiveness could
directly compromise the ability of the more competitive (hence
rarer) sex to care, which selects against caring17. (Note, however,
that when McNamara and Wolf17modelled sex differences in
the ability to care, they did not consider how competitiveness
affects mortality; thus, they predicted the opposite pattern of an
ASR bias towards the less-caring sex.)

Our model suggests that any externally driven change
in mortality that only arises when competing for mates
(for example, an increased density of predators attracted to
sexual signals) does not directly select for sex differences in care
(Figs 3b and 4b). Causality might, however, work in the opposite
direction: if males care less than females because of, say, sex
differences in the strength of sexual selection and/or paternity
uncertainty (Fig. 2), this selects for greater male competitiveness9.
This competitiveness, in turn, might manifest in costly sexual
traits that elevate mortality and create the observed ASR bias. The
future empirical challenge is to disentangle the various possible

explanations for the observed links between the ASR and the
proportion of care provided by each sex.

So far we have mostly discussed sex roles as a single trait
phenomenon, where care duration is the only trait that can
evolve. We have thereby implicitly assumed that traits that
elevate an individual’s mating rate (that is, are sexually selected)
cannot evolve. This assumption is a serious limitation given
robust predictions, and abundant empirical evidence, that the sex
which provides less parental investment is predisposed to increase
its mating rate despite the costs that sexually selected traits
impose on other fitness components, such as longevity9,20.
Indeed, we found that the evolutionary dynamics change
profoundly if we allow competitiveness to evolve. It tends to
lead to sex-role divergence (Fig. 5) rather than stable levels of care
by both sexes (Fig. 2). Intuitively, this result can be explained as
follows: an initial difference in parental investment selects for the
sex investing less to become more competitive9,20. The associated
mortality then manifests in care becoming more costly
(i.e. a sexual ornament increases mortality while caring, and
there is no compensatory benefit at this stage), which selects
against care (equations (10) and (13); see also Fig. 3a).

We could also have modelled a scenario where competiveness
directly trades-off with the ability to provide care. This scenario
would make caring less beneficial for the more competitive sex.
The more general point is that an initial difference in parental
investment selects for asymmetry in competitiveness, which is
then amplified by feeding back on the cost/benefit ratio while
caring. Similarly, and perhaps pointing to a general pattern,
McNamara and Wolf17 noted that sex-role divergence occurs
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Figure 4 | Consequences of time-in mortality for both sexes. (a) The duration of female care (T) increases with time-in mortality. (b) The proportion of
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more readily when care effort and care ability can both evolve,
than when only care effort can evolve.

If anisogamy tends to favour the evolution of female-biased
care, how can we explain male-only care in the light of our
model? One possibility is that biparental care, driven by synergy,
acts as an intermediate stage, followed by environmental
changes that affect any of the parameters we have shown to be
relevant in this context (the maturation sex ratio, the strength of
sexual selection and certainty of parentage). Alternatively, an
environmental change could directly reverse the relative time-out
durations of the sexes, as documented, for example, in Mormon
crickets in response to diet quality32.

An important criterion for the internal consistency of
theoretical models is the so-called Fisher condition. It states that
all matings and sexually produced offspring must be accounted
for from the perspective of both sexes (after ref. 16). Although
this idea sounds simple, there is confusion about how to
apply it in specific contexts. Only some sex ratio concepts
count individuals that jointly account for all matings and
reproduction (fitness) in a population. For example, this is true
for the primary sex ratio (at conception), the secondary sex ratio
(at birth) and the MSR. In each case, if the ratio is even, then the
males and females in question must have equal lifetime
expectations of matings and of fitness. Crucially, however, the
same is not true for either the OSR or the ASR. In particular,
although an even OSR implies equal mating rates (per time unit;
see Methods) of males and females in time-in, this need not
translate into equal lifetime expectations. To see this, consider a
male and female that have just matured, and contribute to both
the OSR and ASR: their lifetime expectation of matings and

fitness are equal if the MSR is even, regardless of any subsequent
OSR and ASR biases that arise from sex-specific life histories
(for example, sex differences in time-out duration or in adult
mortality). This distinction highlights the pitfall in Kokko and
Jennions’13 argument that the sex towards which the OSR is
currently biased is under selection to provide more care because
individuals of the more common sex in the mating pool will
reproduce less often. If this statement is interpreted as referring to
lifetime expectations of matings and fitness, it does not follow
from the Fisher condition. If it is interpreted as referring to
mating rates, the conclusion about selection for increased caring
does not follow, because neither the cost nor the benefit of caring
depends on mating rates (see Methods: Revising Kokko and
Jennions’ model).

In contrast, in a subsequent review, Jennions and Kokko10

(p 357) correctly noted (except that MSR should be used, not
ASR) that: ‘‘If offspring die for lack of care, both parents lose the
same number of offspring. Unless the ASR is biased [y], the
proportion of an individual’s lifetime breeding formed by these
offspring is, on average, the same for both sexes because males
and females reproduce equally often. It is incorrect to assume that
males [or, for that matter, females] can more rapidly compensate
for such a loss by remating sooner’’. The confusion between
ASR and MSR in the above quote can plausibly be traced to
Queller6, whose discussion of this topic appears to rest on the
implicit assumption that unbiased adult mortality ensures that
ASR¼MSR. Without this assumption, his discussion, too, needs
to be rephrased using MSR rather than ASR.

There is a long history of modellers struggling with the Fisher
condition. For example, model 2 of Maynard Smith33 failed to
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specify where the mating opportunities of deserting males came
from, creating the impression they appeared from thin air (but see
ref. 34, p 128). This problem went unnoticed for many years, until
Webb et al.35 and Wade and Shuster36 proposed solutions (review:
ref. 37), the latter of which turned out to be flawed itself38. Kokko
and Jennions13 subsequently drew on Queller6 and made the
Fisher condition the focal point of their model for the evolution of
parental care but, as we have described here, they too inadvertently
misapplied the Fisher condition. We trust that our current model is
now Fisher consistent, although the literature on this topic is
hardly a recommendation for uncritical acceptance of such
assurances. Our model corroborates the claim that anisogamy
can initiate a self-reinforcing selection for asymmetrical parental
investment, driven by coevolution with competitiveness. The net
strength of selection is then modified, as predicted by Queller6 and
others, by sex differences in the strength of sexual selection, mean
relatedness to offspring in a brood/litter, and the degree of
synergistic benefits of biparental care.

Methods
Basic model. We follow the assumptions of Kokko and Jennions13, which can be
summarized as follows. Individuals alternate between two possible states, during
which they are either available for mating and in the mating pool (time-in) or
unavailable (time-out). During time-in, females are subject to mortality rate mI and
(if qualified to mate; see below) mating rate a; males are subject to mortality rate ~mI
and mating rate ~a. Upon mating, individuals enter ‘time-out’, and provide parental
care for duration T or ~T with corresponding mortality rates mO and ~mO . If still alive
they then return to time-in.

To vary the mean relatedness between carers and offspring, we specify the
number of females and males involved per breeding event as n and ~n. So monandry
occurs when n ¼ ~n ¼ 1, and polyandry when n ¼ 1; ~n41. To model non-random
variation in mating success due to intra- and/or inter-sexual selection, parameters k
and ~k elevate the expected mating rates of individuals to k-fold (~k-fold) that of
average individuals of their sex. One interpretation of our parameters k and ~k
controlling the strength of sexual selection is that some individuals belong to a class
comprising 1/k of females and 1=~k of males (at maturation), who are qualified to
mate and are therefore the only individuals that will have the opportunity to care.
Here we adhere to this strict interpretation to avoid any ambiguity about the
meaning of k and ~k. A previously neglected consequence of this interpretation is
that the mating rate of each sex is limited by access to opposite-sex individuals that
are qualified to mate, rather than all opposite-sex individuals. We therefore define
the operational sex ratio rO as the ratio of qualified males and females in time-in,
replacing r with r � k=~k in equation A9 of Kokko and Jennions13 (yielding our
equation (18)). This modification ensures consistency for any combination of k and
~k, by linking the mating rates a ¼ Mnr1=2

O and ~a ¼ M~nr� 1=2
O of individuals

qualified to mate such that a=~a ¼ rOn=~n, as required by the ‘Fisher condition’16

(see Discussion). Here, the parameter M accounts for species-specific factors such
as population density and movement capacity. In equation (23), we also present an
alternative method of deriving rO, based on applying the Fisher condition to fitness
rather than mating rates. Both methods yield identical results, as should be the case
in a fully consistent model.

For mathematical convenience it is desirable to treat all broods of a given parent
as equivalent in terms of how much care they receive (because the total amount of
care received affects the survival prospects of offspring). Kokko and Jennions13

achieved this outcome by assuming that broods fail completely unless all carers
survive and provide the duration of care prescribed by their strategy. This
assumption ensures that the total amount of care received by viable broods is
constant. Here we do not follow this assumption because it introduces an
unwanted and biologically unrealistic asymmetry: if a focal carer’s effort goes to
waste whenever another carer dies, this wastage will disproportionally affect the
less-caring sex, whose mates are more likely to die during their (longer) care
period. Instead, since we are interested in a strategy’s average effect per brood, we
define average brood survival as a function of the average amount of care per
brood. This assumption ensures that offspring benefit equally from additional care
received from either parent, which allows us to follow Kokko and Jennions13 in
focussing on other factors. (This is a deliberate simplification; in reality, there may
be many reasons—including some related to sex-specific care durations—why
offspring might benefit more from additional care by one sex or the other.)
Specifically, we assume that offspring survive to enter the time-in state with
probability S ttotal½ � ¼ exp½ � a

ttotal
�, which is an increasing function with diminishing

returns of the expected total care duration, ttotal ¼ ntþ ~n~t (see Fig. 1a in ref. 13).
Here, t T½ � ¼ T �

R T
o e� tmOmOðT � tÞdt ¼ ð1� e� mOT Þ=mO is the expected care

duration provided per brood by a female whose strategy is to desert after T (and
similarly for males). Here, e� tmOmOdt is the probability that the female dies at time
t during her care period, in which case the remaining portion (T� t) of her care
period remains unrealized.

For an alternative null model in which expected investment and actual
investment per brood are identical (as would occur if investment was pre-
committed in, say, the form of gamete size or provisioned food), see section ‘A null
model for pre-mating parental investment’ below.

These assumptions lead to the following fitness functions. A female qualified to
mate has probability p ¼ a

aþ mI
of surviving a given time-in period (once it has

started), and probability s ¼ e�TmO of surviving a given care period. Hence sp
is the probability that at least one more mating will follow after any given mating;
(sp)i(1-sp) is the probability of mating exactly i additional times; and
p 1þ

P1
i¼1 spð Þið1� spÞi

� �
¼ p

1� sp is the expected number of matings over her
lifetime. The lifetime reproductive success (fitness) of an average female is then:

W ¼ 1
k
� p

1� sp
� b � S ð1Þ

where b is brood size. Analogously, average male fitness is:

~W ¼ 1
~k
�

~p
1�~s~p

� b � n
~n
� S ð2Þ

The term n=~n accounts for shared paternity of the offspring of n females among ~n
males. From this we can calculate selection gradients as proportional derivatives of
fitness with respect to a focal trait (p 299 in ref. 39). This method avoids the
difficulty of having to identify a priori the fitness costs of care, which is the step
where Kokko and Jennions13 erred (see below). In equation (1) s and S can be
expressed as functions of a rare mutant’s care duration T (whereas all other
variables are treated as constants for the purpose of differentiation), to obtain the
following selection gradient for female care:

dW
dTW

¼ S0

S
þ ps0

1� ps
ð3Þ

where the derivatives s0 ¼ � e� mO TmO and S0 ¼ dS
dt

dt
dT (by the chain rule, using

dS
dt ¼ a � exp½ � a=ttotal�=t2

total and dt
dT ¼ e�mO T ), are evaluated at the resident value of

T. Calculated analogously, the selection gradient for male care is:

d ~W

d~T ~W
¼

~S0

~S
þ

~p~s0

1� ~p~s
ð4Þ

We then calculate evolutionary trajectories based on the standard assumption that
trait values change at rates proportional to these gradients.

To calculate the ASR (denoted rA) in a way that matches the strict
interpretation of k and ~k (but still includes all individuals, whether qualified to
mate or not), we revise Kokko and Jennions’13 equation A10 as:

rA ¼ r
1
~k

~LI þ ~LO
� �

þ
~k� 1

~k
� 1
~mI

 !
=

1
k

LI þ LOð Þþ k� 1
k
� 1
mI

� �
ð5Þ

Here, the 1=~k males qualified to mate spend expected mean times ~LI and ~LO (see
equations (16) and (17)) in time-in and time-out, respectively, while the remaining
~k� 1

~k
males spend

R1
0 e� t~mI tdt=ð

R1
0 e� t~mI dtÞ ¼ 1=~mI in time-in.

Synergy model. To modify the basic model so that a specific care duration evolves
for each sex (see Results section) we next assume that the offspring’s probability of
reaching maturity depends on a synergistic benefit of biparental (strictly speaking,
any form of two sex) care. Offspring survival S½tsynergy � is now a function of
tsynergy ¼ ttotal 1þ gnt~n~t=yð Þ, where the parameter g specifies the strength of
synergy. One unit of egalitarian care corresponds to (1þ g) units of uniparental
care, and y ¼ n tþ~t

2 ~n tþ~t
2 is a normalizing factor. The selection gradients in

equations (1) and (2) are now modified by using

dS
dt
¼

a � exp � ay
ttotalðyþ gnt~n~tÞ

h i
y yþ g~n~tð2ntþ ~n~tÞð Þ

t2
totalðyþ gnt~n~tÞ2

(and analogously for dS=d~t). This reduces to the basic model when g¼ 0.

Two-trait model. To allow for coevolution of investment into parental care and
sexually selected traits (that is, a higher mating rate) by each sex, we modify the
synergy model by expressing female and male mating rates as functions of their
competitiveness x and ~x, as a ¼ x~xMnr1=2

O and ~a ¼ x~xM~nr� 1=2
O (see ref. 20). The

OSR (rO) is now obtained by substituting M with x~xM in equation (18) (or,
equivalently, in equation (23)). We assume that increased competitiveness is costly
and increases mortality: mI x½ � ¼ mO x½ � ¼ 0:05ð1þ x1:5Þ (and analogously for
males). This formulation means that the costs of being more competitive are
expressed regardless of whether or not an individual is in the mating pool. As such,
it is best viewed as the cost of bearing a sexual trait rather than, for example, the
cost of courting or mate searching. The values 0.05 and 1.5 carry no special
significance, but were chosen such that the basic model is recovered when
competitiveness is held fixed at x ¼ ~x ¼ 1. Using x ¼ ~x ¼ 1 as initial values, we
can then calculate evolutionary trajectories from the same starting points used in
the basic model. In equation (1) p and s can be expressed as functions of the
competitiveness x of a rare mutant (while treating rO as a constant for the purpose
of differentiation, since it depends only on resident behaviour). So the selection
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gradient for female competiveness is:

dW
dxW

¼ p0 þ p2s0

p� p2s
ð7Þ

where derivatives are evaluated at the resident value of x, and

s0 ¼ � e� mOT TmO
0

p0 ¼ a0

aþmI
� aða0 þ m

0
IÞ

ðaþ mIÞ2

a0 ¼ ~xMnr1=2
O

m0I ¼ mO
0 ¼ 0:075x0:5

The selection gradient for male competitiveness is calculated analogously, except

~a0 ¼ xM~nr� 1=2
O

Revising Kokko and Jennions’ model. Kokko and Jennions’13 analysis suffered
from a conceptual error which affected the calculation of selection gradients based
on their equations (1) and (2). First, they reasoned that ‘‘the future pay-off from
desertion is directly proportional to how soon a parent can mate and leave the
mating pool (that is, parental mating rate)’’13 (the first term of their equation (1)).
This statement implies that the sequence of events: (brief time-in, long time-out,
reproduction) promises a higher pay-off from desertion than the sequence: (long
time-in, brief time-out, reproduction) of the same total duration. But this implicit
assumption appears unjustified, since the fitness consequences are the same in each
case. Second, when subtracting their equation (1) from their equation (2), they
invoked this presumed pay-off from desertion as an opportunity cost of caring,
representing opportunities lost because the carer did not return to the mating pool
sooner. To see why this is incorrect, note that they modelled a population that (at
equilibrium) is constant over time. Thus, the pay-off from re-entering the mating
pool after breeding must also be constant over time: it makes no difference for a
focal individual’s future (from the time of entering onwards) if it enters now or
later, provided that it does eventually do so. This means that caring is costly only
insofar as it involves a risk of death (and hence loss of reproductive value) during
the care period. To quantify these costs, we need to know the relevant reproductive
values (that is, expectations of future reproductive success).

We derive reproductive values as follows. By the Fisher condition, fitness of
females and males at maturation is linked as W ¼ ~W � r. Because the model
includes no senescence, individuals entering time-in after breeding are
indistinguishable from those entering time-in at maturation; hence reproductive
values in time-in are also linked by the Fisher condition. Without loss of generality
(because only relative reproductive values matter), we arbitrarily define as unity the
average reproductive value of maturing offspring of either sex:

1
rþ 1

vþ r
rþ 1

~v ¼ 1 ð8Þ

With probability 1
rþ 1 a randomly chosen offspring is female, in which case it has

reproductive value v; with probability r
rþ 1 it is male, in which case it has

reproductive value ~v. From equation (8) and the Fisher condition v ¼ ~v � r, we
obtain reproductive values v ¼ ð1þ rÞ=2 and ~v ¼ ð1þ 1=rÞ=2 for average females
and males in time-in, and vk and ~v~k for individuals qualified to mate.

The Fisher condition also implies that the reproductive value of males (relative
to females) is inversely proportional to the MSR. This is true for average males and
females (namely, ~v

v ¼ 1
r) and also for those qualified to mate (namely, ~v~k

vk ¼ 1
r

~k
k). Since

the right hand side of these equations depends only on r, k and ~k, it follows that the
reproductive value of males relative to females is independent of adult mortality,
and also of any associated variation in the ASR.

We now use these reproductive values to perform a cost-benefit analysis. To
quantify the strength of selection acting on a rare female mutant whose care
duration T is slightly longer than that of the resident female population, we
calculate the marginal net benefit o½T� of caring (rather than deserting) at time T,
and deserting immediately afterwards. The expected consequences of this mutant
behaviour must be calculated from the start of a care period, taking into account
the possibility of dying before T. (To see why this is necessary, consider the extreme
case where T is so long that the carer is unlikely to survive until T. In this case,
selection is weakened by the fact that any mutant with a slightly different T is
unlikely to survive long enough for its mutant phenotype to become expressed.) A
female that cares at T can expect to gain reproductive value at rate

benefit ¼ s � dS
dt
� b � 1

2
ð9Þ

In words: if the female is still alive at T (as happens with probability s), she confers
a marginal survival gain dS

dt (evaluated at the resident values of T and ~T) on her
brood of size b, to which she is related by ½. Surviving offsprings’ reproductive
value does not show up in this equation because it was set to unity (see above).
Caring at T has costs in terms of the female’s own survival, namely

cost ¼ s � mO � kv ð10Þ

In words: if she is still alive at T (as happens with probability s), she is subject to
mortality mO, which puts at risk the reproductive value kv she has when deserting.
The expected net benefit of caring at T in a given breeding attempt is then

o ¼ benefit� cost ð11Þ
For males, the analogous equations are:

gbenefit ¼ ~s � dS
d~t
� b � 1

2
� n
~n

ð12Þ

gcost ¼ ~s � ~mO � ~k~v ð13Þ

~o ¼ gbenefit�gcost ð14Þ
where n=~n accounts for shared paternity of the offspring of n females among ~n
males. Since the expected net benefits o and ~o arise per breeding attempt, to
compare selection between the sexes we must also take into account that there are n
female breeding attempts per ~n male breeding attempts. Letting T and ~T evolve at
rates proportional to no and ~n~o yields the trajectories in Fig. 1.

Equations (9)–(14) reveal that the direction of selection is the same for both sexes
if they differ only in care duration (that is, if T 6¼ ~T ; r¼ 1; mO ¼ ~mO; n ¼ ~n; k ¼ ~k)
and there is no synergy (hence more care by either sex has the same effect on brood
survival, dS

dt ¼ dS
d~t ), because o and ~o are then equal (up to the positive factor s=~s).

The evolutionarily stable care duration depends on how parents value broods
compared to their own life. This depends on brood size, which in a population at
demographic equilibrium must meet the criterion that births match the number of
deaths. Specifically, mature females must on average produce one mature daughter
during their lifetime, that is, W � 1= rþ 1ð Þ ¼ 1, where W is taken from
equation (1), and 1= rþ 1ð Þ is the proportion of daughters in the maturation sex
ratio, r . Solving this yields brood size at demographic equilibrium:

b ¼ kð1� psÞðrþ 1Þ
pS

ð15Þ

More generally, density dependence might act on brood size and/or juvenile survival,
so b can also be interpreted as a product of brood size and a density-dependent
juvenile survival probability. In contrast, Kokko and Jennions13 defined brood size a
priori, without accounting for demographic stability. This was inconsistent with their
implicit assumption of demographic stability when deriving the OSR.

Revised expressions from Kokko and Jennions. Here we reproduce some
expressions from Kokko and Jennions13 (henceforth KJ) in slightly revised form.
According to KJ’s equation (A2), the expected total duration spent in time-in of an
average female is

LI ¼
1

a 1� e� mOTð Þþ mI
ð16Þ

However, since we have defined a as the mating rate of females qualified to mate
(rather than of average females, as in KJ), in our model this equation describes the
total duration that a female qualified to mate spends in time-in. The expression ~LI

for males is analogous. Similarly, based on KJ’s equation (A5), in our model

LO ¼
að1þ mOT � emO T ð1� mOTÞÞ
ðmIþ að1� emOT ÞÞmO

ð17Þ

is the total duration that a female qualified to mate spends in time-out. The
expression ~LO for males is analogous. Finally, using KJ’s equation (A9) and
replacing r with r � k=~k to match our definition of the operational sex ratio rO as the
ratio of qualified males and females in time-in, we have

rO ¼ r
k
~k

mI

~mI
þ M2A

2~m2
I

A �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ 4mI~mIrk

M2~k

r !
ð18Þ

Where A ¼ nr k
~k

1� e� mOTð Þ� ~nð1� e� ~mO
~T Þ.

A null model for pre-mating parental investment. To test the hypothesis that
the timing of parental investment with respect to the time of mating does not
fundamentally alter the properties of our null model, here we consider the evo-
lution of parental investment that occurs before (rather than after) mating (for
example, gamete investment, nest building). Adult life now begins in the time-out
state (at maturation sex ratio r), and, to reproduce, individuals must survive a full
cycle of time-out and subsequent time-in. Thus, a newly matured female has
probability sp (as defined for equation (1)) of producing at least one brood, and
probability (sp)i(1� sp) of producing exactly i broods, amounting to a lifetime
expectation of

P1
i¼1 i spð Þið1� spÞ ¼ sp

1� sp broods. This (and the analogous argu-
ment for males) leads to fitness functions

W ¼ 1
k
� sp

1� sp
� b � S ð19Þ

~W ¼ 1
~k
� ~s~p

1�~s~p
� b � n

~n
� S ð20Þ
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and selection gradients

dW
dTW

¼ S0

S
þ s0p

1� sp
ð21Þ

d ~W

d~T ~W
¼ S0

S
þ ~s0~p

1�~s~p
ð22Þ

Only individuals that survive their first time-out period will ever enter the mating
pool in this version of the model. The sex ratio among individuals entering the
mating pool for the first time should therefore depend on time-out durations,
rather than being an independent parameter. We account for this by re-defining
the maturation sex ratio r as referring to individuals that enter time-out (rather
than time-in) for the first time. We must also account for this when deriving the
operational sex ratio rO. Observing that female fitness W[rO] can be expressed as an
increasing function of rO and male fitness ~W½rO� can be expressed as a decreasing
function of rO , the unique Fisher-consistent value of rO is obtained by solving the
equation W½rO� ¼ ~W½rO� � r. This yields

rO ¼
1

2~m2
I ns2

~nð2BmI~mIs~sþAþM
ffiffiffi
n
p ffiffiffi

~n
p
ðB~sþ sð~s�B~s� 1ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4BmI~mIs~sþA

p
Þ ð23Þ

where A ¼ M2n~nðs�B~sþðB� 1Þs~sÞ2 and B ¼ k=~k � n=~n � r.
The same method of deriving rO also works for the model with post-mating

parental investment, using fitness functions equations (1) and (2), and yielding
equation (23) with B ¼ k=~k � n=~n � s=~s � r.

With pre-mating parental investment, the expected parental investment and the
realised parental investment in any given brood are the same; hence dt

dT ¼ 1.
Evolutionary trajectories calculated based on equations (21) and (22) are virtually
indistinguishable from those in Fig. 1. This confirms that the timing of parental
investment relative to mating does not fundamentally change the properties of the
null model.

Data availability. This article contains no data.
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